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Abstract
During the last five decades, many different secondary constructions of bent functions were
proposed in the literature. Nevertheless, apart from a few works, the question about the class
inclusion of bent functions generated using these methods is rarely addressed. Especially,
if such a “new” family belongs to the completed Maiorana–McFarland (MM#) class then
there is no proper contribution to the theory of bent functions. In this article, we provide
some fundamental results related to the inclusion in MM# and eventually we obtain many
infinite families of bent functions that are provably outside MM#. The fact that a bent
function f is in/outside MM# if and only if its dual is in/outside MM# is employed in
the so-called 4-decomposition of a bent function on F

n
2, which was originally considered

by Canteaut and Charpin (IEEE Trans Inf Theory 49(8):2004–2019, 2003) in terms of the
second-order derivatives and later reformulated in (Hodžić et al. in IEEE Trans Inf Theory
65(11):7554–7565, 2019) in terms of the duals of its restrictions to the cosets of an (n − 2)-
dimensional subspace V . For each of the three possible cases of this 4-decomposition of a
bent function (all four restrictions being bent, semi-bent, or 5-valued spectra functions), we
provide generic methods for designing bent functions provably outsideMM#. For instance,
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for the elementary case of defining a bent function h(x, y1, y2) = f (x) ⊕ y1y2 on F
n+2
2

using a bent function f on F
n
2, we show that h is outside MM# if and only if f is outside

MM#. This approach is then generalized to the case when two bent functions are used.More
precisely, the concatenation f1|| f1|| f2||(1 ⊕ f2) also gives bent functions outside MM#

if f1 or f2 is outside MM#. The cases when the four restrictions of a bent function are
semi-bent or 5-valued spectra functions are also considered and several design methods of
constructing infinite families of bent functions outside MM# are provided.

Keywords 4-Decomposition · Class inclusion · 5-Valued spectra functions · Bent
functions · Dual functions · Plateaued functions · Walsh support

Mathematics Subject Classification 94C10 · 06E30

1 Introduction

Bent functionswere introduced byRothaus [23], as a particular class ofBoolean functions that
has many interesting connections to other combinatorial objects such as Hadamard matrices
and difference sets. Their applications in cryptography come in the first place from their
characterization as a class of Boolean functions achieving the highest nonlinearity possible
(thus being at the largest distance to the set of affine functions). A survey article [8] describes
themain properties and constructionmethods related to bent functions, whereas their detailed
study is given in the book ofMesnager [21]. On the other hand, for the applications of Boolean
functions in cryptography we refer to the textbooks of Carlet [7] and Cusick and Stanica [11].

Two known primary classes of bent functions are the Maiorana–McFarland (MM) class
and the Partial Spreads (PS) class, which were introduced in the 1970s in [19] and [12],
respectively. Since it is not a simple matter to construct elements of the PS class practically,
an explicit subclass of PS, denoted by PSap , was specified by Dillon in [13]. It seems quite
unrealistic that other primary classes are yet to be discovered and therefore many secondary
constructions (using known bent functions to build possibly new ones) have been proposed
in the literature. A non-exhaustive list of various secondary constructions can be found in the
followingworks [4, 6, 9, 16, 20, 24, 30].However, the question regarding the class inclusion of
bent functions stemming from these secondary construction methods is commonly left open,
apart from a few works [1, 4, 18, 20, 26–28] where some explicit families of bent functions
provably outside the completed MM class are given. The main purpose of this article is to
address the class inclusionmore properly and thus also to contribute to a classification of bent
functions. Nevertheless, the problemof finding efficient indicators for the inclusion/exclusion
in the completedPS class remains unanswered. This problem is equivalent to finding cliques
in a graph which is known to be NP-hard, see also [10, p. 43].

In this article,we employ a fundamental result (thoughnot stated explicitly in the literature)
concerning the inclusion in the completedMM class (denoted MM#), which involves the
dual function of a given bent function.More precisely, it can be shown that a bent function f is
in/outsideMM# if and only if its bent dual is in/outsideMM#. This result also implies that
given a single bent function outsideMM# (or alternatively its dual) one essentially derives
a whole equivalence class whose members are also outside MM#. To verify these results
practically, we also propose a rather simple algorithm for determining the inclusion inMM#.
The algorithm uses the graph-theoretic notion of a clique (complete subgraph) to implement
the second-order derivative criterion of Dillon [12], commonly used when determining the
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Explicit infinite families of bent functions

inclusion/exclusion in MM#. Its performance is quite satisfactory, allowing us to test the
class inclusion for up to 12 variables efficiently. The above mentioned fact regarding a
bent function and its dual (with respect to the inclusion in MM#) is then useful when the
so-called 4-decomposition of bent functions (say on F

n
2) is considered, which regards the

decomposition into the cosets of an (n − 2)-dimensional subspace V of Fn
2. It was originally

investigated by Canteaut and Charpin [3] in terms of the second-order derivatives of the
dual function, whereas the similar properties were recently stated using duals of the cosets
of V [14]. The main conclusion in [3] is that there are exactly three possible cases of this
4-decomposition of a bent function, namely, all four restrictions being bent, semi-bent, or 5-
valued spectra functions. For each of the cases, using the necessary and sufficient conditions
in [14] (see Theorem 2.2), we provide generic methods (at least one) for designing bent
functions provably outside MM#. For instance, in the elementary case of defining a bent
function h(x, y1, y2) = f (x)⊕y1y2 onF

n+2
2 using any bent function f onFn

2 (corresponding
to a bent 4-decomposition since h = f || f || f ||(1 ⊕ f )), we show that h is outside MM#

if and only if f is outside MM#. In this context, we also refer to [2] where four different
(specific) bent functions f1, . . . , f4 were used for the same purpose. This approach is then
generalized to the case when two bent functions are used. More precisely, the concatenation
f1|| f1|| f2||(1 ⊕ f2) also gives bent functions outside MM# if f1 or f2 is a bent function
outsideMM#. This also naturally leads to a recursive construction of bent functions outside
MM# on larger ambient spaces.

The cases when the four restrictions of a bent function are semi-bent or 5-valued spectra
functions are also considered and several design methods of designing infinite families of
bent functions outsideMM# are proposed. We remark that the cardinality of bent functions
that are provably outside MM# is extremely large which is also emphasized for instance
in Remark 3.4, where a single dual bent function on F

8
2 which is not in MM# gives rise

to the EA-equivalence class comprising ≈ 270 bent functions on F
12
2 that are not in MM#

as well. This only concerns our design method of concatenating four suitable semi-bent
functions (using a dual which is not in MM#), however our other constructions are similar
in this context. Most notably, it seems that the presence of linear structures in these semi-bent
functions (being restrictions of a bent function) is of no relevance for the class inclusion.
More precisely, the use of a dual bent function outsideMM#, whose relaxed linearity index
(see Definition 3.1) is of certain order, for their specification is sufficient for ensuring that
the resulting bent function is outside MM# as well. A similar conclusion is valid when a
sophisticated notion of duals of 5-valued spectra functions is employed for the same purpose,
see for instance Theorem 3.7. Again, having a bent dual outside MM# ensures that the
concatenation of four suitably selected 5-valued spectra functions generates bent functions
that do not belong toMM# (regardless of the presence of linear structures in these constituent
functions).

The rest of this paper is organized as follows. In Sect. 2, we give some basic definitions
related to Boolean functions and discuss the concept of dual functions for some important
classes of Boolean functions.

The design of bent functions provably outside MM# is addressed in Sect. 3. More pre-
cisely, we provide constructionmethods for specifying suitable quadruples of bent, semi-bent
and5-valued spectra functions so that the resulting bent functions are provably outsideMM#.
In Sect. 4, we consider the design of bent functions by selecting 5-valued spectra functions
in the generalized Maiorana-McFarland class. However, it remains an open problem whether
this approach can generate bent functions outside MM#. Some concluding remarks are
given in Sect. 5.
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2 Preliminaries

We denote the Galois field of order 2n by F2n and the corresponding vector space by F
n
2

which contains binary n-tuples x = (x1, . . . , xn), where xi ∈ F2. A mapping f : Fn
2 → F2

is called an n-variable Boolean function and we use Bn to denote the set of all possible
Boolean mappings on Fn

2. Any Boolean function f : Fn
2 → F2 can be represented using the

so-called algebraic normal form (ANF), so that

f (x1, . . . , xn) =
⊕

u∈Fn
2

λu

(
n∏

i=1

xi
ui

)
, (1)

where xi , λu ∈ F2 and u = (u1, . . . , un) ∈ F
n
2 and we reserve the symbol “

⊕
” to denote

the addition modulo two. Then, the algebraic degree of f , denoted by deg( f ) or sometimes
simply d , is themaximal value of theHammingweight ofu such thatλu �= 0. Throughout this
article we will use 0n to denote the all-zero vector with n coordinates, that is (0, 0, . . . , 0) ∈
F

n
2 .

Another useful representation of f ∈ Bn is its evaluation on Fn
2 (known as the truth table)

and defined as

T f = ( f (0, . . . , 0, 0), f (0, . . . , 0, 1), . . . , f (1, . . . , 1, 1)),

whose corresponding (±1)-sequence of f is given as

χ f = ((−1) f (0,...,0,0), (−1) f (0,...,0,1), . . . , (−1) f (1,...,1,1)).

The Hamming distance dH between two arbitrary Boolean functions, say f , g ∈ Bn, is
defined by

dH ( f , g) = {x ∈ F
n
2 : f (x) �= g(x)} = 2n−1 − 1

2
χ f · χg,

where χ f · χg = ∑
x∈Fn

2
(−1) f (x)⊕g(x). In general, the standard inner (dot) product of two

vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn
2 is defined as x ·y = x1y1 ⊕· · ·⊕ xn yn .

The Walsh–Hadamard transform (WHT) of f ∈ Bn , at any point ω ∈ F
n
2 is defined as

W f (ω) =
∑

x∈Fn
2

(−1) f (x)⊕ω·x. (2)

Given the Walsh spectrum of a function f ∈ Bn , its truth table can be recovered using the
inverse WHT given by

(−1) f (x) = 2−n
∑

ω∈Fn
2

W f (ω)(−1)ω·x. (3)

A function f ∈ Bn, for even n, is called bent if W f (u) = ±2
n
2 . We further note that for a

bent function f ∈ Bn , we have W f (u) = (−1) f ∗(u)2
n
2 for a Boolean function f ∗ ∈ Bn . This

function f ∗ is called the dual of f and is also a bent function.
The first-order derivative of f ∈ Bn at a ∈ F

n
2, denoted by Da f , is the Boolean function

defined by

Da f (x) = f (x ⊕ a) ⊕ f (x), for all x ∈ F
n
2 .

In particular, f : F
n
2 → F2 is said to admit a linear structure γ ∈ F

n∗
2 if Dγ f (x) =

f (x ⊕ γ ) ⊕ f (x) = c for all x ∈ F
n
2, where c ∈ F2.
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TheMaiorana–McFarland classMM is the set of n-variable (n is even) Boolean functions
of the form

f (x, y) = x · π(y) ⊕ g(y), for all x, y ∈ F
n/2
2 , (4)

where π is a permutation on Fn/2
2 , and g is an arbitrary Boolean function on Fn/2

2 . In general,
the completed class is obtained by applying the so-called extended affine (EA) equivalence
to all the functions in a given class. Since we are mainly interested in the class MM, its
completed version MM# is defined as,

MM# = { f (Ax ⊕ b) ⊕ c · x ⊕ d : f ∈ MM, A ∈ GL(n,F2),b, c ∈ F
n
2, d ∈ F2},

where GL(n,F2) denotes the group of invertible matrices under composition. The following
lemma, originally due to Dillon [12] and later extended by Carlet [7, Proposition 54, pp.
167] to (easily) cover the other direction, is of crucial importance for the discussion on class
inclusion.

Lemma 2.1 [12, p. 102] [7, Proposition 54, pp. 167] A bent function f in n variables belongs
to MM# if and only if there exists an n

2 -dimensional linear subspace V of Fn
2 such that the

second-order derivatives, defined by

DaDb f (x) = f (x) ⊕ f (x ⊕ a) ⊕ f (x ⊕ b) ⊕ f (x ⊕ a ⊕ b),

vanish for any a,b ∈ V .

2.1 Plateaued functions and their duals

A function f ∈ Bn is called s-plateaued if its Walsh spectra only takes three values 0 and
±2

n+s
2 (the value 2

n+s
2 is called the amplitude), where s ≥ 1 if n is odd and s ≥ 2 if n is

even (s and n always have the same parity). In particular, a class of 1-plateaued functions for
n odd, or 2-plateaued for n even, corresponds to so-called semi-bent functions. The Walsh
support of f ∈ Bn is defined as S f = {ω ∈ F

n
2 : W f (ω) �= 0} and for an s-plateaued

function its cardinality is #S f = 2n−s [3, Proposition 4].
We define a dual function f ∗ : S f → F2 of an s-plateaued function f ∈ Bn using

W f (ω) = 2
n+s
2 (−1) f ∗(ω), forω ∈ S f ⊂ F

n
2. To specify the dual function as f

∗ : Fn−s
2 → F2,

we use the concept of lexicographic ordering. That is, a subset E = {e0, . . . , e2n−s−1} ⊂
F

n
2 is ordered lexicographically if |ei | < |ei+1| for any i ∈ [0, 2n−s − 2], where |ei | =∑n−1

j=0 ei,n−1− j2 j denotes the integer representation of ei ∈ F
n
2. Since S f is not ordered in

general, we will always represent it as S f = v ⊕ E , where E is lexicographically ordered
for some fixed v ∈ S f and e0 = 0n , thus E is a linear subspace of dimension n − s.

A direct correspondence between Fn−s
2 and S f = {ω0, . . . ,ω2n−s−1} is achieved through

E , so that for the lexicographically ordered Fn−s
2 = {x0, x1, . . . , x2n−s−1} we have

f
∗
(xi ) = f ∗(v ⊕ ei ) = f ∗(ωi ), (5)

where xi ∈ F
n−s
2 , ei ∈ E, i ∈ [0, 2n−s − 1].

Remark 2.1 Throughout this article, from the design perspective, the dual of an s-plateaued
function f : Fn

2 → F2 will be denoted by f ∗ and is considered as a function on S f (that
is f ∗ : S f → F2). However, as specified in (5), the notation f

∗
associates this dual to a

function defined on Fn−s
2 , that is f

∗ : Fn−s
2 → F2.
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The main reason for ordering the elements in E lexicographically is Theorem 3.3 (that essen-
tially follows from Lemma 3.1 in [16]), given originally in [15] and recalled in Sect. 3.3.1,
which from the design perspective gives the conditions on S f so that the spectral values
defined through f ∗ (or f

∗
) indeed specify a valid Walsh spectrum of a Boolean function.

Furthermore, it was noted in [17] that different orderings of S f , bothwith respect to the choice
of v so that S f = v ⊕ E as well as representing it differently so that S f = v′ ⊕ E ′ (with
v �= v′ and E �= E ′), essentially give affine equivalent duals f

∗
and f ′∗, see Section 5 in [17]

for further details. Nevertheless, all these results use the assumption that item (i) in Lemma
3.1 in [16] is satisfied. Namely, an m-dimensional linear subspace E = {e0, e1, . . . , e2m−1}
is “suitably” ordered to be used in Theorem 3.3 whenever for any fixed i ∈ {0, . . . , m − 1} it
holds that e j = e2i ⊕ e j−2i , for all 2i ≤ j ≤ 2i+1 − 1. In the case of lexicographic ordering
this recursion is satisfied.

In this context, we recall one essential result on the properties of the dual plateaued
functions for different representations of S f . We remark that an s-plateaued function on F

n
2

is called trivial if its Walsh support is an affine subspace.

Theorem 2.1 [15] Let f , h : Fn
2 → F2 be two trivial s-plateaued functions whose Walsh

supports are related as Sh = c ⊕ S f M, for some matrix M ∈ GL(n,F2) and c ∈ F
n
2 .

Representing S f = v ⊕ E = {ωi = v ⊕ ei : ei ∈ E} for a lexicographically ordered linear
space E = {e0, . . . , e2n−s−1}, let the functions f

∗
and h

∗
be defined as

f
∗
(xi ) = f ∗(ωi ) and h

∗
(xi ) = h∗(zi ), (i ∈ [0, 2n−s − 1]),

where zi = c ⊕ ωi M ∈ Sh. Then, f and h are EA-equivalent if and only if their duals
f
∗
, h

∗ : Fn−s
2 → F2 are EA-equivalent bent functions.

2.2 Specifying 5-valued spectra functions through duals

We first recall certain notations, introduced in [14] and also used in [17], useful in handling
a 5-valued spectra Boolean function which has two different non-zero absolute values.

Let the WHT spectrum of a function f : F
n
2 → F2 contain the values 0,±c1,±c2

(c1 �= c2), where c1, c2 ∈ N. Some of the results in [14] are stated in a more general context,
but since the 4-decomposition of bent functions is our main objective we only consider the
cases c1 = 2n/2 and c2 = 2(n+2)/2 above. For i = 1, 2, by S[i]

f ⊂ F
n
2 we denote the set

S[i]
f = {u ∈ F

n
2 : |W f (u)| = ci }, and we can define the functions f ∗[i] : S[i]

f → F2 such that
the following equality holds:

W f (u) =
{
0, u /∈ S[1]

f ∪ S[2]
f ,

ci · (−1) f ∗[i](u)
, u ∈ S[i]

f , i ∈ {1, 2}. (6)

For i = 1, 2, let vi ∈ F
n
2 and Ei = {e(i)

0 , . . . , e(i)
2λi −1

} ⊂ F
n
2 (e(i)

0 = 0n) be lexicographi-

cally ordered subsets of cardinality 2λi such that S[i]
f = {ω(i)

0 , . . . ,ω
(i)
2λi −1

} = vi ⊕ Ei , where

ω
(i)
j = vi ⊕ e(i)

j , for j ∈ [0, 2λi − 1]. Clearly, the lexicographically ordered set Ei imposes

an ordering on S[i]
f with respect to the equality ω

(i)
j = vi ⊕ e(i)

j . Using the representation of

S[i]
f = vi ⊕ Ei and the fact that the cardinality of S[i]

f is a power of two, the function f
∗
[i], as

a mapping from F
λi
2 to F2, is defined as

f
∗
[i](x j ) = f ∗[i](vi ⊕ e(i)

j ) = f ∗[i](ω
(i)
j ), j ∈ [0, 2λi − 1], (7)
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where Fλi
2 = {x0, . . . , x2λi −1} is ordered lexicographically.

A more specific method for designing 5-valued spectra functions on F
n
2 (thus W f (u) ∈

{0,±2n/2,±2
n+2
2 }), originally considered in [14], will be used in Sect. 3.4 for specifying

suitable quadruples of such functions whose concatenation will give bent functions outside
MM#.

2.3 Decomposition of bent functions

In [3], Canteaut and Charpin considered the decomposition of bent functions on F
n
2, n ≥ 4

is even, with respect to affine subspaces a ⊕ V , for some k-dimensional linear subspace
V ⊂ F

n
2. In general, this decomposition of f ∈ Bn can be viewed as a collection of 2n−k

Boolean functions denoted by fa⊕V and defined on Fk
2 → F2 using

fa⊕V (xi ) = fa⊕V (a ⊕ vi ), i ∈ [0, 2k − 1], (8)

for lexicographically ordered V = {v0, . . . , v2k−1} and Fk
2 = {x0, . . . , x2k−1}. This identifi-

cation between V and F
k
2, and thus the definition of fa⊕V : Fk

2 → F2, strongly depends on
the ordering of V in a similar sense as mentioned in Sect. 2.

Since in this article we are mainly interested in the design methods of bent functions on
F

n
2 using a concatenation of four functions on F

n−2
2 , we will consider V to be an (n − 2)-

dimensional subspace of Fn
2. Hence, the functions f1, . . . , f4 ∈ Bn−2 can be defined on the

four cosets 0n⊕V , a⊕V ,b⊕V , (a⊕b)⊕V respectively, for an arbitrary linear subspaceV of
dimension n − 2 so that Q = 〈a,b〉 and Q ⊕ V = F

n
2 (with Q ∩ V = {0n}). We will denote

such a decomposition as f = ( f1, f2, f3, f4)V , where f ∈ Bn and fi ∈ Bn−2. However,
specifying V = F

n−2
2 × (0, 0)we have the canonical decomposition which we simply denote

as f = ( f1, f2, f3, f4). Following the terminology in [3], this decomposition is said to be a
bent 4-decomposition when all fi (i ∈ [1, 4]), are bent; a semi-bent 4-decomposition when
all fi (i ∈ [1, 4]) are semi-bent; a 5-valued 4-decomposition when all fi (i ∈ [1, 4]) are
5-valued spectra functions so that W fi ∈ {0,±2(n−2)/2,±2n/2}.

The 4-decomposition was fully described in [3] in terms of the second-order derivatives
(with respect to a and b) of the dual f∗ of a bent function f. Alternatively, the approach that
will be used in this article, this decomposition can be specified in terms ofWalsh supports and
duals of its restrictions f1, . . . , f4 [14]. Note that functions fi are considered as functions in
(n − 2)-variables in terms of Eq. (8) (that is when dim(V ) = k = n − 2).

Theorem 2.2 [14] Let f ∈ Bn be a bent function, for even n ≥ 4. Let a,b ∈ F
n
2\{0n} (a �= b)

and V a linear subspace of Fn
2 with dim(V ) = n − 2 so that 〈a,b〉 ⊕ V = F

n
2 . If we denote

by ( f1, . . . , f4) the 4-decomposition of f with respect to V , then ( f1, . . . , f4) is:

(i) A bent 4-decomposition if and only if it holds that f ∗
1 ⊕ f ∗

2 ⊕ f ∗
3 ⊕ f ∗

4 = 1.
(ii) A semi-bent 4-decomposition if and only if functions fi (i ∈ [1, 4]) are pairwise disjoint

spectra semi-bent functions.1

(iii) A five-valued 4-decomposition if and only if the following statements hold:

(a) The sets S[1]
fi

= {ϑ ∈ F
n−2
2 : |W fi (ϑ)| = 2

n
2 } (i ∈ [1, 4]) are pairwise disjoint;

(b) All S[2]
fi

= {ϑ ∈ F
n−2
2 : |W fi (ϑ)| = 2

n−2
2 } are equal (i ∈ [1, 4]), and for f ∗[2],i :

S[2]
fi

→ F2 it holds that f ∗[2],1 ⊕ f ∗[2],2 ⊕ f ∗[2],3 ⊕ f ∗[2],4 = 1.

1 Two semi-bent functions f1 and f2 onF
n−2
2 , for even n, are said to be disjoint spectra functions if W f1 (u) =

0 ⇒ W f2 (u) = ±2n/2, and vice versa.
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In the rest of this article, we consider the canonical 4-decomposition so that a =
(0, 0, . . . , 0, 1), b = (0, 0, . . . , 1, 0) ∈ F

n
2 and consequently V = F

n−2
2 × {(0, 0)} in The-

orem 2.2. Then, the function f is the concatenation of fi ∈ Bn−2 which we denote by f =
f1|| f2|| f3|| f4. Using the convention that f(x, 0, 0) = f1(x), f(x, 0, 1) = f2(x), f(x, 1, 0) =
f3(x) and f(x, 1, 1) = f4(x), the ANF of f = f1|| f2|| f3|| f4 is given by

f(x, y1, y2) = f1(x) ⊕ y1( f1 ⊕ f3)(x) ⊕ y2( f1 ⊕ f2)(x) ⊕ y1y2( f1 ⊕ f2 ⊕ f3 ⊕ f4)(x).

(9)

3 Decomposing bent functions: designmethods

From the design perspective, Theorem 2.2 allows us to specify (possibly new) bent functions
by specifying suitable quadruples of bent, semi-bent, or 5-valued spectra functions. We
develop these ideas below more precisely in the rest of this section, but before this we
propose an efficient algorithm for testing the inclusion in MM#. Throughout this article,
due to the fact that all bent functions up to six variables are contained in MM#, we will
consider the design of bent functions on Fn

2, where n ≥ 8 is even.

3.1 An algorithm for determining whether f ∈ MM#

We first describe an algorithmic approach to determine whether a bent function is outside
MM#. The algorithm is based on Lemma 2.1 and some graph-theoretical concepts.

Let f ∈ Bn be a bent function. Set � = (V , E) to be a graph with edge set

E = {{a,b} : a,b ∈ F
n
2
∗; DaDb f ≡ 0},

and vertex set V ⊂ F
n
2
∗ consisting of all distinct vertices appearing in the edge set E . For

simplicity, we do not add 0 to V as D0Db f ≡ 0 for all b ∈ F
n
2. With this approach, we

reduce the size of the vertex set V as DaDb f �≡ 0, for some a,b ∈ F
n
2
∗. In practice, for

functions outside the completedMaiorana-McFarland class, the size of the vertex set becomes
relatively small and for instance in dimension n = 8 we could verify that typical values for
|V | are 0 and 6. We also remark that we consider the graph � to be simple as there are no
loops (DaDa f ≡ 0 holds for all a ∈ F

n
2); and it is not directed since DaDb f = DbDa f for

any a,b ∈ F
n
2.

From Lemma 2.1, we know that we need to find an (n/2)-dimensional linear subspace
V of F2n on which the second-order derivatives of f vanish. From the graph-theoretical
perspective, this problem corresponds to finding a clique � (complete subgraph) of size
2n/2 − 1 in the graph � and additionally checking whether V (�) ∪ {0} forms a linear
subspace in F

n
2. Finding a clique in a graph is known to be an NP-complete problem and,

specifically, the time complexity of this search would be of size O(2n2n/2
). However, in

practice, this number is much smaller because the number of vertices (namely |V |) of the
graph � is almost negligible compared to 2n . The full Sage implementation has been added
to the appendix. It might be of interest to optimize further the performance of this algorithm
so that larger input sizes can be efficiently tested.

We have considered 100 bent functions in dimension 8 and the average time needed to
check whether one function is outside MM# was approximately 17 seconds. For n = 10,
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the average time for checking the property of being in or outside MM# was 30 minutes.
On the other hand, when n = 12, the time complexity is approximately 22h on average. For
the purpose of this article, the proposed algorithm is sufficiently efficient and is superior to a
straightforward approach of checking all n/2-dimensional subspaces and verifying the van-
ishing property of the second-order derivatives. Most importantly, all the examples provided
in this article (in certain cases the ANFs are also given) can be efficiently checked using the
Sage algorithm given in the appendix. We also note the following interesting observation.

Remark 3.1 We remark that the dual of a bent function f ∈ MM, given by f (x, y) =
x · π(y) ⊕ h(y) for x, y ∈ F

n/2
2 , where π is a permutation on F

n/2
2 and h is arbitrary, is

apparently in MM (see for instance [7] for the specification of f ∗). The same is true when
f ∈ MM# is considered since the class inclusion is invariant under the EA transform.

3.2 Defining suitable bent 4-decompositions

Recently, a quadruple of distinct bent functions, satisfying that f ∗
1 ⊕ f ∗

2 ⊕ f ∗
3 ⊕ f ∗

4 = 1,
was identified in [2]. It was additionally shown that their concatenation f1|| f2|| f3|| f4 is
provably outside the MM# class. More precisely, the authors considered a quadruple of
bent functions (not all of them being inMM#) that belong to the C andD class of Carlet [4]
and their suitable “modifications” for this purpose. Nevertheless, the following results show
that the same method can generate new bent functions outside MM# when a single bent
function (alternatively a pair of bent functions considered in Theorem 3.2) outsideMM# is
used.

Theorem 3.1 Let n be even and f be a bent function in n variables. Set h(x, y1, y2) =
f (x) ⊕ y1y2 for yi ∈ F2, so that h = f || f || f ||(1 ⊕ f ) ∈ Bn+2 is also bent. Then, f is
outside MM# if and only if h is outside MM#.

Proof It is well-known that h = f || f || f ||(1 ⊕ f ) ∈ Bn+2 is bent if f is bent, since
h(x, y1, y2) = f (x) ⊕ y1y2 is the direct sum of two bent functions [12, 23]. Notice that ‘ f
is outside MM# if and only if h is outside MM#’ is equivalent to ‘ f is in MM# if and
only if h is in MM#’.

Suppose first that h is outside MM#, thus we want to show that f is outside MM#.
Assume on the contrary that f is in MM#, thus there exists (at least) one linear subspace
V ⊂ F

n
2 with dim(V ) = n/2 such that Da′ Db′ f ≡ 0, for any a′,b′ ∈ V . Let E =

V × {(0, 0), (0, 1)} which is a subspace of Fn+2
2 of dimension n/2 + 1. We then have that

D(a′,a1,a2) D(b′,b1,b2)h ≡ 0,

for any a′,b′ ∈ V and (a1, a2), (b1, b2) ∈ {(0, 0), (0, 1)}, thus the second-order derivatives
of h vanish on E . Hence, h is in MM# which contradicts our assumption that h is outside
MM#.

Now, we show that f is outside MM# implies that h is outside MM#. Assuming f /∈
MM#, then for any subspace V ⊂ F

n
2 with dim(V ) = n/2, we can always find two vectors

a′,b′ such that Da′ Db′ f �≡ 0. Let E ⊂ F
n
2 × F

2
2 be any subspace with dim(E) = n/2 + 1.

There are two cases to be considered.

a. If dim(E ∩ (Fn
2 × {(0, 0)})) ≥ n/2, then we can find two vectors (a′, 0, 0), (b′, 0, 0) and

consequently

D(a′,0,0) D(b′,0,0)h = Da′ Db′ f �≡ 0.
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b. If dim(E ∩ (Fn
2 × {(0, 0)})) < n/2, then we must have E ∩ ({0n} × F

2
2) = {0n} × F

2
2

since dim(E) = n/2 + 1 (using that dim(E ∩ (Fn
2 × F

2
2)) = n/2 + 1). Here, there are

three cases to be considered.

(a) If Da′ Db′ f ≡ 0 for any two vectors (a′, 0, 0), (b′, 0, 0) ∈ E ∩ (Fn
2 × {(0, 0)}), then

we can specify (a1, a2) = (1, 0), (b1, b2) = (1, 1) so that

D(a1,a2) D(b1,b2)(y1y2) = 1.

Thus,

D(a′,a1,a2) D(b′,b1,b2)h = Da′ Db′ f ⊕ D(a1,a2) D(b1,b2)(y1y2) ≡ 1 �= 0.

(b) If Da′ Db′ f ≡ 1 for any two nonzero vectors (a′, 02), (b′, 02) ∈ E ∩ (Fn
2 × {02}),

then we select (a1, a2) = (1, 0), (b1, b2) = (0, 0) so that

D(a1,a2) D(b1,b2)y1y2 ≡ 0.

Thus,

D(a′,a1,a2) D(b′,b1,b2)h = Da′ Db′ f ⊕ D(a1,a2) D(b1,b2)(y1y2) ≡ 1 �= 0.

(c) If Da′ Db′ f �= const . for two nonzero vectors (a′, 02), (b′, 02) ∈ E ∩ (Fn
2 × {02}),

then

D(a′,a1,a2) D(b′,b1,b2)h = Da′ Db′ f �= const .

This concludes the proof. ��
Corollary 1 Let n and m be even positive integers and h be a bent function in Bn. Then, the
function f (x, y1, y2, . . . , ym) = h(x) ⊕ y1y2 ⊕ y3y4 ⊕ · · · ⊕ ym−1ym is outside MM# if
and only if h is outside MM#.

Now, we investigate another non-trivial selection of bent quadruples (different from f =
f1|| f1|| f1||(1⊕ f1), which satisfies the necessary and sufficient condition f ∗

1 ⊕ f ∗
2 ⊕ f ∗

3 ⊕
f ∗
4 = 1. It turns out that the basic concatenation method of using just two bent functions,

where at least one of them is outside MM#, also generates bent functions outside MM#.

Theorem 3.2 Let n = 2m be even and f1, f2 ∈ Bn be two bent functions. Set f =
f1|| f1|| f2||( f2 ⊕ 1), which by (9) gives

f (x, y1, y2) = (1 ⊕ y1) f1(x) ⊕ y1 f2(x) ⊕ y1y2, x ∈ F
n
2, y1, y2 ∈ F2. (10)

If f1 or f2 is outside MM#, then f ∈ Bn+2 is bent and outside MM#.

Proof Since f ∗
1 ⊕ f ∗

1 ⊕ f ∗
2 ⊕ ( f2 ⊕ 1)∗ = 1, then f is bent.

For convenience, we denote a = (a′, a2, a3),b = (b′, b2, b3) ∈ F
n
2 × F2 × F2. Let V be

an arbitrary (m +1)-dimensional subspace of Fn+2
2 . From Lemma 2.1, it is sufficient to show

that for an arbitrary (m+1)-dimensional subspace V ofFn+2
2 one can always find two vectors

a,b ∈ V such that D(a′,a2,a3) D(b′,b2,b3) f (x, y1, y2) �= 0 for some (x, y1, y2) ∈ F
n+2
2 . We

have

D(a′,a2,a3) D(b′,b2,b3) f (x, y1, y2) = (1 ⊕ y1)Da′ Db′ f1(x) ⊕ y1Da′ Db′ f2(x)
⊕a2Db′ ( f1 ⊕ f2) (x ⊕ a′) ⊕ b2Da′ ( f1 ⊕ f2) (x ⊕ b′)
⊕a2b3 ⊕ a3b2.

(11)

There are two cases to be considered.
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a. Assuming that dim
(
V ∩ (Fn

2 × {(0, 0)})) ≥ m implies the existence of two vectors a =
(a′, a2, a3),b = (b′, b2, b3) ∈ V such that a′ �= b′, a2 = a3 = b2 = b3 = 0, for which
Da′ Db′ f2 �≡ 0 if we suppose that f2 is outside MM#.
From (11), for y1 = 1, we obtain

D(a′,a2,a3) D(b′,b2,b3) f (x, 1, y2) = Da′ Db′ f2(x) �≡ 0.

Thus, we have found a,b ∈ V such that DaDb f (x, 1, y2) �= 0, which also implies that
DaDb f (x, y1, y2) �= 0.
Now, assume that f1 /∈ MM#. Similarly, there will exist two vectors a =
(a′′, a2, a3),b = (b′′, b2, b3) ∈ V such that a′′ �= b′′, a2 = a3 = b2 = b3 = 0, for
which Da′′ Db′′ f1 �≡ 0. Setting y1 = 0 in (11), we obtain

D(a′,a2,a3) D(b′,b2,b3) f (x, 0, y2) = Da′ Db′ f1(x) �≡ 0,

and again we conclude that DaDb f (x, y1, y2) �= 0.
b. When dim

(
V ∩ (Fn

2 × {(0, 0)})) < m, we have V ∩ ({0n} × F
2
2) = {0n}×F

2
2 since

dim
(
V ∩ (Fn

2 × F
2
2)

) = m+1. Furthermore,we canfind twovectorsa = (a′, a2, a3),b =
(b′, b2, b3) ∈ V such that a′ = 0n,b′ = 0n , a2 = 1, b2 = 0, and a3 = 0, b3 = 1. From
(11), we have

D(0n ,1,0) D(0n ,0,1) f (x, y1, y2) = 1 �= 0. (12)

Thus, there is no (m +1)-dimensional linear subspace of Fn+2
2 on which the second-order

derivatives of f vanish, i.e., f is outside MM#. ��
Example 3.1 Let f1, f2 ∈ B8 be defined by f1(x, y) = x ·y and f2(x, y) = x ·π2(y)⊕ δ0(x),
respectively, where π2 = (0, 1, 2, 3, 4, 5, 8, 10, 6, 12, 7, 15, 13, 11, 9, 14) is a permutation
of F4

2 in integer form and x, y ∈ F
4
2. Here, δ0(x) = ∏4

i=1(1⊕ xi ) is the indicator of {04}. We
note that f1 ∈ MM# and f2 ∈ D0\MM#,whereD0 is the class of bent functions introduced
by Carlet [4] whose members are of the same form as f2 above. Let f1 = ( f1, f1, f2, f2 ⊕1)
and f2 = ( f2, f2, f1, f1 ⊕ 1) be defined via (10). Using the algorithm in Sect. 3.1, we have
confirmed that f1, f2 ∈ B10 are both bent functions outside MM#.

An iterative design of bent functions outside MM# follows easily from Theorem 3.2.

Corollary 2 Let f1, f2 ∈ Bn be two bent functions such that f1 or f2 is outside MM#. Set
f
(1)
1 = ( f1, f1, f2, f2 ⊕ 1) and f

(1)
2 = ( f2, f2, f1, f1 ⊕ 1). For k ≥ 2 we define

f
(k)
1 = (f

(k−1)
1 , f

(k−1)
1 , f

(k−1)
2 , f

(k−1)
2 ⊕ 1)

and

f
(k)
2 = (f

(k−1)
2 , f

(k−1)
2 , f

(k−1)
1 , f

(k−1)
1 ⊕ 1).

Then, f(k)
1 and f

(k)
2 are bent functions in n + 2k variables outside MM#.

3.3 Semi-bent case of 4-decomposition

The construction of disjoint spectra semi-bent functions was treated in several articles, see
[15] and references therein. In terms of the spectral design method in [15], constructing
quadruples of semi-bent functions ( f1, f2, f3, f4) on Fn

2 (with n even), whoseWalsh spectral

values belong to {0,±2
n+2
2 }, with pairwise disjoint spectra ( so that fi and f j are disjoint
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spectra functions for 1 ≤ i �= j ≤ 4) can be easily achieved by specifying suitable Walsh
supports. It has already been observed in [16, 29] that trivial plateaued functions, having
an affine subspace as their Walsh support, essentially correspond to partially bent functions
introduced by Carlet in [5] which admit linear structures. Nevertheless, the selection of these
Walsh supports as affine subspaces or subsets will be shown to be irrelevant for the class
inclusion of the resulting bent functions, which will be entirely governed by the bent duals.

3.3.1 Known results on the design methods of plateaued Boolean functions

Before proving the main results of this section, we will give a brief overview of some
known useful results obtained in [15] regarding the construction and properties of s-plateaued
Boolean functions. For simplicity, we adopt these results for semi-bent functions, thus s = 2,
and employ only the parts relevant for our purposes.

Theorem 3.3 [15, Theorem 3.3 (with s = 2)] Let S f = v ⊕ E M = {ω0, . . . ,ω2n−2−1} ⊂
F

n
2 , for some v ∈ F

n
2 , M ∈ GL(n,F2) and lexicographically ordered subset E =

{e0, e1, . . . , e2n−2−1} ⊂ F
n
2 , where n is even. For a function g : F

n−2
2 → F2 such that

wt(g) = 2n−3 + 2
n−2
2 −1 or wt(g) = 2n−3 − 2

n−2
2 −1 (having bent weight), let the Walsh

spectrum of f on F
n
2 be defined (by identifying xi ∈ F

n−2
2 and ωi ∈ S f through ei ∈ E using

(5)) as

W f (u) =
{
2

n+2
2 (−1)g(xi ), for u = v ⊕ ei M ∈ S f ,

0, u /∈ S f .
(13)

Then:

(i) f is an 2-plateaued (semi-bent) function if and only if g is at bent distance to

� f = {φu : Fn−2
2 → F2 :

χφu = ((−1)u·ω0 , (−1)u·ω1 , . . . , (−1)u·ω2n−2−1), ωi ∈ S f , u ∈ F
n
2}, (14)

where for a subset B ⊂ Bn a function g is said to be at bent distance to B if for all f ∈ B
it holds that dH ( f , g) = 2n−1 ± 2n/2−1.

(ii) If E ⊂ F
n
2 is a linear subspace, then f is semi-bent if and only if g is a bent function on

F
n−2
2 .

Remark 3.2 Since |S f | = 2n−2 and the absolute value of the Walsh coefficients in Theo-

rem 3.3 is 2
n+2
2 , Parseval’s identity

∑
u∈Fn

2
W f (u)2 = 22n is clearly satisfied. For ease of

notation, we will consider f ∈ Bn+2 and use a dual bent function g ∈ Bn , which essentially
corresponds to the dual function f

∗
discussed in Sect. 2.1 and specified in (5). The Walsh

support S f ⊂ F
n+2
2 with |S f | = 2n , can be specified as a binary matrix of size 2n × (n + 2)

of the form S f = (c⊕F
n
2M) �Tμ1 �Tμ2 , M ∈ GL(n,F2) and c ∈ F

n
2. Here, the part c⊕F

n
2M

is an affine permutation of Fn
2 and corresponds to the first n columns of S f ; whereas the last

two columns Tμ1 � Tμ2 of S f are binary truth tables of μ1, μ2 ∈ Bn .

To construct nontrivial semi-bent functions (whose Walsh supports are subsets), one can
employ bent functions in the MM class defined by

g(x, y) = x · ψ(y) ⊕ t(y); x, y ∈ F
n/2
2 , (15)

whereψ is an arbitrary permutation onFn/2
2 and t ∈ Bn/2 is arbitrary.We give below a slightly

modified version of Theorem 4.2 in [15], since we are interested in semi-bent functions in
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even dimensions. Therefore, we define the Walsh support as S f = (c⊕ E M) � Tμ � Tμ rather
than S f = (c ⊕ E M) � Tμ as originally in [15]. Notice that the use of a nonlinear function
μ : Fn

2 → F2 ensures that S f is not an affine/linear subspace.

Theorem 3.4 [15, Theorem 4.2] Let g(x, y) = x · ψ(y), x, y ∈ F
n/2
2 , be a bent function, n is

even. For an arbitrary matrix M ∈ GL(n,F2) and vector c ∈ F
n
2 , let S f = (c⊕E M)�Tμ �Tμ,

where E = F
n
2 is ordered lexicographically and μ ∈ Bn. We have:

(i) Let E1, E2 be subspaces of F
n/2
2 such that ψ(E2) = E⊥

1 and define μ(x, y) =
φE1(x)φE2(y), where φEi denotes the characteristic function of Ei . Then, f : Fn+2

2 →
F2, whose Walsh spectrum is specified by means of (13) in Theorem 3.3 (with dimension
n + 2 instead of n), is a semi-bent function.

(ii) Let L be a subspace of Fn
2 and define μ(x, y) = φL(x). If ψ−1(v + L⊥) is an affine

subspace for all v ∈ F
n
2 , then f : Fn+2

2 → F2, whose Walsh spectrum is specified by
means of (13) in Theorem 3.3 (with dimension n+2 instead of n), is a semi-bent function.

3.3.2 Bent functions outsideMM# using semi-bent functions with suitable duals

By employing the above results, the authors in [15] also proposed a construction method
of disjoint spectra plateaued functions, see Theorem 4.4 in [15], and additionally showed
that these functions can be efficiently utilized for the construction of bent functions. For the
particular case of specifying four semi-bent functions on Fn+2

2 , by using a bent dual g ∈ Bn ,
it is convenient to express Fn+2

2 = V ⊕ Q where for simplicity V = F
n
2 × {(0, 0)} and

Q = 0n ×F
2
2. Notice that the choice of V leads to the canonical concatenation/decomposition

given by (9). The main idea is then to specify disjoint Walsh supports of semi-bent functions
fi on the cosets of V in Fn+2

2 . The reason for selecting S f (c⊕F
n
2M) �Tt1 �Tt2 in Theorem 3.5

as a non-affine subspace is to demonstrate a somewhat harder design rationale that employs
Theorem 3.3(i), which requires that the set � f is at bent distance to the bent dual g. Again,
the use of a suitable bent dual g ∈ Bn (taken outside MM#) is decisive when the design of
bent functions outside MM# is considered.

We note the following notion of the so-called relaxed linearity index introduced in [22].

Definition 3.1 [22] A vector subspace U ⊆ F
n
2 is called a relaxed MM-subspace of a

Boolean function f ∈ Bn , if for all a,b ∈ U the second-order derivatives DaDb f are either
constant zero or constant one functions, that is, DaDb f = 0 or DaDb f = 1. We denote by
RMSr ( f ) the collection of all r -dimensional relaxedMM-subspaces of a Boolean function
f and by RMS( f ) the collection

RMS( f ) :=
n⋃

r=1

RMSr ( f ).

For a Boolean function f ∈ Bn its relaxed linearity index r -ind( f ) is defined by

r − ind( f ) := max
U∈RMS( f )

dim(U ).

Theorem 3.5 Let g /∈ MM# be a bent function in n variables, n even, with r-ind(g) <

n/2 − 2. For an arbitrary matrix M ∈ GL(n,F2) and vector c ∈ F
n
2 , let S f = (c ⊕ F

n
2M) �

Tt1 � Tt2 ⊂ F
n+2
2 , where t1, t2 ∈ Bn such that g(x, y) ⊕ v1t1(x, y) ⊕ v2t2(x, y) is bent for

any v1, v2 ∈ F2, where x, y ∈ F
n/2
2 . Let Q = {0n} × F

2
2 = {q00,q01,q10,q11} and set
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S fa = qa ⊕ S f , for qa ∈ Q and a ∈ F
2
2. Then, the functions fa ∈ Bn+2, constructed using

Theorem 3.3 with S fa and g, are semi-bent functions on F
n+2
2 with pairwise disjoint spectra.

Moreover, the function f ∈ Bn+4, whose canonical restrictions are f|
F

n+2
2 ×{a} := fa, where

a ∈ F
2
2 (thus f = f00|| f01|| f10|| f11), is a bent function outside MM#.

Proof Let c ∈ F
n
2 and M ∈ GL(n,F2) be arbitrary. Let S f = (c ⊕ F

n
2M) � Tt1 � Tt2 ,

where t1, t2 ∈ Bn . The columns of c⊕F
n
2M correspond to affine functions in n variables, say

l1, . . . , ln ∈ An . Thus, by assumption on g, the function g⊕v·(l1, . . . , ln, t1, t2) is bent for any
v ∈ F

n+2
2 .Hence, g is at bent distance to� f = {φv ∈ Bn : Tφv = (v·ω0, . . . , v·ω2n−1), ωi ∈

S f , v ∈ F
n+2
2 }. Let S fa = qa⊕S f , for qa ∈ Q. By Theorem 3.3(i), the functions fa ∈ Bn+2,

whose Walsh spectral values at v ∈ F
n+2
2 are defined by:

W fa (v) =
{
2

n+4
2 (−1)g(xi ,yi ), v = (c ⊕ (xi , yi ) · M, t1(xi , yi ), t2(xi , yi )) ⊕ qa ∈ S fa

0, v /∈ S fa
,

(16)

are 2-plateaued (semi-bent) functions, for a ∈ F
2
2. Furthermore, we have ∪qa∈Q(qa ⊕ S f ) =

F
n+2
2 and the function f = f00|| f01|| f10|| f11 ∈ Bn+4 is bent by Theorem 2.2(ii), since the

restrictions fa are pairwise disjoint spectra semi-bent functions.
It remains to show that f is outsideMM#. For convenience, we write u = (α,β, γ ,ω) ∈

F
n/2
2 ×F

n/2
2 ×F

2
2 ×F

2
2. Then, the Walsh-Hadamard transform of f at u ∈ F

n+4
2 evaluates to:

Wf(u) =
∑

(x,y,z,w)∈(F
n/2
2 )2×(F22)

2

(−1)f(x,y,z,w)⊕(x,y,z,w)·u

=
∑

w∈F22

∑

(x,y,z)∈(F
n/2
2 )2×F

2
2

(−1) fw(x,y,z)⊕(x,y,z)·(α,β,γ )⊕w·ω

=
∑

w∈F22
(−1)w·ω ∑

(x,y,z)∈(F
n/2
2 )2×F

2
2

(−1) fw(x,y,z)⊕(x,y,z)·(α,β,γ )

=
∑

w∈F22
(−1)w·ωW fw (α,β, γ ) = (∗).

As ∪q∈Q(q ⊕ S f ) = F
n+2
2 and q ⊕ S f ∩ q′ ⊕ S f = ∅ for q �= q′, we have that (α,β, γ )

is in exactly one support S fw for some w ∈ F
2
2. We note that (α,β) = c ⊕ (α′,β ′) · M for

some (α′,β ′) ∈ F
n/2
2 × F

n/2
2 and γ = (t1(α′,β ′), t2(α′,β ′)) ⊕ aγ for some aγ ∈ F

2
2, whose

choice depends on the value of γ . Hence,

(α,β, γ ) = (c ⊕ (α′,β ′) · M, t1(α
′,β ′), t2(α

′,β ′)) ⊕ qaγ .

Thus, we have that

(∗) = 2
n+4
2 · (−1)aγ ·ω⊕g(α′,β ′)

= 2
n+4
2 · (−1)((t1(((α,β)⊕c)·M−1),t2(((α,β)⊕c)·M−1))⊕γ )·ω⊕g(((α,β)⊕c)·M−1)

which implies that the dual f∗ ∈ Bn+4 of f is defined by

f∗(x, y, z,w) = ((t1(((x, y) ⊕ c) · M−1), t2(((x, y) ⊕ c) · M−1)) ⊕ z)

·w ⊕ g(((x, y) ⊕ c) · M−1),
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for x, y ∈ F
n/2
2 and z,w ∈ F

2
2. Without loss of generality, let us consider the function

h(x, y, z,w) = f∗((x, y, z,w) · M ′ ⊕ (c, 02, 02))

= ((t1(x, y), t2(x, y)) ⊕ z) · w ⊕ g(x, y)

= g(x, y) ⊕ z · w ⊕ (t1(x, y), t2(x, y)) · w,

where

M ′ =
(

M O4

O4 I4

)
.

We note that h and f∗ are EA-equivalent functions and thus belong to the same completed
class of bent functions.

Let us now consider the second-order derivative of h. Suppose that V is some
(n + 4)/2-dimensional subspace of F

n+4
2 = F

n/2
2 × F

n/2
2 × F

2
2 × F

2
2 and let α =

(α(1), α(2), α(3), α(4)), β = (β(1), β(2), β(3), β(4)) ∈ V , where α(1), α(2), β(1), β(2) ∈
F

n/2
2 , α(3), α(4), β(3), β(4) ∈ F

2
2. For easier notation, we will denote with α12 = (α(1), α(2))

and β12 = (β(1), β(2)). The second-order derivative of h evaluates to

Dα Dβh(x, y, z,w) = Dα12 Dβ12g(x, y) ⊕ w · (Dα12 Dβ12 t1(x, y), Dα12 Dβ12 t2(x, y))

⊕α(4) · (Dβ12 t1((x, y) ⊕ α12), Dβ12 t2((x, y) ⊕ α12))

⊕β(4) · (Dα12 t1((x, y) ⊕ β12), Dα12 t2((x, y) ⊕ β12))

⊕α(3) · β(3) ⊕ α(4) · β(4). (17)

First, we note that there are no bent functions outsideMM# for n ≤ 6, i.e., we must have
n ≥ 8. Hence, the smallest possible dimension we can consider is 8 + 4 = 12 for which the
vanishing subspace V has dimension 6. Since dim(V ) = n/2 + 2, we have

dim({(x, y, z, 02) ∈ F
n/2
2 × F

n/2
2 × F

2
2 : (x, y, z,w) ∈ V }) ≥ n/2.

Hence, without loss of generality, we can take α = (α(1), α(2), α(3), 0, 0) and β =
(β(1), β(2), β(3), 0, 0) for some distinct nonzero α12, β12. From (17), for w = 02 and
α(4) = β(4) = (0, 0), we have that

Dα Dβh(x, y, z,w)

∣∣∣
w=02

= Dα12 Dβ12g(x, y) ⊕ α(3) · β(3).

Furthermore, since dim({(x, y) ∈ F
n/2
2 × F

n/2
2 : (x, y, z,w) ∈ V }) ≥ n/2 − 2 and r -

ind(g) < n/2 − 2 we have that

Dα Dβh(x, y, z,w)|w=02 �= 0.

Thus h /∈ MM#, which implies that f∗ /∈ MM#. By Remark 3.1, it means that f is
outside MM#. ��

Remark 3.3 The condition that r -ind(g) < n/2−2 is quite strict and can be relaxed in certain
cases. For instance, taking that t1 = t2 = 0 in Theorem 3.5, the function h(x, y, z,w) =
g(x, y) ⊕ z · w ⊕ (t1(x, y), t2(x, y)) · w becomes h(x, y, z,w) = g(x, y) ⊕ z · w, which by
Corollary 1 is outside MM# if and only if g is outside MM#. This also indicates that the
choice of a non-affine Walsh support is not decisive for the class inclusion since the support
S f in Theorem 3.5 is affine when t1 = t2 = 0.
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Since g ∈ Bn is supposed to be a bent function outsideMM# (with additional restriction
that r -ind(g) < n/2 − 2), we can employ the class D0 of Carlet [4] or certain families of
bent functions in C and D that are provably outside MM# [18, 26, 28]. Alternatively g can
be taken from the recent classes SC and CD [1, 2], which are specified in Corollary 3 below.
Notice that the subspaces L, E1, E2 used to define g in Corollary 3 below, satisfy certain
conditions with respect to the permutation π , see [4, 26, 28]. However, there exist efficient
design methods for specifying bent functions in the above classes that are provably outside
MM# [1, 2, 18, 26, 28]. On the other hand, for t1, t2 ∈ Bn we use certain indicators that
preserve the bentness of g(x, y) ⊕ v1t1(x, y) ⊕ v2t2(x, y). The results are summarised in the
following corollary, where we denote δ0(x) = ∏n/2

i=1(xi ⊕ 1) which is the indicator function

of {0n/2} × F
n/2
2 . Notice again that taking t1 = t2 = 0 in Corollary 3, it is sufficient to take

any bent function g outside MM#.

Corollary 3 With the same notation as in Theorem 3.5, if a bent function g ∈ Bn satisfies
r-ind(g) < n/2 − 2 and t1, t2 ∈ Bn are defined by:

(i) g(x, y) = x · π(y) ⊕ δ0(x) ∈ D0 \ MM#, t1(x, y) = t2(x, y) = δ0(x), x, y ∈ F
n/2
2 ,

(ii) g(x, y) = x · π(y) ⊕ 1L⊥(x) ∈ C \MM#, t1, t2 correspond to 1L⊥(x) or δ0(x), x, y ∈
F

n/2
2 ,

(iii) g(x, y) = x · π(y) ⊕ 1L⊥(x) ⊕ δ0(x) ∈ SC \ MM#, t1, t2 correspond to 1L⊥(x) or

δ0(x), x, y ∈ F
n/2
2 , or

(iv) g(x, y) = x · π(y) ⊕ 1L⊥(x) ⊕ 1E1(x)1E2(y) ∈ CD \ MM#, t1(x, y) = t2(x, y) =
1L⊥(x), x, y ∈ F

n/2
2 ,

then f ∈ Bn+4 is a bent function outside MM#.

In the following example, we take g ∈ D0 \MM# in 8 variables (satisfying the condition
r -ind(g) < 8/2 − 2 = 2) to construct a bent function in 12 variables outside MM# by
means of Theorem 3.5. The result was also confirmed using our algorithm in Sect. 3.1.

Example 3.2 Let g(x, y) = x · π(y) ⊕ δ0(x), x, y ∈ F
4
2, be a bent function in D0 (outside

MM#), where π = (0, 1, 11, 13, 9, 14, 6, 7, 12, 5, 8, 3, 15, 2, 4, 10) is a permutation of F4
2

represented in integer form. Using Sage, it was confirmed that r -ind(g) = 1. Let c ∈ F
8
2 and

M ∈ GL(8,F2) be arbitrary, say,

c = (0, 0, 1, 0, 1, 1, 1, 1), M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1 1
1 1 1 1 1 1 0 1
0 1 1 1 0 1 0 1
1 1 0 1 1 1 1 1
0 0 1 0 0 1 1 1
1 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 0 1 1 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let S f = (c ⊕ F
8
2 · M) � Tδ0 � Tδ0 ⊂ F

10
2 , where Tδ0 is the truth table of the function δ0(x)

viewed as a function on F
8
2. That is, δ0(x, y) = δ0(x) ∈ B8. Then, fi ∈ B10 defined via S fi

and g, using Theorem 3.3, are pairwise disjoint spectra functions, where S fa = S f ⊕ qa and
qa ∈ Q = {08} × F

2
2 for a ∈ F

2
2. In other words, f = ( f00, f01, f10, f11) ∈ B12 is a bent

function and can be viewed as a concatenation of four semi-bent functions. Furthermore,
using our algorithm in Sect. 3.1, we have confirmed that f lies outsideMM#. The ANF of f
is given by (24) in the appendix.
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The following remarks are important with respect to the cardinality of bent functions outside
MM# or the presence of linear structures of the constituent semi-bent functions.

Remark 3.4 Notice that the number of possibilities of selecting for S f (which is a binary
matrix of size 2n × (n + 2)) is quite large. We have 2n possible choices for c ∈ F

n
2 and∏n

k=0(2
n − 2k) choices for M ∈ GL(n,F2). Thus, for fixed Boolean functions t1, t2 ∈ Bn ,

we have 2n ∏n
k=0(2

n − 2k) choices for S f . For example, for n = 8 this number equals
≈ 270.2.

Remark 3.5 The existence of linear structures in the semi-bent functions fi , used in Theo-
rem 3.5 to specify f, is of no importance when determining whether f /∈ MM#. We have
confirmed this, using our algorithm from Sect. 3.1, by verifying that the resulting bent func-
tions are always outside MM# provided that the bent function g used to define the dual of
fi (by means of (16)) is outside MM#. It is completely irrelevant whether these semi-bent
functions possess linear structures (having affine supports S fi ) or not. This is also evident
from Remark 3.3 since taking t1 = t2 = 0 theWalsh supports of the restrictions fa are affine.

3.4 Four bent decomposition in terms of 5-valued spectra functions

To specify 5-valued spectra Boolean functions, the authors in [14] provided a sufficient and
necessary condition that the Walsh spectra of fi (corresponding to two different amplitudes)
must satisfy, see Sect. 2.2. The notion of totally disjoint spectra functions was also introduced
in [14], which can be regarded as a sufficient condition so that the Walsh spectrum specified
by (6) is a valid spectrum of a Boolean function.

Definition 3.2 [14, Definition 4.1] For two disjoint sets S[1]
f , S[2]

f ⊂ F
n
2, with #S[1]

f +#S[2]
f =

2λ1 + 2λ2 < 2n, we say that the dual functions f ∗[1] : S[1]
f → F2 and f ∗[2] : S[2]

f → F2 (in
terms of (6)) are totally disjoint spectra functions if it holds that

X1(u)X2(u) = 0 and |X1(u)| + |X2(u)| > 0,

for all u ∈ F
n
2, where Xi (u) = ∑

ω∈S[i]
f
(−1) f ∗[i](ω)⊕u·ω, for i = 1, 2.

Remark 3.6 Note that the second condition implies the nonexistence of a vector u ∈ F
n
2 for

which X1(u) = X2(u) = 0. Without this condition, the notion of totally disjoint spectra
coincides with non-overlap disjoint spectra functions in [25].

Furthermore, a generic method of specifying totally disjoint spectra functions was also given
in [14].

Construction 1 [14] Let n, m and k be even with n = m + k. Let h ∈ Bm and g ∈ Bk be two
bent functions. Let H be any subspace of Fm

2 of co-dimension 1, and let H = F
m
2 \H. Let also

E1 = F
k
2 × H and E2 = {0k} × H. The Walsh spectrum of f ∈ Bn, with (α,β) ∈ F

k
2 × F

m
2 ,

can be constructed as follows:

W f (α,β) =

⎧
⎪⎨

⎪⎩

(−1)g(α)⊕h(β) · 2n/2, (α,β) ∈ E1

(−1)h(β) · 2m/2+k, (α,β) ∈ E2

0, otherwise.

(18)

Then, W f is a valid spectrum of a Boolean function f ∈ Bn. Let now

f1(α,β) = g(α) ⊕ h(β), (α,β) ∈ E1
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f2(α,β) = h(β), (α,β) ∈ E2.

Then, f1 : E1 → F2 and f2 : E2 → F2 are totally disjoint spectra functions.

Remark 3.7 Notice that the sets E1 and E2 in Construction 1 can be defined similarly using
any element v ∈ F

k
2 instead of 0k , so that E2 = {v} × H and E1 = F

k
2 × H remains the

same. Then, E1 and E2 are clearly disjoint.

Now, we need to specify a quadruple of 5-valued spectra functions in Bn−2 by means of
Construction 1, which additionally satisfies the condition given by item (iii) of Theorem 2.2.
More precisely:

(a) The sets S[1]
fi

= {ϑ ∈ F
n−2
2 : |W fi (ϑ)| = 2

n
2 } (i ∈ [1, 4]) are pairwise disjoint;

(b) All S[2]
fi

= {ϑ ∈ F
n−2
2 : |W fi (ϑ)| = 2

n−2
2 } are equal (i ∈ [1, 4]), and for f ∗[2],i : S[2]

fi
→

F2 it holds that f ∗[2],1 ⊕ f ∗[2],2 ⊕ f ∗[2],3 ⊕ f ∗[2],4 = 1.

When k = 2,Construction1 cangenerate suitable quadruples of 5-valued spectra functions
(which are individually totally disjoint spectra functions) as shown below. Notice that the
subspaces S[1]

fi
will correspond to E (i)

2 and S[2]
fi

to E (i)
1 in Theorem 3.6.

Theorem 3.6 Let n = m + 2 be even so that m is also even. Let h ∈ Bm and g ∈ Bk = B2 be
two bent functions. Let H be any subspace of Fm

2 of co-dimension 1, and let H = F
m
2 \H. Let

also E (i)
1 = F

2
2 × H and E (i)

2 = {c(i)} × H, for i = 1, . . . , 4, where c(i) ∈ F
2
2 are ordered

lexicographically so that c(i) �= c( j) for 1 ≤ i �= j ≤ 4. We specify the spectra of fi ∈ Bn as
follows:

W fi (α,β) =

⎧
⎪⎨

⎪⎩

(−1)g(α)⊕h(β)⊕d · 2n/2, (α,β) ∈ E (i)
1

(−1)h(β) · 2 n−2
2 +2, (α,β) ∈ E (i)

2

0, otherwise,

(19)

where d = 1 if i = 4, otherwise d = 0. Then, the function f ∈ Bn+2 given as the
concatenation f = f1|| f2|| f3|| f4 is a bent function.

Proof The functions fi ∈ Bn , specified by (19), are clearly 5-valued spectra functions.
We need to verify that their spectra corresponds to Boolean functions. By Construction 1,
corresponding to the definition of E (1)

1 and E (1)
2 using c(1) = (0, 0), this is true for f1. Due

to the definition of E (i)
1 and E (i)

2 and Remark 3.7, the same is true for any fi which are
all Boolean 5-valued spectra functions. For instance, using c(2) = (0, 1) to define f2, the
condition that E (1)

1 = E (2)
1 is clearly true and furthermore (0, 0) × H ∩ (0, 1) × H = ∅, that

is E (1)
2 ∩ E (2)

2 = ∅.
Now, the condition for a valid 4-decomposition into 5-valued spectra functions is given

by (iii) in Theorem 2.2. The supports E (i)
2 are clearly disjoint by their definition, whereas

E (i)
1 are defined on the same subspace of Fn

2. The last condition that the bent duals defined on

E (i)
1 satisfy f ∗[2],1 ⊕ f ∗[2],2 ⊕ f ∗[2],3 ⊕ f ∗[2],4 = 1 follows from the specification of the spectra

on E (i)
1 , using the fact that d = 1 only when i = 4. ��

Remark 3.8 Since d = 1 when i = 4, the complement of the dual is used for the fourth
constituent function f4. This ensures that the bent duals satisfy f ∗[2],1⊕ f ∗[2],2⊕ f ∗[2],3⊕ f ∗[2],4 =
1. Nevertheless, this is not the only choice and the bent duals can be specified in other ways
(through the complement operation) as long as their sum equals 1.
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The following examples illustrate the details of this construction and the possibility of getting
bent functions outside MM#. Notice that the dual h used to specify f is not necessarily in
MM#.

Example 3.3 Let n = 8 and let h ∈ B6, g ∈ B2 be defined by h(x0, . . . , x5) = x0x1⊕ x2x3⊕
x4x5 ∈ MM and g(x0, x1) = x0x1. Let H = 〈(1, 0, 0, 0, 0, 0)〉⊥ ⊂ F

6
2 be a subspace

of codimension 1. Using the mathematical software Sage, we constructed the functions
f (i) ∈ B8 for i = 1, . . . , 4 defined by (19) and their ANF’s are given as follows:

f1(x0, . . . , x7) = x0x1x3 ⊕ x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x6x7,

f2(x0, . . . , x7) = x0x1x3 ⊕ x0x1 ⊕ x0x3 ⊕ x2x3 ⊕ x4x5 ⊕ x6x7,

f3(x0, . . . , x7) = x0x1x3 ⊕ x0x1 ⊕ x1x3 ⊕ x2x3 ⊕ x4x5 ⊕ x6x7,

f4(x0, . . . , x7) = x0x1x3 ⊕ x0x1 ⊕ x0x3 ⊕ x1x3 ⊕ x2x3 ⊕ x3 ⊕ x4x5 ⊕ x6x7 ⊕ 1

Then, the function f ∈ B10 given as the concatenation f = f1|| f2|| f3|| f4 is a cubic bent
function defined by

f (x0, . . . , x9) = x1x2x3 ⊕ x1x2 ⊕ x1x3x8 ⊕ x2x3x9 ⊕ x2x3 ⊕ x3x8x9 ⊕ x4x5 ⊕ x6x7 ⊕ x8x9.

Using our algorithm in Sect. 3.1, we could verify that f ∈ MM#.

On the other hand, the following two examples illustrate that selecting the dual h to be
outside MM#, the resulting bent functions (constructed using Theorem 3.6) are outside
MM#.

Example 3.4 Let h ∈ B8 defined by h(x, y) = T r41 (xy7) + δ0(x), x, y ∈ F24 , be a bent
function in the class D0 \ MM# [4, 28], and let g ∈ B2 be defined by g(x0, x1) = x0x1.
Let us define H = 〈(1, 0, 0, 0, 0, 0, 0, 0)〉⊥ ⊂ F

8
2 to be a subspace of codimension 1. Using

Sage we constructed the functions fi ∈ B10 for i = 1, . . . , 4 defined by (19). Then, the
function f ∈ B12 given as f = f1|| f2|| f3|| f4 is a bent function of algebraic degree 5. This
time the function f , whose ANF is given by (22) in the appendix, is outside MM#.

Example 3.5 Let n = 10 and h ∈ B8, g ∈ B2 be bent functions, where g(x0, x1) = x0x1.
The function h ∈ B8, whose ANF is given by (21) in Appendix, lies in PS# and is outside
MM#. Using Sage, we constructed the functions fi ∈ B10 for i = 1, . . . , 4 defined by
(19). Then, the function f ∈ B12 given as f = f1|| f2|| f3|| f4 is a bent function of algebraic
degree 5. Again, it could be confirmed that f is outside MM# (its ANF is given by (23) in
the appendix).

The above examples indicate that the conclusions (related to the dual) given in Sect. 3.2
seem to be applicable in this case as well. More precisely, the class belongingness of f in
Theorem 3.6 is strongly related to the choice of the dual bent functions.

Theorem 3.7 Let f ∈ Bn+2 be constructed by means of Theorem 3.6, thus f = f1|| f2|| f3|| f4
where fi ∈ Bn. If the dual bent function h ∈ Bn−2 in Theorem 3.6 is outside MM#, then f
is outside MM#.

Proof By Remark 3.1, f is outsideMM# if and only if its dual f ∗ is outsideMM#. Hence,
it is enough to show that f ∗ is outsideMM#. The “duals” of the restrictions fi are actually

given by (19). By the definition of f ∗, we have that (−1) f ∗(u) = 2− n+2
2 W f (u) for any

u ∈ F
n+2
2 , since f ∈ Bn+2. For convenience, we write u = (α,β, γ ) ∈ F

2
2 × F

m
2 × F

2
2 with
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n = m+2 as used inTheorem3.6.Wenotice that in general, using thatx = (x′, xn+1, xn+2) ∈
F

n
2 × F2 × F2, we have

W f (α,β, γ ) =
∑

x∈Fn
2×F

2
2

(−1) f (x)+u·x

=
∑

x∈Fn
2×(0,0)

(−1) f (x′,0,0)+(α,β)·x′ +
∑

x∈Fn
2×(0,1)

(−1) f (x′,0,1)+(α,β)·x′+γ2

+
∑

x∈Fn
2×(1,0)

(−1) f (x′,1,0)+(α,β)·x′+γ1

+
∑

x∈Fn
2×(1,1)

(−1) f (x′,1,1)+(α,β)·x′+γ1+γ2

= W f1(α,β) + (−1)γ2W f2(α,β)

+(−1)γ1W f3(α,β) + (−1)γ1+γ2W f4(α,β). (20)

Hence, for any fixed γ ∈ F
2
2, we can compute the value of W f (α,β, γ ) by using the Walsh

spectra of the constituent functions fi .

We first notice that W fi (α,β) = (−1)h(β) · 2 n−2
2 +2 when (α,β) ∈ E (i)

2 , and furthermore

by construction the sets E (i)
2 are mutually disjoint for i = 1, . . . , 4. Hence, if for instance

(α,β) ∈ E (1)
2 then W f1(α,β) = (−1)h(β) · 2 n−2

2 +2 and W fi (α,β) = 0 for 2 ≤ i ≤ 4, which

implies that W f (α,β, γ ) = (−1)h(β) · 2 n
2 +1 when (α,β) ∈ E (1)

2 . The other cases when

(α, β) ∈ E (i)
2 for i �= 1 are similar.

Now, considering the case (α,β) ∈ E (i)
1 , we first notice that E1 := E (1)

1 = · · · =
E (4)
1 (by construction), where E1 = F

2
2 × H as in Theorem 3.6. In addition, W fi (α,β) =

(−1)g(α)⊕h(β)+d · 2n/2, where d = 1 when i = 4 only. This also implies that W f1(α,β) =
W f2(α,β) = W f3(α,β) = −W f4(α,β) when (α,β) ∈ E1. Therefore, using (20), we have

W f (α,β, 0, 0) = W f1(α,β) + W f2(α,β) + W f3(α,β) − W f4(α,β) = 2W f1(α,β)

W f (α,β, 0, 1) = W f1(α,β) − W f2(α,β) + W f3(α,β) + W f4(α,β) = 2W f1(α,β)

W f (α,β, 1, 0) = W f1(α,β) + W f2(α,β) − W f3(α,β) + W f4(α,β) = 2W f1(α,β)

W f (α,β, 1, 1) = W f1(α,β) − W f2(α,β) − W f3(α,β) − W f4(α,β) = −2W f1(α,β).

Hence, W f (α,β, γ1, γ2) = 2 · 2n/2(−1)g(α)⊕h(β)⊕γ1γ2 when (α,β) ∈ E1, where g(α) ⊕
h(β) ⊕ γ1γ2 falls into the framework of Theorem 3.1 and additionally Remark 3.1 applies.
Notice that the case (α,β) /∈ E1 and at the same time having W fi (α,β) = 0 is already

covered above since then (α,β) ∈ E ( j)
2 for some j �= i . This is a consequence of the fact

that E1 ∪ (∪4
i=1E (i)

2 ) = F
n
2.

To summarize, the dual f ∗ is equal to g(α) ⊕ h(β) ⊕ γ1γ2 when f ∗ is restricted to
the subspace (α,β, γ ) ∈ E1 × F

2
2 and to h(β) when f ∗ is restricted to the complement

of E1 × F
2
2. Notice that g is a 2-variable quadratic bent function, thus g(α1, α2) = α1α2.

Therefore, using the assumption that h /∈ MM#, Remark 3.1 and Corollary 1 imply that
f ∗ /∈ MM# and hence f /∈ MM#. ��
Remark 3.9 The condition on the dual bent function h ∈ Bn−2 to be outsideMM# is strictly
sufficient and not necessary. There exist bent functions { f } in eight variables, represented as
f = f1|| f2|| f3|| f4 where fi are 5-valued spectra functions, that are outside MM#. Since
in this case the dual bent function h is defined on F4

2 it apparently belongs to MM.
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4 5-valued spectra functions from the generalizedMM class

Another method of specifying 5-valued spectra functions, also given in [14], uses the gener-
alized Maiorana-McFarland class (GMM) of Boolean functions. For convenience and ease
of notation, we use the variable set x0, . . . , xn−1 instead of x1, . . . , xn for functions on Fn

2.

Theorem 4.1 [14] Let E0 ⊂ F
s
2 with 1 ≤ s ≤ �n/2�. Let E1 = E0 ×F

t
2, where E0 = F

s
2\E0

and 0 ≤ t ≤ �n/2�. Let φ0 be an injective mapping from E0 to F
n−s
2 , and φ1 be an injective

mapping from E1 to F
n−s−t
2 . Let X = (x0, . . . , xn−1) ∈ F

n
2 and X(i, j) = (xi , . . . , x j ) ∈

F
j−i+1
2 . Let f ∈ Bn be defined as follows:

f (X) =
{

φ0(X(0,s−1)) · X(s,n−1), i f X(0,s−1) ∈ E0

φ1(X(0,s+t−1)) · X(s+t,n−1), i f X(0,s+t−1) ∈ E1.

Let

T0 = {φ0(η) | η ∈ E0},
and

T1 = {φ1(θ) | θ ∈ E1}.
Then, we have

(a) W f (ω) ∈ {0,±2n−s,±2n−s−t } if t �= 0 and T0 ⊂ F
t
2 × T1, where T1 = F

n−s−t
2 \T1;

(b) W f (ω) ∈ {0,±2n−s,±2n−s+1} if t = 0, T0 ∩ T1 �= ∅ and T0 �= T1.

Example 4.1 Let n = 8, s = 3 and t = 1. Now, we employ Theorem 4.1 to construct
5-valued spectra functions f (1), . . . , f (4) that satisfy Theorem 2.2. The resulting function
f = f (1)|| f (2)|| f (3)|| f (4) ∈ B10 is then bent. Let Fr

2 = {v(r)
0 , . . . , v(r)

2r −1} denote the lexico-
graphically ordered r -dimensional vector space over F2 .

Furthermore, we note that all sets defined below are also lexicographically ordered.
We define E0 = {e(0)

0 , e(0)
1 , e(0)

2 }, where e(0)
i = v(3)

i ∈ F
3
2 for i = 0, 1, 2 (hence

e(0)
0 = (0, 0, 0), e(0)

1 = (0, 0, 1), e(0)
2 = (0, 1, 0)),

and E1 = E0 × F2 = {e(1)
0 , e(1)

1 , . . . , e(1)
9 } ⊂ F

4
2, where E0 = F

3
2\E0. Let φ1 : E1 → F

4
2

be defined by

φ1(e
(1)
i ) = v(4)

i ,

for i = 0, . . . , 9 Let T1 = {φ1(θ) : θ ∈ E1} and T1 = F
4
2 \ T1, where clearly |T1| = 6. Let

� = F2 × T1 = {γ 0, . . . , γ 11} ⊂ F2 × F
4
2 = F

5
2 and let φ( j)

0 : E0 → F
5
2 be defined by

φ
( j)
0 (e(0)

i ) = γ i+3 j , e(0)
i ∈ E0,

for j = 1, . . . , 4.
If T ( j)

0 = {φ( j)
0 (η) : η ∈ E0}, then T ( j)

0 ⊂ F2 × T1 (as required in Theorem 4.1-(a)), for

j = 1, . . . , 4. Now let X = (x0, . . . , x7) ∈ F
8
2 and X(i, j) = (xi , . . . , x j ) ∈ F

j−i+1
2 . For

j = 1, 2, 3, 4, f ( j) ∈ B8 is defined as follows:

f ( j)(X) =
{

φ
( j)
0 (X(0,2)) · X(3,7) + δ1( j), i f X(0,2) ∈ E0

φ1(X(0,3)) · X(4,7) + δ1( j), i f X(0,3) ∈ E1,
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where δ1( j) = 1 for j = 1 and 0 otherwise. Let S( j)
1 = {x ∈ F

8
2 : |W f ( j) (x)| = 25} and

S( j)
2 = {x ∈ F

8
2 : |W f ( j) (x)| = 24}. Using Sage we could verify that all S( j)

1 are pairwise

disjoint and all S( j)
2 are equal. Furthermore, by the construction, f ∗[2],1 ⊕ · · · ⊕ f ∗[2],4 = 1.

Hence, by Theorem 2.2, the function f = f (1)|| f (2)|| f (3)|| f (4) ∈ B10 of algebraic degree
5 is bent, and its ANF is defined by:

f (x0, . . . , x9) = x0x1x2x3x4 ⊕ x0x1x2x3x9 ⊕ x0x1x2x4x8 ⊕ x0x1x2x4 ⊕ x0x1x2x6

⊕x0x1x3x4 ⊕ x0x1x3x9 ⊕ x0x1x4x8 ⊕ x0x1x4 ⊕ x0x1x6 ⊕ x0x1x7

⊕x0x2x4 ⊕ x0x2x5x8 ⊕ x0x2x5 ⊕ x0x2x6 ⊕ x0x4 ⊕ x0x5x8 ⊕ x1x2x5 ⊕ x1x2x6x8 ⊕ x1x5

⊕x1x6x8 ⊕ x1x6 ⊕ x2x3x4 ⊕ x2x3x9 ⊕ x2x4x8 ⊕ x2x5x8 ⊕ x2x6x8

⊕x2x7 ⊕ x3x9 ⊕ x4x8 ⊕ x5x8 ⊕ x5 ⊕ x6x8 ⊕ x7 ⊕ x8x9 ⊕ x8 ⊕ x9 ⊕ 1.

Nevertheless, using our algorithm in Sect. 3.1 implemented in Sage, we could confirm
that f ∈ MM#.

As a generalization of the previous example, we give the following result.

Remark 4.1 We assume that all sets defined in Theorem 4.2 are ordered lexicographically,
and with F

k
2 = {v(k)

0 , v(k)
1 , . . . , v(k)

2k−1
} (for suitable k) we will denote the elements of the

lexicographically ordered k-dimensional vector space over F2 .

Theorem 4.2 Let n = 2m ≥ 8, s = m − 1, and E0 = {v(m−1)
0 , . . . , v(m−1)

τ−1 }⊂ F
m−1
2

where τ < 2s − 1 and 4τ ≤ 2m+1. Define E1 = E0 × F2 = {e(1)
0 , . . . , e(1)

λ }⊂ F
m
2 , where

λ = 2 · (2m−1 − τ) − 1 and E0 = F
m−1
2 \E0. Let φ1 : E1 → F

m
2 be an injective mapping

defined by

φ1(e
(1)
i ) = v(m)

i , e(1)
i ∈ E1,

for i = 0, 1, . . . , λ, whose image set is denoted by T1 = {φ1(θ) : θ ∈ E1}. Now, denoting
� = F2 × (Fm

2 \T1) = {γ 0, γ 1, . . . , γ 4τ−1}, let φ
( j)
0 : E0 → � ⊂ F

m+1
2 , for j = 1, . . . , 4,

be injective mappings defined by

φ
( j)
0 (e(0)

i ) = γ i+τ( j−1), e(0)
i ∈ E0.

Let X = (x0, . . . , xn−1) ∈ F
n
2 and X(i, j) = (xi , . . . , x j ) ∈ F

j−i+1
2 . For j = 1, . . . , 4,

f ( j) ∈ Bn is defined as follows:

f ( j)(X) =
{

φ
( j)
0 (X(0,m−2)) · X(m−1,n−1) + δ1( j), i f X(0,m−2) ∈ E0

φ1(X(0,m−1)) · X(m,n−1) + δ1( j), i f X(0,m−1) ∈ E1,

where δ1( j) = 1 for j = 1 and 0 otherwise. Then, the function f ∈ Bn+2 given as the
concatenation f = f (1)|| f (2)|| f (3)|| f (4) is a bent function.

Proof Firstly, we note that W f ( j) (x) ∈ {0,±2m,±2m+1} by Theorem 4.1, for j = 1, . . . , 4
(with s = m − 1 and t = 1). It remains to show that these functions satisfy the conditions of
Theorem 2.2 i i i).

Let S[1]
f ( j) = {x ∈ F

n
2 : |W f ( j) (x)| = 2m+1 and S[2]

f ( j) = {x ∈ F
n
2 : |W f ( j) (x)| = 2m , for

j = 1, . . . , 4. The cardinality of � can be computed as

|�| = 2 · |Fm
2 \ T1| = 2(2m − |E1|) = 2 · (2m − 2(2m−1 − τ)) = 2m+1 − 2m+1 + 4τ = 4τ.
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Because |�| = 4τ ≤ 2m+1 and |φ( j)
0 (E0)| = τ , it is easy to see that φ

( j)
0 splits � into 4

disjoint subsets, that is, � = ⋃4
j=1 φ

( j)
0 (E0) and φ

( j)
0 (E0) ∩ φ

( j ′)
0 (E0) = ∅ for j �= j ′.

Consequently, the sets S[1]
f ( j) are pairwise disjoint for j = 1, . . . , 4. As the function φ1

is the same for all f ( j), it follows that all sets S[2]
f ( j) are equal. The condition that the bent

duals defined on S[2]
f ( j) satisfy f ∗[2],1 ⊕ f ∗[2],2 ⊕ f ∗[2],3 ⊕ f ∗[2],4 = 1, follows from the fact that

δ1( j) = 1 only for j = 1. This follows from the fact that |W f (x)| = 2m is determined by
the value of φ1(X(0,m−1)) · X(m,n−1) (cf. proof of [14, Theorem V.6]) and consequently the
values of f ∗[2], j are the same except for j = 1, where we additionally add the constant 1.

Thus, the conditions given in item i i i) of Theorem 2.2 are satisfied and f =
f (1)|| f (2)|| f (3)|| f (4) ∈ Bn+2 is a bent function. ��
Remark 4.2 The above statement also holds if E0 is a collection of arbitrary τ elements in
F

m−1
2 . However, (partial) computer simulations indicate that this approach only generates

bent functions inside the MM# class, regardless of the choice of E0.

Open Problem 1 Prove or disprove that the bent functions constructed using Theorem 4.2
always belong to MM# regardless of the choice of E0.

5 Conclusions

This article significantly provides several infinite families of bent functions provably outside
the completed Maiorana-McFarland class. In the context of enumeration of bent functions,
it would be of interest to investigate whether the obtained families, that belong to different
cases of 4-decomposition, are fully/partially non-intersecting. Another important question
that remains unanswered, due to the lack of indicators for the partial spread class, is whether
these families intersect with the PS class.
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Appendix

Sage implementation of Lemma 2.1

def is_in_MM(f,n):
s=[];
for a in [1..2^n−1]:

for b in [a+1..2^n−1]:
if set(ttab(f.derivative(a).
derivative(b)))=={0}:

s.append([a,b]);
G=Graph();
G.add_edges(s);
cl=list(sage.graphs.cliquer.all_cliques
(G,2^(n/2)−1,2^(n/2)−1));

V=VectorSpace(GF(2),n);
V1=sorted(V);
b1=[V.subspace([V1[0]]+[V1[i] for i in s])

for s in cl];
for K in b1:

if len(K)==2^(n/2):
return True;

return False;

ANF representations of certain bent functions

x0x1x2x4 ⊕ x0x1x2x6 ⊕ x0x1x3x4 ⊕ x0x1x3x5 ⊕ x0x1x3x7

⊕x0x1x4x5 ⊕ x0x1x4x7 ⊕ x0x1x4 ⊕ x0x1x5x7 ⊕ x0x1x6x7

⊕x0x2x3x6 ⊕ x0x2x3x7 ⊕ x0x2x4x5 ⊕ x0x2x5x6 ⊕ x0x2x5x7 ⊕ x0x2x5

⊕x0x2x6x7 ⊕ x0x3x4x6 ⊕ x0x3x4x7 ⊕ x0x3x4 ⊕ x0x3x5x7 ⊕ x0x3x6x7

⊕x0x3x6 ⊕ x0x3x7 ⊕ x0x4x5x6 ⊕ x0x4x5 ⊕ x0x4x6 ⊕ x0x5x6x7

⊕x0x5x6 ⊕ x0x5x7 ⊕ x0x7 ⊕ x1x2x3x5 ⊕ x1x2x3x6

⊕x1x2x4x5 ⊕ x1x2x4x6 ⊕ x1x2x4 ⊕ x1x2x5x6 ⊕ x1x2x5

⊕x1x2x6x7 ⊕ x1x2x7 ⊕ x1x3x4x7 ⊕ x1x3x5x6 ⊕ x1x3x5

⊕x1x3x6 ⊕ x1x3x7 ⊕ x1x4x6x7 ⊕ x1x4x7 ⊕ x1x4

⊕x1x5x6 ⊕ x1x5x7 ⊕ x1x6 ⊕ x2x3x4x5 ⊕ x2x3x4x7

⊕x2x3x4 ⊕ x2x3x5x6 ⊕ x2x3x5x7 ⊕ x2x3x5 ⊕ x2x4x5x6

⊕x2x4x5x7 ⊕ x2x4x5 ⊕ x2x4x7 ⊕ x2x4 ⊕ x2x6x7

⊕x2x7 ⊕ x3x4x5x7 ⊕ x3x4x6x7 ⊕ x3x5x6 ⊕ x3x5 ⊕ x3x6x7 ⊕ x3x6 (21)

x0x1x3x4x5 ⊕ x0x1x3x4 ⊕ x0x1x3x5 ⊕ x0x1x3 ⊕ x0x1x4x5 ⊕ x0x1x4

⊕x0x1x5 ⊕ x0x1x6x7x9 ⊕ x0x1x6x7 ⊕ x0x1x6x8 ⊕ x0x1x6x9

⊕x0x1x7x8x9 ⊕ x0x1x7x8 ⊕ x0x1x8x9 ⊕ x0x1x8 ⊕ x0x1x9 ⊕ x0x3x4x5x10

⊕x0x3x4x10 ⊕ x0x3x5x10 ⊕ x0x3x10 ⊕ x0x4x5x10 ⊕ x0x4x10

123



Explicit infinite families of bent functions

⊕x0x5x10 ⊕ x0x6x7x9x10 ⊕ x0x6x7x10 ⊕ x0x6x8x10 ⊕ x0x6x9x10

⊕x0x7x8x9x10 ⊕ x0x7x8x10 ⊕ x0x8x9x10 ⊕ x0x8x10 ⊕ x0x9x10

⊕x0x10 ⊕ x1x3x4x5x11 ⊕ x1x3x4x11 ⊕ x1x3x5x11 ⊕ x1x3x11

⊕x1x4x5x11 ⊕ x1x4x11 ⊕ x1x5x11 ⊕ x1x6x7x9x11 ⊕ x1x6x7x11

⊕x1x6x8x11 ⊕ x1x6x9x11 ⊕ x1x7x8x9x11 ⊕ x1x7x8x11 ⊕ x1x8x9x11

⊕x1x8x11 ⊕ x1x9x11 ⊕ x1x11 ⊕ x2x3x4x5 ⊕ x2x3x4

⊕x2x3x5 ⊕ x2x3 ⊕ x2x4x5 ⊕ x2x4 ⊕ x2x5

⊕x2x6x7x9 ⊕ x2x6x7 ⊕ x2x6x8 ⊕ x2x6x9 ⊕ x2x7x8x9

⊕x2x7x8 ⊕ x2x8x9 ⊕ x2x8 ⊕ x2x9 ⊕ x2

⊕x3x4x5x10x11 ⊕ x3x4x5 ⊕ x3x4x10x11 ⊕ x3x4 ⊕ x3x5x10x11

⊕x3x5 ⊕ x3x6x7x9 ⊕ x3x6x8 ⊕ x3x6x9 ⊕ x3x7x9

⊕x3x7 ⊕ x3x8x9 ⊕ x3x10x11 ⊕ x3 ⊕ x4x5x10x11 ⊕ x4x5

⊕x4x6x7x8 ⊕ x4x6x8x9 ⊕ x4x6x9 ⊕ x4x6 ⊕ x4x7x8

⊕x4x7x9 ⊕ x4x7 ⊕ x4x8x9 ⊕ x4x8 ⊕ x4x10x11

⊕x4 ⊕ x5x6x7x8 ⊕ x5x6x7 ⊕ x5x6x8 ⊕ x5x6x9

⊕x5x7 ⊕ x5x8 ⊕ x5x10x11 ⊕ x5 ⊕ x6x7x9x10x11

⊕x6x7x10x11 ⊕ x6x8x10x11 ⊕ x6x9x10x11 ⊕ x7x8x9x10x11

⊕x7x8x10x11 ⊕ x8x9x10x11 ⊕ x8x10x11 ⊕ x9x10x11 ⊕ 1 (22)
x0x1x2x5 ⊕ x0x1x2x6 ⊕ x0x1x3x6 ⊕ x0x1x3x7 ⊕ x0x1x3x8x9 ⊕ x0x1x3x8x10

⊕x0x1x3x9x11 ⊕ x0x1x3x10x11 ⊕ x0x1x4x6 ⊕ x0x1x4x7 ⊕ x0x1x4x8x9 ⊕ x0x1x4x8x10

⊕x0x1x4x9x11 ⊕ x0x1x4x10x11 ⊕ x0x1x4 ⊕ x0x1x5x6 ⊕ x0x1x6x7

⊕x0x1x6x8x9 ⊕ x0x1x6x8x10 ⊕ x0x1x6x9x11 ⊕ x0x1x6x10x11 ⊕ x0x1x6

⊕x0x2x3x5 ⊕ x0x2x4x7 ⊕ x0x2x4x8x9 ⊕ x0x2x4x8x10 ⊕ x0x2x4x9x11

⊕x0x2x4x10x11 ⊕ x0x2x5x6 ⊕ x0x2x5 ⊕ x0x2x6 ⊕ x0x2x7

⊕x0x2x8x9 ⊕ x0x2x8x10 ⊕ x0x2x9x11 ⊕ x0x2x10x11 ⊕ x0x3x4x5

⊕x0x3x4x7 ⊕ x0x3x4x8x9 ⊕ x0x3x4x8x10 ⊕ x0x3x4x9x11 ⊕ x0x3x4x10x11

⊕x0x3x4 ⊕ x0x3x5x7 ⊕ x0x3x5x8x9 ⊕ x0x3x5x8x10 ⊕ x0x3x5x9x11

⊕x0x3x5x10x11 ⊕ x0x3x6x7 ⊕ x0x3x6x8x9 ⊕ x0x3x6x8x10 ⊕ x0x3x6x9x11

⊕x0x3x6x10x11 ⊕ x0x4x5x7 ⊕ x0x4x5x8x9 ⊕ x0x4x5x8x10 ⊕ x0x4x5x9x11 ⊕ x0x4x5x10x11

⊕x0x4x6x7 ⊕ x0x4x6x8x9 ⊕ x0x4x6x8x10 ⊕ x0x4x6x9x11 ⊕ x0x4x6x10x11

⊕x0x4x6 ⊕ x0x4x7 ⊕ x0x4x8x9 ⊕ x0x4x8x10 ⊕ x0x4x9x11

⊕x0x4x10x11 ⊕ x0x5x7 ⊕ x0x5x8x9 ⊕ x0x5x8x10 ⊕ x0x5x9x11

⊕x0x5x10x11 ⊕ x0x5 ⊕ x0x6x7 ⊕ x0x6x8x9 ⊕ x0x6x8x10

⊕x0x6x9x11 ⊕ x0x6x10x11 ⊕ x0x7 ⊕ x0x8x9 ⊕ x0x8x10

⊕x0x9x11 ⊕ x0x10x11 ⊕ x1x2x3x4 ⊕ x1x2x3x7 ⊕
x1x2x3x8x9 ⊕ x1x2x3x8x10 ⊕ x1x2x3x9x11 ⊕ x1x2x3x10x11 ⊕ x1x2x4x5 ⊕ x1x2x4x6

⊕x1x2x4 ⊕ x1x2x5x6 ⊕ x1x2x5x7 ⊕ x1x2x5x8x9 ⊕ x1x2x5x8x10

⊕x1x2x5x9x11 ⊕ x1x2x5x10x11 ⊕ x1x2x5 ⊕ x1x2x7 ⊕ x1x2x8x9

⊕x1x2x8x10 ⊕ x1x2x9x11 ⊕ x1x2x10x11 ⊕ x1x3x4x5 ⊕ x1x3x4x6

⊕x1x3x4x7 ⊕ x1x3x4x8x9 ⊕ x1x3x4x8x10 ⊕ x1x3x4x9x11 ⊕ x1x3x4x10x11

⊕x1x3x5 ⊕ x1x3x6x7 ⊕ x1x3x6x8x9 ⊕ x1x3x6x8x10 ⊕ x1x3x6x9x11
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⊕x1x3x6x10x11 ⊕ x1x3x6 ⊕ x1x3x7 ⊕ x1x3x8x9 ⊕ x1x3x8x10

⊕x1x3x9x11 ⊕ x1x3x10x11 ⊕ x1x4x5x6 ⊕ x1x4x5x7 ⊕ x1x4x5x8x9

⊕x1x4x5x8x10 ⊕ x1x4x5x9x11 ⊕ x1x4x5x10x11 ⊕ x1x5x6 ⊕ x1x6 ⊕ x1x7 ⊕
x1x8x9 ⊕ x1x8x10 ⊕ x1x9x11 ⊕ x1x10x11 ⊕ x2x3x4x5 ⊕ x2x3x4x6 ⊕ x2x3x5x6

⊕x2x3x6x7 ⊕ x2x3x6x8x9 ⊕ x2x3x6x8x10 ⊕ x2x3x6x9x11 ⊕ x2x3x6x10x11

⊕x2x3x6 ⊕ x2x3x7 ⊕ x2x3x8x9 ⊕ x2x3x8x10 ⊕ x2x3x9x11

⊕x2x3x10x11 ⊕ x2x4x5x6 ⊕ x2x4x6x7 ⊕ x2x4x6x8x9 ⊕ x2x4x6x8x10

⊕x2x4x6x9x11 ⊕ x2x4x6x10x11 ⊕ x2x4x6 ⊕ x2x4 ⊕ x2x5x6x7

⊕x2x5x6x8x9 ⊕ x2x5x6x8x10 ⊕ x2x5x6x9x11 ⊕ x2x5x6x10x11 ⊕ x2x5x7

⊕x2x5x8x9 ⊕ x2x5x8x10 ⊕ x2x5x9x11 ⊕ x2x5x10x11 ⊕ x2x7 ⊕ x2x8x9

⊕x2x8x10 ⊕ x2x9x11 ⊕ x2x10x11 ⊕ x3x4x5x7 ⊕ x3x4x5x8x9

⊕x3x4x5x8x10 ⊕ x3x4x5x9x11 ⊕ x3x4x5x10x11 ⊕ x3x4x6 ⊕ x3x5x6x7

⊕x3x5x6x8x9 ⊕ x3x5x6x8x10 ⊕ x3x5x6x9x11 ⊕ x3x5x6x10x11 ⊕ x3x5x6

⊕x3x5 ⊕ x3x6x7 ⊕ x3x6x8x9 ⊕ x3x6x8x10 ⊕ x3x6x9

x11 ⊕ x3x6x10x11 ⊕ x3x6 ⊕ x8x9 ⊕ x10x11 (23)

f(x0, . . . , x11) = x0x1x2x3x8 ⊕ x0x1x2x3x9 ⊕ x0x1x2x4x8

⊕x0x1x2x4x9 ⊕ x0x1x2x5x8 ⊕ x0x1x2x5x9

⊕x0x1x2x5 ⊕ x0x1x2x6x8 ⊕ x0x1x2x6x9 ⊕ x0x1x2x6 ⊕ x0x1x2x7x8 ⊕ x0x1x2x7x9

⊕x0x1x2x7 ⊕ x0x1x2x8 ⊕ x0x1x2x9 ⊕ x0x1x2 ⊕ x0x1x3x6x8

⊕x0x1x3x6x9 ⊕ x0x1x3x6 ⊕ x0x1x3x8 ⊕ x0x1x3x9 ⊕ x0x1x4x5

⊕x0x1x4x6x8 ⊕ x0x1x4x6x9 ⊕ x0x1x4x6 ⊕ x0x1x4x7 ⊕ x0x1x4x8

⊕x0x1x4x9 ⊕ x0x1x4 ⊕ x0x1x5x6x8 ⊕ x0x1x5x6x9 ⊕ x0x1x5x6

⊕x0x1x5x8 ⊕ x0x1x5x9 ⊕ x0x1x6x7x8 ⊕ x0x1x6x7x9 ⊕ x0x1x6x7

⊕x0x1x6x8 ⊕ x0x1x6x9 ⊕ x0x1x6 ⊕ x0x1x7x8 ⊕ x0x1x7x9 ⊕ x0x1x7

⊕x0x1x8 ⊕ x0x1x9 ⊕ x0x2x3x4x8 ⊕ x0x2x3x4x9 ⊕ x0x2x3x5

⊕x0x2x3x6x8 ⊕ x0x2x3x6x9 ⊕ x0x2x3x6 ⊕ x0x2x3x7 ⊕ x0x2x3x8

⊕x0x2x3x9 ⊕ x0x2x3 ⊕ x0x2x4x5x8 ⊕ x0x2x4x5x9 ⊕ x0x2x4x7x8

⊕x0x2x4x7x9 ⊕ x0x2x4x8 ⊕ x0x2x4x9 ⊕ x0x2x4 ⊕ x0x2x5x6x8

⊕x0x2x5x6x9 ⊕ x0x2x5x6 ⊕ x0x2x5x7 ⊕ x0x2x5x8 ⊕ x0x2x5x9

⊕x0x2x6x7x8 ⊕ x0x2x6x7x9 ⊕ x0x2x6x7 ⊕ x0x2x6x8 ⊕ x0x2x6x9

⊕x0x2x6 ⊕ x0x2x7x8 ⊕ x0x2x7x9 ⊕ x0x2x8 ⊕ x0x2x9

⊕x0x2 ⊕ x0x3x4x6x8 ⊕ x0x3x4x6x9 ⊕ x0x3x4x6 ⊕ x0x3x4x7

⊕x0x3x4x8 ⊕ x0x3x4x9 ⊕ x0x3x6x8 ⊕ x0x3x6x9 ⊕ x0x3x7

⊕x0x3x8 ⊕ x0x3x9 ⊕ x0x3 ⊕ x0x4x5x6x8 ⊕ x0x4x5x6x9

⊕x0x4x5x6 ⊕ x0x4x5x8 ⊕ x0x4x5x9 ⊕ x0x4x6x7x8 ⊕ x0x4x6x7x9

⊕x0x4x6x7 ⊕ x0x4x6x8 ⊕ x0x4x6x9 ⊕ x0x4x7x8 ⊕ x0x4x7x9

⊕x0x4x7 ⊕ x0x4x8 ⊕ x0x4x9 ⊕ x0x4 ⊕ x0x5x6x8

⊕x0x5x6x9 ⊕ x0x5x8 ⊕ x0x5x9 ⊕ x0x5 ⊕ x0x6x7x8

⊕x0x6x7x9 ⊕ x0x6x8 ⊕ x0x6x9 ⊕ x0x6 ⊕ x0x7x8

⊕x0x7x9 ⊕ x0x7 ⊕ x0x8 ⊕ x0x9 ⊕ x1x2x3x4

⊕x1x2x3x5x8 ⊕ x1x2x3x5x9 ⊕ x1x2x3x5 ⊕ x1x2x3x6x8 ⊕ x1x2x3x6x9
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⊕x1x2x3x6 ⊕ x1x2x3x8 ⊕ x1x2x3x9 ⊕ x1x2x4x5x8 ⊕ x1x2x4x5x9

⊕x1x2x4x6x8 ⊕ x1x2x4x6x9 ⊕ x1x2x4x6 ⊕ x1x2x4x7 ⊕ x1x2x4x8

⊕x1x2x4x9 ⊕ x1x2x5x6 ⊕ x1x2x5x7x8 ⊕ x1x2x5x7x9 ⊕ x1x2x5x7

⊕x1x2x5x8 ⊕ x1x2x5x9 ⊕ x1x2x5 ⊕ x1x2x6x7x8 ⊕ x1x2x6x7x9

⊕x1x2x6x8 ⊕ x1x2x6x9 ⊕ x1x2x6 ⊕ x1x2x7x8 ⊕ x1x2x7x9

⊕x1x2x7 ⊕ x1x2x8 ⊕ x1x2x9 ⊕ x1x2 ⊕ x1x3x4x5

⊕x1x3x4x6 ⊕ x1x3x4x7 ⊕ x1x3x5x6x8 ⊕ x1x3x5x6x9 ⊕ x1x3x5x6

⊕x1x3x5x8 ⊕ x1x3x5x9 ⊕ x1x3x6x8 ⊕ x1x3x6x9 ⊕ x1x3x7 ⊕ x1x3x8

⊕x1x3x9 ⊕ x1x4x5x6x8 ⊕ x1x4x5x6x9 ⊕ x1x4x5x6 ⊕ x1x4x5x8 ⊕ x1x4x5x9

⊕x1x4x6x8 ⊕ x1x4x6x9 ⊕ x1x4x7 ⊕ x1x4x8 ⊕ x1x4x9

⊕x1x5x6x7x8 ⊕ x1x5x6x7x9 ⊕ x1x5x6x7 ⊕ x1x5x6x8 ⊕ x1x5x6x9

⊕x1x5x7x8 ⊕ x1x5x7x9 ⊕ x1x5x8 ⊕ x1x5x9 ⊕ x1x5

⊕x1x6x7x8 ⊕ x1x6x7x9 ⊕ x1x6x7 ⊕ x1x6x8 ⊕ x1x6x9

⊕x1x6 ⊕ x1x7x8 ⊕ x1x7x9 ⊕ x1x8 ⊕ x1x9

⊕x2x3x4x5x8 ⊕ x2x3x4x5x9 ⊕ x2x3x4x6x8 ⊕ x2x3x4x6x9 ⊕ x2x3x4x6 ⊕ x2x3x4x8

⊕x2x3x4x9 ⊕ x2x3x5x6x8 ⊕ x2x3x5x6x9 ⊕ x2x3x5x6 ⊕ x2x3x5x7

⊕x2x3x5x8 ⊕ x2x3x5x9 ⊕ x2x3x5 ⊕ x2x3x6x7 ⊕ x2x3x6x8

⊕x2x3x6x9 ⊕ x2x3x6 ⊕ x2x3x8 ⊕ x2x3x9 ⊕ x2x3 ⊕ x2x4x5x6x8

⊕x2x4x5x6x9 ⊕ x2x4x5x7x8 ⊕ x2x4x5x7x9 ⊕ x2x4x5x7 ⊕ x2x4x5x8

⊕x2x4x5x9 ⊕ x2x4x5 ⊕ x2x4x6x7x8 ⊕ x2x4x6x7x9 ⊕ x2x4x6x7

⊕x2x4x6x8 ⊕ x2x4x6x9 ⊕ x2x4x7x8 ⊕ x2x4x7x9 ⊕ x2x4x8

⊕x2x4x9 ⊕ x2x5x6x7x8 ⊕ x2x5x6x7x9 ⊕ x2x5x6x7 ⊕ x2x5x6x8 ⊕ x2x5x6x9

⊕x2x5x6 ⊕ x2x5x7x8 ⊕ x2x5x7x9 ⊕ x2x5x7 ⊕ x2x5x8

⊕x2x5x9 ⊕ x2x5 ⊕ x2x6x7x8 ⊕ x2x6x7x9 ⊕ x2x6x8

⊕x2x6x9 ⊕ x2x7x8 ⊕ x2x7x9 ⊕ x2x8 ⊕ x2x9

⊕x2 ⊕ x3x4x5x6x8 ⊕ x3x4x5x6x9 ⊕ x3x4x5x8 ⊕ x3x4x5x9

⊕x3x4x5 ⊕ x3x4x6x7 ⊕ x3x4x6x8 ⊕ x3x4x6x9 ⊕ x3x4x6

⊕x3x4x8 ⊕ x3x4x9 ⊕ x3x5x6x8 ⊕ x3x5x6x9 ⊕ x3x5x7

⊕x3x5x8 ⊕ x3x5x9 ⊕ x3x6x8 ⊕ x3x6x9 ⊕ x3x7

⊕x3x8 ⊕ x3x9 ⊕ x4x5x6x7x8 ⊕ x4x5x6x7x9 ⊕ x4x5x6x8

⊕x4x5x6x9 ⊕ x4x5x7x8 ⊕ x4x5x7x9 ⊕ x4x5x8 ⊕ x4x5x9

⊕x4x5 ⊕ x4x6x7x8 ⊕ x4x6x7x9 ⊕ x4x6x7 ⊕ x4x6x8

⊕x4x6x9 ⊕ x4x6 ⊕ x4x7x8 ⊕ x4x7x9 ⊕ x4x8

⊕x4x9 ⊕ x4 ⊕ x5x6x7x8 ⊕ x5x6x7x9 ⊕ x5x6x7 ⊕ x5x6x8

⊕x5x6x9 ⊕ x5x7x8 ⊕ x5x7x9 ⊕ x5x7 ⊕ x5x8

⊕x5x9 ⊕ x5 ⊕ x6x7x8 ⊕ x6x7x9 ⊕ x6x7

⊕x6x8 ⊕ x6x9 ⊕ x6 ⊕ x7x8 ⊕ x7x9 ⊕ x8x11 ⊕ x8 ⊕ x9x10 ⊕ x9 ⊕ 1 (24)
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15. Hodžić S., Pasalic E., Wei Y., Zhang F.: Designing plateaued Boolean functions in spectral domain and
their classification. IEEE Trans. Inf. Theory 65(9), 5865–5879 (2019).
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