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Abstract
Up to a new invariantμ(b), the complete b-symbol weight distribution of a particular kind of
two-weight irreducible cyclic codes, was recently obtained by Zhu et al. (Des Codes Cryptogr
90(5):1113–1125, 2022). The purpose of this paper is to simplify and generalize the results
of Zhu et al., and obtain the b-symbol weight distributions of all one-weight and two-weight
semiprimitive irreducible cyclic codes.
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1 Introduction

Let IFq be the finite fieldwith q elements. An [n, l] linear code,C , over IFq is an l-dimensional
subspace of IFnq (see for example [4, Section 1.4]). In this context, the vectors of C are called
codewords. Let Ai be the number of codewords with Hamming weight i in C (recall that
the Hamming weight of a codeword c is the number of nonzero coordinates in c). Then,
the sequence A0, A1, . . ., An is called the Hamming weight distribution of C , and the
polynomial A0 + A1T + . . . + AnT n is called the Hamming weight enumerator of C . An
N -weight code is a code such that the cardinality of the set of nonzero weights is N . That is,
N = |{i : Ai �= 0, i = 1, 2, 3, . . . , n}|.

A linear code C of length n is cyclic if (c0, c1, . . . , cn−1) ∈ C implies (cn−1, c0, c1,
. . . , cn−2) ∈ C . Cyclic codes have wide applications in storage and communication sys-
tems because, unlike encoding and decoding algorithms for linear codes, encoding/decoding
algorithms for cyclic codes can be implemented easily and efficiently by employing shift
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registers with feedback connections (see for example [6, p. 209]). As usual in cyclic codes,
we always assume that the length n of any cyclic code is relatively prime to q .

By identifying any vector (c0, c1, . . . , cn−1) ∈ IFnq with the polynomial c0 + c1x + · · · +
cn−1xn−1 ∈ IFq [x], it follows that any linear code C of length n over IFq corresponds to a
subset of the residue class ring IFq [x]/〈xn − 1〉. Moreover, it is well known that the linear
code C is cyclic if and only if the corresponding subset is an ideal of IFq [x]/〈xn − 1〉 (see
for example [5, Theorem 9.36]).

Note that every ideal of IFq [x]/〈xn − 1〉 is principal. Thus, if C is a cyclic code of length
n over IFq , then C = 〈g(x)〉, where g(x) is a monic polynomial, such that g(x) | (xn − 1).
This polynomial is unique, and it is called the generator polynomial of C ( [6, Theorem 1, p.
190]). On the other hand, the polynomial h(x) = (xn − 1)/g(x) is referred to as the parity
check polynomial of C . A cyclic code over IFq is called irreducible (reducible) if its parity
check polynomial is irreducible (reducible) over IFq .

Denote by wH (·) the usual Hamming weight function. For 1 ≤ b < n, let the Boolean
function Z̄ : IFbq → {0, 1} be defined by Z̄(v) = 0 iff v is the zero vector in IFbq . The b-symbol
Hamming weight, wb(x), of x = (x0, · · · , xn−1) ∈ IFnq is defined as

wb(x) :=wH (Z̄(x0, . . . , xb−1), Z̄(x1, . . . , xb), · · · , Z̄(xn−1, . . . , xb+n−2 (mod n))) .

When b = 1, w1(x) is exactly the Hamming weight of x, that is w1(x) = wH (x). For any
x, y ∈ IFnq , we define the b-symbol distance (b-distance for short) between x and y, db(x, y),
as db(x, y) := wb(x − y), and for a code C (linear or not) over IFq of length n, the b-
symbol minimum Hamming distance, db(C ), of C is defined as db(C ) := min db(x, y), with
x, y ∈ C and x �= y. In this context we will say that C is a b-symbol code with parameters
(n, M, db(C ))q , where M = |C |. Let A(b)

i denote the number of codewords with b-symbol
Hamming weight i in C . The b-symbol Hamming weight enumerator of C is defined by

1 + A(b)
1 T + A(b)

2 T 2 + · · · + A(b)
n T n .

Note that if b = 1, then the b-symbol Hamming weight enumerator of C is the ordinary
Hamming weight enumerator of C . Some contributions to the b-symbol Hamming weight
enumerator of a code can be found in [3, 9, 11, 12] and the references therein.

Up to a new invariantμ(b), the complete b-symbol weight distribution of some irreducible
cyclic codes was recently obtained in [12]. The irreducible cyclic codes considered therein,
belong to a particular kind of one-weight and two-weight irreducible cyclic codes that were
recently characterized in terms of their lengths ([10]). Thus, the purpose of this paper is to
present a generalization for the invariant μ(b), which will allow us to obtain the b-symbol
Hamming weight distributions of all one-weight and two-weight irreducible cyclic codes,
excluding only the exceptional two-weight irreducible cyclic codes studied in [8].

This work is organized as follows: In Sect. 2, we fix some notation and recall some
definitions and some known results to be used in subsequent sections. Section3 is devoted
to presenting preliminary results. Particularly, in this section, we give an alternative proof
of an already known result which determines the weight distributions of all one-weight and
two-weight semiprimitive irreducible cyclic codes. In Sect. 4, we use such alternative proof,
in order to determine the b-symbol weight distributions of all one-weight and two-weight
semiprimitive irreducible cyclic codes.
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2 Notation, definitions and known results

Unless otherwise specified, throughout this work we will use the following:
Notation. For integers v and w, with gcd(v,w) = 1, Ordv(w) will denote the multiplicative
order of w modulo v. By using p, t , q , r , and Δ, we will denote positive integers such
that p is a prime number, q = pt and Δ = qr−1

q−1 . From now on, γ will denote a fixed
primitive element of IFqr . Let u be an integer such that u|(qr − 1). For i = 0, 1, . . . , u − 1,

we define C(u,qr )
i := γ i 〈γ u〉, where 〈γ u〉 denotes the subgroup of IF∗

qr generated by γ u . The

cosets C(u,qr )
i are called the cyclotomic classes of order u in IFqr . For an integer u, such that

gcd(p, u) = 1, p is said to be semiprimitive modulo u if there exists a positive integer d such
that u|(pd + 1). Additionally, we will denote by “TrIFqr /IFq " the trace mapping from IFqr to
IFq .
Main assumption. From now on, we are going to use n and N as integers in such a way that
nN = qr − 1, with the important assumption that r = Ordn(q). Under these circumstances,
observe that if hN (x) ∈ IFq [x] is the minimal polynomial of γ −N (see for example [6, p.
99]), then, due to Delsarte’s Theorem [1], hN (x) is parity-check polynomial of an irreducible
cyclic code of length n and dimension r over IFq .

The following gives an explicit description of an irreducible cyclic code of length n and
dimension r over IFq .

Definition 1 Let q , r , n, and N be as before. Then the set

C := {(TrIFqr /IFq (aγ Ni ))n−1
i=0 | a ∈ IFqr },

is called an irreducible cyclic code of length n and dimension r over IFq .

An important kind of irreducible cyclic codes are the so-called semiprimitive irreducible
cyclic codes:

Definition 2 [10, Definition 4] With our current notation and main assumption, fix u =
gcd(Δ, N ). Then, any [n, r ] irreducible cyclic code over IFq is semiprimitive if u ≥ 2 and
the prime p is semiprimitive modulo u.

Apart from a few exceptional codes, it is well known that all two-weight irreducible cyclic
codes are semiprimitive. In fact, it is conjectured in [8] that the number of these exceptional
codes is eleven.

The canonical additive character of IFq is defined as follows:

χ(x) := e2π
√−1Tr(x)/p for all x ∈ IFq

where “Tr" denotes the trace mapping from IFq to the prime field IFp . Let a ∈ IFq . The
orthogonality relation for the canonical additive character χ of IFq is given by (see for
example [5, Chapter 5]):

∑

x∈IFq
χ(ax) =

⎧
⎨

⎩

q if a = 0,

0 otherwise.

This property plays an important role in numerous applications of finite fields. Among them,
this property is useful for determining the Hamming weight of a given vector over a finite
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field; for example if V = (a0, a1, . . . , an−1) ∈ IFnq , then

wH (V ) = n − 1

q

n−1∑

i=0

∑

y∈IFq
χ(yai ). (1)

Let χ ′ be the canonical additive character of IFqr and let u ≥ 1 be an integer such that

u|(qr − 1). For i = 0, 1, . . . , u − 1, the i-th Gaussian period, η(u,qr )
i , of order u for IFqr is

defined to be

η
(u,qr )
i :=

∑

x∈C(u,qr )
i

χ ′(x).

Suppose that a ∈ C(u,qr )
i . Since

∑
x∈IFqr χ ′(axu) = uη

(u,qr )
i + 1 and η

(1,qr )
0 + 1 = 0, the

following result is a direct consequence of Theorem 1 in [7]:

Theorem 1 With our notation suppose that r t = 2sd and u|(pd + 1), for positive integers s,
d and u. Then

uη
(u,qr )
i + 1

qr/2
=

⎧
⎨

⎩

(−1)s−1(u − 1) if i ≡ δ (mod u) ,

(−1)s if i �≡ δ (mod u) ,

where the integer δ is defined in terms of the following two cases:

δ :=

⎧
⎪⎨

⎪⎩

0 if u = 1; or p = 2; or p > 2 and 2|s; or p > 2, 2 � s, and 2| pd+1
u ,

u
2 if p > 2, 2 � s and 2 � pd+1

u .

Remark 1 As shown below, by means of the previous theorem, it is possible to determine,
in a single result, the Hamming weight enumerator of all one-weight and semiprimitive
two-weight irreducible cyclic codes.

Under certain circumstances, and for a fixed coset C(N ,qr )
i , it is necessary to consider the

set of products of the form xy, where x ∈ C(N ,qr )
i and y ∈ IF∗

q . The following result goes in
this direction:

Lemma 1 [2, Lemma 5] Let N be a positive divisor of qr − 1 and let i be any integer with
0 ≤ i < N. Fix u = gcd(Δ, N ). We have the following multiset equality:

{
xy : x ∈ C(N ,qr )

i , y ∈ IF∗
q

}
= (q − 1)u

N
∗ C(u,qr )

i ,

where (q−1)u
N ∗ C(u,qr )

i denotes the multiset in which each element in the set C(u,qr )
i appears

in the multiset with multiplicity (q−1)u
N .

The following definitions are inspired by and similar to those of [12].

Definition 3 Let b be an integer, with 1 ≤ b ≤ r . Let P(b) be the subset of cardinality
(qb − 1)/(q − 1) in IF∗

qr defined as

P(b) :=
b−1⋃

j=1

{γ ( j−1)N + x1γ
j N + · · · + xb− jγ

(b−1)N : x1, . . . , x j ∈ IFq} ∪ {γ (b−1)N }.
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Remark 2 Note that P(1) = {1}.
Definition 4 Let b be as in Definition 3 and fix u = gcd(Δ, N ). For 0 ≤ i < u, we define
μ(i)(b) as

μ(i)(b) := |{x ∈ P(b) : x ∈ C(u,qr )
i }|.

Remark 3 Since C(2,qr )
0 = {x ∈ IF∗

qr : x is a square in IF∗
qr }, note that μ(i)(b) is indeed a

generalization of the invariantμ(b) in [12]. Furthermore, note thatμ(0)(1) = 1 andμ(i)(1) =
0, for 1 ≤ i < u.

The following important result from [12], is key in order to achieve our goals.

Lemma 2 [12, Lemma 4.3] Let C be as in Definition 1 and let c(a) ∈ C be a codeword.
Then, for any integer 1 ≤ b ≤ r ,

wb(c(a)) = 1

qb−1

∑

θ∈P(b)

wH (c(θa)).

Remark 4 The previous lemma is key for us because, although the condition gcd( q
r−1
q−1 , N ) =

2 is one of the main assumptions in [12], Lemma 4.3 is beyond such condition. However
it is important to observe that there is a small misprint in the proof of Lemma 4.3; more
specifically the equality

n − w1(c(a)) =
∑

x∈I

1

q

∑

y∈IFq
χ(yax),

should be

n − w1(c(a)) =
∑

x∈I

1

q

∑

y∈IFq
χ(yaxN ).

3 Preliminary results

In the light of Remark 3, the following is a generalization of [12, Lemma 2.1].

Lemma 3 Let b and μ(i)(b) be as in Definition 4. If b = r then, for any 0 ≤ i < u, we have

μ(i)(r) = 1

u
|P(b)| = Δ

u
.

Proof Clearly

IF∗
qr =

⊔

x∈P(b)

xIF∗
q ,

where � is a disjoint union. Now, since u|Δ and 〈γ Δ〉 = IF∗
q , x ∈ C(u,qr )

i if and only if each

element of xIF∗
q is also in C(u,qr )

i . This implies that

μ(i)(r)(q − 1) = qr − 1

u
,

which is the number of elements in C(u,qr )
i . This completes the proof. ��

123
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It is already known the Hamming weight enumerator of all one-weight and semiprimitive
two-weight irreducible cyclic codes over any finite field (see for example [8, 10]). By means
of the following theorem we recall such a result and give an alternative proof of it. As will
be clear later, this alternative proof will be important for fulfilling our goals.

Theorem 2 Let C be as in Definition 1. Fix u = gcd(Δ, N ). Assume that u = 1 or p is
semiprimitive modulo u. Let d be the smallest positive integer such that u|(pd + 1) and let
s = 1 if u = 1 and s = (r t)/(2d) if u > 1. Fix

WA = nqr/2−1

Δ
(qr/2 − (−1)s−1(u − 1)) and WB = nqr/2−1

Δ
(qr/2 − (−1)s).

Then, C is an [n, r ] irreducible cyclic code whose Hamming weight enumerator is

1 + qr − 1

u
TWA + (qr − 1)(u − 1)

u
TWB . (2)

Remark 5 Note thatTheorem2gives, in a single result, an explicit descriptionof theHamming
weight enumerators of all one-weight (u = 1) and two-weight (2 ≤ u < Δ) irreducible
cyclic codes, excluding only the exceptional two-weight irreducible cyclic codes studied
in [8]. Therefore observe that the two-weight irreducible cyclic codes considered in [12]
(u = gcd(Δ, N ) = 2) belong also to Theorem 2.

Proof First note that if u > 1, then there must exist an integer s such that r t = 2sd .
For a ∈ IF∗

qr , let c(a) = (TrIFqr /IFq (aγ Ni ))n−1
i=0 ∈ C . Let χ and χ ′ be the canonical

additive characters of IFq and IFqr , respectively. Thus, by the orthogonality relation for the
character χ (see (1)) the Hamming weight of the codeword c(a), wH (c(a)), is

wH (c(a)) = n − 1

q

n−1∑

i=0

∑

y∈IFq
χ(yTrIFqr /IFq (aγ Ni ))

= n − n

q
− 1

q

∑

y∈IF∗
q

∑

x∈C(N ,qr )
0

χ ′(yax)

= n − n

q
− (q − 1)u

qN

∑

z∈C(u,qr )
0

χ ′(az)

where the last equality holds by Lemma 1. Now, suppose that a ∈ C(u,qr )
i for some 0 ≤ i < u.

Thus

wH (c(a)) = n − n

q
− (q − 1)

qN
uη

(u,qr )
i

= n

Δq
(qr − 1) − n

Δq
uη

(u,qr )
i

= nqr−1

Δ
− n

Δq
(uη

(u,qr )
i + 1)

= nqr−1

Δ
− nqr/2−1

Δ

(uη
(u,qr )
i + 1)

qr/2

= nqr/2−1

Δ
(qr/2 − uη

(u,qr )
i + 1

qr/2
).
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Let δ be as in Theorem 1 and observe that i ≡ δ (mod u) iff a ∈ C(u,qr )
δ . Therefore, owing

to Theorem 1, we have

wH (c(a)) =

⎧
⎪⎨

⎪⎩

WA if a ∈ C(u,qr )
δ ,

WB if a ∈ IF∗
qr \ C(u,qr )

δ .

(3)

The result now follows from the fact that |C(u,qr )
δ | = qr−1

u and |IF∗
qr \C(u,qr )

δ | = (qr−1)(u−1)
u .

��

4 The b-symbol weight distribution of all one-weight and two-weight
semiprimitive irreducible cyclic codes

We are now in conditions to present our main results.

Theorem 3 Assume the same notation and assumptions as in Theorem 2. Let P(b), μ(i)(b),
and δ be as before. For 0 ≤ i < u and 1 ≤ b ≤ r , let

W (b)
i = (q − 1)qr/2−b

N

[|P(b)| (qr/2 − (−1)s
) + (−1)suμ((δ−i) (mod u))(b)

]
(4)

Then, the b-symbol Hamming weight enumerator of C is

A(T ) = 1 + qr − 1

u

u−1∑

i=0

TW (b)
i . (5)

Proof Let a ∈ IF∗
qr and let c(a) ∈ C . Let WA and WB be as in Theorem 2 and suppose that

a ∈ C(u,qr )
i , for some 0 ≤ i < u. Thus, from (3), wH (c(θa)) = WA iff θa ∈ C(u,qr )

δ iff

θ ∈ C(u,qr )
(δ−i)(mod u). But there are exactly μ((δ−i)(mod u))(b) elements θ in P(b) that satisfy the

condition θ ∈ C(u,qr )
(δ−i)(mod u). Therefore, owing to Lemma 2, wb(c(a)) = W (b)

i where

W (b)
i = 1

qb−1

[
μ((δ−i) (mod u))(b)WA + (|P(b)| − μ((δ−i) (mod u))(b)

)
WB

]
.

Hence, (4) follows by considering the explicit values of WA and WB in Theorem 2. Finally,
the b-symbol Hamming weight enumerator of C follows from (3) and from the fact that
|C(u,qr )

i | = qr−1
u , for any 0 ≤ i < u. ��

Note that the previous theorem is also valid for b = 1. In fact, in this case, the ordinary
Hamming weight enumerator in (2) is exactly the same as the 1-symbol Hamming weight
enumerator of (5) (take into considerationRemarks 2 and 3). Thereforewe see that Theorem3
not only simplifies and generalizes [12, Corollary 3.1] but also generalizes Theorem 2.

Example 1 The following are some examples of Theorem 3.

(a) Let (q, r , N , b) = (3, 4, 2, 3). Thus u = gcd(Δ, N ) = 2, s = 2, δ = 0, and |P(b)| =
q2+q+1 = 13. Sinceμ(0)(b) = 8 (see [12, Example 2.3]),μ(1)(b) = |P(b)|−μ(0)(b) =
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2220 G. Vega

5. Therefore, owing to Theorems 2 and 3, WA = 30, WB = 24, W (3)
0 = 40, W (3)

1 = 38,
andC is a [40, 4]3 irreducible cyclic codewhose ordinary and 3-symbolHammingweight
enumerators are 1 + 40T 24 + 40T 30 and 1 + 40T 38 + 40T 40, respectively.

(b) Let (q, r , N , b) = (2, 4, 3, 2). Thus u = gcd(Δ, N ) = 3, s = 2, δ = 0, and |P(b)| =
q + 1 = 3. We take IF16 = IF2(γ ) with γ 4 + γ + 1 = 0. Hence P(b) = {1 =
γ 0, γ 3, 1 + γ 3 = γ 14}. This means that μ(0)(b) = 2, μ(1)(b) = 0, and μ(2)(b) = 1.

Therefore, owing to Theorems 2 and 3, WA = 4, WB = 2, W (2)
0 = 5, W (2)

1 = 4,

W (2)
2 = 3, and C is a [5, 4]2 irreducible cyclic code whose ordinary and 2-symbol

Hammingweight enumerators are 1+10T 2+5T 4 and 1+5(T 3+T 4+T 5), respectively.
(c) Let (q, r , N , b) = (4, 3, 9, 2). Thus u = gcd(Δ, N ) = 3, s = 3, δ = 0, and |P(b)| =

q + 1 = 5. Let IF4 = IF2(α) with α2 + α + 1 = 0. We take IF64 = IF4(γ ) with
γ 3 + γ 2 + γ + α = 0. Hence P(b) = {1 = γ 0, γ 9, 1 + γ 9 = γ 27, 1 + αγ 9 =
γ 5, 1 + α2γ 9 = γ 40}. This means that μ(0)(b) = 3, μ(1)(b) = 1, and μ(2)(b) = 1.

Therefore, owing to Theorems 2 and 3,WA = 4,WB = 6,W (2)
0 = 6,W (2)

1 = W (2)
2 = 7,

and C is a [7, 3]4 irreducible cyclic code whose ordinary and 2-symbol Hamming weight
enumerators are 1 + 21T 4 + 42T 6 and 1 + 21T 6 + 42T 7, respectively.

(d) Let (q, r , N , b) = (5, 5, 4, 3). Thus u = gcd(Δ, N ) = 1 and |P(b)| = μ(0)(b) =
q2 + q + 1 = 31. Therefore, owing to Theorems 2 and 3, WA = 625, W (3)

0 = 775,
and C is a [781, 5]5 one-weight irreducible cyclic code whose ordinary and 3-symbol
Hamming weight enumerators are 1 + 3124T 625 and 1 + 3124T 775, respectively.

Remark 6 With the help of a C program, the previous numerical examples were corroborated.
Such C program is available via email upon request.

As Example 1-(d) has shown, it is quite easy to obtain the b-symbol Hamming weight
enumerator of a one-weight irreducible cyclic code (that is, when u = 1). The following
result shows it in the general case.

Theorem 4 Assume the same notation as in Theorem 3. If u = gcd(Δ, N ) = 1, then, for any
1 ≤ b ≤ r , the b-symbol Hamming weight enumerator of C is

A(T ) = 1 + (qr − 1)T
qr−qr−b

N .

Proof If u = 1, then μ(0)(b) = |P(b)| = qb−1
q−1 . Thus the result now follows from (4). ��

Remark 7 If C is an (n, M, db(C ))q b-symbol code, with b ≤ db(C ) ≤ n, then Ding et al.
[3] established the Singleton-type bound M ≤ qn−db(C )+b. Therefore, an (n, M, db(C ))q
b-symbol code C with M = qn−db(C )+b is called a maximum distance separable (MDS for
short) b-symbol code.

Similar to Theorem 3.3 in [12] we also have:

Theorem 5 Let C be as in Definition 1. Let a ∈ IF∗
qr and consider the codeword c(a) =

(TrIFqr /IFq (aγ Ni ))n−1
i=0 in C . Then

wr (c(a)) = n, (6)

and C is an MDS b-symbol code.
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Proof Suppose that a ∈ C(u,qr )
i for some 0 ≤ i < u. Thus, by the proof of Theorem 3,

wr (c(a)) = W (r)
i where

W (r)
i = (q − 1)qr/2−r

N

[|P(r)| (qr/2 − (−1)s
) + (−1)suμ((δ−i) (mod u))(r)

]

But, owing to Lemma 3, μ((δ−i) (mod u))(r) = Δ
u . On the other hand, |P(r)| = Δ = qr−1

q−1

and n = qr−1
N . Thus, (6) now follows. Finally, since db(C ) = n and |C | = qr , C is an MDS

b-symbol code by Remark 7. ��
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