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Abstract
We give a generalization of subspace codes by means of codes of modules over finite com-
mutative chain rings. We define a new class of Sperner codes and use results from extremal
combinatorics to prove the optimality of such codes in different cases. Moreover, we explain
the connection with Bruhat–Tits buildings and show how our codes are the buildings’ ana-
logue of spherical codes in the Euclidean sense.

Keywords Submodule codes · Subspace codes · Spherical codes · Chain rings · Sperner
codes · Bruhat–Tits buildings · Sperner property · Balls in buildings

Mathematics Subject Classification 94B60 · 94B65 · 94B25 · 20E42 · 51E24 · 52B20

1 Introduction

The codes studied in this paper can be viewed as a bridge of generalization between two
worlds, that of subspace codes and that of spherical codes. More specifically our codes
consist of equivalence classes of modules over finite commutative chain rings, which can be
interpreted at the same time as subsets of spheres inBruhat–Tits buildings. In this introduction
we will take a first glance at these connections and present the main questions that will be
addressed in this document.

1.1 Spherical codes in the euclidean setting

Spherical codes in R
d , equipped with the usual distance, are finite subsets of the unit sphere

B1 = {x = (x1, . . . , xd) ∈ R
d | x21 + · · · + x2d = 1}.

In this context, spherical codes can be constructed from sphere packings [14, Section 1.2.4]
and find numerous applications in the field of telecommunication. In view of the applications,
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it is desirable to produce sizable codes of large internal distance and small length. Optimal
codes are thus codes with the “best possible” coexistence constraints on the last requirements.
More precisely, it is greatly interesting to determine which spherical codes present the most
favourable relationship between their length, minimum distance, and cardinality. Already for
the small length value d = 3, however, the last problem turns out to be very hard and not all
optimal codes are classified; cf. [21, Section 3.3]. For a broad overview of spherical codes
in this setting we refer the interested reader to [21].

1.2 Chain rings in coding theory

Let R be a commutative ring, which we assume to be unital. The ring R is said to be a
chain ring if all of its ideals form a chain, i.e. if I and J are ideals of R, then I ⊆ J or
J ⊆ I . In this paper, only the case of commutative chain rings will be considered, though
their definition extends also to the non-commutative case; cf. [26, Section 2]. Examples of
finite commutative chain rings include

(1) Z/pr
Z, where p is a prime number and r a positive integer, and

(2) (Z/pm
Z)[x]/( f (x)), where p is a prime number, m a positive integer, and f a monic

polynomial that is irreducible modulo p.

For more on the classification of finite commutative chain rings we refer to [3, 12, 27]. In the
present paper, we are mostly interested in viewing R as a quotient of a discrete valuation ring
OK by a powermr

K of its unique maximal idealmK , e.g.OK equals the p-adic integersZp or
the ring Fq [[t]] of formal power series with nonnegative integer exponents and coefficients
in the field Fq . As can be found for instance in [26, Section 2], finite chain rings are local and
their unique maximal idealm is principal. Moreover, if π generatesm, then every ideal of R
is generated by a nonnegative power of π . Since R is finite, there exists a minimal positive
integer r , called the nilpotency class of m, with the property that mr = 0, equivalently
that πr = 0. In addition, an elementary divisor type theorem holds for finitely generated
modules over chain rings. There are several applications of finite chain rings in coding
theory including linear codes [8, 26, 33] and cyclic codes [11, 15, 24, 38], though to this
author’s best knowledge the consideration of codes consisting of modules over finite chain
rings does not appear anywhere in the literature.

1.3 Spherical codes of modules

Let R be a finite commutative chain ring and let r ≥ 1 be such that the unique maximal ideal
m of R satisfies mr−1 �= 0 and mr = 0. Let π ∈ R satisfy m = Rπ and let Vr be a free
R-module of rank d ≥ 2, that is Vr ∼= Rd . Write L(Vr ) for the set of all R-submodules of
Vr and ∂L(Vr ) for the boundary of L(Vr ):

∂L(Vr ) = {U ∈ L(Vr ) | πr−1Vr � U � πVr }.
Defining the map dist : ∂L(Vr ) × ∂L(Vr ) → Z by

(U1, U2) �→ dist(U1, U2) = min{m ∈ Z≥0 | πmU1 ⊆ U2} + min{n ∈ Z≥0 | πnU2 ⊆ U1}
gives ∂L(Vr ) the additional structure of a metric space. The last distance can be extended
to the whole of L(Vr ) modulo homothety; cf. Sect. 2. Moreover, for r = 1, one can see that
dist does not coincide with the subspace metric or the injection metric on L(V1); cf. [30,
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Section 1]. A spherical code in Vr is then a subset C of ∂L(Vr ) of cardinality at least 2 and
its minimum distance is

dist(C) = min{dist(U1, U2) | U1, U2 ∈ C, U1 �= U2}.

Spherical codes in Vr are natural generalizations of subspace codes, though the attribute
“spherical” comes from interpreting ∂L(Vr ) as a sphere of modules, cf. Proposition 2.6. In
this manuscript, we address and give answers to the following question:

For a given integer ψ, what are the largest spherical codes CinVr

wi th the property that dist(C) ≥ ψ?

The largest codes associated to a given minimum distance are called optimal. If ψ = 1,
then there is a unique optimal code of minimum distance 1, namely ∂L(Vr ): we compute its
cardinality in Sect. 8. In general, good candidates for optimal codes are the Sperner codes that
we define in Sect. 4 usingGrassmannians of R-modules. Such codes are defined starting from
the parameters (d, R, α) where ψ = 2α is taken to be even. In Theorem 4.5, we compute
the cardinality and minimum distance of a Sperner code with parameters (d, R, α), yielding
general bounds on the maximal size of codes of minimum distance 2α; cf. Corollary 4.6. In
Sect. 5, we use results from extremal combinatorics to prove that Sperner codes are optimal
when α = r or d = 2; cf. Theorems 5.4 and 5.6. We move on to the construction, in Sect.
6, of optimal codes in a subfamily of ∂L(Vr ) indexed by tuples of positive integers. More
concretely, let ∂Le(Vr ) denote the collection of boundary R-submodules of Vr that can be
generated compatibly with a basis e = (e1, . . . , ed) of Vr over R, i.e. modules of the form

U = Rπδ1e1 ⊕ · · · ⊕ Rπδd ed , where 0 ≤ δi ≤ r , {0, r} ⊆ {δ1, . . . , δd}.

Generalizing [21, Chapter 4], a permutation code is a spherical code in Vr that is contained in
∂Le(Vr ) and whose elements form one orbit under the natural action of the symmetric group
Sym(d) on ∂Le(Vr ). In Theorem 6.9 we give bounds on minimum distance and cardinality
of a permutation code in terms of its defining parameters.

1.4 The connection to Bruhat–tits buildings

Write R = OK /mr
K and consider the natural projection Od

K → Rd ∼= Vr . Via the last
map we identify every submodule of Vr with the unique maximal free OK -submodule of
Od

K mapping to it. Such a module is called a lattice in K d . The collection of lattices in
K d , considered up to homothety, forms the collection of 0-simplices of the Bruhat–Tits
Building Bd(K ) of SLd(K ). In this infinite simplicial complex, s-simplices are given by
chains L1 ⊃ L2 ⊃ · · · ⊃ Ls ⊃ π L1 of lattices and maximal simplices all have size d .
Transporting dist from the module setting to the buildings context (see Sect. 7.3) via the
above projection, one can then interpret ∂L(Vr ) as a sphere ∂ Br in Bd(K ), cf. Theorem 7.6,
and thus spherical codes in Vr as spherical codes in Br . To the best of our knowledge, this
is the very first instance in which spherical codes in affine buildings are studied, adding yet
another item to the already long list of applications of buildings; cf. Sect. 7. In our closing
Sect. 8 we give formulas and asymptotics for the number of elements in a ball of radius r in
Bd(K ); cf. Theorem 8.5. As a consequence, we derive densities of spherical codes in analogy
to the ones found in [10] for linear codes over finite chain rings.
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1.5 A note on the underlying geometry and combinatorics

Contrarily to what happens in the Euclidean context, a sphere inBd(K ) is not a homogeneous
space, but is rather to be thought of as the collection of boundary points of a lattice polytope
and Sperner codes arise as strategically chosen subsets of the polytope’s vertices. As we deal
with a discrete set, it is interesting and important to understand how the number of elements of
∂ Br depends on the size q of the residue field of K . This count and its asymptotic behaviour
has been included in Sect. 8 as it seemed not to be explicitly available in the literature already.
The count is much easier and independent of q when one restricts to the analogue ∂ Br ∩A
of Le(Vr ) in the building. Indeed, in such case we are considering a slice of ∂ Br by an affine
d-dimensional space resulting in a polytope that is both convex in the usual and in the tropical
sense; cf. Sect. 6.

1.6 Notation

Throughout the paper, let d ≥ 2 and r ≥ 1 denote two integers. Let R be a finite commutative
chain ring with maximal ideal m generated by π and such that πr = 0, but πr−1 �= 0. Write
q = |R/m| for the cardinality of the residue field of R. Let Vr denote a free R-module of
rank d and fix e = (e1, . . . , ed) to be a basis of Vr over R. If r = 1, then R is a field and
we simply write V = V1. Let 1 denote the vector (1, . . . , 1) ∈ Z

d , let Sym(d) denote the
symmetric group on d letters, and let Jd denote the integral (d × d)-matrix with 0’s on the
diagonal and 1’s elsewhere. Set, additionally

E(d)
r = {ε = (ε1, . . . , εd−1, εd = 0) ∈ Z

d | r ≥ ε1 ≥ · · · ≥ εd−1 ≥ 0},
∂E(d)

r = {ε = (ε1 = r , ε2, . . . , εd−1, εd = 0) ∈ Z
d | r ≥ ε2 ≥ · · · ≥ εd−1 ≥ 0}.

In conclusion, for an indeterminate X , integers a ≥ b ≥ 0, and I = {i1, . . . , i�} ⊆ Z≥0, put

(
a

b

)
X

=
b−1∏
i=0

1 − Xa−i

1 − Xb−i
and

(
d

I

)
X

=
(

d

i�

)
X

(
d

i�−1

)
X

· · ·
(

d

i1

)
X
.

2 Themodule distance

In this section we define an equivalence relation on the set L(Vr ) of all R-submodules of Vr

and a distance on the collection of its equivalence classes.

Definition 2.1 Let U be an element of L(Vr ). Then mU ∈ {0, . . . , r} is defined as
mU = max{0 ≤ m ≤ r | U ⊆ πm Vr }.

Moreover, Ũ ∈ L(Vr ) is defined to be the kernel of the map

Vr −→ Vr/U , x �−→ πmU x + U .

Note that Ũ is the unique maximal R-submodule of Vr with the property that πmU Ũ = U .
In particular, we have that U ⊆ Ũ and, moreover, mU = 0 if and only if Ũ = U . As a
consequence, we have that

∂L(Vr ) = {U ∈ L(Vr ) | πr−1Vr � U � πVr } (2.1)

⊆ {U ∈ L(Vr ) | Ũ = U }. (2.2)
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Definition 2.2 Modules U and U ′ in L(Vr ) are homothetic whenever Ũ = Ũ ′.

Homothety defines an equivalence relation ∼ on L(Vr ) and we write

L0(Vr ) = L(Vr )/∼ = { [U ] = {U ′ ∈ L(Vr ) | Ũ = Ũ ′} | U ∈ L(Vr )}
for the collection of homothety classes of elements of L(Vr ). Note that [Vr ] = [0] has
cardinality r + 1 and the cardinality of each [U ] ∈ L0(Vr ) \ {[0]} is at most r . Moreover, it
is not difficult to see that ∂L(Vr ) can be identified with the collection of equivalence classes
in L0(Vr ) with exactly one element. With a slight abuse of notation, we thus write

∂L(Vr ) = {[U ] ∈ L0(Vr ) | [U ] = {U }}. (2.3)

We define ametric onL0(Vr ), which does not generalize the subspace or the injection metric;
cf. [30, Section 1].

Definition 2.3 Let [U ], [U1], [U2] ∈ L0(Vr ) denote homothety classes of modules. Define

n12 = min{m ∈ Z≥0 | πmŨ1 ⊆ Ũ2} and
n21 = min{n ∈ Z≥0 | πnŨ2 ⊆ Ũ1}.

Then the distance between [U1] and [U2] is
dist([U1], [U2]) = n12 + n21.

For a subset M ⊆ L0(Vr ), put dist([U ],M) = min{dist([U ], [U ′]) | [U ′] ∈ M}.
The next result gives that L0(Vr ) equipped with dist is a metric space.

Lemma 2.4 The map dist : L0(Vr ) × L0(Vr ) → Z is a distance.

Proof We only show that the triangle inequality holds, as the other defining properties are
clear. For this, let [U1], [U2], [U3] ∈ L0(Vr ) and, for i, j = 1, 2, 3, let ni j be as in Definition
2.3. It follows from their definitions that

πn13Ũ1 ⊆ Ũ3, πn32Ũ3 ⊆ Ũ2, πn23Ũ2 ⊆ Ũ3, πn31Ũ3 ⊆ Ũ1,

and so the minimalities of n12 and n21 yield

n12 ≤ n13 + n32 and n21 ≤ n23 + n31.

It follows from Definition 2.3 that dist([U1], [U2]) ≤ dist([U1], [U3]) + dist([U2], [U3]). ��
We remark that every element in L0(Vr ) has distance at most r from [Vr ], equivalently the
set L0(Vr ) can be interpreted as the ball of radius r around [Vr ]:

L0(Vr ) = Br ([Vr ]) = {[U ] ∈ L0(Vr ) | dist([U ], [Vr ]) ≤ r}. (2.4)

In general, for each � ∈ {0, . . . , r}, we set
B�([Vr ]) = {[U ] ∈ L0(Vr ) | dist([U ], [Vr ]) ≤ �} and

∂ B�([Vr ]) = {[U ] ∈ L0(Vr ) | dist([U ], [Vr ]) = �},
which we call the ball of radius � and the sphere of radius � around [Vr ], respectively.

123



2454 M.Stanojkovski

Example 2.5 Assume that R = Z/32Z, in which case the maximal ideal of R is generated
by π = 2 and r = 5. Figure 1 illustrates the elements of L0(V5): in this picture two elements
are joined by an edge if they have distance 1. We look concretely at some of the elements of
L0(V5) and at the distances between them.

If U is the R-submodule generated by 4e1 and 8e2, then mU = 2 and Ũ is generated
by e1 and 2e2. Writing 〈X〉 for the R-submodule of V5 generated by X ⊆ V5, the tilde
representatives of the classes in B1(V5) are

V5, U1 = 〈e1, 2e2〉, U2 = 〈2e1, e2〉, U3 = 〈e1 + e2, 2e1〉
while ∂ B1(V5) = {[U1], [U2], [U3]}. Note that ∂ B1(V5) is in 1-to-1 correspondence with
P(V5/2V5), i.e. the elements of ∂ B1(V5) can be interpreted as lines in the 2-dimensional
vector space V5/2V5. Setting now � = 2, we find the representatives of ∂ B2(V5):

U11 = 〈e1, 4e2〉, U12 = 〈e1 + 2e2, 4e2〉, U21 = 〈e2, 4e1〉, U22 = 〈2e1 + e2, 4e1〉,
U31 = 〈e1 + e2, 4e1〉, U32 = 〈e1 + 3e2, 4e1〉.

In the following table we collect the distances within B2(V5):

1 2 3 11 12 21 22 31 32

1 0 2 2 1 1 3 3 3 3
2 0 2 3 3 1 1 3 3
3 0 3 3 3 3 1 1
11 0 2 4 4 4 4
12 0 4 4 4 4
21 0 2 4 4
22 0 4 4
31 0 2

The red dots in Fig. 1 denote the elements of ∂ B3(V5). Moreover, it turns out in this case
that dist on L0(V5) coincides with the graph distance on Fig. 1.

Proposition 2.6 For each � ∈ {0, . . . , r}, the following hold:

(1) ∂ B�([Vr ]) = {[U ] ∈ L0(Vr ) | | [U ] | = r − � + 1},
(2) B�([Vr ]) = {[U ] ∈ L0(Vr ) | | [U ] | ≥ r − � + 1}.
Moreover, one has ∂L(Vr ) = ∂ Br ([Vr ]).
Proof Let � ∈ {0, . . . , r}. We start by showing (1). For this, let U ∈ L(Vr ) and assume
without loss of generality that U = Ũ . Then the following hold

dist([U ], [Vr ]) = � ⇐⇒ � = min{n ∈ Z≥0 | πn Vr ⊆ U }
⇐⇒ [U ] = {π j U | j = 0, . . . , r − �}
⇐⇒ | [U ] | = r − � + 1

and so (1) is proven. To show (2), we combine (1) to the observation that

B�([Vr ]) =
⋃

0≤ j≤�

∂ B j ([Vr ]) =
⋃

r−�+1≤h≤r+1

{[U ] ∈ L0(Vr ) | | [U ] | = h}.

The proof of (1) also shows that ∂L(Vr ) = ∂ Br ([Vr ]). ��
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3 Spherical submodule codes

In this section we define spherical codes in Vr as codes of submodules and prove some initial
results. For a comparison with subspace codes see for instance [30] while for a comparison
with spherical codes in the Euclidean case, we refer to [21].

Definition 3.1 Let C be a subset of L0(Vr ) with |C| ≥ 2. Then the minimum distance of C is

dist(C) = min{dist([U ], [U ′]) | [U ], [U ′] ∈ C, [U ] �= [U ′]}.
Recall that ∂L(Vr ) is a metric space equipped with the metric dist from Sect. 2 via the
identification in (2.3).

Definition 3.2 A spherical code in Vr is a subset C of ∂L(Vr ) with at least 2 elements.

The terminology “spherical” is motivated by Proposition 2.6, from which it follows in par-
ticular that each element [U ] of a spherical code C satisfies dist([U ], [Vr ]) = r . The proof
of the next result is straightforward; compare also with the table in Example 2.5.

Lemma 3.3 For each spherical code C in Vr , one has dist(C) ≤ 2r .

A spherical code in Vr could in principle equal ∂L(Vr ), so a universal yet weak bound on
the cardinality of a spherical code is given by |∂L(Vr )|. For a precise count of the elements
of ∂L(Vr ) or L0(Vr ) we refer to Sect. 8 via Theorem 7.6. The most interesting bounds for
spherical codes come from relating dist(C) and |C|.
Definition 3.4 Let χ,ψ denote integers satisfying χ ≥ 2 and ψ ≥ 1. Define

(1) dist(d; R;χ) = max{dist(C) | C ⊆ ∂L(Vr ), |C| ≥ χ},
(2) card(d; R;ψ) = max{|C| | C ⊆ ∂L(Vr ), dist(C) ≥ ψ}.
Since (1) and (2) are somewhat dual to each other (see also the analogous definitions in the
Euclidean case [21, Section 2.3]), we will mostly be focussing on (2).

Example 3.5 The blue dots in Fig. 1 form a spherical code in V5 with minimum dis-
tance 6; cf. also Example 2.5. In particular this shows that card(2; Z/32Z; 6) ≥ 12 and
dist(2; Z/32Z; 12) ≥ 6.

Definition 3.6 Let C = {[U1], . . . , [Us]} denote an ordered spherical code in Vr . The half-
distance matrix of C is N (C) = (ni j ) ∈ Z

s×s where

ni j = min{β ∈ Z≥0 | πβŨi ⊆ Ũ j .}
Note that, as a consequence of Proposition 2.6, if dist(C) = 2r , then N (C) = r Js .

Remark 3.7 Let C = {[U1], . . . , [Us]} be an ordered spherical code in Vr . The distance matrix
of C is

D(C) = N (C) + N (C)t.

Then D(C) = (δi j ) is a symmetric matrix with the following properties:

(1) for each pair (i, j), one has dist([Ui ], [U j ]) = δi j = δ j i ,
(2) dist(C) = min{δi j | δi j �= 0}.
The following proposition is easily seen to hold as a consequence of Proposition 2.6.

Proposition 3.8 Let [U1], [U2] be in L0(Vr ). Then the following are equivalent:

(1) dist([U1], [U2]) = 2r .
(2) [U1], [U2] ∈ ∂L(Vr ) and πr−1U1, π

r−1U2 � U1 ∩ U2.
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4 Grassmannians and Sperner codes

In this section we build spherical codes in Vr starting from modules highlighted by the
investigation of the Sperner property in finite abelian p-groups; cf. [41, 42, 45]. We call a
subset K of a poset P a chain if any two of its elements are comparable, i.e.

a, b ∈ K �⇒ a � b or b � a.

On the contrary, an antichain is a subsetA of P whose elements are pairwise incomparable,
that is

a, b ∈ A �⇒ a � b and b � a.

Antichains play an important role in the construction of “big codes" in this paper.

4.1 Grassmannians and sperner bounds

The content of this section could be presented in terms of the Sperner property, though
we choose not to do so for the sake of brevity. For the purposes of this section, L(Vr ) is
considered as the poset of all R-submodules of Vr , ordered by inclusion. Recall that, if U is
a free R-submodule of Vr , then its rank equals the minimum cardinality of a generating set.

Definition 4.1 Let n be an integer with 1 ≤ n ≤ d − 1. The Grassmannian Gr(n, Vr ) is the
collection of all free R-submodules of Vr of rank n.

It is clear from its definition that, for each n, the Grassmannian Gr(n, Vr ) is an antichain
in L(Vr ) and is contained in ∂L(Vr ). Moreover, when r = 1, the Grassmannian Gr(n, V )

consists of the n-dimensional subspaces of V . For more on Grassmannians, we refer to [36,
Chapter 5] and references therein. Generalizing the proof of [43, Proposition 1.3.18] to Vr ,
we have that

|Gr(n, Vr )| =
(

d

n

)
q−1

qrn(d−n), (4.1)

from which it follows that |Gr(n, Vr )| = |Gr(d − n, Vr )|. We remark that (4.1) also follows
directly from the more general formulas from Sect. 8.

Example 4.2 Assume that d = 2 and R = Z/32Z, which implies that q = 2. We have seen
in Example 2.5 that ∂ B1(V5) has the same number of elements as Gr(1, V5/2V5), where
V5/2V5 is viewed as a free R/2R-module. Indeed (4.1) ensures

|Gr(1, V5/2V5)| =
(
2

1

)
1
2

21 = 1 − ( 1
2

)2
1 − 1

2

21 = 3 = |∂ B1(V5)|.

The following is the main result of [45], which is there phrased to hold for r ≥ 3. The case
where r = 1 can be found in [39, 41], while the case r = 2 is given in [42, Theorem 2.7].

Proposition 4.3 [45, Main Theorem] Set e− = (d − 1)/2 and e = d/2 and e+ = (d + 1)/2.
Let, moreover, n ∈ {1, . . . , d − 1}. Then Gr(n, Vr ) is a maximal-sized antichain in L(Vr ) if
and only if exactly one of the following holds:

(1) d is even and n = e,
(2) d is odd and n ∈ {e−, e+}.
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4.2 Sperner codes

In this section we define spherical codes in Vr that will yield lower bounds to card(d; R; 2α)

for any choice of the integer 1 ≤ α ≤ r . To this end, we fix such an α and define

m = r + 1 − α and e = �d/2� =
{

d/2 if d even,

(d + 1)/2 if d odd.
(4.2)

We will define a family of codes C that satisfy

dist(C) ≥ 2α and |C| = |Gr(e, Vm)|, (4.3)

cf. Definition 4.4. Write Gr(e, πα−1Vr ) for the collection of free R/mm-submodules of
πα−1Vr of rank e and note that the elements of Gr(e, πα−1Vr ) are incomparable. Moreover,
Gr(e, πα−1Vr ) is in bijection with Gr(e, Vm), equivalently

|Gr(e, πα−1Vr )| = |Gr(e, Vm)| =
(

d

e

)
q−1

qme(d−e).

Definition 4.4 A Sperner code with parameters (d; R;α) is a subset C of Gr(e, Vr ) such that
the map

C −→ Gr(e, πα−1Vr ), U �−→ πα−1U ,

is a bijection.

We remark that a Sperner code with parameters (d; R;α) is nothing else than a collection
C of free R-submodules of Vr with the property that Gr(e, Vr ) = {πα−1U | U ∈ C}. An
example of a Sperner code when d = 2 is given in Fig. 1 (see also Examples 2.5, and 3.5).

Theorem 4.5 Let 1 ≤ α ≤ r be an integer and let C be a Sperner code with parameters
(d; R;α). Then the following are satisfied:

(1) C is a spherical code in Vr ,
(2) dist(C) ≥ 2α,
(3) |C| = |Gr(�d/2�, Vr+1−α)|.
Proof (1) and (3) are clear from the construction of Sperner codes, so we prove (2). For this,
let U1, U2 ∈ C be distinct: we claim that n12 ≥ α. For a contradiction, assume that this is not
the case. It follows that πα−1U1 ⊆ πn12U1 ⊆ U2 and so

πα−1U1 ⊆ U2 ∩ πα−1Vr = πα−1U2,

which contradicts the bijectivity of themapC → Gr(e, πα−1Vr ) fromDefinition 4.4.Wehave
proven that n12 ≥ α and, the choice of U1 and U2 being arbitrary, we have that dist(C) ≥ 2α.
��
The following is an immediate corollary of the last result.

Corollary 4.6 Let 1 ≤ α ≤ r be an integer and define e = �d/2�. Then

card(d; R; 2α) ≥
(

d

e

)
q−1

q(r+1−α)e(d−e).

As we will see in the next section, the inequality from Corollary 4.6 is an equality in some
cases. We leave the following general question open.

Question 4.7 Is the inequality from Corollary 4.6 always an equality?
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5 Extremal cases

In this section we show that Question 4.7 has a positive answer when α = r or d = 2 by
showing that, in these cases, Sperner codes are optimal codes with respect to the bound given
in Corollary 4.6.

5.1 Codes of maximal distance

This section is devoted to the case α = r .

Proposition 5.1 Let C be a spherical code in Vr with dist C = 2r . Then there exists a spherical
code C′ in Vr such that the following hold:

(1) |C| = |C′| and dist(C′) = 2r ,
(2) for each U ∈ C′, one has πU = U ∩ πVr .

Proof Define CF to be the collection of all U ∈ C such that πU = U ∩ πVr . We prove, by
induction on n = |C \ CF |, that there exists C′ satisfying (1) and (2). If n = 0, then C already
satisfies (2) and we set C′ = C. Assume now that n > 0 and that the claim is satisfied for
n − 1. Let U ∈ C be such that πU �= U ∩ πVr , that is U is not a free R-submodule of Vr .
In view of this, let X and H be submodules of U satisfying

U = X ⊕ H , π H = H ∩ πVr , πr−1X = 0.

In particular, H is isomorphic to the free part (as R-submodule) of U and both H and X are
non-trivial. Set now C′′ = (C\{U })∪{H}. It follows from πr−1U = πr−1H and Proposition
3.8 that C′′ is a spherical code of minimal distance 2r . Moreover, we have C′′

F = CF ∪{H}
and C and C′′ have the same cardinality. We are now done thanks to the induction hypothesis.

��
Thanks to Propositionlem:any-to-free, to compute themaximal cardinality of spherical codes
of maximal distance in Vr it suffices to look at free R-submodules of Vr , equivalently at
subsets of the sets of vertices of the ball Br as a lattice polytope; cf. Definition 7.4and Sects.
6.1 and 7.

Definition 5.2 A spherical code C in Vr is called free if it satisfies Proposition 5.1(2).

The next result follows in a straightforward way from Proposition 3.8.

Lemma 5.3 Let C be a free spherical code in Vr and let U1, U2 ∈ C. Then the following are
equivalent:

(1) dist([U1], [U2]) = 2r ,
(2) πr−1U1 and πr−1U2 are incomparable.

Theorem 5.4 Let e = �d/2� be as defined in (4.2). Then the following holds:

card(d; R; 2r) =
(

d

e

)
q−1

qe(d−e).

Proof Let C be a spherical code in Vr of maximal cardinality satisfying dist(C) = 2r . Thanks
to Proposition 5.1, we assumewithout loss of generality that C is free. Then Lemma 5.3 yields
that the elements of C are in bijection with a collection of maximal size of incomparable
subspaces of πr−1Vr ∼= V . We are now done thanks to Proposition 4.3 and (4.1). ��
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Fig. 1 The vertices of this graph denote the elements of L0(V5) and ([U ], [U ′]) is an edge if πŨ ⊂ Ũ ′ ⊂ Ũ
or πŨ ′ ⊂ Ũ ⊂ Ũ ′. The red points are the elements of ∂ B3([V5]), which are represented by the elements of
Gr(1, π2V5) from Sect. 4.1. A Sperner code with parameters (2; Z/32Z; 3) and thus minimum distance 6 is
given in blue (Color figure online)

5.2 Codes in small dimension

In this section we answer Question 4.7 when d = 2, which we assume throughout Sect. 5.2.

Remark 5.5 There is a number of properties that spherical codes satisfy when d = 2, which
do not generally hold for every spherical code. For instance, each element of ∂L(Vr ) is a
free R-submodule of Vr and, for every 1 ≤ α ≤ r , the family Gr(1, πα−1Vr ) from Sect.
4.1 forms a set of representatives for the classes in ∂ Br+1−α([Vr ]); cf. Fig. 1. Write now
Gr(1, πα−1Vr ) = {S1, . . . , St } and, for each k ∈ {1, . . . , t}, define

∂k
αL(Vr ) = {U ∈ ∂L(Vr ) | dist([U ], [Sk]) = α − 1}.

Then ∂L(Vr ) equals the disjoint union of the ∂k
αL(Vr )’s and defining a Sperner code with

parameters (2; R;α) is the same as choosing one element in each ∂k
αL(Vr ); cf. Fig. 1.

Theorem 5.6 Let 1 ≤ α ≤ r be an integer. Then the following holds:

card(2; R; 2α) = (q + 1)qr−α.

Proof Thanks to Corollary 4.6, we have that

card(2; R; 2α) ≥ |Gr(1, Vr+1−α)| =
(
2

1

)
q−1

qr+1−α = (q + 1)qr−α,
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Fig. 2 A local picture of L0
e

when d = 3 (Color figure online)

so we prove the other inequality. With the notation from Remark 5.5, we have, for any
k ∈ {1, . . . , t} and U , U ′ ∈ ∂k

αL(Vr ), that

dist([U ], [U ′]) ≤ dist([U ], [Sk]) + dist([U ′], [Sk]) = 2(α − 1) < 2α.

The choice of k being arbitrary, this shows that any spherical code in Vr with dist(C) ≥ 2α,
can contain at most one representative from each ∂k

αL(Vr ). This concludes the proof. ��

6 Permutation codes

In this section, we give a possible generalization of permutation codes, as defined in [21,
Chapter 4], by means of Sym(d)-orbits of R-modules with compatible generating sets. For
the fixed R-basis e = (e1, . . . , ed) of Vr , we defineLe(Vr ) to be the family of R-submodules
of Vr that can be generated compatibly with e, in other words modules of the form

Uδ = Rπδ1e1 ⊕ · · · ⊕ Rπδd ed , where 0 ≤ δi ≤ r .

The homothety relation from Sect. 2 respects base compatibility and so we define L0
e(Vr )

to be the subfamily of L0(Vr ) with representatives in Le(Vr ). In particular, we can model
all elements of L0

e(Vr ) in terms of the Sym(d)-orbits of the set E(d)
r in Z

d and ∂Le(Vr ) =
∂L(Vr ) ∩ Le(Vr ) is defined by permutations of elements of ∂E(d)

r .

Example 6.1 Assume that d = 3 and R = Z/25Z, yielding r = 2 and q = 5. ThenU(0,0,0) is
the same as V2 and the modules U(1,1,0) ⊂ U(1,0,0) ⊂ U(0,0,0) are pairwise at distance 1 from
each other. Moreover, U(2,1,0) is an element of ∂Le(V2). Note that, while |∂Le(V2)| = 12,
the cardinality of ∂L(V2) is equal to 1860; cf. Sect. 8. If we compared the spheres of radius
1 around [V2], we would get 6 elements in the compatible case, against the 62 without basis
restrictions (see Fig. 2).
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6.1 Tropical operations and polytropes

For the sake of conciseness and in adherence to the references cited below we introduce here
some more notation, coming from tropical geometry. For real elements a and b we set

a ⊕ b = min{a, b}, a ⊕ b = max{a, b}, a � b = a + b

and remark that the last operations can be extended to R
d componentwise. For each matrix

M ∈ R
d×d with 0’s on the diagonal, we define moreover

Q(M) = {
u ∈ R

d/R1 : ui − u j ≤ mi j for 1 ≤ i, j ≤ d
}
, (6.1)

which is a convex polytope inR
d/R1 and is called a polytrope in tropical geometry. For more

on polytropes, we refer the interested reader to [17, 28, 29, 34]. In this paper, we will only
deal with polytropes like the ones in the next example. As we mention in [17, Example 13],
such polytropes are called pyropes in [29] and can be seen as balls of radius r in the tropical
metric [13, Section 3.3]. Recall that Jd denotes the matrix in Z

d×d with 0’s on the diagonal
and off-diagonal entries all equal to 1.

Example 6.2 Let [δ] ∈ Q(r Jd) be such that δ has integral coordinates. Then there exists
δ̃ ∈ [δ] all of whose coordinates δ̃i are integral and satisfy 0 ≤ δ̃i ≤ r . Then Uδ̃ belongs to
Le(Vr ) and, any other δ̃′ such that

δ̃′ ∈ δ̃ + Z1 and 0 ≤ δ̃′
i ≤ r

yields [Uδ̃] = [Uδ̃′ ]. More precisely, using the language of buildings, one can show that there
is a one-to-one correspondence between the integral points of Q(r Jd) and the elements of
L0
e(Vr ); cf. Theorem 7.6 and [19, Theorem 5.2].

Identifying R
d/R1 with {u ∈ R

d | ud = 0}, it is not difficult to see from Equation 6.1 that
the coordinates of vertices of the polytope Q(r Jd) are in {0, r}d ∪ {0,−r}d . As mentioned
in the Introduction, this has a nice interpretation in terms of free R-submodules of Vr .

6.2 Permutation codes

In this section we define permutation codes and give examples of such codes in connection
with the theory of polytropes. In Theorem 6.9 we give sharp bounds on theminimum distance
and cardinality of permutation codes in terms of their defining parameters.

Definition 6.3 An e-permutation code in Vr is a code of the form

C = {[Uδ] | δ ∈ Sym(d) · ε}, where ε ∈ ∂E(d)
r . (6.2)

To lighten the notation, we will often write C = Sym(d) · ε for a code as in (6.2).

Remark 6.4 Let δ, ε ∈ {0, . . . , r}d . Then the distance between [Uδ] and [Uε] is given by
dist([Uδ], [Uε]) = max

i=1,...,d
{δi − εi } − min

i=1,...,d
{δi − εi }.

This can be proven by direct computation or relying on Theorem 7.6 and [19, Remark 3.3].
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Fig. 3 A representation in R
4/R1

of Q(J4). The yellow dots
constitute an e-permutation code
of maximal size having distance
2; cf. Theorem 6.9

Remark 6.5 One could replace Sym(d)with Aut(Vr ) and study codes of the formAut(Vr ) ·ε,
that is maximal codes consisting of pairwise isomorphic R-modules. However, one can
already see for d = 2 that these codes are not particularly interesting in terms of general
bounds. More precisely, if d = 2, one has ∂L(Vr ) = Aut(Vr ) · (r , 0) = C and so dist(C) = 2
while |C| = |Gr(1, Vr )| = (q + 1)qr−1.

Of particular interest are codes that are derived from vertices of the polytrope Q(r Jd); cf.
Example 6.2. Such vertices are given by permutations of elements ε of E(d)

r whose entries
satisfy {0, r} = {ε1, . . . , εd}, in other words they correspond to the free R-submodules of
Vr . For each n ∈ {1, . . . , d − 1}, we set

Fn
r = Sym(d) · (r , . . . , r︸ ︷︷ ︸

d−n

, 0, . . . , 0)

describing the collection of all free R-submodules of Vr that belong to Le(Vr ). Note that, by
its definition, each Fn

r is contained in ∂L(Vr ) and the cardinality of Fn
r is equal to

|Fn
r | =

(
d

n

)
= d!

n!(d − n)! .

Example 6.6 In Fig. 3, the 14 regular vertices of the polytope Q(J4) are so divided:

• the red vertices describe F1
1 ,• the blue vertices describe F3
1 ,• all other vertices, i.e. the yellow ones, are the elements of F2

1 .

Moreover, in the language of tropical geometry, the red and blue vertices are the min- resp.
max-vertices of the polytrope Q(J4); cf. [17, Example 1,Theorem 16].

In the following results we compute cardinality and minimal distance of permutation codes.
For this, We fix ε ∈ ∂E(d)

r and write

• � = −1 + |{ε1, . . . , εd}| ≥ 0,
• {ε1, . . . , εd} = {ε̃1 > · · · > ε̃�+1 = 0}.

For each s ∈ {1, . . . , � + 1}, we define moreover ms = |{i ∈ {1, . . . , d} | εi = ε̃s}| and note
that m1 + · · · + m�+1 = d .
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Proposition 6.7 For C = Sym(d) · ε, the following hold:

|C| = d!
m1!m2! · · · m�+1! and dist(C) = 2

⊕
1≤ j<i≤�+1ε̃i − ε̃ j .

Proof The first equality follows straightforward from the definition, so we prove the second.
To this end, write C = Sym(d) · ε and set Set [U1] = [Uε]. Let, moreover, [U2] ∈ C. In view
of Remark 6.4, to minimize dist([U1], [U2]) we pick indices h, k ∈ {1, . . . , d} such that

εh − εk =
⊕

1≤ j<i≤�+1ε̃i − ε̃ j

and define σ to be the transposition in Sym(d) interchanging h and k. Choosing [U2] to
correspond to σ · ε, we get from Remark 6.4 that

dist(C) = dist([U1], [U2]) = 2(εh − εk) = 2
⊕

1≤ j<i≤�+1ε̃i − ε̃ j .

��
Corollary 6.8 Let n ∈ {1, . . . , d − 1}. Then Fn

r is a spherical code in Vr of minimal distance
2r .

In the following result, we provide sharp bounds for minimum distance and cardinality when
cardinality and minimum distance are given, respectively.

Theorem 6.9 Let 1 ≤ α ≤ r be an integer and write C = Sym(d) · ε. Then the following are
satisfied:

(1) If r = δ� + Z with δ, Z non-negative integers satisfying Z < �, then

dist(C) ≤ 2δ.

(2) Write r = αX + Y and d = β X + γ , for X , Y , β, γ non-negative integers satisfying
Y < α and γ < X. If dist(C) = 2α, then

|C| ≤ d!
(β!)X+1(β + 1)γ

.

Proof We start by proving (1). For this, write r = δ� + Z and assume without loss of
generality that ε is such that dist(C) is maximal. Thanks to Proposition 6.7, maximizing the
minimum distance of C is the same as maximizing the minimum η of the set {ε̃i − ε̃ j | i > j}.
This is clearly achieved for η = δ. We now prove (2). To this end, assume that dist(C) = 2α.
Thanks to Proposition 6.7, we know that min{ε̃i − ε̃ j | i > j} = α and we now need to
determine ε for which

|C| = d!
m1!m2! · · · m�+1!

is maximal, i.e. for which m1!m2! · · · m�+1! is minimal. This happens when � is as large as
possible and the mi ’s are all roughly the same (i.e. the same or differing by 1). In view of
this, � = X and {m1, . . . , m X+1} ⊆ {β, β + 1}. More precisely, the number of mi ’s that are
equal to β + 1 is γ and so Proposition 6.7 yields

| C | ≤ d!
(β!)X+1−γ ((β + 1)!)γ = d!

(β!)X+1(β + 1)γ
.

This concludes the proof. ��
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It is not difficult to see, from the proof of Theorem 6.9, how one can build optimal codes in
this context, i.e. permutation codes achieving the bounds from Theorem 6.9. As for the case
of regular spherical codes, optimal permutation codes are not unique; cf. Sect. 4.2. Another
thing that is worth mentioning is that optimal permutation codes are far from being optimal
in the sense of Corollary 4.6. We remark that, similar bounds to those of Theorem 6.9 are
proven for a different type of permutation codes in [37].

Question 6.10 Are there other interesting generalizations of permutation codes in the context
of buildings? What about group codes; cf. [21, Chapter 8]?

In the following remark we stress how, in terms of storage and decoding, permutation codes
stand out among spherical codes (in accordance with the Euclidean setting).

Remark 6.11 (A note on storage and decoding) Let C be any spherical code in Vr . Then the
elements of C can be encoded in a vector of (d × d)-matrices with coefficients in R where
the row-span of each matrix identifies an element [U ] of C via returning its Ũ representative.
A convenient choice would be to communicate these matrices in row echelon form. In the
special case when C is a permutation code, it however suffices to store an element of ∂E(d)

r

to give full information on the code C.
For what concerns decoding, the lack of additional structure makes it difficult to give a

straightforward algorithm for the decoding of general spherical codes of modules, even in
the case where they are known to be Sperner codes. However, thanks to Remark 6.4 and in
agreement with the Euclidean case, the decoding of e-permutation codes is relatively simple.
To illustrate this, we fix a permutation code C and a vector η = (η1, . . . , ηd) ∈ E(d)

r (note
that actually η can be taken in Z

d as the following algorithm allows us also to work in
balls of larger radius; cf. Sect. 7.3). We want to find ε∗ ∈ ∂E(d)

r such that Uε∗ ∈ C and
dist([Uη], [Uε∗ ]) = dist([Uη], C). We follow the steps below:

(1) Let η′ ∈ Z
d and σ ∈ Sym(d) be such that η′

1 ≥ · · · ≥ η′
d and η′ = σ · η.

(2) Define η̃ = η′ − η′
d1.

(3) Choose ε ∈ C and identify h, k ∈ {1, . . . , d} such that εh = 0 and εk = r .
(4) Define ε′ and τ ∈ Sym(d) to satisfy ε′ = τ · ε and ε′

1 = 0 and ε′
d = r .

(5) Set ε∗ = σ−1 · ε′.
We see from its construction that the element ε∗ might not be unique. It is, however, not
difficult to design an algorithm avoiding choices, once C is given.

7 Spherical codes in Bruhat–Tits buildings

In this section we rephrase the results of this paper in terms of buildings. As we will see,
Bruhat–Tits buildings are away of talking about lattices and via these objects we can consider
balls (in the sense of Sect. 2) “of any radius” at the same time.Moreover, it isworthmentioning
that, on top of their central role in the theory of reductive groups, buildings havemanydifferent
applications, for instance in optimization [9, 25], statistics [16, 20], and coding theory [32].
Though the employment of buildings in the study and construction of codes is not new, this
seems to be the first time spherical codes in buildings are considered. In the applications of
flags to network coding, spherical buildings are used. Such strategy, first introduced in [32],
has found further developments in [4–6, 31] and variations in [22]. Moreover, Bruhat–Tits
buildings also make their appearance in the study of holographic codes [35] as well as in the
study of valued rank-metric codes [18].
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7.1 From chain rings to valued fields

We choose a discretely valued field (K , val), with valuation ring OK , uniformizer π , and
unique maximal ideal mK = OK π �= 0, in such a way that R ∼= OK /mr

K ; cf. [3, §1]. With
a slight abuse of notation, we set e = (e1, . . . , ed) to be the standard basis of K d and we
write Od

K for the free OK -module Od
K = OK e1 ⊕ · · · ⊕OK ed . We will use the bar notation

for the subobjects of Vr : if L ⊆ Od
K , then L denotes the image of L in Vr under the natural

projection Od
K → Vr . Up to very small variations, our notation is compatible with the one

from [19].

7.2 Lattices and buildings

An OK -lattice (or simply lattice) in K d is a free OK -submodule of maximal rank d . The
(homothety) class of a lattice L in K d is

[L] = {cL | c ∈ K \ {0}} = {πn L | n ∈ Z},
while EndOK (L) denotes the endomorphism ring of L as an OK -submodule of K d , i.e. the
collection of OK -linear maps K d → K d that stabilize L . Note that any two homothetic
lattices have the same endomorphism ring. Moreover, lattices in K d form one orbit under the
natural action of GLd(K ) and so it will often not be restrictive to assume (up to base change)
that a given lattice L is equal to Od

K . Additionally, each element of L(Vr ) can be obtained
from a lattice πrOd

K ⊆ L ⊆ Od
K , via projecting L to Vr :

Od
K ⊇ L �−→ L = UL ⊆ Vr . (7.1)

We stress that the notions of equivalence for lattices and modules are compatible by means
of the last projection. In line with the content of this paper, we define the affine building of
SLd(K ) via its lattice class model [2, 23] and refer the interested reader to [1] for the more
general description.

Definition 7.1 The affine building Bd(K ) is an infinite simplicial complex such that

(1) the vertex set is B0
d = {[L] | L is an OK -lattice in K d}.

(2) {[L1], . . . , [Ls]} is a simplex in Bd(K ) if and only if, up to permutation of the indices
and choice of representatives, one has L1 ⊃ L2 ⊃ · · · ⊃ Ls ⊃ π L1.

The standard apartment of Bd(K ) is the subset A of B0
d(K ) of all lattice classes with repre-

sentatives of the form

Lu = OK πu1e1 ⊕ · · · ⊕ OK πud ed , where u = (u1, . . . , ud) ∈ Z
d .

More generally, one could define an apartment for any frame choice in K d , cf. [19, Section 2].
Since (7.1) respects homothety classes, the new terminology allows us to consider the codes
from Sect. 6 as one-apartment codes in buildings.

Example 7.2 The rings from Examples 2.5 and 6.1 can both be expressed as quotients of a
p-adic ring: in the first case R ∼= OK /mr

K = Z2/(2Z2)
5 while in the second case R ∼=

OK /mr
K = Z5/(5Z5)

2. When d = 2 or d = 3, local pictures of Bd(Q2) can be found in [7,
Figures 2-5].
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7.3 Distance and balls

The following distance was introduced in [19, Definition 3.1]. In view of Theorem 7.6, we
use the same notation as in Definition 2.3.

Definition 7.3 Let [L1], [L2] ∈ B0
d(K ) be two homothety classes of lattices. Then

dist([L1], [L2]) = min{s | there are L ′
1 ∈ [L1], L ′

2 ∈ [L2] with π s L ′
1 ⊆ L ′

2 ⊆ L ′
1}.

As proven in [19, Lemma 3.2], the map dist : B0
d(K ) × B0

d(K ) → Z defines a distance on
B0

d(K ). In view of this, it makes sense to define balls in B0
d(K ).

Definition 7.4 Let [L] be a lattice class in B0
d(K ). Then the (closed) ball of radius r and

center [L] is
Br ([L]) = {[L ′] ∈ B0

d(K ) | dist([L], [L ′]) ≤ r}
and its boundary is

∂ Br ([L]) = Br ([L]) \ Br−1([L]) = {[L ′] ∈ B0
d(K ) | dist([L ′], [L]) = r}.

If [L] = [Od
K ], we write simply Br and ∂ Br for Br ([Od

K ]) and ∂ Br ([Od
K ]), respectively.

Example 7.5 Assume d = 2. Then B2(K ) is a (q + 1)-regular tree and dist equals the graph
distance on B2(K ). Figure 1 represents B5 as a subset of B2(Q2). In the same figure, the red
points constitute ∂ B3. For more on buildings as trees, see for instance [40].

Balls in the affine building Bd(K ) naturally arise as the collections of stable lattice classes
of ball orders [19, Section 5] and can be modeled by means of the submodules of Vr .

Theorem 7.6 The following are isometric:

(1) L0(Vr ) and Br ,
(2) ∂L(Vr ) and ∂ Br ,
(3) L0

e(Vr ) and Br ∩A,
(4) ∂Le(Vr ) and ∂ Br ∩A.

Proof We show (1). To this end, we start by observing that [L] ∈ Br if and only if there
exists a representative L ′ ∈ [L] such that πrOK ⊆ L ′ ⊆ Od

K . Since Equation 7.1 respects
homothety, it is clear that Br and L0(Vr ) are in bijection via Od

K → Vr . We show that the
distances are also compatible. For this, let πrOK ⊆ L1, L2 ⊆ Od

K be lattices and write
U1 = L1 and U2 = L2. Assume without loss of generality that U1 = Ũ1 and U2 = Ũ2.
Set α = dist([L1], [L2]) and let n12 and n21 be as in Definition 2.3. It follows from the
definitions of U1 and U2 that L1 ⊇ πn21 L2 ⊇ πn21(πn12 L1) = πn21+n12 L1 and in particular
α ≤ n12 + n21. Without loss of generality, let now m be a non-negative integer such that
L1 ⊇ πm L2 ⊇ πα L1. Then it follows from the definitions of n21 and n21 that m ≥ n21 and
α − m ≥ n12. Moreover, we have

πn12+n21 L1 ⊆ πα L1 ⊆ πm L2,

which in turn yields that πn12+n21−m L1 ⊆ L2. It follows from the definition of n12 that
m = n21 and thus we derive that α ≥ n12 + n21. This proves (1) and so, as a consequence,
also (2),(3), and (4). ��
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In view of the last theorem, we transport Definitions 3.1 and 3.2 to the framework of Bruhat–
Tits buildings (see Fig. 4).

Definition 7.7 A spherical code in Br is a subset C of Br with | C | ≥ 2. The minimum
distance of C is

dist(C) = min{dist([L1], [L2]) | [L1], [L2] ∈ C, [L1] �= [L2]}.
The results from Sects. 4, 5, and 6 can now be also stated in terms of spherical codes in
buildings. We close this section with a connection to an earlier paper. The following is the
same as [19, Definition 5.5].

Definition 7.8 A star configuration �r ([L]) with center [L] and radius r is a set

�r ([L]) = {[L1], . . . , [Ld ], [Ld+1]}
such that the following hold:

(1) πr L ⊆ L1, . . . , Ld+1 ⊆ L ,
(2) for each i ∈ {1, . . . , d + 1}, one has Li/π

r L ∼= R,
(3) for each i ∈ {1, . . . , d + 1}, one has L = ∑

j �=i L j .

Proposition 7.9 A star configuration �([Od
K ]) with center [Od

K ] and radius r is a spherical
code with dist(�([Od

K ])) = 2r .

Proof Write �([Od
K ]) = {[L1], . . . , [Ld+1]}. In view of conditions (1)-(2)-(3) above, up to a

convenient base change, we assume without loss of generality that

Li =
{
OK ei + πrOd

K if 1 ≤ i ≤ d,

OK (e1 + · · · + ed) + πrOd
K if i = d + 1.

It is clear that �([Od
K ]) is a spherical code in Br . Fix now i �= j . Then Theorem 7.6 and

Proposition 3.8 yield dist([Li ], [L j ]) = 2r and, the choice of i, j being arbitrary, it follows
that dist(�([L])) = 2r . ��
The next corollary follows in a straightforwardway fromDefinition 3.4, with the combination
of Lemma 3.3, Theorem 7.6, and Proposition 7.9.

Corollary 7.10 One has dist(d; R; d + 1) = 2r .

8 Counting elements of balls

This section is meant to add to the understanding of balls of modules, resp. balls in buildings
in terms of their elements’ count. The results of this section are self contained and do not
explicitly extend results from previous sections though they call for some new observations
and questions; cf. Remarks 8.6 and 8.7.

We work here under the assumption of Sect. 7.1, though we do not necesarily assume that
the residue field of K is finite. We leverage on results from [44], in particular its Sect. 3,
to give a polynomial counting the lattice classes in the ball Br . More precisely, we define
b(d)

r (X) ∈ Z[X ] such that, if q = |OK /mK | is finite, then |Br | = b(d)
r (q).We do so bywriting

b(d)
r (X) = ∑

ε∈E(d)
r

bε(X)where, contrarily to what is done in Sect. 6, here E(d)
r parametrizes
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Fig. 4 In this figure
ε = (5, 4, 3, 3, 1, 0). The
different colors represent the
different ε̃ j ’s. The horizontal
shifts represent the i j ’s while the
vertical dots represent the ri j ’s.
Concretely, � = 4 and
(i1, i2, i3, i4) = (1, 2, 4, 5) and
(ri1 , ri2 , ri3 , ri4 ) = (1, 1, 2, 1)

the elementary divisor types of lattices πrOd
K ⊂ L ⊆ Od

K up to homothety. The role of the
polynomial bε will be to count all lattice classes with the same elementary divisors. We
fix ε ∈ E(d)

r and proceed to define bε(X). For this, write � = −1 + |{ε1, . . . , εd}| ≥ 0
and {ε1, . . . , εd} = {ε̃1 > · · · > ε̃�+1 = 0}: for an example see Fig. 4. Now, for each
s ∈ {1, . . . , �}, define

is = |{i ∈ {1, . . . , d} | εi ≥ ε̃s}| and ris = ε̃s − ε̃s+1.

We set, moreover �ε = Od×d
K ∩ EndOK (Lε) and I = I (ε) = {i1 < · · · < i�}. In terms of

these parameters, the endomorphism ring EndOK (Lε) is denoted�I ,r in [44] and is explicitly
described in [44, Section 3.1]. In accordance with [44, Section 3], we finally define

bε(X) =
(

d

I

)
X−1

X
∑

ι∈I rιι(d−ι).

The next result is a direct consequence of the work in [44, Section 3]; cf. in particular [44,
Equation (26)].

Proposition 8.1 [44, Section 3] Let [L] ∈ B0
d(K ). Then the following hold:

(1) for each ε ∈ E(d)
r , one has that bε(X) is a monic integral polynomial of degree

deg bε(X) =
∑

ι∈I (ε)

rιι(d − ι) = |Od×d
K : �ε|.

(2) one has |Br ([L])| = b(d)
r (q) = ∑

ε∈E(d)
r

bε(q).

Example 8.2 For [L] ∈ B0
3(K ), we have

|B2([L])| = b(3)
2 (q)

= b(0,0,0)(q)+(b(1,0,0)(q)+b(1,1,0)(q))+(b(2,0,0)(q)+b(2,1,0)(q) + b(2,2,0)(q))

= 1 + 2(q2 + q + 1) + (2(q4 + q3 + q2) + (q4 + 2q3 + 2q2 + q))

= 3q4 + 4q3 + 6q2 + 3q + 3.

Definition 8.3 Let rev : Z
d → Z

d be the involution defined by

ε = (ε1, . . . , εd) �−→ rev(ε) = (εd , . . . , ε1).

Lemma 8.4 Let λ be a non-negative integer and let ε, ε′ ∈ E(d)
r . The following hold:
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(1) If ε + rev ε′ = λ1, then deg bε(X) = deg bε′(X).
(2) If k ∈ {1, . . . , d} is such that

ε − ε′ = (δikλ)i=1,...,d

then deg bε(X) = deg bε′(X) + (d + 1 − 2k)λ.

Proof (1) Assume that ε + rev ε′ = λ1, equivalently, for all i ∈ {1, . . . , d}, one has εi =
λ − εd−i+1. It follows from Proposition 8.1 (1) that

deg bε(X) = |Od×d
K : �ε| =

∑
1≤i< j≤d

εi − ε j =
∑

1≤i< j≤d

ε′
d− j+1 − ε′

d−i+1

=
∑

1≤s<t≤d

ε′
s − ε′

t = |Od×d
K : �ε′ | = deg bε′(X).

(2) Let k ∈ {1, . . . , k} be such that

εs =
{

ε′
s if s �= k,

ε′
s + λ if s = k.

It follows from Proposition 8.1(1) that

deg bε(X) = |Od×d
K : �ε| =

∑
1≤i< j≤d

εi − ε j

=
∑

1≤i< j≤d
i, j �=k

ε′
i − ε′

j +
∑

k< j≤d

(ε′
k + λ − ε′

j ) +
∑

1≤i<k

(ε′
i − ε′

j − λ)

=
∑

1≤s<t≤d

ε′
s − ε′

t + (d + 1 − 2k)λ

= |Od×d
K : �ε′ | + (d + 1 − 2k)λ = deg bε′(X) + (d + 1 − 2k)λ.

��
The proof of the next result shows that the asymptotics of |Br ([L])| is dominated by
|∂ Br ([L])|, i.e. the dominating summands in b(d)

r (X) correspond to elements of ∂E(d)
r .

Theorem 8.5 The following hold:

(1) If d is even, then the leading term of b(d)
r (X) is Xd2r/4.

(2) If d is odd, then the leading term of b(d)
r (X) is (r + 1)X (d2−1)r/4.

Proof We prove (2). To this end, write d = 2k + 1 and define the subset S of E(d)
r to consist

of all elements ε satisfying

εi =
{

r if i < k + 1,

0 if i > k + 1.

Then S has cardinality r + 1. Let moreover, S− and S+ denote the subsets of E(d)
r of those

elements that are smaller resp. bigger than elements in S, with respect to the lexicographic
order. Then E(d)

r equals the disjoint union S− ∪ S ∪ S+. Let now ε ∈ E(d)
r and ε∗ ∈ S. If

ε ∈ S−, then Lemma 8.4(2) yields that deg bε(X) < deg bε∗(X). Moreover, Lemma 8.4(2)
also ensures that, if ε ∈ S, then deg bε(X) = deg bε∗(X). Assume now that ε ∈ S+: we claim
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that deg bε(X) > deg bε∗(X). To this end, define ε′ = rev(r1−ε) and note that ε′ ∈ S−. Now
deg bε(X) > deg bε∗(X) thanks to Lemma 8.4(1) and so we conclude thanks to Proposition
8.1(1).

To prove (1), one can proceed in an analogous way by defining S to be the singleton
consisting of the vector whose first d/2 entries are equal to r and all others are 0. ��

Remark 8.6 (Asymptotic of balls against Sperner codes) We have seen in Sect. 4.2 that, if
C is a Sperner code with parameters (d; R;α) and e = �d/2�, then the cardinality of C is
the same as that of Gr(e, Vr+α−1). In particular, thanks to Proposition 8.1(1), we know that
the leading term of the polynomial describing | C | is equal to q(r+1−α)e(d−e). Rewriting thus
compactly the degree of the leading terms from Theorem 8.5 as re(d − e), we get that the
density of a Sperner code on ∂ Br is asymptotically equivalent (as q → ∞) to

q(1−α)e(d−e) ·
{
1 if d is even,

(r + 1)−1 otherwise.

Remark 8.7 (Analogue of sphere packing bounds for odd distances) Let C be a spherical code
in Br , as defined in Definition 7.7, of odd minimum distance 2α + 1. In this case, it is clear
that any two elements [L] and [L ′] of C satisfy Bα([L]) ∩Bα([L ′]) = ∅. It follows therefore
that a very loose sphere packing bound on the cardinality of C is given by

| C | ≤ |Br+α | − |Br−α |
|Bα | − 1

,

which indeed, thanks to Theorem 8.5, is asymptotically no better that the known trivial bound
given by |∂ Br |. For a better asymptotic bound one should compute, for [L] ∈ ∂ Br the size
of Bα([L]) ∩ ∂ Br yielding the tighter

| C | ≤ |∂ Br |
|Bα([L]) ∩ ∂ Br | ;

compare with [21, Theorem 1.6.1]. What is the asymptotic behaviour of the right term of the
last inequality as q → ∞?
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