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Abstract
The paper deals with t-designs that can be partitioned into s-designs, each missing a point of
the underlying set, called point-missing s-resolvable t-designs, with emphasis on their appli-
cations in constructing t-designs. The problem considered may be viewed as a generalization
of overlarge sets which are defined as a partition of all the

(
v+1
k

)
k-sets chosen from a (v+1)-

set X into (v + 1) mutually disjoint s-(v, k, δ) designs, each missing a different point of X .
Among others, it is shown that the existence of a point-missing (t − 1)-resolvable t-(v, k, λ)

design leads to the existence of a t-(v, k + 1, λ′) design. As a result, we derive various infi-
nite series of 4-designs with constant index using overlarge sets of disjoint Steiner quadruple
systems. These have parameters 4-(3n, 5, 5), 4-(3n + 2, 5, 5) and 4-(2n + 1, 5, 5), for n ≥ 2,
and were unknown until now. We also include a recursive construction of point-missing
s-resolvable t-designs and its application.

Keywords Point-missing s-resolvable t-design · Overlarge set of s-designs

Mathematics Subject Classification 05B05

1 Introduction

Thepaper is concernedwith point-missing s-resolutions of t-designs and applications thereof.
In general, a partition of a t-(v, k, λ) design (X ,B) into mutually disjoint s-(w, k, δ) designs,
w ≤ v, s < t , is termed an s-resolution. If w = v, then (X ,B) is called s-resolvable; in
particular, if (X ,B) is the complete k-(v, k, 1) design, then an s-resolution of (X ,B) is called
a large set of s-designs. If w = v − 1, then (X ,B) is called point-missing s-resolvable. A
point-missing s-resolution of the complete k-(v, k, 1) design is called an overlarge set of
s-designs. Point-missing s-resolvability remains still sparsely investigated; however, several
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computational and theoretical works on the subject can be found in the literature [9, 13,
15, 16, 19, 20, 23]. Point-missing s-resolvability is complementarily related to what we
call pencil-like s-resolvability for t-designs, and vice versa. As far as we know the first
example of infinite series of non-trivial point-missing s-resolvable t-designs for t ≥ 4 can
be found in a paper of Alltop in 1972 [2], in which the author constructed a series of 4-
(2n+1, 2n−1, (2n−1−3)(2n−2−1)) designs for n ≥ 4 as the union of 2n+1mutually disjoint
3-(2n, 2n−1, 2n−2−1) designs.Weprove theorems for constructing new t-designs frompoint-
missing and pencil-like s-resolvable t-designs. By using these theorems for overlarge sets
of disjoint Steiner quadruple systems with v = 3n − 1 and v = 3n + 1 points constructed
by Teirlinck [23], including the already known case with v = 2n , we derive various infinite
series of 4-(v + 1, 5, 5) designs, which were unknown until now. It is worthy of note that no
large sets of Steiner quadruple systems are constructed to date; however, large sets of Steiner
2-designs for k = 4 with v = 13, 16 points are known to exist [10, 12, 14]. We also show a
recursive construction of point-missing s-resolvable t-designs and its application.

For the sake of claritywe include a fewbasic definitions.A t-design, denoted by t-(v, k, λ),
is a pair (X ,B), where X is a v-set of points and B is a collection of k-subsets of X , called
blocks, such that every t-subset of X is a subset of exactly λ blocks, and λ is called the
index of the design. A t-design is called simple if no two blocks are identical, otherwise, it is
called non-simple. A t-(v, k, 1) design is called a Steiner t-design. For any point x ∈ X , let
Bx = {B\{x} : x ∈ B ∈ B}. Then (X\{x},Bx ) is a (t − 1)-(v − 1, k − 1, λ) design, called a
derived design of (X ,B). It can be shown by simple counting that a t-(v, k, λ) design is an
s-(v, k, λs) design for 0 ≤ s ≤ t , where λs = λ

(
v−s
t−s

)
/
(k−s
t−s

)
. Since λs is an integer, necessary

conditions for the parameters of a t-design are
(k−s
t−s

)|λ(
v−s
t−s

)
for 0 ≤ s ≤ t . The smallest

positive integerλ forwhich these necessary conditions are satisfied is denoted byλmin(t, k, v)

or simply λmin. If B is the set of all k-subsets of X , then (X ,B) is a t-(v, k, λmax) design,
called the complete design, where λmax = (

v−t
k−t

)
. If we take δ copies of the complete design,

we obtain a t-(v, k, δ
(
v−t
k−t

)
) design, which is referred to as a trivial t-design; otherwise, it is

called a non-trivial t-design.

2 Point-missing s-resolvable t-designs

A t-(v, k, λ) design (X ,B) is said to be s-resolvable, for 0 < s < t , if its block set B can be
partitioned into N ≥ 2 classes B1, . . . ,BN such that each (X ,Bi ) is an s-(v, k, δ) design for
i = 1, . . . , N . Such a partition is called an s-resolution of (X ,B) and each Bi is called an
s-resolution class or simply a resolution class, see e.g. [25, 26].

If the complete k-(v, k, 1) design can be partitioned into N disjoint t-(v, k, λ) designs,
where N = (

v−t
k−t

)
/λ, then we say that there exists a large set of t-designs denoted by

LS[N ](t, k, v) or by LSλ(t, k, v) to emphasize the value λ.
In the most general form, the concept of point-missing s-resolvability of a t-(v, k, λ)

design can be defined as follows.

Definition 2.1 Let (X ,B) be a t-(v, k, λ) design and let 1 ≤ s ≤ t−1. (X ,B) is called point-
missing s-resolvable, if the block setB can be partitioned intomutually disjoint s-(v−1, k, δ)
designs, each missing a point of X .

However, Definition 2.1 is equivalent to a definition that describes point-missing
resolutions with more exact details. We now give an explanation.
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Infinite series of 4-designs with constant index 2499

Let X = {x1, . . . , xv} and let Xi = X \ {xi }, i = 1, . . . , v. Let mi denote the number of
s-(v −1, k, δ) designs (Xi ,Bi ) missing xi in the resolution. First we show that any xi ∈ X is
a missing point of an s-design (Xi ,Bi ). More precisely, let Y ⊆ X be the subset of X such
that there is no design (Xi ,Bi ) missing point xi , when xi ∈ Y . Assume that Y �= ∅. Then
the blocks of B can be written as follows.

B =
⋃

xh∈X\Y
mhBh, where mhBh := Bh ∪ · · · ∪ Bh︸ ︷︷ ︸

mh times

.

Consider two given points xi ∈ Y and x j ∈ X \Y . Since xi ∈ Y , there is no s-design (Xi ,Bi )

missing xi . Thus xi appears in each design (Xh,Bh), where xh ∈ X \Y , therefore xi appears
in

∑
xh∈X\Y mhδ1 times in the blocks ofB,where δ1 = δ

(v−2
s−1)

(k−1
s−1)

.Whereas the point x j ∈ X \Y
appears in

∑
xh∈X\{Y∪{x j }} mhδ1 times in the blocks of B, which is a contradiction if Y �= ∅.

Further, we show that m1 = · · · = mv . W.l.o.g., assume by contradiction that m1 �= m2.
Then the number of blocks containing x1 (resp. x2) is then

∑
x∈X\{x1} mxδ1 = m2δ1 +∑v

i=3 miδ1 (resp.
∑

x∈X\{x2} mxδ1 = m1δ1 + ∑v
i=3 miδ1). Since m2δ1 + ∑v

i=3 miδ1 =
m1δ1 + ∑v

i=3 miδ1, we have m2δ1 = m1δ1, or equivalently m2 = m1, contradicting the
assumption. Thus we must have m1 = · · · = mv .

The discussion above suggests an equivalent formulation of Definition 2.1 as follows.

Definition 2.2 Let (X ,B) be a t-(v, k, λ) design and let 1 ≤ s < t be an integer. (X ,B) is
said to be point-missing s-resolvable, if there is an integer m ≥ 1 such that the following
hold.

1. B = Bx1 ∪ · · · ∪ Bxv , where X = {x1, . . . , xv},
2. Bx = B1

x ∪ · · · ∪ Bm
x , each (X \ {x},B j

x ) is an s-(v − 1, k, δ) design, j = 1, . . . ,m, and
m is called the multiplicity of the point x .

If m = 1, (X ,B) is simply called point-missing s-resolvable. Moreover, if m > 1, then
(X\{x},Bx ) is an s-(v − 1, k,mδ) design. Therefore, (X ,B) again is a union of v mutually
disjoint s-(v −1, k,mδ) design, each missing a different point of X . Hence, in general, when
we speak of point-missing s-resolvable t-designs we mean m = 1.

If the complete k-(v, k, 1) design can be partitioned into v mutually disjoint s-(v−1, k, δ)
designs (i.e. point-missing s-resolvable), then we have an overlarge set of s-(v − 1, k, δ)
designs.

Lemma 2.1 Let (X ,B) be a point-missing s-resolvable t-(v, k, λ) design and assume that
each point in the resolution has multiplicity m. Then

δ = λ

(
v − s

t − s

)
/

(
k − s

t − s

)
m(v − s).

In particular, if the complete t-(v, t, 1) design is point-missing (t − 1)-resolvable, then the
designs in the resolution are Steiner (t − 1)-(v − 1, t, 1) designs.

Proof By assumption, we have

B =
⋃

x∈X
{B1

x ∪ · · · ∪ Bm
x },

where (X \ {x},Bi
x ) is an s-(v − 1, k, δ) design. Let S = {x1, . . . , xs} ⊆ X . Then S does

not appear in any block of Bi
x j , for j = 1, . . . , s and i = 1, . . . ,m. Further, S appears in
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2500 T. van Trung

each Bi
x j with j �= 1, . . . , s, exactly δ times. Thus S appears m(v − s)δ times in the blocks

of B. On the other hand, the number of blocks in B containing S is λs = (v−s
t−s)

(k−s
t−s)

λ. Therefore

λs = m(v − s)δ and thus δ = λs
m(v−s) , as desired. 
�

Recall that the complement of an s-resolvable t-design is again s-resolvable. However,
it is not true with a point-missing s-resolvable t-design. Let X := {x1, . . . , xv} and let
Xi := X \ {xi }, i = 1, . . . , v. To simplify the typing we write: if Y ⊆ X , then Y := X \ Y ,
whereas ifY ⊆ Xi , then Ỹ := Xi\Y . Let (X ,D)be a point-missing s-resolvable t-designwith
parameters t-(v, k, λ) and let (X ,D) be its complement which has parameters t-(v, v−k, λ),
where λ = λ

(
v−k
t

)
/
(k
t

)
. Let D = D1 ∪ · · · ∪ Dv be a partition of D into v point-missing

s-resolution classes, where (Xi ,Di ) is an s-(v − 1, k, δ) design, for i = 1, . . . , v. The
complement of (Xi ,Di ) (within Xi ) is an s-(v − 1, v − 1 − k, δ̃) design (Xi , D̃i ) with
δ̃ = δ

(
v−1−k

s

)
/
(k
s

)
. So, we haveD = D1 ∪· · ·∪Dv = ({x1}∪ D̃1)∪· · ·∪ ({xv}∪ D̃v), where

{xi } ∪ D̃i = {{xi } ∪ D̃ | D̃ ∈ D̃i }. Thus, Di = ({xi } ∪ D̃i ) is not an s-design, but rather a
“pencil”. Hence, the decomposition of (X ,D) suggests the following definition.

Definition 2.3 Let X = {x1, . . . , xv} and denote Xi := X \ {xi }, i = 1, . . . , v. Let (X ,B)

be a t-(v, k, λ) design. If for some xi ∈ X there exists an s-(v − 1, k − 1, δ) design (Xi ,Bi )

for 1 ≤ s < t , then we call {xi } ∪ Bi = {{xi } ∪ B̃ | B̃ ∈ B̃i } ⊆ B̃ an s-pencil of (X ,B). If
B = ({x1} ∪ B1) ∪ · · · ∪ ({xv} ∪ Bv), where (Xi ,Bi ) is an s-(v − 1, k − 1, δ) design, then
(X ,B) is said to be pencil-like s-resolvable.

As observed above, the complement of a point-missing s-resolvable t-design is a pencil-like
s-resolvable t-design. Conversely, it is straightforward to check that the complement of a
pencil-like s-resolvable t-design is a point-missing s-resolvable t-design. Hence the notion
of point-missing s-resolvability and that of pencil-like s-resolvability are complementary
equivalent. We record this fact in the following lemma.

Lemma 2.2 A t-design is point-missing s-resolvable if and only if its complement is pencil-
like s-resolvable.

The next theorem shows a relation between certain classes of t-designs and point-missing
(t − 1)-resolvable t-designs, in terms of derived designs.

Theorem 2.3 Let (X ,B) be a simple t-(v, k, λ) design with |B ∩ B ′| ≤ k − 2 for any two
distinct blocks B, B ′ ∈ B. Then there exists a simple point-missing (t − 1)-resolvable t-
(v, k − 1, (k − t)λ) design (X ,D). In particular, if (X ,B) is a Steiner t-(v, t + 1, 1) design,
then there exists an overlarge set of Steiner (t − 1)-(v − 1, t, 1) designs.

Proof For a given point x ∈ X consider the derived design (X\{x},Bx ) at x with parameters
(t − 1)-(v − 1, k − 1, λ). Here Bx = {B\{x} | x ∈ B, B ∈ B}. Define D = ⋃

x∈X Bx . We
claim that (X ,D) is a t-(v, k − 1, (k − t)λ) design. Let T = {x1, . . . , xt } ⊆ X . Then there
are λ blocks of B, say, B1, . . . , Bλ containing T . Each Bi , i = 1, . . . , λ, gives rise to a set
Di = {D = Bi\{x} | x ∈ Bi\T } ⊆ D having (k − t) blocks D containing T . Thus there
are (k − t)λ blocks D ∈ D containing T in total, as desired. The simplicity of (X ,D) is a
consequence of the property: |B ∩ B ′| ≤ k − 2, B, B ′ ∈ B, B �= B ′, which can be seen
as follows. Let D, D′ be two blocks of D. If D, D′ ∈ Bx for some x ∈ X , then D �= D′,
since (X\{x},Bx ) is the derived design at x . If D ∈ Bx and D′ ∈ By with x �= y, then again
D �= D′. This is because if D = D′, then the two blocks B = D∪{x} and B ′ = D′ ∪{y} ofB
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Infinite series of 4-designs with constant index 2501

would have |B∩ B ′| = k−1, a contradiction. In addition, if (X ,B) is a Steiner t-(v, t +1, 1)
design, then (X ,D) becomes the complete t-(v, t, 1) design. In other words, the set of v

distinct (t − 1)-(v − 1, t, 1) derived designs of (X ,B) forms an overlarge set. 
�
Remark 2.1 1. The proof of Theorem 2.3 shows that the constructed t-(v, k − 1, (k − t)λ)

design is not simple, if there are two blocks B, B ′ ∈ B with |B ∩ B ′| = k − 1.
2. It should be stressed that the set of v distinct derived designs of a Steiner t-(v, k, 1) design

with k > t + 1 in Theorem 2.3 will not form an overlarge set of (t − 1)-(v − 1, k − 1, 1)
designs, but rather a point-missing (t − 1)-resolution of a t-(v, k − 1, (k − t)) design.

The following corollary is an immediate consequence of Theorem 2.3.

Corollary 2.4 Assume that there exists a Steiner t-(v, k, 1) design. Then there exists a point-
missing (t − 1)-resolvable t-(v, k − 1, k − t) design.

The case k = t + 1 of Corollary 2.4 is known as examples of overlarge sets of Steiner
designs, see [23]. Thus, if there exists a Steiner t-(v, t + 1, 1) design, then there exists a
point-missing (t − 1)-resolvable t-(v, t, 1) design, i.e. an overlarge set of Steiner (t − 1)-
(v − 1, t, 1) designs. Note that the converse of this statement is not true, i.e. if there exists an
overlarge set of Steiner (t − 1)-(v − 1, t, 1) designs, it is not necessarily true that a Steiner
t-(v, t + 1, 1) design exists. For example, Östergård and Pottonen [17] have shown that a
Steiner 4-(17, 5, 1) design does not exist. Nevertheless, there exists an overlarge set of Steiner
3-(16, 4, 1) designs, see [23]. And crucially, Teirlinck [23] has shown that there are overlarge
sets of Steiner 3-(v, 4, 1) designs for v = 3n − 1, n ≥ 2 and v = 3n + 1, n ≥ 1, despite the
fact that only a finite number of Steiner 4-(v, 5, 1) designs are hitherto known.

The general case k ≥ t + 2 is interesting, since Theorem 2.3 provides a point-missing
(t −1)-resolvable t-(v, k−1, k− t) design, which is not a complete design. Examples about
this case can be seen, for instance, from Steiner 5-(24, 8, 1) and 5-(28, 7, 1) designs. Here we
obtain point-missing 4-resolvable 5-(24, 7, 3) and 5-(28, 6, 2) designs, where designs in the
resolution are Steiner 4-(23, 7, 1) and 4-(27, 6, 1) designs, respectively. Similarly, there are
point-missing 3-resolvable 4-(23, 6, 3) and 4-(27, 5, 2) designs having Steiner 3-(22, 6, 1)
and 3-(26, 5, 1) designs in the resolution, respectively.

As a further application of Theorem 2.3, we consider the infinite series of 4-(q +1, 6, 10)
designs with q = 2n , n ≥ 5 and gcd(n, 6) = 1, [8], having the property that any two blocks
of the designs intersect in at most 4 points. Thus we have the following result.

Corollary 2.5 Let q = 2n, n ≥ 5 and gcd(n, 6) = 1. Then there exists a point-missing
3-resolvable 4-(q + 1, 5, 20) design having a 3-(q, 5, 10) design in the resolution.

Corollary 3.3 shows an interesting example of 4-designs that are 3-resolvable, and point-
missing 3-resolvable as well.

3 Constructions of t-designs from point-missing (t − 1)-resolvable
t-designs

Recall that Lemma 2.2 shows a natural connection between point-missing and pencil-like
s-resolvability via the complement action. However, we observe that point-missing (t − 1)-
resolvable t-designs may be used to construct pencil-like (t − 1)-resolvable t-designs which
are not related to the complementary connection, as shown in the following theorem.

123



2502 T. van Trung

Theorem 3.1 Let (X ,B) be a point-missing (t − 1)-resolvable t-(v, k, λ) design with (t −
1)-(v − 1, k, δ) designs in the resolution. Then there is a pencil-like (t − 1)-resolvable t-
(v, k + 1, tδ + λ) design (X ,B∗). If |B ∩ B ′| ≤ k − 2 for any two distinct blocks B, B ′ ∈ B,
then (X ,B∗) is simple. Further, if there are two blocks B, B ′ ∈ B with |B ∩ B ′| = k − 1,
then the simplicity of (X ,B∗) depends on the structure of the resolution.

Proof Let X = {1, . . . , v}. For i ∈ X denote (X\{i},Bi ) the (t − 1)-(v − 1, k, δ) design
in the point-missing (t − 1)-resolution. Define B∗

i = {i} ∪ Bi = {{i} ∪ B | B ∈ Bi }, for
i = 1, . . . , v, and B∗ = ⋃

i∈X B∗
i . We claim that (X ,B∗) is a pencil-like (t − 1)-resolvable

t-(v, k + 1, tδ + λ) design. Let T = {i1, . . . , it } ⊆ X . Consider a resolution class B j with
j ∈ T . Since (X\{ j},B j ) is a (t − 1)-(v − 1, k, δ) design, it follows that {i1, . . . , it }\{ j}
is contained in δ blocks of B j . Therefore { j} ∪ {i1, . . . , it }\{ j} = {i1, . . . , it } is contained
in δ blocks of B∗

j . Thus B∗
i1
, . . . ,B∗

it
together have tδ blocks containing T . Further, the

(v − t) resolution classes B j with j /∈ T have λ blocks containing T . Therefore the (v − t)
classes B∗

j with j /∈ T together have λ blocks containing T . It follows that (X ,B∗) is a
t-(v, k + 1, tδ + λ) design. Assume that |B ∩ B ′| ≤ k − 2 for any two distinct blocks
B, B ′ ∈ B. Let B∗, B ′∗ ∈ B∗ be the two corresponding blocks of B and B ′. If B∗, B ′∗ ∈ B∗

i ,
then B∗ = {i} ∪ B and B ′∗ = {i} ∪ B ′, so B∗ �= B ′∗, since B �= B ′. The other case is that
B∗ ∈ B∗

i and B ′∗ ∈ B∗
j for i �= j , thus B∗ = {i} ∪ B, B ′∗ = { j} ∪ B ′, where B ∈ Bi and

B ′ ∈ B′
j . Since |B ∩ B ′| ≤ k − 2, we have B∗ �= B ′∗. Thus (X ,B∗) is simple. 
�

The next theorem may be viewed as the reverse of Theorem 3.1.

Theorem 3.2 Let (X ,B) be a pencil-like (t − 1)-resolvable t-(v, k, λ) design with (t − 1)-
(v − 1, k − 1, δ) designs in the resolution. Then there is a point-missing (t − 1)-resolvable
t-(v, k−1, λ− tδ) design (X ,B∗). If |B∩ B ′| ≤ k−2 for any two distinct blocks B, B ′ ∈ B,
then (X ,B∗) is simple. Further, if there are two blocks B, B ′ ∈ B with |B ∩ B ′| = k − 1,
then the simplicity of (X ,B∗) depends on the structure of the pencil-like (t − 1)-resolution.

Proof Let X = {1, . . . , v}. For i ∈ X denote (X\{i},Bi ) the (t − 1)-(v − 1, k − 1, δ) design
in the pencil-like (t − 1)-resolution of (X ,B). We have B = ({1} ∪ B1) ∪ · · · ∪ ({v} ∪ Bv)

Define B∗ = B1 ∪ · · · ∪ Bv . We claim that (X ,B∗) is a t-(v, k − 1, λ − tδ) design, which
is point-missing (t − 1)-resolvable. Let T = {i1, . . . , it } ⊆ X . Then T is contained in λ

blocks of (X ,B), which are distributed in v classes of the pencil-like (t −1)-resolution. Note
that T is contained in δ blocks of ({i j } ∪ Bi j ), for i j ∈ T , so T is contained in tδ blocks of
({i1} ∪ Bi1) ∪ · · · ∪ ({it } ∪ Bit ) (i.e., T is not contained in any block of Bi1 ∪ · · · ∪ Bit ). The
remaining (v − t) classes {({1} ∪ B1) ∪ · · · ∪ ({v} ∪ Bv)}\{({i1} ∪ Bi1) ∪ · · · ∪ ({it } ∪ Bit )}
of (X ,B) will have λ − tδ blocks containing T . Moreover, if T is contained in a block
{ j}∪ B ∈ ({ j}∪B j ), j ∈ {1, . . . , v}\T , then T is contained in B ∈ B j . Hence, B1∪· · ·∪Bv

will have λ− tδ blocks containing T and (X ,B∗) is point-missing (t−1)-resolvable. Assume
that |B∩B ′| ≤ k−2 for any two distinct blocks B, B ′ ∈ B. Obviously, the two corresponding
blocks B∗, B ′∗ ∈ B∗ are distinct. Thus (X ,B∗) is simple. 
�

The simplicity of (X ,B∗) in Theorem 3.1 in the case that there are two blocks B, B ′ ∈ B
with |B ∩ B ′| = k − 1 remains a main open question. In fact, examples for simple as well
as non-simple (X ,B∗) do exist in this case. We illustrate the situation with two explicit
examples. First, consider the unique Steiner 3-(8, 4, 1) design (X ,B). By applying Lemma
2.2 we have
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Infinite series of 4-designs with constant index 2503

B0 = 123 345 256 136 467 157 237

B1 = 024 235 456 036 057 267 347

B2 = 014 135 346 056 167 037 457

B3 = 125 246 045 016 567 027 147

B4 = 012 236 035 156 067 137 257

B5 = 123 034 146 026 367 017 247

B6 = 234 145 025 013 357 047 127

B7 = 356 046 015 126 023 134 245

Thus the block set D = ⋃
x∈X Bx is the union of derived designs of (X ,B) at all points

of X = {0, 1, 2, 3, 4, 5, 6, 7}. Here B0, . . . ,B7 form an overlarge set of Steiner 2-(7, 3, 1)
designs. It is easy to check that the resulting 3-(8, 4, 4) design (X ,B∗) is not simple, more
precisely each block is repeated 4 times. The second example is chosen from the set of 11
non-isomorphic of overlarge sets for 2-(7, 3, 1) designs [18]. The following representation
is taken from [15].

B′
0 = 123 145 167 247 256 346 357

B′
1 = 026 035 047 234 257 367 456

B′
2 = 015 037 046 136 147 345 567

B′
3 = 014 025 067 127 156 246 457

B′
4 = 016 023 057 125 137 267 356

B′
5 = 017 024 036 126 134 237 467

B′
6 = 013 027 045 124 157 235 347

B′
7 = 012 034 056 135 146 236 245

It is straightforward to check that (X ,B′∗) forms a simple 3-(8, 4, 4) design.
The examples indicate an involved problem of deciding the simplicity of (X ,B∗), when

(X ,B) has two blocks B and B ′ with |B ∩ B ′| = k − 1. The most interesting case for
this situation, as mentioned in Theorem 2.3, is overlarge sets of disjoint Steiner (t − 1)-
(v, t, 1) designs, i.e. the complete t-(v + 1, t, 1) design is point-missing (t − 1)-resolvable
having Steiner (t − 1)-(v, t, 1) designs in the resolution classes. Teirlinck [23] has shown
that overlarge sets for Steiner 3-(3n − 1, 4, 1) and 3-(3n + 1, 4, 1) designs for n ≥ 2 exist,
including the known overlarge sets of Steiner 3-(2n, 4, 1) designs. By using these results we
obtain the following infinite series of 4-designs with constant index as a corollary of Theorem
3.1.

Corollary 3.3 There exist infinite series of pencil-like 3-resolvable 4-designs with the
following parameters:

1. 4-(2n + 1, 5, 5) for n ≥ 2,

2. 4-(3n, 5, 5) for n ≥ 2,

3. 4-(3n + 2, 5, 5) for n ≥ 2.
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Remark 3.1 It should be remarked that for all the designs in Corollary 3.3 we have λmin =
1 or 5. More precisely,

λmin = 5

⎧
⎪⎨

⎪⎩

for v = 2n + 1, and n ≡ 3 (mod 4),

for v = 3n, and n ≡ 2 (mod 4),

for v = 3n + 2, and n ≡ 3 (mod 4).

Note that Alltop [1] has constructed infinite series of simple 4-(2n + 1, 5, 5) designs for
n odd and n ≥ 5; thus the first series extends the point number to all possible values of n.

It is very likely that many non-isomorphic series of 4-designs with parameters given in
Corollary 3.3 will exist, which are simple as well as non-simple, due to the fact that the
number of non-isomorphic overlarge sets of 3-(v, 4, 1) will strongly increase as v is getting
large. In particular, it is important to decide whether the 4-designs in Corollary 3.3 are simple
or not. As an observation we take a close look at the first design in each of the 4-(3n, 5, 5) and
4-(3n +2, 5, 5) series. These are 4-(9, 5, 5) and 4-(11, 5, 5) designs, corresponding to n = 2.
Note that each 4-(9, 5, 5) design is simple, since its complement is the complete 4-(9, 4, 1)
design (otherwise, we would have a non-simple 4-(9, 4, 1) design, which is impossible). In
fact, this can also be verified directly by checking the two non-isomorphic overlarge sets of
3-(8, 4, 1) designs given in [9], yielding 4-(9, 5, 5) designs. Note also that 4-(9, 5, 5) is the
parameters of the second design in the 4-(2n +1, 5, 5) series. The case of 4-(11, 5, 5) designs
is quite different. We have inspected the complete list of 21 non-isomorphic overlarge sets
of 3-(10, 4, 1) designs as shown in [20] and found that they all yield non-simple 4-(11, 5, 5)
designs.

For the ease of the reader, we include a table of known infinite series of t-designs with
constant index for t ≥ 4 (Table 1).

Theorem 3.4 There exists a pencil-like 3-resolvable 4-(2n + 1, 7, 70
3 (2n − 5)) design for

n ≥ 5 and gcd(n, 6) = 1.

Proof Each 4-(2n + 1, 6, 10) design (X ,B) with n ≥ 5 and gcd(n, 6) = 1 in [8] has the
property that |B ∩ B ′| ≤ 4 for any two distinct blocks B, B ′ ∈ B. Its complement is a
4-(2n + 1, 2n − 5, 2

3

(2n−5
4

)
) design (X , B̄) having block intersections at most (2n − 3). By

Theorem 2.3 there is a point-missing 3-resolvable 4-(2n +1, 2n −6, (2n −9) 23
(2n−5

4

)
) design

(X , D̄). Again, the complement of (X , D̄) is pencil-like 3-resolvable 4-(2n+1, 7, 70
3 (2n−5))

design, as desired. 
�
By applying Theorem 3.2 to the point-missing 3-resolvable 4-(2n + 1, 2n−1, (2n−1 −

3)(2n−2 − 1)) design (X ,B) of Alltop [2], we obtain an interesting result. Namely, we prove
that there is a point-missing 3-resolvable design (X ,B∗) with the same parameters as (X ,B)

and disjoint from (X ,B) (recall that any two distinct blocks B, B ′ ∈ B have |B ∩ B ′| ≤
2n−1 − 2). Let B = B1 ∪ · · · ∪Bv be a partition of B into point-missing 3-resolution classes,
i.e. each (Xi ,Bi ) is a 3-(2n, 2n−1, 2n−2−1) design with Xi = X\{i}. Consider (X , B̄) as the
complement of (X ,B). So, (X , B̄) has parameters 4-(2n +1, 2n−1+1, (2n−1+1)(2n−2−1))
and is pencil-like 3-resolvable. Here, B̄ = ({1} ∪ B̃1) ∪ · · · ∪ ({v} ∪ B̃v), where B̃ j is the
complement of B j in X j , and (X j , B̃ j ) is a 3-(2n, 2n−1, 2n−2 − 1) design, for j = 1, . . . , v.
The proof of Theorem 3.2 shows that (X , B̃∗) with B̃∗ = B̃1 ∪ · · · ∪ B̃v , is point-missing
3-resolvable with (X j , B̃ j ) as the design in the resolution. Clearly, (X ,B) and (X , B̃∗) are
disjoint and they have the same parameters. Further, the 4-design (X ,B∪B̃∗) can be extended
to a 5-design. Thus we have the following theorem.
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Theorem 3.5 Let n ≥ 4. Then

1. There exists a simple point-missing 3-resovable 4-(2n +1, 2n−1, 2(2n−1 −3)(2n−2 −1))
design,

2. There exists a simple 5-(2n + 2, 2n−1 + 1, 2(2n−1 − 3)(2n−2 − 1)) design.

4 A construction of point-missing s-resolvable t-designs

In this sectionwe show that the recursive construction of t-designs in [24] can be extended to a
construction of point-missing s-resolvable t-designs. More precisely, we prove the following
theorem.

Theorem 4.1 Assume that there exists a point-missing s-resolvable t-(v, k, λ) design having
s-(v − 1, k, δ) designs in its resolution. If vλ0(λ0 − λ1) <

(
v
k

)
, then there exists a point-

missing s-resolvable t-(v + 1, k, (v + 1 − t)λ) design having s-(v, k, (v − s)δ) designs in
its resolution.

Proof Assume that (Y ,D) is a point-missing s-resolvable t-(v, k, λ) design. Let X =
{1, . . . , v + 1} and denote X j = X\{ j} for j = 1, . . . , v + 1. Let (X j ,B( j)) be a copy
of (Y ,D) defined on X j . If vλ0(λ0 −λ1) <

(
v
k

)
, then by Theorem A in [24] there are (v + 1)

mutually disjoint B(1), . . . ,B(v+1) and they form a t-(v + 1, k, (v + 1− t)λ) design (X ,B),
where

B =
v+1⋃

j=1

B( j).

We prove that (X ,B) is point-missing s-resolvable. Denote the partition of (X j ,B( j)) into
point-missing s-resolution classes by

B( j) =
v

︷ ︸︸ ︷
C( j)
1 ∪ · · · ∪ C( j)

j−1 ∪ C( j)
j+1 ∪ · · · ∪ C( j)

v+1,

with (Xi, j , C( j)
i ) as an s-(v − 1, k, δ) design, where Xi, j = X j\{i} and i ∈ X j . For each

point j ∈ X define

C j =
v

︷ ︸︸ ︷
C(1)
j ∪ C(2)

j ∪ · · · ∪ C( j−1)
j ∪ C( j+1)

j ∪ · · · ∪ C(v+1)
j .

We claim that (X j , C j ) is an s-(v, k, (v − s)δ) design. Let S = { j1, . . . , js} ⊆ X j . Then S

will not appear in the blocks of C( j1)
j , C( j2)

j , . . . , C( js )
j . Hence S appears in (v − s) block sets

C(i)
j , for i �= j1, . . . , js . In other words, S is contained in the blocks of C j exactly (v − s)δ

times, which proves the claim. Further, since

B = C1 ∪ · · · ∪ Cv+1,

(X ,B) is point-missing s-resolvable with C1, . . . , Cv+1 as resolution classes. Note that the
value of δ can be computed in terms of t, v, k, λ by using Lemma 2.1. 
�

As an application of Theorem 4.1 consider the infinite series of 4-designs (X ,D) con-
structed by Alltop in [2]. (X ,D) has parameters 4-(2n + 1, 2n−1, (2n−1 − 3)(2n−2 − 1)),
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n ≥ 4, and is point-missing 3-resolvable with 3-(2n, 2n−1, 2n−2−1) designs in its resolution.
For n ≥ 5 the condition vλ0(λ0 − λ1) <

(
v
k

)
is satisfied, therefore Theorem 4.1 gives the

following corollary.

Corollary 4.2 For n ≥ 5, there exists an infinite series of simple point-missing 3-resolvable
4-(2n + 2, 2n−1, (2n − 2)(2n−1 − 3)(2n−2 − 1)) designs. The parameters of the 3-designs in
the resolution are 3-(2n + 1, 2n−1, (2n − 2)(2n−2 − 1)).

5 Conclusion

The paper deals with point-missing s-resolvable t-designs with emphasis on their use in
constructing t-designs. Among others, we show the existence of infinite series of 4-(v, 5, 5)
designs with v = 2n + 1, 3n, 3n + 2 for n ≥ 2. It remains an open question about
the simplicity of the designs in these series. We also present a recursive construction of
point-missing s-resolvable t-designs including an application.
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