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Abstract
We construct an efficient dynamic group signature (or more generally an accountable ring
signature) from isogeny and lattice assumptions. Our group signature is based on a sim-
ple generic construction that can be instantiated by cryptographically hard group actions
such as the CSIDH group action or an MLWE-based group action. The signature is of size
O(log N ), where N is the number of users in the group. Our idea builds on the recent efficient
OR-proof by Beullens, Katsumata, and Pintore (Asiacrypt’20), where we efficiently add a
proof of valid ciphertext to their OR-proof and further show that the resulting non-interactive
zero-knowledge proof system is online extractable. Our group signatures satisfy more ideal
security properties compared to previously known constructions, while simultaneously hav-
ing an attractive signature size. The signature size of our isogeny-based construction is an
order of magnitude smaller than all previously known post-quantum group signatures (e.g.,
6.6 KB for 64 members). In comparison, our lattice-based construction has a larger signature
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size (e.g., either 126 KB or 89 KB for 64 members depending on the satisfied security prop-
erty). However, since the O(·)-notation hides a very small constant factor, it remains small
even for very large group sizes, say 220.

Keywords Isogeny-based cryptography · Lattice-based cryptography · Linkable ring
signature · Post-quantum cryptography

Mathematics Subject Classification 11T71 · 11Y40 · 13P25 · 14H52 · 14K02 · 94A60 ·
94A62

1 About

An extended abstract of this work was published in EUROCRYPT 2022 [13]. This is a full
version of the paper. In more details, we provide a comparison of this work with two recent
concurrent and independent papers which propose isogeny-based group signatures; we prove
correctness and security of the proposed generic accountable ring signature �ARS in Fig. 1;

we describe in details the tight variant �
Tight
ARS in Fig. 2 and we prove its security; we prove

correctness and security of the traceable OR sigma protocol�base
� in Fig. 3; we detail howwe

incorporate three optimisations to the modification of�base
� which enjoys a negligibly-small

soundness error, and we prove its security; we give a full description of the base traceable OR

sigma protocol�baseTi
� for the “tight” relation RTight

sig in Fig. 6; we formally show that theNIZK
with labels �NIZK,lbl in Fig. 7 is zero-knowledge. In Sect. 8, the building blocks required for
our generic construction are instantiated via isogenies-by using the CSIDH group action—
and lattices. Finally, we recall how accountable ring signatures can be naturally viewed as
group signatures in the Appendix.

2 Introduction

Group signature schemes, introduced by Chaum and van Heyst [31], allow authorized mem-
bers of a group to individually sign on behalf of the group while the specific identity of
the signer remains anonymous. However, should the need arise, a special entity called the
group manager (or sometimes the tracing authority) can trace the signature to the signer, thus
holding the group members accountable for their signatures. Group signatures have been an
active area of academic research for the past three decades, and have also been gathering
practical attention due to the recent real-world deployment of variants of group signatures
such as directed anonymous attestation (DAA) [23] and enhanced privacy ID (EPID) [24].

Currently, there are versatile constructions of efficient group signatures from classical
assumptions, e.g., [6, 16, 17, 34, 39, 40, 55, 58, 71, 72]. In this work, when we argue the
efficiency of a group signature, we focus on one of the quintessential metrics: the signature
size. We require it to be smaller than c · log N bits, where N is the group size and c is
some explicit small polynomial in the security parameter. In their seminal work, Bellare,
Micciancio, and Warinschi [8] provided a generic construction of a group signature with
signature size O(1) from any signature scheme, public-key encryption scheme, and general
non-interactive zero-knowledge (NIZK) proof system. Unfortunately, this only provides an
asymptotic feasibility result, and thus one of themain focuses of subsequent works, including
ours, has been to construct a concretely efficient group signature.
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In contrast to the classical setting, constructing efficient group signatures from any post-
quantum assumptions has been elusive. Since the first lattice-based construction by Gordon,
Katz, and Vaikuntanathan [57], there has been a rich line of subsequent works on lattice-
based (and one code-based) group signatures, including but not limited to [49, 59, 65,
70, 74]. However, these results remained purely asymptotic. It was not until recently that
efficient lattice-based group signatures appeared [22, 38, 47, 48]. In [47], Esgin et al. report
a signature size of 12KB and 19KB for a group size of N = 26 and 210, respectively—
several orders of magnitude better than prior constructions.1 These rapid improvements in
efficiency for lattices originate in the recent progress of lattice-based NIZK proof systems
for useful languages [5, 21, 45, 46, 75, 76, 85], most of which rely heavily on the properties
of special structured lattices. Thus, it seems impossible to import similar techniques to other
post-quantum assumptions or to standard non-structured lattices. For instance, constructing
efficient group signatures from isogenies—one of the promising alternative post-quantum
tools to lattices—still seems out of reach using current techniques. This brings us to the main
question of this work:

Can we construct an efficient group signature secure from isogenies? Moreover, can
we have a generic construction that can be instantiated from versatile assumptions,
including those based on less structured lattices?

In addition, as we discuss in more detail later, we notice that all works regarding efficient
post-quantum group signatures [22, 38, 47, 48, 60] do not satisfy the ideal security properties
(which are by now considered standard) formalized by Bootle et al. [20]. Thus, we are also
interested in the following question:

Can we construct efficient post-quantum group signatures satisfying the ideal security
properties formalized by Bootle et al. [20]?

To address these questions, in this work we focus on accountable ring signatures [84]. An
accountable ring signature offers the flexibility of choosing the group of users when creat-
ing a signature (like a ring signature [82]), while also enforcing accountability by including
one of the openers in the group (like a group signature). Although research on accountable
ring signatures is still limited [19, 48, 62, 68, 84], we advocate that they are as relevant and
interesting as group and ring signatures. As shown by Bootle et al. [19], accountable ring
signatures imply group and ring signatures by naturally limiting or downgrading their func-
tionality. Thus, an efficient post-quantum solution to an accountable ring signature implies
solutions for both secure (dynamic) group signatures [9] and ring signatures, making it an
attractive target to focus on.

Finally, as an independent interest,we are also concernedwith tightly-secure constructions.
To the best of our knowledge, all prior efficient post-quantum secure group and ring signatures
are in the random oracle model and have a very loose reduction loss. In typical security
proofs, given an adversary with advantage ε that breaks some security property of the group
signature, we can only construct an adversary with advantage at most (N 2Q)−1 · ε2 against
the underlying hard problem, where Q is the number of random oracle queries and N is
the number of users in the system. If we aim for 128-bit security (i.e., ε = 2−128), and set
for example (N , Q) = (210, 250), then we need at least 326-bits of security for the hard
problem. When aiming for a provably-secure construction, the parameters must be set much
larger to compensate for this significant reduction loss, which then leads to a less efficient

1 We note that their signature size grows by logt N for a small constant t > 1 rather than simply by log N .
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scheme. This is especially unattractive in the isogeny setting since only the smallest among
the CSIDH parameters [28] enjoys properties suitable to achieve concrete efficiency [15].

2.1 Our contribution

In this work, we construct an efficient accountable ring signature based on isogenies and
lattices. This in particular implies the first efficient isogeny-based group signature. Our
generic construction departs from known general feasibility results such as [8] and builds on
primitives that can be efficiently instantiated. Unlike previous efficient post-quantum group
signatures, our scheme satisfies all the desired properties provided byBootle et al. [20] includ-
ing dynamicity and fully (CCA) anonymity: the former states that the group members can be
added and revoked dynamically and are not fixed on setup; the later states that anonymity
holds even in the presence of an adversary that sees the signing keys of all honest users,
who is additionally granted access to an opening oracle. We also satisfy the ideal variant of
non-frameability and traceability [20], where the former is captured by unforgeability in the
context of accountable ring signature. Roughly, this ensures that arbitrary collusion among
members, even with the help of a corrupted group manager, cannot falsely open a signature
to an honest user.

Our accountable ring signature schemes are realized in three steps. We first provide a
generic construction of an accountable ring signature from simple cryptographic primitives
such as a public-key encryption (PKE) scheme and an accompanying NIZK for a specific
language. We then show an efficient instantiation of these primitives based on a group action
that satisfies certain cryptographic properties. Finally, we instantiate the group action by
either the CSIDH group action or the MLWE-based group action. Our generic construction
builds on the recent efficient OR-proofs for isogeny and lattice-based hard languages by
Beullens, Katsumata, and Pintore [14], which were used to construct ring signatures. The
most technical part of this work is to efficiently add a proof of valid ciphertext to their OR-
proof and proving full anonymity, which done naively would incur an exponential security
loss. At the core of our construction is an efficient online-extractable OR-proof that allows
to also prove validity of a ciphertext.

Moreover, thanks to the online extractability, our construction achieves a much tighter
reduction loss compared to prior accountable ring signatures (and also group and ring signa-
tures). It suffices to assume that the underlying post-quantum hard problem cannot be solved
with advantage more than N−1 · ε rather than (N 2Q)−1 · ε2 as in prior works whose proofs
rely on the forking lemma [50, 81]. Working with the above example, we only lose 10-bits
rather than 198-bits of security. We further show how to remove N−1 using the Katz-Wang
technique [61] along with some techniques unique to our NIZK. As a side product, we obtain
a tightly-secure and efficient isogeny and lattice-based ring signatures, improving upon those
by Beullens et al. [14] which have a loose security reduction.
Comparison to prior work. To the best of our knowledge, Esgin et al. [47, 48] are the only
other work that (implicitly) provide an efficient post-quantum accountable ring signature.2

Since the efficiency of an accountable ring signature is equivalent to those of the group
signature obtained through limiting the functionality of the accountable ring signature, we
chose to compare the efficiency of our schemewith other state-of-the-art post-quantum group
signatures. Table 1 includes a comparison of the signature size and the different notions of
security it satisfies. The first two schemes satisfy all the desired security properties of a

2 To be precise, they consider a weaker variant of standard accountable ring signature where no Judge
algorithm is considered.
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Table 1 Comparison of the signature size (KB) of some concretely efficient post-quantum group signature
schemes. The first three rows are our scheme

N Hardness Security Anonymity Manager
2 25 26 210 221 Assumption Level Account

Isogeny 3.6 6.0 6.6 9.0 15.5 CSIDH-512 ∗ CCA Yes

Lattice 124 126 126 129 134 MSIS/MLWE NIST 2 CCA Yes

Lattice 86 88 89 91 96 MSIS/MLWE NIST 2 CCA No

[47] / 12 / 19 / MSIS/MLWE NIST 2 CPA No

[60] / / 280 418 / LowMC NIST 5 selfless-CCA No

∗ 128 bits of classical security and 60 bits of quantum security [80]. Manager accountability states whether
the (possibly malicious) group manager is accountable when opening a signature to some user. Namely, it is
“Yes” when even a malicious group manager cannot falsely accuse an honest user of signing a signature that
it hasn’t signed

dynamic group signature formalized by Bootle et al. [20]. Our scheme is the only one to
achieve full CCA anonymity. Esgin et al. [47] achieves full CPA anonymity, where anonymity
is broken once an adversary is given access to an opening oracle; in practice, this means that
if a specific signature is once opened to some user, then any signature ever signed by that
particular userwill lose anonymity.Here, “full”means that the signing key of all the usersmay
be exposed to the adversary. In contrast, Katz, Kolesnikov, and Wang [60] satisfies selfless
CCA anonymity. While their scheme supports opening oracles, anonymity no longer holds if
the signing key used to sign the signature is exposed to the adversary. Moreover, our scheme
is the only one that also achieves the ideal variant of non-frameability and traceability [9, 20]
(illustrated in the “Manager Accountability” column). The two schemes [47, 60] assume the
group manager honestly executes the opening algorithm and that everyone trusts the output.
Put differently, a malicious group manager can frame any honest members in the group
by simply replacing the output of the opening algorithm. In contrast, our scheme remains
secure even against malicious group managers since the validity of the output of the opening
algorithm is verifiable. That is, even the group manager is held accountable in our group
signature.

Not only our group signatures satisfy more ideal security properties compared to previous
constructions, Table 1 shows that our signature size remains competitive. Our isogeny-based
group signature based onCSIDHprovides the smallest signature size among all post-quantum
group signatures, which is 0.6 log2(N ) + 3 KB. In contrast, our lattice signature is larger;
the scheme in the second (resp. third) row has signature size 0.5 log2(N )+ 123.5 KB (resp.
0.5 log2(N ) + 85.9 KB). It is smaller compared to [60], while larger compared to [47].
Compared to the two constructions, our signature size grows much slower with the group
size N (see also Footnote 1) and also satisfies stronger security. We thus leave it as an
interesting open problem to lower the constants in our construction.

2.2 Technical overview

An accountable ring signature is like a standard ring signature where the ring R also includes
an arbitrary opener public key opk of the signer’s choice when creating a signature σ . The
signature σ remains anonymous for anybody who does not know the corresponding opener
secret key osk, while the designated opener can use osk to trace the user who created σ . A
ring signature can be thought of as an accountable ring signature where opk = ⊥, while a
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group signature can be thought as an accountable ring signature where there is only a single
opener.
General approach. Our generic construction of an accountable ring signature follows the
well-known template of the encrypt-then-prove approach to construct a group signature [27].
The high-level idea is simple. The signer encrypts its verification key vk (or another unique
identifier) using the opener’s public key opk for a PKE scheme and provides a NIZK proof for
the following three facts: the ciphertext ct encrypts vk via opk; vk is included in the ring R;
and that it knows a secret key sk corresponding to vk. To trace the signer, the opener simply
decrypts ct to recover vk. Notice that theNIZK proof implicitly defines a verifiable encryption
scheme [25, 26] since it is proving that ct is a valid encryption for some message vk in R.
Below, although our construction can be based on any cryptographically-hard group action,
we mainly focus on isogenies for simplicity.

One of the difficulties in instantiating this template using isogeny-based cryptography is
that we do not have an efficient verifiable encryption scheme for an appropriate PKE scheme.
To achieve full anonymity, most of the efficient group signatures, e.g., [38, 39, 55, 58, 71, 72],
use an IND-CCA secure PKE as a building block and construct an efficient NIZK that proves
validity of the ciphertext. Full anonymity stipulates that an adversary cannot de-anonymize a
signature even if it is provided with an opening oracle, which traces the signatures submitted
by the adversary. Roughly, by using an IND-CCA secure PKE as a building block, the reduction
can simulate the opening oracle by using the decapsulation oracle provided by the IND-CCA
game, rather than the opener’s secret key. In the classical setting, constructing such an efficient
IND-CCA secure verifiable encryption scheme is possible using the Cramer-Shoup PKE [35]
that offers a rich algebraic structure. Unfortunately, in the isogeny setting, although we know
how to construct an IND-CCA secure PKE based on the Fujisaki-Okamoto transform [53],
it seems quite difficult to provide an accompanying verifiable encryption scheme as the
construction internally uses a hash function modeled as a random oracle. Another approach
is to rely on the weaker IND-CPA secure PKE but to use a stronger NIZK satisfying online-
extractability [52]. At a high level, the reduction can use the online-extractor to extract
the witness in the ciphertext ct instead of relying on the decapsulation oracle. 3 However,
it turns out that even this approach is still non-trivial since we do not have any efficient
verifiable encryption scheme for existing isogeny-based PKEs, let alone an accompanying
online-extractable NIZK. For instance, most isogeny-based IND-CPA secure PKEs are based
on the hashed version of ElGamal, and to the best of our knowledge, there are no efficient
verifiable encryption schemes for hashed ElGamal.
Verifiable encryption scheme for a limited class of PKE. In this work, we observe that in
the context of accountable ring signatures and group signatures, we do not require the full
decryption capability of a standard PKE. Observe that decryption is only used by the opener
and that it knows the ciphertext ct must be an encryption of one of the verification keys
included in the ring (or group)R. Therefore, given a ciphertext ct,weonly require amechanism
to check if ct encrypts a particular messageM, rather than being able to decrypt an arbitrary
unknown message. Specifically, the opener can simply run through all the verification keys
vk ∈ R to figure out which vk was encrypted in ct. This allows us to use a simple IND-CPA
secure PKE with limited decryption capability based on the CSIDH group action: Let E0 ∈
E��p(O, π) be a fixed and public elliptic curve. The public key is pk = (E0, E := s�E0),
where sk = s is sampled uniformly at random from the class group C�(O). To encrypt a
message M ∈ C�(O), we sample r ← C�(O) and set ct = (ct0 := r�E0, ct1 := M�(r�E)).

3 Note that extractability via rewinding is insufficient for full anonymity as it will cause an exponential
reduction loss when trying to extract the witness from adaptively chosen signatures [11].
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To check if ct decrypts to M′, we check whether ct1 is equal to M′�(sk�ct0). Note that in
general we cannot decrypt when M is unknown since we cannot cancel out sk�ct0 from ct1.
Now, observe that proving ct encrypts M ∈ C�(O) is easy since there is a simple sigma
protocol for the Diffie-Hellman-like statement (ct0, (−M)�ct1) = (r�E0, r�E), where r is
thewitness, e.g., [43]. Although this comes closer towhatwewant, this simple sigma protocol
is not yet sufficient since the prover must reveal themessageM to run it. Specifically, it proves
that ct is an encryption ofM, while what we want to prove is that ct is an encryption of some
M ∈ R. In the context of accountable ring signature and group signature, this amounts to the
signer being able to hide its verification key vk ∈ R.
Constructing NIZK for accountable ring signature Let us move forward to the intermediate
goal of constructing a (non-online-extractable) NIZK proof system for the following three
facts: the ciphertext ct encrypts vk via pk; vk is included in the ring R; and that the prover
knows a secret key sk corresponding to vk. Recently, Beullens, Katsumata, and Pintore [14]
proposed an efficient sigma protocol (and a non-online-extractable NIZK via the Fiat-Shamir
transform) for proving the last two facts, which in particular constitutes an efficient OR-proof.
We show how to glue the above “weak” verifiable encryption scheme with their OR-proof.

We first review a variant of the OR-sigma protocol in [14] with proof size O(N ), where
N is the size of the ring. Assume each user i ∈ [N ] in the ring holds vki = (E0, Ei :=
si�E0) ∈ E��p(O, π)2 and ski = si ∈ C�(O). To prove vkI ∈ R and that it knows skI , the
prover first sample s′ ← C�(O) and sets Ri = s′�Ei for i ∈ [N ]. It also samples randomness
randi and creates commitments (Ci = Com(Ri , randi ))i∈[N ], where this commitment is
simply instantiated by a random oracle. It finally samples a random permutation φ over [N ]
and sends a permuted tuple (Cφ(i) = Com(Ri , randi ))i∈[N ]. The verifier samples a random
bit b ∈ {0, 1}. If b = 0, the prover returns all the randomness (s′, (randi )i∈[N ], φ) used to
create the first message. The verifier then checks if the first message sent by the prover is
consistent with this randomness. Otherwise, if b = 1, the prover returns (I ′′, rand′′, s′′) :=
(φ(I ), randI , s′ + sI ). The verifier then checks if CI ′′ = Com(s′′�E0, rand

′′) holds. Notice
that if the prover is honest, then s′′�E0 = s′�EI as desired. It is easy to check it is honest-
verifier zero-knowledge. The transcript when b = 0 is independent of the witness, while
the transcript when b = 1 can be simulated if the commitment scheme is hiding. Moreover,
special soundness can be checked by noticing that given s′′ and s′, we can extract some
(i∗, s∗) such that (E0, Ei∗ = s∗�E0) ∈ R. A full-fledged OR-sigma protocol with proof
size O(N ) is then obtained by running this protocol λ-times in parallel, where λ denotes
the security parameter. [14] showed several simple optimization techniques to compress the
proof size from O(N ) to O(log N ), but we first explain our main idea below.

We add our “weakly decryptable” PKE to this OR-sigma protocol. Since our PKE only
handles messages in C�(O), the prover with vkI ∈ R encrypts the index I ∈ [N ] rather
than vkI , where we assume the verification keys in the ring R are ordered lexicographically.4

The statement now consists of the ring R and the ciphertext ct = (ct0 := r�E0, ct1 =
I�(r�E)), where (E0, E) is the opener’s public key opk. Recall the opener can decrypt
ct with knowledge of the ring R by brute-force searching for an i ∈ [N ] such that ct1 =
i�(osk�ct0). Now, to prove vkI is an entry in R and that it knows skI , the prover samples
s′ ← C�(O) and sets Ri = s′�Ei for i ∈ [N ] as before. It then further samples r ′ ←
C�(O) and prepares ct′i = (r ′�ct0, (−i)�(r ′�ct1)) for all i ∈ [N ]. Observe that ct′i is an
encryption of the message (I − i) using randomness (r ′ + r). Specifically, ct′I is of the form
((r ′ +r)�E0, (r ′ +r)�E), which admits a natural sigma protocol as explained above. Finally,

4 The choice of what to encrypt is rather arbitrary. The same idea works if for instance we hash vk into C�(O)

and view the digest as the message.
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the prover samples randomness randi and a random permutation φ over [N ], and sends the
randomly permuted commitments (Cφ(i) = Com(Ri‖ct′i , randi ))i∈[N ]. The verifier samples
a random bit b ∈ {0, 1}. If b = 0, then similarly to the above OR-sigma protocol, the prover
simply returns all the randomness and the verifier checks the consistency of the first message.
Otherwise, if b = 1, the prover returns (I ′′, rand′′, s′′, r ′′) := (φ(I ), randI , s′ + sI , r ′ + r).
The verifier checks if CI ′′ = Com(s′′�E0‖(r ′′�E0, r ′′�E), rand′′) holds. Correctness and
honest-verifier zero-knowledge holds essentially for the same reason as the above OR-sigma
protocol. More importantly, special soundness holds as well. Intuitively, since the opening
to b = 0 forces the cheating prover to commit to the proper (vki , i)-pair, a cheating prover
cannot encrypt an index I ′ and prove that it has skI corresponding to vkI for a different
I �= I ′.

To compile our sigma protocol into an NIZK, we apply the Fiat-Shamir transform. More-
over, we apply similar optimization techniques used in [14] to compress the proof size from
O(N ) to O(log N ). Roughly, the prover additionally uses a pseudorandom generator to gen-
erate the randomness (i.e., s′, r ′, φ, (randi )i∈[N ]). Then, in case b = 0, the prover needs to
reply only with the seed of size O(1). The prover also uses a Merkle tree to accumulate
(Cφ(i))i∈[N ] and sends the root value in the first message. It then only opens to the path nec-
essary for verification when b = 1. This has a positive side-effect that we no longer require a
permutation φ since the path hides the index if we use a slightly tweaked variant of the stan-
dard Merkle tree. Finally, we take advantage of the asymmetry in the prover’s response size
for b = 0 and b = 1, which are O(1) and O(log N ), respectively. Namely, we imbalance the
challenge space so that the prover opens to more 0 than 1, while still maintaining negligible
soundness error.
Adding online-extractability. To build an accountable ring signature or group signature, we
require the above NIZK to be (multi-proof) online-extractable. This is a strengthening of
standard proof of knowledge (PoK) that roughly states that the knowledge extractor, who
can see what the adversary queries to the random oracle, is able to directly extract witnesses
from the proofs output by the adversary. The OR-proof by [14], which our NIZK builds on,
was only shown to satisfy the standard PoK, which bases on a rewinding extractor.

One simple way to add online-extractability to our NIZK is to apply the Unruh trans-
form [83]. Namely, we can modify the prover to add two more commitments h0 =
Com(s′‖r ′, rand0) and h1 = Com(s′′‖r ′′, rand1) in the first message, where Com is instan-
tiated by the random oracle. Then, if b = 0 (resp. b = 1), the prover further opens to h0
(resp. h1). Recall that if the reduction obtains both (s′, r ′) and (s′′, r ′′), then it can invoke
the extractor provided by the underlying sigma protocol to extract some (i∗, s∗) such that
(E0, Ei∗ = s∗�E0) ∈ R. Therefore, for the cheating adversary to fool the reduction, it must
guess the bit b and create hb correctly while creating h1−b arbitrary. Intuitively, if we have
λ-repetition of the sigma protocol, then the cheating prover cannot possibly guess all the
challenge bits correctly. Therefore, there must be some challenge where it created h0 and h1
honestly. For that challenge bit, the reduction algorithm can then retrieve the corresponding
inputs (s′‖r ′, rand0) and (s′′‖r ′′, rand1) from simply observing the random oracle, and then,
run the extractor to obtain the witness.

This idea works but it comes with an extra two hashes per one execution of the binary-
challenge sigma protocol. Although it may sound insignificant in an asymptotic sense, these
hashes add up when we execute the sigma protocol many times, and it makes it difficult
to apply some of the optimization tricks. Concretely, when we apply this change to the
isogeny-based ring signature by Beullen et al. [14], the signature grows by roughly a factor of
2 to 3.
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In this work, we show that we can in fact prove online-extractability without making any
modification to the aforementioned NIZK. Our main observations are the following: if the
prover uses a seed to generate the randomness used in the first message via a random oracle,
then the online extractor can observe (s′, r ′, φ, (randi )i∈[N ]); and the prover must respond
to some execution of the binary-challenge sigma protocol where the challenge bit is 1. The
first implies that the seed implicitly acts as a type of commitment to (s′, r ′). The second
implies the prover returns a response that includes (s′′, r ′′). Specifically, our online extractor
only looks at all the responses for the rounds where the challenge bit was 1, and checks the
random oracle for any seed that leads to the commitment provided in the first message of the
sigma protocol. If such seed is found, then it succeeds in extracting a witness. The intuition
is simple but it turns out that the formal proof is technically more complicated due to the
several optimizations performed on the basic sigma protocol to achieve proof size O(log N ).
Generalizing with group actions. Although we have been explaining our generic construction
using the CSIDH group action, it is not unique to them. It works equally well for any group
action that naturally induces a PKE. Specifically, we instantiate the above idea also by the
MLWE group action defined roughly as � : Rn+m

q × Rm
q : (s, e)�t → A�s + e + t, where

Rq = Zq [X ]/(Xd + 1). Since CSIDH and MLWE induce a PKE with slightly different
algebraic structures, we introduce a group-action-based PKE defined by two group actions
to formally capture both instances. This abstraction may be of an independent interest since
at first glance, isogeny-based and lattice-based PKEs seem to rely on different algebraic
structures. Finally, one interesting feature unique to our generic construction is that since
our sigma protocol is rather combinatorial in nature, we can for instance use CSIDH for the
user’s public key vk and mix it with anMLWE-based PKE for the opener’ public key opk. The
practical impact of such mixture is that we can achieve stronger bit-security for anonymity
(due to MLWE) while keeping the user’s public key and signature small (due to CSIDH).
Achieving tight reduction. Since the proofs do not rely on the forking lemma [50, 81] to extract
witnesses from the forged proofs, our construction achieves a tighter reduction compared to
prior works on efficient group signatures. However, we still lose a factor 1/N in the proof
of unforgeability, which may vary from 1/2 to 1/220.5 Recall N is the size of the group in
group signatures but it is the size of all the users enrolled in the system for accountable ring
signatures, which may be far larger than the size of the ring. The main reason for this loss
was because the reduction needs to guess one user’s verification key used by the adversary
to create its forgery and to embed the hard problem into it.

A well known technique to obtain a tight proof is to rely on the Katz-Wang technique
[61] along with the generic OR-composition of sigma protocols, and rely on a multi-instance
version of the hard problem (which are believed to be as difficult as the single-instance version
for specific hard problems). Namely, we modify the scheme to assign two verification keys
(vk(1), vk(2)) to each user. The users will only hold one signing key sk(b) for b ∈ {1, 2}
corresponding to the verification key vk(b). The user can honestly run the aforementioned
sigma protocol where the statement includes vk(b), and a simulated sigma protocol using the
ZK-simulator where the statement includes vk(3−b). We can then use the sequential OR-proof
technique as presented in [1, 51] to bridge these two sigma protocols so that it hides the b.6

While this generic transform works, it unfortunately doubles the signature size, which
may outweigh the motivation for having a tight reduction. In this work, we present a novel

5 We note that we also have some independent looseness in the anonymity proof since we rely on the “multi-
challenge” IND-CPA security from our PKE. This is handled in a standard way, and this is also why we only
achieve a truly tight group signature from lattices and not from isogenies.
6 We note that it seems difficult to use the parallel OR-proof for our sigma protocol since the challenge space
is structured.
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Table 2 Comparison of this work
with concurrent works [33, 66] in
terms of signature size,
anonymity and manager
accountability. The integer N
represents the size of the group

Schemes Signature size Anonymity Manager
Accountable

[66] O(N log(N )) CPA No

[33] O(N2) CPA Partial

This Work O(log(N )) CCA Yes

and far cheaper technique tailored to our sigma protocol. The signature size overhead is a
mere 512B for our concrete lattice-based instantiation. The key observation is that we can
view the set of all users’ verification key (vk(1), vk(2)) as a ring of size 2N , rather than a ring
of size N where each ring element consists of two verification keys. This observation itself
is not yet sufficient since recall that we typically must encrypt some information bound to
the signer for traceability, e.g., encrypt the position/index of vk in R, and it is no longer clear
what to encrypt when we have two verification keys in the ring. Luckily, it turns out that our
sigma protocol can be easily modified with no loss in efficiency to overcome this apparent
issue. Details are provided in Sect. 6.3.
Concurrent works. There are two concurrent and independent works published on the Cryp-
tology ePrint Archive [33, 66]. Both of these works obtain isogeny-based group signatures
from variants of ring signatures. Lai et al. [66] base their group signature on revocable ring
signatures, while Chung et al. [33] base theirs on accountable ring signatures. Chug et al.
follow the security properties formalized in [84], in contrast with our accountable ring sig-
nature which follows those formalized in [20]. Since the security properties defined in [20]
are stronger, our group signature satisfies more desirable security properties. Concretely,
even though the opening algorithm of Chung et al. can output an opening proof, it does not
enjoy the security guarantees defined in [20]. In fact, their construction does not have tracing
soundness. In other words, their signature can be opened to two distinct parties with distinct
valid opening proofs.

Table 2 compares thisworkwith [33, 66] in termsof signature size, anonymity andmanager
accountability, where the integer N represents the size of the group. The construction in [33]
is marked with partial manager accountability for the aforementioned reason. Ours is the
only scheme that achieves an O(log N ) signature size and CCA anonymity. Additionally, our
schem provides a much tighter security since both [33, 66] rely on the forking lemma in their
security proofs.
Structure of this paper. We begin in Sect. 3 with some preliminary background on sigma
protocols, accountable ring signatures, and other mathematical content which this paper
relies on. We then introduce our new, generic constructions of accountable ring signature
and dynamic group signature schemes in Sect. 4. These generic constructions are built from
various components put forward in the proceeding sections: Sect. 5 defines group-action-
based hard instance generators and public-key encryption schemes; Sect. 6 introduces our
new “traceable” sigma protocol and proves its security; and Sect. 7 then constructs a NIZK
proof system from said sigma protocol through the Fiat-Shamir transform. Finally, Sect. 8
details the instantiation of our schemes from isogenies and lattices.

3 Preliminaries

Notation. We begin by introducing some notation that will be used throughout the paper.
For N ∈ N, we denote by [N ] the set {1, . . . , N }. We use ‖ to represent concatenation of
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two strings. We also use {Xi }i∈S to denote the set of elements Xi iterating over all values
i ∈ S. For any randomized algorithm A taking as input x , we will write A(x; r) to denote the
execution of A on x using the randomness r . With an overload in notation, we write A(x)
to denote the set of all possible outputs of A on input x , and y ∈ A(x) to indicate that there
exists a randomness r such that y = A(x; r). Finally, we let negl(λ) be a negligible function,
i.e. one dominated by O(λ−n) for all n > 0.
A note on random oracles. Throughout the paper, we instantiate several standard crypto-
graphic primitives, such as pseudorandom number generators (i.e., Expand) and commitment
schemes, by hash functions modeled as a random oracle O. We always assume the input
domain of the random oracle is appropriately separated when instantiating several crypto-
graphic primitives by one random oracle. With abuse of notation, we may occasionally write
for example O(Expand ‖ ·) instead of Expand(·) to make the usage of the random oracle
explicit. Here, we identify Expand with a unique string when inputting it to O. Finally, we
denote byAO an algorithmA that has black-box access toO, and we may occasionally omit
the superscript O for simplicity when the meaning is clear from context.

3.1 Sigma protocols

A sigma protocol �� for a NP relation R ⊆ {0, 1}∗ × {0, 1}∗ is a public-coin three-move
interactive protocol between a prover and a verifier that satisfies a specific flavor of soundness
and zero-knowledge. The languageLR is defined as {X | (X,W) ∈ R}. As standardwithmany
sigma protocols for a language defined over post-quantum algebraic structures, we relax the
soundness notion to only hold for a slightly wider relation R̃ (i.e., R ⊆ R̃), e.g., [4, 10, 14,
36, 44, 54]. That is, a cheating prover may not be using a witness in R but is guaranteed to
be using some witness in the wider relation R̃. Below, we consider a sigma protocol in the
random oracle model, where the prover and verifier have access to a random oracle similarly
to [14].7

Definition 3.1 (Sigma Protocol) A sigma protocol �� for the relations R and R̃ such that
R ⊆ R̃ (which are implicitly parameterized by the security parameter λ) consists of oracle-
calling PPT algorithms (P = (P1, P2), V = (V1, V2)), where V2 is deterministic and we
assume P1 and P2 share states. Let ChSet denote the challenge space. Then, �� has the
following three-move flow:

• The prover, on input (X,W) ∈ R, runs com← PO
1 (X,W) and sends a commitment com

to the verifier.
• The verifier runs chall← VO

1 (1λ) to obtain a random challenge chall from ChSet, and
sends it to the prover.
• The prover, given chall, runs resp ← PO

2 (X,W, chall) and returns a response resp to
the verifier. Here, we allow P2 to abort with some probability. In such cases we assign
resp with a special symbol ⊥ denoting abort.
• The verifier runs VO

2 (X, com, chall, resp) and outputs � (accept) or ⊥ (reject).

Here,O ismodeled as a randomoracle andwe often dropO from the superscript for simplicity
when the meaning is clear from context. We assume X is always given as input to P2 and V2,
and omit it in the following. The protocol transcript (com, chall, resp) is said to be valid in
case V2(com, chall, resp) outputs �.
7 This should not be confused with the random oracle used to compile a sigma protocol into an NIZK proof
system.
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We require a sigma protocol �� in the random oracle model to satisfy the following stan-
dard properties: correctness, high min-entropy, special zero-knowledge and (relaxed) special
soundness.

We require the sigma protocol to be correct conditioned on the prover not aborting the
protocol. Below, if δ = 0, then it corresponds to the case when the prover never aborts.

Definition 3.2 ((1− δ)-Correctness) A sigma protocol �� is (1− δ)-correct for δ ∈ [0, 1]
if for all λ ∈ N and (X,W) ∈ R, the probability of the prover outputting ⊥ is at most δ, and
we have

Pr

⎡
⎣ VO

2 (com, chall, resp) = �
∣∣∣∣∣∣

com← PO
1 (X,W),

chall← VO
1 (1λ),

resp← PO
2 (W, chall) s.t. resp �= ⊥.

⎤
⎦ = 1,

where the probability is taken over the randomness used by (P, V ) and by the random oracle.

Definition 3.3 (High Min-Entropy) We say a sigma protocol �� has α(λ) min-entropy if
for any λ ∈ N, (X,W) ∈ R, and a possibly computationally-unbounded adversary A, we
have

Pr
[
com = com′

∣∣com← PO
1 (X,W), com′ ← AO(X,W)

] ≤ 2−α,

where the probability is taken over the randomness used by P1 and by the random oracle.
We say �� has high min-entropy if 2−α is negligible in λ.

Definition 3.4 (Non-Abort Special Zero-Knowledge) We say�� is (non-abort) special zero-
knowledge if there exists a PPT simulator SimO with access to a random oracle O such that
for any λ ∈ N, statement-witness pair (X,W) ∈ R, chall ∈ ChSet and any computationally-
unbounded adversary A that makes at most a polynomial number of queries to O, we have

∣∣∣Pr[AO(1λ, P̃O(X,W, chall)) = 1] − Pr[AO(1λ, SimO(X, chall)) = 1]
∣∣∣ = negl(λ),

where P̃ is a non-aborting prover P = (P1, P2) run on (X,W)with a challenge fixed to chall
and the probability is taken over the randomness used by (P, V ) and by the random oracle.

Below, for the special soundness property, the extraction algorithm is only required to
recover a “weaker” witness in R̃ rather than in R used in the real protocol. In many applica-
tions, the capability of extracting from this wider relation suffices.

Definition 3.5 (Special Soundness) We say a sigma protocol�� has (relaxed) special sound-
ness if there exists a PT extraction algorithm Extract such that, given a statement X and any
two valid transcripts (com, chall, resp) and (com, chall′, resp′) relative to X and such that
chall �= chall′, outputs a witness W satisfying (X,W) ∈ R̃.

3.2 Non-interactive Zero-knowledge proofs of knowledge in the ROM

We consider non-interactive zero-knowledge proof of knowledge protocols (or simply NIZK
(proof system)) in the ROM. Below, we define a variant where the proof is generated with
respect to a label. Although syntactically different, such NIZK is analogous to the notion of
signature of knowledge [30]
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Definition 3.6 (NIZK Proof System) Let L denote a label space, where checking membership
can be done efficiently. A non-interactive zero-knowledge (NIZK) proof system �NIZK for the
relations R and R̃ such that R ⊆ R̃ (which are implicitly parameterized by λ) consists of
oracle-calling PPT algorithms (Prove,Verify) defined as follows:

ProveO(lbl,X,W)→ π/⊥ : On input a label lbl ∈ L, a statement andwitness pair (X,W) ∈
R, it outputs a proof π or a special symbol ⊥ denoting abort.

VerifyO(lbl,X, π)→�/⊥ : On input a label lbl ∈ L, a statement X, and a proof π , it
outputs either � (accept) or ⊥ (reject).

We require a NIZK proof system in the random oracle model to satisfy the following
standard properties: correctness, zero-knowledge, (relaxed) statistical soundness, and online
extractability. We assume for simplicity that Verify always outputs ⊥ in case lbl /∈ L.

Definition 3.7 ((1 − δ)-Correctness) A NIZK proof system �NIZK is (1 − δ)-correct for
δ ∈ [0, 1] if for all λ ∈ N, lbl ∈ L, (X,W) ∈ R, the probability of ProveO(lbl,X,W)

outputting ⊥ is at most δ, and we have

Pr

[
VerifyO(lbl,X, π) = �

∣∣∣∣
π ← ProveO(lbl,X,W),

π �= ⊥.

]
= 1,

where the probability is taken over the randomness used by (Prove,Verify) and by the random
oracle.

Definition 3.8 (Zero-Knowledge) LetO be a random oracle,�NIZK aNIZK proof system, and
Sim = (Sim0, Sim1) a zero-knowledge simulator for �NIZK, consisting of two algorithms
Sim0 and Sim1 with a shared state. We say the advantage of an adversary A against Sim is

AdvZK�NIZK
(A) =

∣∣∣Pr
[
AO,Prove(1λ) = 1

]
− Pr

[
ASim0,S(1λ) = 1

]∣∣∣ ,
where Prove andS are prover oracles that on input (lbl,X,W) return⊥ if lbl /∈ L∨(X,W) /∈ R
and otherwise return ProveO(lbl,X,W) or Sim1(lbl,X), respectively. Moreover, the proba-
bility is taken also over the randomness of sampling O.

We say �NIZK for R and R̃ is zero-knowledge if there exists a PPT simulator Sim such
that for all (possibly computationally-unbounded) adversaryAmaking at most polynomially
many queries to the random oracle and the prover oracle, we have AdvZK�NIZK

(A) ≤ negl(λ).

Statistical soundness guarantees that any adversary cannot generate a proof for an invalid
statement except with a negligible probability.

Definition 3.9 (Statistical Soundness) Let O be a random oracle and �NIZK a NIZK proof
system. We say the advantage of an adversary A against soundness is

Advsoundness�NIZK
(A) = Pr

[
�W : (X,W) ∈ R̃ ∧

VerifyO(lbl,X, π) = �
∣∣∣∣ (lbl,X, π)← AO(1λ))

]
,

where the probability is taken also over the randomness of sampling O.
We say the NIZK proof system �NIZK for R and R̃ has (relaxed) statistical soundness if for

all (possibly computationally-unbounded) adversary A making at most polynomially many
queries to the random oracle, we have Advsoundness�NIZK

(A) ≤ negl(λ).

Online extractability requires the existence of an extraction algorithm which, on input a
valid proof π and the list or random-oracle queries made by an adversary, always extract a
(relaxed) witness except with a negligible probability.
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Definition 3.10 (Multi-Proof Online Extractability) A NIZK proof system �NIZK is (multi-
proof) online extractable if there exists a PPT extractor OnlineExtract such that for any
(possibly computationally-unbounded) adversary A making at most polynomially-many
queries has at most a negligible advantage in the following game played against a challenger
(with access to a random oracle O).

(i) The challenger prepares empty lists LO and LP , and sets flag to 0.
(ii) A can make random-oracle, prove, and extract queries an arbitrary polynomial number

of times:

• (hash, x): The challenger updates LO ← LO ∪ {x,O(x)} and returns O(x). We
assume below that A runs the verification algorithm after receiving a proof from the
prover oracle and before submitting a proof to the extract oracle.8

• (prove, lbl,X,W): The challenger returns⊥ if lbl /∈ L or (X,W) /∈ R. Otherwise, it
returns π ← ProveO(lbl,X,W) and updates LP ← LP ∪ {lbl,X, π}.
• (extract, lbl,X, π): The challenger checks if VerifyO(lbl,X, π) = � and

(lbl,X, π) /∈ LP , and returns ⊥ if not. Otherwise, it runs
W← OnlineExtractO(lbl,X, π, LO) and checks if (X,W) /∈ R̃, and returns⊥ if yes
and sets flag = 1. Otherwise, if all checks pass, it returns W.

(iii) At some point A outputs 1 to indicate that it is finished with the game. We say A wins
if flag = 1. The advantage of A is defined as AdvOE�NIZK

(A) = Pr[A wins] where the
probability is also taken over the randomness used by the random oracle.

Note, importantly, that OnlineExtract is not given access to the queries ProveO makes
directly toO. Thus, OnlineExtract is not guaranteed to return a valid witnessW when called
with any output of the Prove oracle. The requirement that (lbl,X, π) /∈ LP ensures that this
does not allow the adversary to trivially win the game, and in particular by extension ensures
that modifying the label lbl should invalidate any proof obtained from the Prove oracle.

Remark 3.11 If aNIZK proof system�NIZK is (multi-proof) online extractable, it is statistically
sound—that is, online extractability implies statistical soundness. This is clear, because if an
adversary is able to generate an accepting tuple (lbl,X, π) for which �W : (X,W) ∈ R̃ in
the soundness game, then clearly (extract, lbl,X, π) will allow the adversary to win the
online extractability game.

Remark 3.12 (NIZKs with Labels) If the label space of the NIZK is L = {⊥}, we say the NIZK
is without labels (or a plain/unlabelled NIZK). In this case, we omit the lbl argument from the
Prove and Verify functions for clarity.

3.3 Public-key encryption

We recall the standard multi-challenge IND-CPA security of a public-key encryption (PKE)
scheme.

Definition 3.13 (Public-Key Encryption) A public-key encryption �PKE over a message
space M consists of four algorithms �PKE = (Setup, KeyGen, Enc,Dec):

• Setup(1λ)→ pp :On input the security parameter 1λ, it outputs a public parameter pp.

8 This is w.l.o.g., and guarantees that the list LO is updated with the input/output required to verify the proof
A receives or sends.

123



Group signatures and more from isogenies and lattices... 2155

• KeyGen(pp) → (pk, sk) : On input a public parameter pp, it outputs a pair of public
key and secret key (pk, sk).
• Enc(pk,M) → ct: On input a public key pki and a message M ∈ M, it outputs a

ciphertext ct.
• Dec(sk, ct) → M or ⊥ : On input a secret key sk and a ciphertext ct, it outputs either

M ∈M or a special symbol ⊥ /∈M.

We will denote by R the set containing the randomness used by the encryption algorithm
Enc.

We omit the standard definition of correctness as we provide a more generalized version
in Sect. 4.1,Def. 4.1. Below, we define the standard IND-CPA security extended to the multi-
challenge setting. Using a textbook hybrid argument, it is clear that the multi-challenge
definition is polynomially related to the standard single-challenge definition. The motivation
for introducing the multi-challenge variant is because in some cases, we can show that the
two definitions are equally difficult without incurring any reduction loss.

Definition 3.14 (Multi-Challenge IND-CPASecurity)APKE scheme�PKE = (Setup, KeyGen,

Enc,Dec) is multi-challenge IND-CPA secure against Q challenges if, for any λ ∈ N, any
PPT adversary A has at most a negligible advantage in the following game played against a
challenger.

(i) The challenger runs pp ← Setup(1λ), (pk, sk) ← KeyGen(pp) and samples a bit
b ∈ {0, 1}. The challenger provides (pp,pk) to A.

(ii) A can adaptively query the challenge oracle at most Q times. In each query, A sends a
pair of messages (M0,M1) ∈M2, and the challenger returns ctb ← Enc(pk,Mb) to A.

(iv) A outputs a bit b∗ ∈ {0, 1}. We say A wins if b∗ = b.

The advantage of A is defined as AdvMulti - CPA
�PKE,Q (A) = |Pr[A wins] − 1/2|.

3.4 Accountable ring signatures

We provide the definition of accountable ring signatures (ARSs), following the formalization
introduced by Bootle et al. [19].

Definition 3.15 (Accountable Ring Signature) An accountable ring signature �ARS consists
of PPT algorithms (Setup,OKGen,UKGen, Sign,Verify,Open, Judge) defined as follows:

Setup(1λ)→ pp : On input a security parameter 1λ, it returns a pub-
lic parameter pp (sometimes implicitly) used by the
scheme. We assume pp defines openers’ public-key
space Kopk and users’ verification-key space Kvk,
with efficient algorithms to decide membership.

OKGen(pp)→ (opk, osk) : On input a public parameter pp, it outputs a pair of
public and secret keys (opk, osk) for an opener.

UKGen(pp)→ (vk, sk) : On input a public parameter pp, it outputs a pair of
verification and signing keys (vk, sk) for a user.

Sign(opk, sk, R,M)→ σ : On input an opener’s public key opk, a signing
key sk, a list of verification keys, i.e., a ring, R =
{vk1, . . . , vkN }, and a message M, it outputs a signa-
ture σ .
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Verify(opk, R,M, σ )→�/⊥ : On input an opener’s public key opk, a ring R =
{vk1, . . . , vkN }, a message M, and a signature σ , it
(deterministically) outputs either � (accept) or ⊥
(reject).

Open(osk, R,M, σ )→ (vk, π)/⊥ : On input an opener’s secret key osk, a ring R =
{vk1, . . . , vkN }, a messageM, a signature σ , it (deter-
ministically) outputs either a pair of verification key
vk and a proof π that the owner of vk produced the
signature, or ⊥.

Judge(opk, R, vk,M, σ, π)→�/⊥ : On input an opener’s public key opk, a ring R =
{vk1, . . . , vkN }, a verification key vk, a messageM, a
signature σ , and a proof π , it (deterministically) out-
puts either� (accept) or⊥ (reject). We assume with-
out loss of generality that Judge(opk, R, vk,M, σ, π)

outputs ⊥ if Verify(opk, R,M, σ ) outputs ⊥.
An accountable ring signature is required to satisfy the following properties: correctness,

anonymity, traceability, unforgeability, and tracing soundness.
First, we require correctness to hold even if the ring contains maliciously-generated user

keys or the signature has been produced for a maliciously-generated opener key. Note that
the correctness guarantee for the open and judge algorithms are defined implicitly in the
subsequent security definitions.

Definition 3.16 (Correctness) An accountable ring signature�ARS is correct if, for all λ ∈ N,
any PPT adversary A has at most a negligible advantage in λ in the following game played
against a challenger.

(i) The challenger runs pp← Setup(1λ) and generates a user key (vk, sk)← UKGen(pp).
It then provides (pp, vk, sk) to A.

(ii) Aoutputs an opener’s public key, a ring, and amessage tuple (opk, R,M) to the challenger.
(iii) The challenger runs σ ← Sign(opk, sk, R,M). We say A wins if

– opk ∈ Kopk, R ⊆ Kvk, and vk ∈ R,
– Verify(opk, R,M, σ ) = ⊥.

The advantage of A is defined as AdvCorrect�ARS
(A) = Pr[A wins].

Anonymity requires that a signature does not leak any information on who signed it.
We consider the standard type of anonymity notion where the adversary gets to choose the
signing key used to generate the signature. Moreover, we allow the adversary to make (non-
trivial) opening queries that reveal who signed the messages. This notion is often called
full (CCA) anonymity [8, 20] to differentiate between weaker notions of anonymity such as
selfless anonymity that restricts the adversary from exposing the signing key used to sign the
signature or CPA anonymity where the adversary is restricted from querying the open oracle.

Definition 3.17 (Anonymity) An accountable ring signature �ARS is (CCA) anonymous
(against full key exposure) if, for all λ ∈ N, any PPT adversary A has at most a negligible
advantage in the following game played against a challenger.

(i) The challenger runs pp ← Setup(1λ) and generates an opener key (opk, osk) ←
OKGen(pp). It also prepares an empty list Qsign and samples a random bit b← {0, 1}.

(ii) The challenger provides (pp, opk) to A.
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(iii) A can make signing and opening queries an arbitrary polynomial number of times:

• (sign, R,M, sk0, sk1): The challenger runsσi ← Sign(opk, ski , R,M) for i ∈ {0, 1}
and returns ⊥ if Verify(opk,R,M, σi ) = ⊥ for either of i ∈ {0, 1}. Otherwise, it
updates Qsign← Qsign ∪ {(R,M, σb)} and returns σb.
• (open, R,M, σ ): The challenger returns ⊥ if (R,M, σ ) ∈ Qsign. Otherwise, it

returns
Open(osk, R,M, σ ).

(iv) A outputs a guess b∗. We say A wins if b∗ = b.

The advantage of A is defined as AdvAnon�ARS
(A) = |Pr[A wins] − 1/2|.

Unforgeability considers two types of forgeries. The first captures the natural notion of
unforgeability where an adversary cannot forge a signature for a ring of honest users, i.e., a
ring of users for which it does not know any of the corresponding secret keys. The second
captures the fact that an adversary cannot accuse an honest user of producing a signature
even if the ring contains malicious users and the opener is malicious.

Definition 3.18 (Unforgeability) An accountable ring signature scheme�ARS is unforgeable
(with respect to insider corruption) if, for all λ ∈ N, any PPT adversary A has at most
negligible advantage in the following game played against a challenger.

(i) The challenger runs pp← Setup(1λ) and initializes an empty keyed dictionaryDUKey[·]
and three empty sets QUKey, Qsign and Qcor. It provides pp to A.

(ii) A can make user key generation, signing, and corruption queries an arbitrary polynomial
number of times:

• (ukeygen): The challenger runs (vk, sk)← UKGen(pp). If DUKey[vk] �= ⊥, then
it returns⊥. Otherwise, it updates DUKey[vk] = sk and QUKey← QUKey ∪ {vk}, and
returns vk.
• (sign, opk, vk, R,M): The challenger returns ⊥ if vk /∈ QUKey ∩ R. Otherwise, it

runs σ ← Sign(opk,DUKey[vk], R,M). The challenger updates Qsign ← Qsign ∪
{(opk, vk, R,M, σ )} and returns σ .
• (corrupt, vk): The challenger returns ⊥ if vk /∈ QUKey. Otherwise, it updates

Qcor← Qcor ∪ {vk} and returns DUKey[vk].
(iv) A outputs (opk, vk, R,M, σ, π). We say A wins if

– (opk, ∗, R,M, σ ) /∈ Qsign, R ⊆ QUKey\Qcor,
– Verify(opk, R,M, σ ) = �,

or

– (opk, vk, R,M, σ ) /∈ Qsign, vk ∈ QUKey\Qcor,
– Judge(opk, R, vk,M, σ, π) = �.

The advantage of A is defined as AdvUnf�ARS
(A) = Pr[A wins].

Traceability requires that any opener key pair (opk, osk) in the range of the opener key-
generation algorithm can open a valid signature σ to some user vk along with a proof
valid π . This ensures that any opener can trace the user and produce a proof for its
decision. Below, rather than assuming an efficient algorithm that checks set membership
(opk, osk) ∈ OKGen(pp), we simply ask the adversary to output the randomness used to
generate (opk, osk). Note that this definition contains the prior definitions where opk was
assumed to be uniquely defined and efficiently computable from osk [19].
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Definition 3.19 (Traceability) An accountable ring signature scheme �ARS is traceable if,
for all λ ∈ N, any PPT adversary A has at most negligible advantage in the following game
played against a challenger.

(i) The challenger runs pp← Setup(1λ) and provides pp to A.
(ii) A returns a randomness, a ring, a message, and a signature tuple (rr, R,M, σ ). We sayA

wins if

– Verify(opk, R,M, σ ) = �, where (opk, osk)← OKGen(pp; rr), and
– Judge(opk, R, vk,M, σ, π) = ⊥, where (vk, π)← Open(osk, R,M, σ ).

The advantage of A is defined as AdvTra�ARS
(A) = Pr[A wins].

Finally, tracing soundness requires that a signature cannot trace to two different users in
the ring. This must hold even if all the users in the ring and the opener are corrupt.

Definition 3.20 (Tracing Soundness) An accountable ring signature scheme �ARS is trace-
able sound if, for all λ ∈ N, any PPT adversary A has at most negligible advantage in the
following game played against a challenger.

(i) The challenger runs pp← Setup(1λ) and provides pp to A.
(ii) A returns an opener’s public key, a ring, a message, a signature, and two verification keys

and proofs (opk, R,M, σ, {(vkb, πb)}b∈{0,1}). We say A wins if

– vk0 �= vk1,
– Judge(opk, R, vk0,M, σ, π0) = �,
– Judge(opk, R, vk1,M, σ, π1) = �.

The advantage of A is defined as AdvTraS�ARS
(A) = Pr[A wins].

3.5 Isogenies and ideal class group actions

Let Fp be a prime field, with p ≥ 5. In the following E and E ′ denote elliptic curves defined
over Fp . An isogeny ϕ : E → E ′ is a non-constant morphism mapping 0E to 0E ′ . Each
coordinate of ϕ(x, y) is then the fraction of two polynomials in Fp[x, y], where Fp denotes
the algebraic closure of Fp . If the coefficients of the polynomials lie in Fp , then ϕ is said to
be defined over Fp . We restrict our attention to separable isogenies (which induce separable
extensions of function fields) between supersingular elliptic curves defined over Fp , i.e.,
curves whose set of rational points E(Fp) has cardinality p + 1.

An isogeny ϕ : E → E ′ is an isomorphism if its kernel is equal to {0E }, and an endo-
morphism of E if E = E ′. The set Endp(E) of all endomorphisms of E that are defined
over Fp , together with the zero map, form a commutative ring under pointwise addition and
composition. Endp(E) is isomorphic to an order O of the quadratic field K = Q(

√−p)
[28]. We recall that an order is a subring of K, which is also a finitely-generated Z-module
containing a basis of K as a Q-vector space. A fractional ideal a of O is a finitely generated
O-submodule of K. We say that a is invertible if there exists another fractional ideal b of
O such that ab = O, and that it is principal if a = αO for some α ∈ K. The invertible
fractional ideals of O form an Abelian group whose quotient by the subgroup of principal
fractional ideals is finite. This quotient group is called the ideal class group ofO, and denoted
by C�(O).

The ideal class group C�(O) acts freely and transitively on the set E��p(O, π), which
contains all supersingular elliptic curves E over Fp - modulo isomorphisms defined over Fp
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- such that there exists an isomorphism between O and Endp(E) mapping
√−p ∈ O into

the Frobenius endomorphism (x, y) �→ (x p, y p). We denote this action by ∗. Recently, it has
been used to design several cryptographic primitives [15, 28, 37, 67], whose security proofs
rely on (variations of) the Group Action Inverse Problem (GAIP), defined as follows.

Definition 3.21 (Group Action Inverse Problem (GAIP)) Let [E0] be an element in
E��p(O, π), where p is an odd prime and O an order in Q(

√−p). Given [E] sampled
from the uniform distribution over E��p(O, π), the GAIPp problem consists in finding an
element [a] ∈ C�(O) such that [a] ∗ [E0] = [E].

The best known classical algorithm to solve the GAIP problem has time complexity
O(
√
N ), where N = |C�(O)|. The best known quantum algorithm, on the other hand, is

Kuperberg’s algorithm for the hidden shift problem [63, 64]. It has a subexponential com-
plexity, for which the concrete security estimates are still an active area of research [12, 18,
32, 80].

For the security of the isogeny-based instantiations, we will also rely on a multi-instance
variant the GAIP problem which is trivially equivalent to the GAIP problem.

Definition 3.22 (Multi-Instance GAIP (MI-GAIP) Problem) Let [E0] be an element in
E��p(O, π), where p is an odd prime and O an order in Q(

√−p). Given [E1], · · · , [EN ]
sampled uniformly at random from E��p(O, π), where N ∈ N, the MI-GAIPp,N problem
consists in finding an element [a] ∈ C�(O) such that [a] ∗ [E0] = [Ei ] for some i ∈ [N ].

To see the equivalence (informally), given an instance of the GAIP problem ([E0], [E]),
sample [r1], . . . , [rN ] ∈ C�(O), and compute [Ei ] = [ri ] ∗ [E] for each i . Then a solution
for the MT-GAIP on ([E0], [E1], . . . , [EN ]), say [a] ∗ [E0] = [E j ], results in a solution to
the GAIP by computing [a][r j ]−1.

We also need the following assumption, the decisional CSIDH Problem. Looking ahead,
the distinguishing problems will ensure (multi-instance) IND-CPA for our PKE in Sect. 8.1
and therefore anonymity for our ring/group signature schemes. Note that we will require the
class group to be of odd order to avoid the attack presented in [29]. Equivalently, we require
p = 3 mod 4.

Definition 3.23 (Decisional CSIDH (dCSIDH) Problem) Let [E0] be an element in
E��p(O, π), where p is an odd prime. The decisional CSIDH problem is that given a tuple
([a1] ∗ [E0], [a2] ∗ [E0], E) where [a1], [a2] are sampled uniformly from C�(O) and [E]
is either sampled uniformly from E��p(O, π) or [E] = [a1a2] ∗ [E0], and decide which
distribution [E] is drawn from.

3.6 Lattices

Let R and Rq denote the rings Z[X ]/(Xn + 1) and Z[X ]/(q, Xn + 1) for integers n and q ,
respectively. Norms over R are defined through the coefficient vectors of the polynomials,
which lie over Z

n . Norms over Rq are defined in the conventional way by uniquely repre-
senting coefficients of elements over Rq by elements in the range (−q/2, q/2] when q is
even and [−(q − 1)/2, (q − 1)/2] when q is odd (see for example [42] for more details).

The hard problems we will rely on are the module short integer solution (MSIS) problem
and module learning with errors (MLWE) problem, first introduced in [69].
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Definition 3.24 (Module Short Integer Solution) Let n, q, k, �, γ be integers. The advantage
for the (Hermite normal form) module short integer solution problem MSISn,q,k,�,γ for an
algorithm A is defined as

AdvMSIS
n,q,k,�,γ (A) = Pr

[
0 < ‖u‖∞ ≤ γ ∧
[A | I] · u = 0

∣∣∣∣ A← Rk×�
q ,u← A(1λ,A)

]
.

Definition 3.25 (Module Learning with Errors) Let n, q, k, � be integers and D a probability
distribution over Rq . For any A ∈ Rk×�

q , define two oracles as follows:

• OA: Sample (s, e)← Dk × D� and output As+ e ∈ Rk
q ,

• O$: Output a random b← Rk
q .

The advantage for the decision module learning with errors problem sMLWEn,q,k,�,D for an
algorithm A is defined as

AdvdMLWE
n,q,k,�,D(A) =

∣∣∣Pr[AOA(1λ,A)→ 1] − Pr[AO$(1λ,A)→ 1]
∣∣∣ ,

where the probability is taken also over the random choice of A← Rk×�
q .

The advantage for the search learning with errors problem sMLWEn,q,k,�,D is defined as

AdvsMLWE
n,q,k,�,D(A) = Pr

[
v = As+ e ∧

(s, e) ∈ Supp(D�)× Supp(Dk)

∣∣∣∣ (s, e)← AOA(1λ,A)

]
,

where v is one of the vectors returned by OA.

In this work, we consider the MLWE problem where an adversary is given oracle access
to a MLWE sample generator. For any PPT adversary A, this is polynomially related to the
conventional single-instance MLWE problem via a standard hybrid argument. There is also
a simple tight reduction from the single-instance to the multi-instance MLWE problem à la
“noise-flooding,” where (roughly) the support of the distribution D considered by the multi-
instance problem is required to be super-polynomially larger than those considered by the
single-instance problem. However, practically speaking, to the best of our knowledge, we
are not aware of any attacks that exploit the multiplicity of the MLWE sample. Therefore,
throughout this work, we assume the multi-instance MLWE problem to be as difficult as the
single-instance MLWE problem.

The assumption on the hardness of (multi-instance)MLWE is believed to hold even when
D is the uniformdistribution over ring elementswith infinity norm atmost a fixed value B, say
B ≈ 5, for appropriate choices of n, q, k, � [2]. We write MLWEn,q,k,�,B when we consider
such distribution D. For example, the round-2 NIST candidate signature scheme Dilithium
[42] uses such parameters for the (single-instance) MLWE problem, and in particular, our
scheme borrows the same parameter sets.

4 Generic construction of accountable ring signature and dynamic
group signature

In this section, we present novel generic frameworks for accountable ring signature, dynamic
group signature, and their tightly secure variants. Firstly, we introduce a generic construc-
tion of an accountable ring signature in Sect. 4.1. Constructing a dynamic group signature
immediately follows by limiting the functionality of accountable ring signature. Our con-
struction achieves a tighter reduction compared to prior works on efficient group signatures
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as it does not rely on the forking lemma [50, 81]. However, since we still lose a factor of 1/N
in the reduction, we finally show how to modify our construction to be truly tight using the
Katz-Wang technique [61] in Sect. 4.3.

4.1 Generic construction of accountable ring signature

In this subsection, we present our generic construction of an accountable ring signature
scheme. Before diving in the details we give a brief overview of our generic construction.
The setup is as follows.Theopening authorities generate aPKEkey-pair, denoted as (opk, osk)
to indicate that they are the opener’s keys, and publish the opening public key opk. The users
generate an element (x,w) in a hard relation R, and publish the statement x as verification
key, and keep the witness w as secret signing key. A signature for our ARS scheme for a ring
R = {x1, . . . , xN } consists of a ciphertext ct, and a NIZK proof that: 1) The ciphertext is an
encryption of an index I ∈ [N ] under an opener public key opk, and 2) that the signer knows
a witnessw corresponding to the I -th statement xI in the ring R. The second property ensures
that the signature is unforgeable, and the first property ensures that the opener (who has the
secret key opk) can decrypt the ciphertext to find out who the real signer is. To convince
others that a signature was produced by the I -th member of the ring, the opener uses a second
NIZK proof to prove that he knows an opener secret key osk that is consistent with opk, and
such that Dec(osk, ct) = I . If the opener could find a second secret key osk′, consistent with
opk and such that ct decrypts to I ′ �= I under osk′, then the opener could frame I ′ for signing
a signature, which breaks the tracing soundness of the signature scheme. To prevent this we
require the PKE to satisfy a strong correctness property, which says that an encryption of I
will always decrypt to I , even if the encryption randomness and decryption key are invalid (in
some specific, controlled way). More formally we define the following special correctness
notion for a PKE scheme.

Definition 4.1 ((R′,KR′)-correctness) Consider a public-key encryption scheme �PKE =
(Setup, KeyGen, Enc,Dec), with R the set containing all possible randomness used by Enc
and KR the binary relation that contains all the key pairs (pk, sk) that can be generated by
running KeyGen. LetR′ be a set containingR, and KR′ a relation containing KR. Then we
say that �PKE is (R′,KR′)-correct if, for all λ ∈ N, and for all but a negligible fraction of
pp ∈ Setup(1λ), we have for all (pk, sk) ∈ KR′, for all messages m in the plaintext space
M, and all r ∈ R′ that

Dec(sk, Enc(pk,m; r)) = m.

Remark 4.2 Note that pp is also implicitly used in the relations KR,KR′. If R′ = R and
KR′ = KR, then the (R′,KR′)-correctness is exactly the standard correctness property
for PKEs. If R′ or KR′ is larger than R or KR, respectively, then the definition becomes
a stronger property, because the decryption algorithm is required to decrypt correctly even
when the encryption algorithm used some invalid randomness, and/or when the keypair is
invalid. (R′ and KR′ control how “invalid” randomness and secret key are allowed to be.)

Our generic construction of an accountable ring signature scheme �ARS = (ARS.Setup,

ARS.OKGen,ARS.UKGen,ARS.Sign,ARS.Verify,ARS.Open,ARS.Judge), provide in Fig. 1,
is based on the following building blocks:

• A hard-instance generator contains a setup algorithm RelSetup that, on input a security
parameter λ, outputs a description pp of a pair of binary relations Rpp ⊆ R̃pp, and an
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Fig. 1 Generic construction of an accountable ring signature �ARS obtained from a hard instance generator
(RelSetup, IGen), a public-key encryption algorithm (PKE.Setup, KeyGen, Enc,Dec) satisfying some suitable
security and correctness properties, a NIZK with labels �NIZK,lbl for Rsig, and a NIZK without labels �NIZK
for Ropen. The public parameter pp is provided to all algorithms where we may omit them for readability

instance generator IGen for those pairs of relations. That is, RelSetup and IGen are PPT
algorithms such that Pr[(x,w) ∈ Rpp | pp← RelSetup(1λ); (x,w)← IGen(pp)] =
1, and such that if we define the advantage of an adversary A against (RelSetup, IGen)

as

AdvHardRelSetup,IGen(A) = Pr

⎡
⎣(x,w′) ∈ R̃pp

∣∣∣∣∣∣
pp← RelSetup(1λ)

(x,w)← IGen(pp)

w′ ← A(pp, x)

⎤
⎦ ,

then AdvHardRelSetup,IGen(A) is a negligible function of λ for every PPT adversary A.
• A public-key encryption scheme �PKE = (PKE.Setup, KeyGen, Enc,Dec) with multi-

challenge IND-CPA security, and with (R′,KR′)-correctness for some relaxed random-
ness set R′ and some relaxed key relation KR′. The message space of the encryption
scheme contains a set of indices [N ] for any polynomially large N ∈ N.
• Amulti-proof online extractableNIZKproof systemwith labels�NIZK,lbl = (NIZK.Setuplbl,

NIZK.Provelbl,NIZK.Verifylbl) for the relations

Rsig =
{(

({xi }i∈[N ],pk, ct), (I ,w, r)
)

(xI ,w) ∈ Rpp ∧ ct = Enc(pk, I ; r) }

R̃sig =
{(

({xi }i∈[N ],pk, ct), (I ,w, r)
)

(xI ,w) ∈ R̃pp ∧ ct = Enc(pk, I ; r) } .
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To be precise, we need to also include the public parameters output by RelSetup and
PKE.Setup in the statement. We omit them for better readability.
• A statistically sound NIZK proof system (without labels) �NIZK = (NIZK.Setup,

NIZK.Prove,NIZK.Verify) for the relations

Ropen = {((pk, ct, I ), sk)(pk, sk) ∈ KR ∧ Dec(sk, ct) = I }
R̃open =

{
((pk, ct, I ), sk)(pk, sk) ∈ KR′ ∧ Dec(sk, ct) = I

}
.

Similarly to above, we omit the public parameter output by PKE.Setup in the statement.
We emphasize that �NIZK does not need to be online extractable.

Correctness and security of the proposed accountable ring signature scheme �ARS are
shown in the following theorems.

Theorem 4.3 The accountable ring signature scheme �ARS in Fig.1 is correct.

Proof Due to the correctness of the underlying NIZK proof system, �NIZK,lbl, any signature
output by ARS.Sign will be accepted by ARS.Verify with probability 1. ��
Theorem 4.4 The accountable ring signature scheme �ARS in Fig.1 is (CCA) anonymous
(against full key exposure) in the random oracle model, assuming �PKE is multi-challenge
IND-CPA secure and (R′,KR′)-correct, �NIZK,lbl is zero-knowledge, multi-challenge online-
extractable, and �NIZK is zero-knowledge. Precisely, for an adversary A, running in time T ,
there exist PPT adversaries B1,B2,B3,B4, with running times O(T ) such that

AdvAnon�ARS
(A) ≤ AdvZK�NIZK

(B1)+ AdvOE�NIZK,lbl
(B2)+ AdvZK�NIZK,lbl

(B3)+ AdvMulti - CPA
�PKE

(B4).

Proof We prove anonymity using a hybrid argument with the following series of games. Let
the advantage of the adversary A in Gamei be denoted by Advi (A).

Game1 : This is the original anonymity game defined inDef. 3.17. The adversary’s advantage
in this game is Adv1(A) = AdvAnon�ARS

(A) by definition.
Game2 : This is the same as Game1, except that it uses the simulator NIZK.Sim =

(NIZK.Sim0,NIZK.Sim1) for �NIZK to answer random-oracle and opening queries
from the adversary. When A makes a random oracle query, the challenger for-
wards the query to NIZK.Sim0, records the query and answers, and forwards the
answer to A. When A makes an opening query, rather than computing πopen

using NIZK.Prove and osk, the challenger instead uses the output of NIZK.Sim1.
We consider an adversary B1 against the zero-knowledge property of �NIZK which
simulates Game2 forA. Let Prove and S be as in the definition of zero-knowledge
for the NIZK proof system. Then, if B′1s oracle queries are answered by (O, Prove)
the game is identical to Game1, and if queries are answered by (NIZK.Sim0,S),
then the game is identical to Game2. Therefore, assuming B1 outputs 1 when A
wins, we have Adv1(A) ≤ Adv2(A)+ AdvZK�NIZK

(B1).
Game3 : This is the same as Game2, except that the way the challenger answers opening

queries is further modified. Rather than using the secret key osk to decrypt the
ciphertext ct and identify the index I of the real signing key (as ARS.Open does in
the honest protocol), the challenger instead runs the online extractor OnlineExtract
for �NIZK,lbl to extract the witness (I , sk, r) from (ct, πsign), and then returns the
user RI . We consider an adversary B2 against the online extractability of �NIZK,lbl
that simulates Game3 for A such that
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• random-oracle queries fromA are replied by querying (hash, ·) (see Def. 3.10);
• instead of computing πsign when answering a signing query, B2 makes a query

(prove,M, x,w), where (x,w) = ((R, opk, ct), (I , sk, r)), and
• instead of running OnlineExtract, B2 makes a query (extract,M, x, πsign).

Note that extract for proofs originating from prove queries are answered
with ⊥, which is compatible with the fact that the challenger outputs ⊥ for
opening queries that correspond to signatures originating from the signing ora-
cle in Game3. If B2 loses the multi-proof online extractability game (i.e., B2 did
not cause the extractor to fail), then it follows from the (R′,KR′)-correctness
of �PKE that for each extraction W = (I , sk, r) we have Dec(osk, ct) =
Dec(osk, Enc(opk, I ; r)) = I , so the view of A is not affected by whether I
was obtained from OnlineExtract or by decrypting ctwith osk. Therefore, we have
Adv2(A) ≤ Adv3(A)+ AdvOE�NIZK,lbl

(B2).
Game4 : This is the same asGame3, except that we change how the challenger answers sign-

ing queries from the adversary: The challenger generates ct as in Game3, but uses
the zero-knowledge simulator Sim for�NIZK,lbl to create the proofπsign rather than
using NIZK.Provelbl. It then outputs (ct, πsign) as the signature. Similarly to the
transition from Game1 to Game2, we can define an adversary B3 against the zero-
knowledge property of�NIZK,lbl such that Adv3(A) ≤ Adv4(A)+AdvZK�NIZK,lbl

(B3).
Game5 : This is the same as Game4, except we further change how the challenger answers

signing queries: Instead of encrypting the correct index I to obtain ct, the challenger
encrypts a random index I ′. We define a multi-challenge IND-CPA adversary B4 for
�PKE that simulates Game5 for A, but instead of generating (opk, osk), the adver-
sary B4 receives opk from the multi-challenge IND-CPA challenger, and instead
of producing the ciphertexts ct the adversary B4 makes encryption queries (I , I ′),
where I is the correct index, and I ′ is a random index. Note that, say on input
(sign,R,M, sk0, sk1), the I -th key in R is the verification key corresponding to
sk0. We can make this replacement because in Game5, the challenger does not use
osk. (The purpose of Game2 and Game3 were to remove the use of osk for this
reason.) If the hidden bit b in the IND-CPA game is 0, then the IND-CPA experiment
is identical to Game4, and if the bit is 1, then the experiment is equal to Game5.
Therefore, we have that Adv4(A) ≤ Adv5(A)+ AdvMulti - CPA

�PKE
(B4).

Finally, observe that in Game5 the challenger leaks no information about the secret bit b
because b is not used. Hence, Adv5(A) = 0. ��

Remark 4.5 In the previous proof we really relied on the online extractability property (with-
out rewinding). This is because, even if we allow for a non-tight reduction, we cannot resort
to rewinding (i.e., the forking lemma) since there can be polynomially many open queries
and the reduction loss will be exponential if we try to extract from all of them. Here, keep in
mind that the online extractor must succeed with (roughly) 1− negl(λ) rather than any non-
negligible function 1/poly(λ) since there can be polynomially many open queries. Namely,
even a success probability of 1/2 will not be good enough. Most, if not all, prior works
circumvent this issue by using an IND-CCA PKE as building block rather than a (possibly
inefficient) online extractable NIZK to simulate the decryption of ct.

Theorem 4.6 The accountable ring signature scheme �ARS in Fig.1 is unforgeable in the
random oracle model. More precisely, for any adversary A that runs in time T and makes
Qu queries to theukeygen oracle, there exist adversariesB1,B2,B3, running in time O(T ),
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such that

AdvUnf�ARS
(A) ≤ AdvOE�NIZK,lbl

(B1)+ AdvZK�NIZK,lbl
(B2)+QuAdv

Hard
RelSetup,IGen(B3)

Proof We prove unforgeability using a hybrid argument with the following series of games.
Let the advantage of the adversary A in Gamei be denoted by Advi (A).

Game1 : This is the original unforgeability game defined in Def. 3.18. The adversary’s advan-
tage in this game is Adv1(A) = AdvUnf�ARS

(A) by definition.
Game2 : This is the same as Game1, but the winning condition is changed. We let the

challenger maintain a list LO of all the random oracle queries that A makes.
When A finishes the game by outputting (opk, vk, R,M, σ = (ct, πsign), π),
the challenger runs (I , sk, r) ← OnlineExtract(M, (R, opk, ct), πsign, LO). The
game results in a loss if ((R, opk, ct), (I , sk, r)) /∈ R̃sig, otherwise, the winning
condition is not changed. We construct an online-extractability adversary B1 for
�NIZK,lbl that simulates Game2 for A. He replies random-oracle queries from A
by querying (hash, ·) (see Def. 3.10), signing queries by making an oracle call
(prove,M, (R, opk, ct), (I , sk, r)) instead of computing πsign himself, and makes
the oracle call (extract,M, (R, opk, ct), πsign) instead of running OnlineExtract.
The view of A during the game simulated by B1 is identical to its view during
Game1 and Game2. Suppose that the output received by A is a win for the win-
ning condition of Game1, but a loss for the winning condition of Game2. This means
that NIZK.VerifyOlbl(M, (R, opk, ct), πsign) = � and (ct, πsign) was not the output
of a query (sign, opk, vk′, R,M) for any vk′, otherwise the winning condition of
Game1 would not be met. Moreover, we would have ((R, opk, ct), (I , sk, r)) /∈ R̃sig,
otherwise the winning condition of Game2 would be met. This is precisely the sit-
uation B1 needs in order to win the online extractability game. Therefore, we have
Adv1(A) ≤ Adv2(A)+ AdvOE�NIZK,lbl

(B1)

Game3 : This is the same as Game2 except that we change the way the challenger answers
signing queries fromA. Specifically, the challenger generates ct as in Game2 but uses
the zero-knowledge simulator Sim = (Sim0, Sim1) for �NIZK,lbl to create the proof
πsign. That is, it forwards the random-oracle queries to Sim0, and runs Sim1 to get
πsign. It then outputs (ct, πsign) as the signature. Let B2 be an adversary against the
zero-knowledge property of �NIZK,lbl, which simulates Game3 for A by forwarding
random-oracle queries and proving queries to the oracles Sim0 and Sim1, respectively.
If B2 is given access to oraclesO and Prove (see Def. 3.8), thenA’s view is identical
to Game2, and if B2 is run with access to Sim0, Sim1, then A’s view is identical to
Game3. Therefore, we have Adv2(A) ≤ Adv3(A)+ AdvZK�NIZK,lbl

(B2).
Game4 : This is the same as Game3 except that we change the winning condition again: the

challenger guesses a random index Ĩ ∈ {1, . . . ,Qu} at the outset of the game. If
A makes a corruption query to corrupt the verification key returned in the Ĩ -th user
key generation query, then Game4 aborts. The game results in a win if the winning
condition of Game3 is met and if Ĩ = I . Since Ĩ is information-theoretically hidden
during the execution of the game, we have Ĩ = I with probability 1/Qu . Therefore,
we have Adv3(A) = QuAdv4(A).

Finally, let B3 be an adversary against (RelSetup, IGen) which simulates Game4 for A.
At the beginning of the game, B3 is given an instance (pp1, x). The adversary B3 simulates
an execution of Game4 by using the public parameter pp1 that is given to him, rather than
generating a new pp1 himself using RelSetup, and by answering the Ĩ -th ukeygen query
assigning vk Ĩ = x instead of running (x,w) ← IGen(pp1). Note that B3 does not need
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w because if A makes a query to corrupt vk Ĩ then the game aborts. The view of A during
B3’s simulation is the same as its view during a real execution of Game4, so OnlineExtract
outputs a valid witness ( Ĩ , sk, r) with probability at least Adv4(A). If this is the case, then
B3 wins his game against the hardness of (RelSetup, IGen) by outputting sk. Therefore, we
have Adv4(A) ≤ AdvHardRelSetup,IGen(B3). ��
Theorem 4.7 The accountable ring signature scheme �ARS in Fig.1 is traceable and tracing
sound in the random oracle model. More precisely, for any adversary A that runs in time T ,
we have adversaries B1,B2,B3 that run in time O(T ), such that

AdvTra�ARS
(A) ≤ Advsoundness�NIZK,lbl

(B1)

and

AdvTraS�ARS
(A) ≤ Advsoundness�NIZK,lbl

(B2)+ 2Advsoundness�NIZK
(B3)

Proof We prove the two properties separately as follows:
Traceability Traceability follows from the statistical soundness of �NIZK,lbl, the (R′,KR′)-
correctness of �PKE, and the correctness of �NIZK. Observe that if A wins an execution
of the traceability game, then NIZK.Verifylbl(M, X = (R, opk, ct), πsign) = �, but still
there cannot be a witness W = (I , sk, r) such that (X,W) ∈ R̃sig. Towards a contradiction,
suppose that such a witness does exist, then the (R′,KR′)-correctness of the PKE implies
that Dec(osk, ct = Enc(opk, I ; r)) = I , which implies that ((opk, ct, I ), osk) ∈ Ropen,
so the correctness of �NIZK implies that NIZK.Verify((opk, ct, I ), πopen) = �. This means
that A did not win the traceability game. Therefore, A produces valid proofs for statements
not in R̃sig with probability at least AdvTra�ARS

(A). We can use this to construct an adversary

B1 against the statistical soundness of �NIZK,lbl that generates pp ← ARS.Setup(1λ) for a
security parameter λ, runs (rr, R,M, σ )← A(pp)where σ = (ct, πsign), and (osk, opk)←
ARS.OKGen(pp; rr), and outputs (M, x := (R, opk, ct), πsign), which makes B1 win. B1’s
advantage is therefore AdvTra�ARS

(A) ≤ Advsoundness�NIZK,lbl
(B1).

Tracing soundness Similarly, tracing soundness follows from the statistical soundness of
�NIZK and �NIZK,lbl, and the (R′,KR′)-correctness of the �PKE. In order for A to win the
tracing soundness game, it needs to output valid proofs πsign, π0, π1 (the former is part of
the produced signature σ = (ct, πsign)) such that there exist witnesses (I , sk, r), osk0 and
osk1 where

((R, opk, ct), (I , sk, r)) ∈ R̃sig

((opk, ct, I0), osk0) ∈ R̃open

((opk, ct, I1), osk1) ∈ R̃open,

with I0 �= I1. However, it follows from the (R′,KR′)-correctness of �PKE that no three
such witnesses can exist. Suppose, towards a contradiction, that those witnesses exist. Then
we have I0 = Dec(osk0, ct = Enc(opk, I ; r)), so the (R′,KR′)-correctness implies that
I0 = I , and similarly it follows from I1 = Dec(osk1, ct = Enc(opk, I ; r)) that I1 = I ,
which contradicts I0 �= I1. Therefore, at least one of πsign, π0, π1 is a valid proof of an
invalid statement, i.e. a X for which does not existW such that (X,W) ∈ R̃sig (or (v) ∈ R̃open),
with probability at least AdvTraS�ARS

(A). Let B2 and B3 be statistical-soundness adversaries for
�NIZK,lbl and�NIZK, respectively, that simulate the tracing soundness game and output πsign

orπb, respectively, where b is a randombit. Thenwe haveAdvTraS�ARS
(A) ≤ Advsoundness�NIZK,lbl

(B2)+
2Advsoundness�NIZK

(B3). ��
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4.2 Accountable ring signature to dynamic group signature

Accountable ring signatures are known to trivially imply dynamic group signatures [19,
20]. A formal treatment is provided by Bootle et al. [20]. We remark that the transformation
provided in [20] retains the same level of security provided by the underlying accountable ring
signature. That is, all reductions between unforgeability, full-anonymity and traceability are
tight. For completeness, we provide more details on group signatures and the transformation
in App. B.

4.3 Tightly secure variant

Observe the only source of loose reduction in the previous section was in the unforgeability
proof (see Theorem 4.6), where we assume each building blocks, i.e., NIZK and PKE, are
tightly reduced to concrete hardness assumptions. In this subsection, we apply the Katz-
Wang technique [61] to modify our construction in Fig. 1 to obtain a tight reduction.

We firstly give an intuition of the method. Recall that in the proof of Theorem 4.6, the
reduction is given a challenge instance x, guesses which user’s signature the adversary will
forge, and assigns x to the verification key vk of the selected user. If the adversary queries
the corruption oracle on the key vk, the reduction fails and aborts since it will not be able
to produce the corresponding secret key for vk. If the guess is correct and the adversary
successfully forges the signature, then the reduction can recover a witnessw′ such that (x,w′)
is in the relation R̃pp1 . Therefore, if the adversary makesQu user key generation queries and
its advantage is ε, then the reduction can extract a witness with probability roughly ε/Qu .
A high-level viewpoint of theKatz-Wangmethod is that each user is given a pair of statements
(x(1), x(2)) as the verification key vk, with only one witness w as the secret signing key, such
that either (x(1),w) or (x(2),w) is in the relation R̃pp1 . Also, we assume that now the reduction
is given Qu challenge instances {xi }i∈[Qu ] and it is required to solve any one of them. The
reduction in this case needs no guessing steps as above. Specifically, the reduction can use
IGen to generate pairs (̃xi , w̃i ) for i ∈ [Qu], randomlypermutes xi , x̃i and assigns the obtained
ordered pair to vki . Therefore, the reduction can always answer any corruption query with w̃i .
As long as the adversary wins the unforgeability game by forging a signature, the reduction
can return a witness for one of the {xi }i∈[Qu ] with probability 1/2. Roughly speaking, if the
success rate of the adversary is ε, then the reduction can extract the answer for the challenge
(�, X0, {xi }i∈[Qu ]) with probability around ε/2. Here, it is important that the information on
which verification key the user knows the corresponding signing key remains hidden from the
adversary. Otherwise, the adversary may always create a forgery with respect to the signing
key the reduction already knows.

To turn the above idea into a formal proof, we require two new ingredients: an instance gen-
erator that outputs multiple challenges and a NIZK that additionally hides the information on
which signing key is used.More formally, we build a tightly secure accountable ring signature

scheme�
Tight
ARS = (ARS.Setup,ARS.OKGen,ARS.UKGen,ARS.Sign,ARS.Verify,ARS.Open,

ARS.Judge) based on the following tools. The only difference between the tools used in

Sect. 4.1 are the hard multi-instance generator and the NIZK for the relation RTight
sig .

• A hard multi-instance generator (RelSetup, IGen) contains a setup algorithm RelSetup
that outputs a description pp of a pair of relations Rpp ⊆ R̃pp, and an instance generator
IGen for these pairs of relations. That is, RelSetup and IGen are PPT algorithms such
that Pr[(xi ,wi ) ∈ Rpp | pp ← RelSetup(1λ); {(xi ,wi )}i∈[N ] ← IGen(pp, N )] = 1.
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Moreover, if we define the advantage of an adversary A against (RelSetup, IGen) as

AdvMulti-Hard
RelSetup,IGen,N (A) = Pr

⎡
⎣(xi ,w′) ∈ R̃pp

∣∣∣∣∣∣
pp← RelSetup(1λ)

{(xi ,wi )}i∈[N ] ← IGen(pp, N )

(i,w′)← A(pp, {xi }i∈[N ])

⎤
⎦

then AdvMulti-Hard
RelSetup,IGen,N (A) is a negligible function in λ for every PPT adversary A.

• A public-key encryption scheme �PKE = (PKE.Setup, KeyGen, Enc,Dec) with multi-
challenge IND-CPA security, and with (R′,KR′)-correctness for some relaxed random-
ness set R′ and some relaxed key relation KR′. The message space of the encryption
scheme contains a set of indices [N ] for any polynomially large N ∈ N.
• A multi-proof online extractable NIZK proof system with labels �NIZK,lbl = (NIZK.

Setuplbl, NIZK.Provelbl, NIZK.Verifylbl) for the family of relations

RTight
sig =

⎧⎨
⎩

(
(pp, {x( j)

i }(i, j)∈[N ]×[2],pk, ct),
(I , b,w, r)

)
∣∣∣∣∣∣
(I , r) ∈ [N ] ×R ∧ (x(b)

I ,w) ∈ Rpp
∧ ct = Enc(pk, I ; r)

⎫⎬
⎭

R̃Tight
sig =

⎧⎨
⎩

(
(pp, {x( j)

i }(i, j)∈[N ]×[2],pk, ct),
(I , b,w, r)

)
∣∣∣∣∣∣
(I , r) ∈ [N ] ×R′ ∧ (x(b)

I ,w) ∈ R̃pp
∧ ct = Enc(pk, I ; r)

⎫⎬
⎭ .

• A second NIZK proof system (without labels) �NIZK = (NIZK.Setup,NIZK.Prove,
NIZK.Verify) for the family of relations

Ropen = {((pk, ct, I ), sk)(pk, sk) ∈ KR ∧ Dec(sk, ct) = I }
R̃open =

{
((pk, ct, I ), sk)(pk, sk) ∈ KR′ ∧ Dec(sk, ct) = I

}
,

with statistical soundness (Def. 3.9).

The building blocks listed above are combined similarly to Fig. 1. For the sake of com-
pleteness, we detail the resulting protocol in Fig. 2. For the security properties, we only focus
on unforgeability. The others are a direct consequence of the proofs given for the non-tight
construction in Fig. 1.

Theorem 4.8 The accountable ring signature scheme �
Tight
ARS in Fig.2 is unforgeable in the

random oracle model. More precisely, for any adversaryA that runs in time T and makesQu

queries to the ukeygen oracle, there exist adversaries B1,B2,B3, running in time O(T ),
such that

AdvUnf�ARS
(A) ≤ AdvOE�NIZK,lbl

(B1)+ AdvZK�NIZK,lbl
(B2)+ 2AdvMulti-Hard

RelSetup,IGen,Qu
(B3).

Proof We prove unforgeability using a hybrid argument with the following series of games.
Let the advantage of an adversary A in Gamei be denoted by Advi (A).

• The first game, Game1, is the original unforgeability game defined in Def. 3.18. The
adversary’s advantage in this game is Adv1(A) = AdvUnfARS(A) by definition.
• Game2 is the same as Game1, but with a modified winning condition. We let the chal-

lenger maintain a list LO of all the random-oracle queries that A makes. When A
finishes the game by outputting (opk, vk, R,M, σ = (ct, πsign), π), the challenger
runs (I , b, sk, r)← OnlineExtract(M, (pp1, R, opk, ct), πsign, LO). The game results

in a loss if ((pp1, R, opk, ct), (I , , b, sk, r)) /∈ R̃Tight
sig , otherwise, the winning condi-

tion is not changed. As we have shown in the proof of Theorem 4.6, there exists
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Fig. 2 Modified tightly-secure construction of an accountable ring signature �
Tight
ARS obtained from a hard

multi-instance generator (RelSetup, IGen), a public-key encryption algorithm (PKE.Setup, KeyGen, Enc,Dec)
satisfying some suitable correctness and security properties, a NIZK proof system with labels �NIZK,lbl for

RTight
sig , and a NIZK proof system without labels �NIZK for Ropen

an online-extractability adversary B1 for �NIZK,lbl running in time O(T ) such that
Adv1(A) ≤ Adv2(A)+ AdvOE�NIZK,lbl

(B1).
• The third game, Game3, is the same as Game2 except that we change the way the

challenger answers signing queries from A. Specifically, the challenger generates ct as
in Game2 but uses the �NIZK,lbl zero-knowledge simulator Sim = (Sim0, Sim1) to create
the proof πsign. As we have shown in the proof of Theorem 4.6, there exists a zero-
knowledge adversary B2 for �NIZK,lbl running in time O(T ) and such that Adv2(A) ≤
Adv3(A)+ AdvZK�NIZK,lbl

(B2).
• Finally, we consider an adversary B3 against the hardness of (RelSetup, IGen) which

simulates Game3 for A. At the beginning of the game, the adversary B3 is given the
instances (pp1, {x}i∈[Qu ]). B3 uses the public parameter pp1 that is given to him, rather
than generating new pp1 himself using RelSetup. Moreover, when answering the i-th
ukeygen query, B3 uniformly draws bi from {1, 2}, generates (̃xi , w̃i )← IGen(pp1),
and assigns vki = (x(1)

i , x(2)
i )where (x(bi )

i , x(3−bi )
i ) = (̃xi , xi ). Note that nowB3 is able to

respond to any valid corruption query corrupt. In fact, for any i ∈ [Qu], ifAmakes a
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corruption query to corrupt vki , then B3 responds by sk = (bi , w̃i ). The view ofA during
B3’s simulation is the same as its view during a real execution ofGame3, soOnlineExtract
outputs a valid witness ( Ĩ , sk = (b′,w′), r) with probability at least Adv3(A). Since the
sampling of the statements and witnesses follows the same distribution determined by
IGen(pp1) in the real execution, there is an 1/2 chance that b′ = (3 − bĨ ). That is,
(x Ĩ ,w

′) ∈ R̃pp1 . Therefore, we have Adv3(A)/2 ≤ AdvMulti-Hard
RelSetup,IGen,Qu

(B3).

��

5 Group-action-based hard instance generators and PKEs

In this section, we introduce group-action-based hard instance generators (HIGs) and group-
action-based PKEs. These are classes of HIGs and PKEs, that derive their security from
cryptographic group actions, and which have some specific internal structure. We define
these concepts because, as we will see in Sects. 6 and 7, if we instantiate our generic account-
able ring signature constructionwith a group-action-basedHIG and a group-action-basedPKE,
then we can construct a very efficient multi-proof online extractable NIZK for the Rsig rela-
tion. We provide concrete instantiations of group-action-based HIGs and PKEs from lattices
and isogenies in Sect. 8.

5.1 Group-action-based hard instance generator

We consider a special class of hard instance generators naturally induced by cryptographic
hard actions.

Definition 5.1 (Group-Action-based Hard Instance Generator) A group-action-based hard
instance generator, GA-HIG in short, is a pair of efficient algorithms (RelSetup, IGen) with
the following properties:

• On input a security parameter λ, RelSetup outputs pp = (G, S1, S2, δ, X0,X , �) such
that: G is an additive group whose elements can be represented uniquely, S1 ⊆ S2 are
symmetric subsets of G, such that membership in S1 and S2 can be decided efficiently,
and such that the group law can be computed efficiently for elements in S1∪S2.Moreover,
the intersection S3 = ∩g∈S1g + S2 has cardinality δ|S2| and membership of S3 can be
decided efficiently. � is an action � : G × X → X of G on a set X that contains the
element X0. � can be evaluated efficiently on elements of S1 ∪ S2. These parameters
describe an NP-relation

Rpp = {(X , s) s ∈ S1 : s�X0 = X} ,
and a relaxed NP-relation

R̃pp = {(X , s) s ∈ S2 + S3 : s�X0 = X} .
• On input pp, IGen samples an element s from S1 and outputs (s � X0, s) ∈ Rpp.
• (RelSetup, IGen) is a hard instance generator as defined in Sect. 4.

5.2 Group-action-based PKE

Wealso consider group actions providedwith a corresponding public-key encryption scheme,
as specified in the following definition.
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Definition 5.2 (Group-action-basedPKE)Agroup-action-basedpublic-key encryption scheme,
GA-PKE in short, is a public-key encryption scheme�GA-PKE = (Setup, KeyGen, Enc,Dec)
with the following properties:

Setup(1λ) → pp : On input a security parameter 1λ, it returns the public parameter
pp = (G,GM,X , S1, S2, δ, DX , �M,M) (sometimes implicitly) used by the scheme.
Here, G,GM are additive groups, S1, S2 two symmetric subsets of G, X a finite set, δ a
real number in [0, 1], DX a distribution over a set of group actions �pk : G × X → X
and elements in X , �M : GM × X → X a group action, M ⊆ GM a message space.
For any polynomially large N ∈ N, we assume that there exists a feasible and invertible
embedding τ from the set of index [N ] into the message space M. For simplicity, we
will write τ(i)�MX , Enc(pk, τ (i)) as i�MX , Enc(pk, i) respectively without causing
confusion.
KeyGen(pp) → (pk, sk) : On input a public parameter pp, it returns a public key
pk and a secret key sk. We assume pk = (�pk, Xpk) to be drawn from DX , where
�pk : G × X → X is a group action and Xpk ∈ X , and sk ∈ G. We also assume pk
includes pp w.l.o.g.
Enc(pk,M; r) → ct : On input a public key pk = (�pk, Xpk) and a message M ∈M,
it returns a ciphertext ct. We assume ct is generated as M�M(r�pkXpk) ∈ X , where the

encryption randomness is sampled as r
$← S1.

Dec(sk, ct) → M : On input a secret key sk and a ciphertext ct, it (deterministically)
returns a message M ∈M.

In addition, we assume the following properties hold for the group actions defined by pp.

1. There exists a positive-valued polynomial T such that for all λ ∈ N, pp ∈ Setup(1λ), and
(pk, sk) ∈ KeyGen(pp), one can efficiently compute g�pkX for all g ∈ S1 ∪ S2 and all
X ∈ X in time at most T (λ), sample uniformly from S1 and S2, and represent elements of
G and X uniquely. It is also efficient to compute the action �M for every possible input.

2. The intersection S3 of the sets S2 + g, with g varying in S1, is such that its cardinality is
equal to δ|S2|. Furthermore, it is efficient to check whether an element g ∈ G belongs to
S3.

We further require a group-action-basedPKE to satisfy standard correctness and decryption
efficiency.

Definition 5.3 (Correctness and Decryption Efficiency) We say a group-action-based PKE
�GA-PKE is correct if for all λ ∈ N, and for all but a negligible fraction of pp ∈ Setup(1λ),
we have Dec(sk, Enc(pk,M)) = M for all (pk, sk) ∈ KeyGen(pp) and M ∈M.

Moreover, we require Dec to run in poly(λ) for a fixed polynomial function poly and for
all possible inputs.

Aswe show inSect. 4.1, in order to construct an accountable ring signature, a group-action-
based PKE is also required to be (multi-challenge) IND-CPA secure and (R′,KR′)-correct
for some relaxed randomness set R′ and some relaxed key relation KR′ (Def. 4.1).

The concrete choice of (R′,KR′)may depend on the instantiation. For instance, while we
define (R′,KR′) = (R,KR) for our isogeny-based instantiation in Sect. 8.1, we must rely
on a strictly wider relation for our lattice-based instantiation to compensate for the relaxed
soundness. In slightly more detail, in our lattice-based NIZK, we are only able to argue that
an adversary created a ciphertext ct using message M and randomness r ∈ R′, and/or that a
ct can be decrypted toM using secret key sk such that (pk, sk) ∈ KR′. Roughly, (R′,KR′)-
correctness guarantees that such an argument suffices to prove that ct can only be decrypted
to a unique M.
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6 Sigma protocol for a “Traceable” OR relation

In this section, we present an efficient sigma protocol for the relation Rsig introduced in
Sect. 4.1, using group-action-based HIG and a group-action-based PKE from the previous
section. Recall this relation was used to define the multi-proof online extractable NIZK with
labels �NIZK, which allowed an OR proof along with a proof of opening to a ciphertext.
Looking ahead, in Sect. 7, we show that our sigma protocol can be turned into a multi-proof
online extractable NIZK using the Fiat-Shamir transform. This is in contrast to the common
application of the Fiat-Shamir transform that only provides a proof of knowledge via the
rewinding argument [50, 81]. We note that we do not focus on the other NIZK for the relation
Ropen in Sect. 4.1 since they can be obtained easily from prior works.

We call the sigma protocol we present in this section as a traceable OR sigma protocol
since it allows to trace the prover. This section is structured as follows. Firstly, we introduce
a base traceable OR sigma protocol �base

� for the relation Rsig with proof size O(log N ) but
with a binary challenge space. Secondly, we amplify the soundness of the sigma protocol by
performing parallel repetitions. Here, instead of applying λ-parallel repetitions naively, we
optimize it using three approaches developed in [14] to obtain our main traceable OR sigma

protocol �tOR
� . Finally, we show a sigma protocol for the “tight” relation RTight

sig introduced
in Sect. 4.3.

6.1 From a group-action-based HIG and PKE to base traceable OR sigma protocol

In this section, we present a base OR sigma protocol for the relation Rsig with a binary
challenge space from which the main OR sigma protocol will be deduced.
Parameters and Binary Relation The sigma protocol is based on a group-action-
based HIG and PKE. Let pp1 = (G,X , S1, S2, δx , �, X0) and pp2 = (G,GT,Y, S1, S2,
δy, DY , �M,M) be public parameters in the image of RelSetup and PKE.Setup, respectively.
Moreover, let (pk, sk) ∈ KeyGen(pp2). The relation Rsig in Sect. 4.1 can be equivalently
rewritten as follows:

Rsig =
{(

({Xi }i∈[N ],pk, ct), (I , s, r)
) ∣∣∣∣

(I , s, r) ∈ [N ] × S1 × S1∧
XI = s�X0 ∧ ct = Enc(pk, I ; r)

}
.

Recall that by definition of GA-PKE (Def. 5.2), the ciphertext ct is restricted to the simple
form I�M(r�pkYpk) ∈ Y , where r ∈ S1 ⊆ G.
Sigma Protocol for Rsig. We now sketch the base traceable OR sigma protocol �base

� .

A prover with witness (I , s, r) ∈ [N ] × S1 × S1 first samples (s′, r ′) $← S2 × S2, and
({bitsi }i∈[N ])← {0, 1}λN . Then, it computes commitments

Ci = O(Com ‖ s′�Xi ‖ r ′�pk(−i�Mct) ‖ bitsi ) ∀i ∈ [N ],
and builds a Merkle tree with (C1, . . . ,CN ) as its leaves, obtaining root. Here, notice
r ′�pk(−i�Mct) = r ′�pk(−i + I )�M(r�pkYpk) is simply (r ′ + r)�pkYpk when i = I . Then,
the prover sends com = root to the verifier as the commitment of the sigma protocol. The
verifier, in turn, responds with a uniform challenge chall ∈ {0, 1}.

If the challenge bit chall is 0, then the prover sends (s′, r ′) and the commitment randomness
{bitsi }i∈[N ]. That is, all the randomness it generated in the first round. The verifier then can
reconstruct the Merkle tree and verify that the root of the obtained tree is equal to root.

If the challenge bit chall is equal to 1, then the prover computes s′′ = s′ + s, r ′′ = r ′ + r .
The prover aborts the protocol if s′′ /∈ S3 or r ′′ /∈ S3. The first eventwill occurwith probability
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(1 − δx ) and, similarly, the second event will occur with probability (1 − δy). Otherwise,
the prover sends (r ′′, s′′) together with the path connecting CI to root in the Merkle tree,
and the corresponding commitment randomness bitsI to the verifier. The verifier computes
C̃I = O(Com ‖ s′′�X0 ‖ r ′′�pkYpk ‖ bitsI ) and uses the received path to reconstruct r̃oot
of the Merkle tree. The verifier checks whether r̃oot = root.

To reduce the communication cost, a pseudorandom number generator (PRG) Expand
can be run over a uniform seed seed ∈ {0, 1}λ to produce the group elements s′, r ′ and all
commitment randomness values bits1, . . . ,bitsN (part of the response for chall = 0). As
a consequence, if the challenge bit is 0, the prover responds with seed so that the verifier
can generate (s′, r ′,bits1, · · · ,bitsN )with the PRG Expand. The response corresponding to
the challenge bit chall = 1 remains unchanged. We instantiate the PRG by a random oracle
O(Expand ‖ ·). Looking ahead, using a PRG not only provides efficiency, but it proves
to be essential when proving multi-proof online extractability when compiled into a NIZK.
Roughly, the seed binds the cheating prover fromusing arbitrary (s′, r ′,bits1, · · · ,bitsN ) and
the random oracle allows for efficient extraction. Finally, we instantiate the collision-resistant
hash function HColl(·) used in our Merkle tree by a random oracle O(Coll ‖ ·).

A formal description of �base
� is provided in Fig. 3

Security of Sigma Protocol �base
� . The following Theorems 6.1 and 6.2 summarize the

security of our sigma protocol.We point out that in Theorem 6.1, we show our sigma protocol
satisfies special soundness for the relations Rsig and R̃′sig such that Rsig ⊂ R̃′sig, rather than for
the relations Rsig and R̃sig such that Rsig ⊆ R̃sig, where R̃sig is the relaxed relation introduced
in Sect. 4.1. The subtle difference is that R̃′sig captures the scenario where the extractor may
extract a witness that forms a collision in the random oracle. This has no concrete impact as
we are able to turn such a sigma protocol into a multi-proof online extractable NIZK for the
relations Rsig and R̃sig.

Theorem 6.1 The sigma protocol �base
� has correctness with abort rate (1 − δxδy)/2 and

relaxed special soundness for the relations Rsig and R̃′sig, where

R̃′sig =

⎧⎪⎪⎨
⎪⎪⎩

(({Xi }i∈[N ], pk, ct
)
,W

)
∣∣∣∣∣∣∣∣

W = (I , s, r) ∈ [N ] × (S2 + S3)× (S2 + S3)
∧ XI = s�X0 ∧ ct = Enc(pk, I ; r) or

W = (x1, x2) ∈ {0, 1}∗∧
x1 �= x2 ∧O(x1) = O(x2)

⎫⎪⎪⎬
⎪⎪⎭

.

Here, R̃′sig is identical to the one defined in Sect.4.1 if we ignore the hash collision W =
(x1, x2) and set R′ = S2 + S3 in the (R′,KR′)-correctness of GA-PKE.
Proof Correctness. Say the prover honestly runs �base

� on an input (I , s, r) satisfying XI =
s�X0 and ct = Enc(pk, I ; r), and does not abort. If chall = 0, then the verifier repeats
the computation in the commitment phase (see Round 1 in Fig. 3) and therefore obtains
the same output. If chall = 1, then the verifier computes T̃ = s′′�X0 and c̃t = r ′′�pkYpk
where s′′ = s′ + s and r ′′ = r ′ + r . Besides, since T̃ is equal to TI = s′�XI , c̃t is
equal to ctI = r ′�pk(−I�Mct) and C̃ = O(Com ‖ T̃ ‖ c̃t ‖ bits) is equal to the leaf
C̃ = CI ∈ {C1, · · · ,CN }, the verifier reconstructs the root r̃oot which is equal to root.
Hence, the protocol has (non-abort) correctness.
Abort rate. The prover will not abort in the case chall = 0. When chall = 1 (which occurs
with probability 1/2) the prover aborts if s′′ = s′ + s /∈ S3 or r ′′ = r ′ + r /∈ S3. We note that
s is in S1 and s′ is drawn uniformly at random from S2 (in the random oracle model). We can
therefore say s′′ is drawn uniformly at random from S2 + s, which contains S3 as a subset.
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Fig. 3 Construction of the base traceable OR sigma protocol �base
� = (P ′ = (P ′1, P ′2), V ′ = (V ′1, V ′2)) for

the relation Rsig. Informally, O(Expand‖·) and O(Com‖·) are a PRG and a commitment scheme instantiated
by the random oracle, respectively

So the probability that s′′ = s′ + s ∈ S3 is |S3|/|S2| = δx . The same reasoning applies to r ′′,
so the probability of both s′′, r ′′ lying in S3, S3 respectively is δxδy and the total abort rate is
(1− δxδy)/2
Relaxed special soundness. Given two valid transcripts for the same statement and on the
same commitment, (com, 0, seed) and (com, 1, (s′′, r ′′,path,bits)) where com = root, an
extraction algorithm Extract for a witness for the relation R̃′pk proceeds as follows. Extract
firstly generates (s′, r ′,bits1, · · · ,bitsN )← O(Expand ‖ seed) and constructs C1, · · · ,CN

such that the Merkle Tree with leaves (C1, · · · ,CN ) has root equal to root. Extract outputs
W = (Coll ‖ x1,Coll ‖ x2) as the witness if it there exists x1 �= x2 such that O(Coll ‖ x1) =
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O(Coll ‖ x2). Otherwise, by Lem. A.1, we can assume C̃ = O(Com ‖ s′′�X0 ‖ r ′′�pkYpk ‖
bits) is equal to C Ĩ ∈ {C1, · · · ,CN } for some Ĩ ∈ [N ]. Then, Extract outputs W = (Com ‖
x1,Com ‖ x2) as the witness if it there exists x1 �= x2 such that O(Com ‖ x1) = O(Com ‖
x2). Otherwise, from C̃ = C Ĩ , we can assume s′�X Ĩ = s′′�X0, r ′�pk( Ĩ�Mct) = r ′′�pkYpk,
and bits = bits Ĩ . Let s̃ = −s′ + s′′ ∈ S2 + S3 and r̃ = −r ′ + r ′′ ∈ S2 + S3. Finally, Extract
outputs W = ( Ĩ , s̃, r̃). Here, the equalities s̃�X0 = X Ĩ and Ĩ�M(̃r�pkYpk) = ct follow
directly from the relations s′�X Ĩ = s′′�X0 and r ′�pk( Ĩ�Mct) = r ′′�pkYpk, respectively.
Therefore, W = ( Ĩ , s̃, r̃) is a witness for the “relaxed” relation R̃′pk. Hence, the protocol

�base
� has relaxed special soundness. ��

Theorem 6.2 The sigma protocol �base
� has non-abort special zero-knowledge. Precisely,

there exists a PPT simulator SimO with access to a random oracle O such that, for any
statement-witness pair (X,W) ∈ Rsig, chall ∈ {0, 1}, and any computationally-unbounded
adversary A that makes at most Q queries to the random oracle O, we have

∣∣∣Pr[AO(1λ, P̃O(X,W, chall)) = 1] − Pr[AO(1λ, SimO(X, chall)) = 1]
∣∣∣ ≤ Q

2λ
,

where P̃ is a non-aborting prover P ′ = (P ′1, P ′2) run on (X,W) with a challenge fixed to
chall.

Proof Assume the adversary makes QExpand and QCom queries to the random oracles of the
form O(Expand ‖ ·) and O(Com ‖ ·), respectively. We have QExpand + QCom ≤ Q. The
PPT simulator SimO , on input (X, chall), proceeds as follows.

• If chall = 0, the simulator executes as P
′O(X,⊥, chall), where notice P ′ does not require

the witness when chall = 0. Concretely, the simulator outputs (com = root, chall =
0, resp = seed) where root, seed are honestly generated as in the execution of P

′O
1 .

• If chall = 1, the simulator uniformly samples (s′′, r ′′) from S3×S3, andbits from {0, 1}λ.
It computes C1 = O(Com ‖ s′′�X0 ‖ r ′′�pkYpk ‖ bits). It then uniformly samples
dummy commitments Ci for i ∈ {2, . . . , N } from {0, 1}2λ, and computes the (index-
hiding) Merkle tree (root, tree) ← MerkleTree(C1, . . . ,CN ). After that, it extracts the
path path ← getMerklePath(tree, 1) in the tree and sets com = root, and resp =
(s′′, r ′′,path,bits). Finally, the simulator returns (com, chall = 1, resp).

In the first case, the whole transcript is generated exactly as in the protocol. Hence tran-
scripts generated by P̃O and SimO are indistinguishable to the adversary A. Therefore, we
have∣∣∣Pr[AO(1λ, P̃O(X,W, chall = 0)) = 1]| = |Pr[AO(1λ, SimO(X, chall = 0)) = 1]

∣∣∣ .
To conclude the proof, it suffices to show that the difference between the probabilities that

the adversary A outputs 1 for the other case, chall = 1, is also bounded by Q
2λ .

We use a hybrid argument by introducing a series of simulators Sim0 = P̃, . . . , Sim4 =
Sim, gradually changing from the honest prover P̃ to Sim, to show that they are indistin-
guishable with overwhelming probability. We fix an adversary A, (X,W) ∈ Rsig, and for
each i ∈ {0, 1, . . . , 4}, we denote by Ei the event that AO(1λ, SimO

i (X, chall = 1)) = 1.

• Sim1 is identical toSim0 except that insteadof usingExpand to generate s′, r ′, {bitsi }i∈[N ],
the simulator generates these by sampling uniformly at random from the corresponding
domains. This does not change the view of A, unless the adversary queries O on input
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(Expand ‖ seed). Since seed has λ bits of min-entropy and because it is information-
theoretically hidden from A, the probability that A queries O on this input is bounded

by QExpand/2λ. That is, |Pr[E1] − Pr[E0]| ≤ QExpand

2λ .
• Sim2 is identical to Sim2 except that all the commitments Ci for i ∈ [N ] \ {I } are

generated uniformly at random. This does not change the view ofA, unless the adversary
queries O on input (Com ‖ Ti ‖ cti ‖ bitsi ) for any i ∈ [N ]\{I }, where Ti = s′�Xi

and cti = r ′�pk(−i�Mct). Since for any i ∈ [N ] \ {I } the string bitsi has λ bits of
min-entropy and because it is information-theoretically hidden from A, the probability
that A queries O on input (Com ‖ Ti ‖ cti ‖ bitsi ) is bounded by QCom/2λ. That is,
|Pr[E2] − Pr[E1]| ≤ QCom

2λ .
• Sim3 is identical to Sim3 except that instead of computing s′′, r ′′ as s′ + s, r ′ + r

(conditioned on them respectively lying in S3, S3, due to non-aborting transcripts), the
simulator generates these two values by sampling uniformly at random from S3, S3,
respectively. Both the distributions are uniform over S3 and S3. Therefore, we have
|Pr[E3] − Pr[E2]| = 0.
• Sim4 = Sim is identical to Sim4 except that the simulator uses I = 1 instead of the value

I in the witness W. These two simulators are indistinguishable because the Merkle tree
is index-hiding (by Lemma A.2). Precisely, we have |Pr[E4] − Pr[E3]| = 0.

Collecting the bounds, we obtain the bound in the statement. ��

6.2 From base tomain traceable OR sigma protocol

In this section, compile �base
� to make the soundness error negligibly small. This is straight-

forward if we run the OR sigma protocol in parallel λ-times. However, we show how to
do much better by incorporating the three optimizations developed in [14] explained in the
technical overview. Our main traceable OR sigma protocol, denote by �tOR

� , is detailed in
Fig. 4.
Unbalanced Challenge Space Given the construction �base

� , one can observe that the
response produced by the prover by running P ′2 when the challenge is 1 is larger than the
response produced when the challenge is 0, which is a single seed of λ bits. Concretely, the
response for the challenge chall = 1 consists of a Merkle tree path, two elements in S3, S3
respectively, and a λ bit string. We leverage this fact by preparing an unbalanced challenge
space CM,K , where each element in CM,K is a string containing K 1’s and M − K 0’s. We
chose K � M to chose more 0’s, while satisfying

(M
K

) ≥ 2λ for negligible soundness error.
Seed Trees The seed tree described in Sect.A.2 allows the prover to generate all seeds seed
by using a single seed seedroot, and reveal parts of the tree according to the challenge. A
smaller signature size follows directly from this approach.
Adding Salt We prefix a salt and the session identifier, i.e. (salt ‖ i), to the random oracle
when used within the i-th parallel execution of �base

� . In particular, throughout such execu-
tion, Oi (·) = O(salt ‖ i ‖ ·) is used. The salt is used as a prefix also within the construction
of Merkle trees and seed trees. Adding salt benefits the protocol in having a tighter reduction
and resisting multi-target attacks, such as those in [41]. The approach appears to make no
difference in a sigma protocol but it is quite beneficial for a group (ring) signature scheme
after we apply the Fiat-Shamir transform. Roughly, in the anonymity game (Def. 3.17) each
oracleO query made by the adversary will only give useful information to at most one chal-
lenge signature due to distinct prefix salts. In contrast, without salts an oracle query ofO can
give useful information to each challenge signature.
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Fig. 4 Main traceable OR sigma protocol �tOR
� = (P = (P1, P2), V = (V1, V2)) for the relation Rsig

built on the the base traceable OR sigma protocol �base
� = (P ′ = (P ′1, P ′2), V ′ = (V ′1, V ′2)) in Fig. 3. The

challenge space is defined as CM,K := {c ∈ {0, 1}M | ‖c‖1 = K }. Both the seed tree and �base
� have access

to salted random oracles derived fromO
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Theorem 6.3 The sigma protocol�tOR
� has correctness with abort rate (1−δKx δKy ), highmin-

entropy, and relaxed special soundness for the relations Rsig and R̃′sig, where the relations
are identical to those used in Theorem 6.1.

Proof As a starting remark, we note that in the following lines we will use the notation of
Fig. 4.
Correctness and abort rate. If the execution of �tOR

� does not abort, then the verifier will
accept with probability 1 due to the correctness of �base

� and SeedTree. We recall that in the
case of challenge equal to 1 the execution of �base

� will abort with probability (1 − δxδy).
Since the challenge c, sampled from CM,K , is of Hamming weight K , the abort rate of �tOR

�

is (1− δKx δKy ).
High min-entropy. Since a random salt of length 2λ is included in the commitment com, it
has at least 2λ bits of min-entropy.
Relaxed special Soundness. The proof is similar to the one for the relaxed special sound-
ness of �base

� . Let (com, chall = c, resp) (com, chall′ = c′, resp′) be two accepting
transcripts for the same statement. Without loss of generality, say c j = 0, c′j = 1,

i.e. the j th components of c and c′ are different. By computing {respi }i s.t. ci=0 ←
RecoverLeavesO

′
(seedsinternal, 1M ⊕ c), the extraction algorithm gets resp j . In this way,

two valid transcripts (com j , 0, resp j ) and (com j , 1, resp′j ) for �base
� have been obtained,

and the extractor of �base
� in Theorem 6.1 can be invoked to extract the witness for the

relation R̃sig. To be concrete, in case a witness W = (x1, x2) is extracted by the extractor of
Theorem 6.1 such that it forms a collision in the random oracle O j = O(salt ‖ j ‖ ·), then
the extractor appends x1 and x2 by either salt ‖ j ‖ Coll or salt ‖ j ‖ Com to produce a
collision in O. ��
Theorem 6.4 The sigma protocol �tOR

� has non-abort special zero-knowledge. Precisely,
there exists a PPT simulator SimO with access to a random oracle O such that, for any
statement-witness pair (X,W) ∈ Rsig, chall ∈ CM,K and any computationally-unbounded
adversary A that makes at most Q queries of the form (salt ‖ ·) to the random oracle O,
where salt is the salt value included in the transcript returned by P̃ or Sim, we have

∣∣∣Pr[AO(1λ, P̃O(X,W, chall)) = 1] − Pr[AO(1λ, SimO(X, chall)) = 1]
∣∣∣ ≤ Q

2λ
,

where P̃ is a non-aborting prover P = (P1, P2) run on (X,W)with a challenge fixed to chall.

Proof The PPT simulator SimO(X, chall) for the main sigma protocol �tOR
� proceeds as in

Fig. 5, where the simulator used for the base sigma protocol �base
� in Theorem 6.2, denoted

by Sim′ is a subroutine. Say the adversary makes Qi queries to the random oracle of the form
O(salt ‖ i ‖ ·) for i ∈ {0} ∪ [M]. We have �M

0 Qi ≤ Q.
We use a hybrid argument by introducing a sequence of simulators Sim0, · · · , Sim2 that

gradually change from Sim0 = P̃ to Sim2 = Sim. We fix an adversaryA, (X,W) ∈ Rsig, and
for each i ∈ {0, 1, 2}, we denote by Ei the event AO(1λ, SimO

i (X, chall)) = 1.

• Sim1 is identical to Sim0, except that, rather than using a SeedTree with root
seedroot to generate seedsinternal and {seedi }i s.t. ci=0, the simulator instead runs
SimulateSeeds(1M ⊕ c) to obtain seedsinternal, and then {seedi }i s.t. ci=0 via
RecoverLeaves(seedsinternal, 1M ⊕ c). The simulator picks the remaining seeds (for the
challenge components ci equal to 1) {seedi }i s.t. ci=1 uniformly at random from {0, 1}λ.
Lemma A.3 for the bit string 1M ⊕ c implies that the distributions of seedsinternal and
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Fig. 5 Zero-knowledge simulator Sim for the main sigma protocol �tOR
�

{seedi }i s.t. ci=1 generated in this way rather than as in the honest protocol can be distin-
guished with an advantage not greater than Q0

2λ . That is, |Pr[E1] − Pr[E0]| ≤ Q0
2λ .

• Sim2 is identical to Sim1 except that the simulator uses the base simulator subroutine
Sim′ to compute, for each i ∈ [M] such that ci = 1, comi and respi on randomness bitsi
by seedi

$← {0, 1}λ. By Theorem 6.2, the distinguishing advantage of the adversary is

bounded by Qi
2λ for each i ∈ [M] such that ci = 1. That is, |Pr[E3] − Pr[E2]| ≤ �M

1 Qi

2λ .

Collecting the bounds, we obtain the bound in the statement. ��

6.3 Base sigma protocol for the“Tight” relation RTightsig

In this section, we show how to slightly tweak our base sigma protocol for the relation Rsig

to obtain a sigma protocol for the “tight” relation RTight
sig (see Sect. 4.3). This can then be

used to construct the desired NIZK for RTight
sig required for our tightly secure accountable ring

signature construction (see the full version of this paper).
As explained in the technical overview, we can use the sigma protocol for Rsig along with

the sequential OR-proof [51] to construct a sigma protocol for the “tight” relation RTight
sig .

Unfortunately, this approach requires to double the proof size. Instead, we present a small

tweak to our sigma protocol for Rsig to directly support statements in RTight
sig . Concretely, we

use the same Merkle tree to commit to the 2N instances {X ( j)
i }(i, j)∈[N ]×[2] and for each X (1)

i

and X (2)
i , we encrypt the same index i . The main observation is that when the prover opens

to the challenge bit 1 (which is the only case that depends on the witness), the path does no
leak which X (1)

i and X (2)
i it opened to, and hence hides b ∈ [2].

Notice the only increase in the size of the response is due to the path. Since the accumulated
commitment only grows from N to 2N , the overhead in the size of the path is merely 2λ bits.
By using the unbalanced challenge space CM,K for the optimized parallel repetition, which
consists of M-bit strings of Hamming weight K , the additional cost is only 2Kλ where we
typically set K to be a small constant (e.g., K ≤ 20 for our concrete instantiation). This is
much more efficient than the generic approach that doubles the proof size.
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Formally, the sigma protocol for the “tight” relation RTight
sig , denoted as�baseTi

� , is provided
in Fig. 6. We can turn it into a full-fledged sigma protocol with negligible soundness error
by applying exactly the same argument in Sect. 6.1. We omit the proof of correctness and
security for�baseTi

� as they are almost identical to those of our sigma protocol�base
� for Rsig.

7 Multi-proof online extractable NIZK from sigma protocol5tOR
6

In this section, we show that applying the Fiat-Shamir transform to our traceable OR sigma
protocol�tOR

� from the previous section results in a multi-proof online extractable NIZKwith
labels �NIZK,lbl. The construction of our �NIZK,lbl for the relation Rsig is provide in Fig. 7. 9

We assume the output of O(FS ‖ ·) is an M-bit string of Hamming weight K , i.e., the image
is the challenge set CM,K .

Correctness of �NIZK,lbl for the relation Rsig follows directly from the correctness of
the underlying traceable OR sigma protocol �tOR

� . We show in Theorems. 7.1 and 7.4 that
�NIZK,lbl is multi-proof online extractable and zero-knowledge. We highlight that while we
show special soundness for �tOR

� with respect to the relaxed relation R̃′sig (see Theorem 6.1),

�NIZK,lbl is multi-proof online extractable with respect to the relaxed relation R̃sig originally
considered in Sect. 4.1 for the generic construction of accountable ring signature. At a high
level, we upper bound the probability that a cheating prover finds a collision in the random
oracle, which was the only difference between R̃sig and R̃′sig. This subtle difference makes
the resulting NIZK more handy to use as a building block, since we can ignore the edge case
where the extractor accidentally extracts a collision in the random oracle. Below, we provide
the proof of the multi-proof online extractability.

Theorem 7.1 The NIZK with labels �NIZK,lbl in Fig.7 is multi-proof online extractable for the
family of relations Rsig and R̃sig considered in Sect. 4.1, where Rsig was formally redefined
using notations related to group actions in Sect. 6.1 and R̃sig is formally redefined as follows:

R̃sig =
{
(({Xi }i∈[N ],pk, ct),W)

∣∣∣∣
W = (I , s, r) ∈ [N ] × (S2 + S3)× (S2 + S3)

∧ XI = s�X0 ∧ ct = Enc(pk, I ; r)
}

.

More precisely, for any (possibly computationally-unbounded) adversary A making at most
Q queries to the random oracle and T queries to the extract oracle, we have

AdvOE�NIZK,lbl
(A) ≤ T · (Q2/22λ−2 + (M · Q)/2λ + 1/|CM,K |

)
,

where CM,K is the challenge space (or equivalently the output space of O(FS ‖ cdot)).

Proof We begin the proof by providing the description of the online extractorOnlineExtract.
Below, it is given as input (lbl,X, π, LO), where π is guaranteed to be valid by definition.

1. It parses ({Xi }i∈[N ],pk, ct) ← X, (com, chall, resp) ← π , ((salt, com1, · · · , comM ),

c = (c1, · · · , cM )) ← (com, chall), (seedsinternal, {resp j } j s.t. c j=1) ← resp, and
root j ← com j for j ∈ [M].10

9 An astute reader may notice that the prover is only expected polynomial time. We can always assign an
upper bound on the runtime of the prover, but did not do so for better readability. In practice, for concrete
choices of the parameter, the number of repetition never exceeds, say 10.
10 Throughout the proof, we use overlines for (com, chall, resp) to indicate that it is a transcript of of �tOR

� .
We use respi without overlines to indicate elements of resp.

123



Group signatures and more from isogenies and lattices... 2181

Fig. 6 Construction of the base traceable OR sigma protocol �baseTi
� = (P ′ = (P ′1, P ′2), V ′ = (V ′1, V ′2)) for

the “tight” relation RTight
sig . The box indicates the difference between the “non-tight” relation Rsig. Informally,

O(Expand ‖ ·) and O(Com ‖ ·) are a PRG and a commitment scheme instantiated by the random oracle,
respectively
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Fig. 7 A multi-proof online extractable NIZK with labels �NIZK,lbl for the relation Rsig obtained by applying

the Fiat-Shamir transform to the traceable OR sigma protocol �tOR
� = (P = (P1, P2), V = (V1, V2)) in

Fig. 4

2. For j ∈ [M] such that c j = 1, it proceeds as follows:

(a) It parses (s′′j , r ′′j ,path j )← resp j .

(b) For every
(
(salt ‖ j ‖ Expand ‖ seed), (s′, r ′,bits1, · · · ,bitsN )

) ∈ LO , where
salt ‖ j ‖ Expand is fixed, it proceeds as follows:
(i) It sets (s, r) = (s′′j − s′, r ′′j − r ′) and checks if (s, r) ∈ (S2 + S3)× (S2 + S3).
(ii) It then checks if there exists I ∈ [N ] such that XI = s�X0 and ct =

Enc(pk, I ; r).
(iii) If all the check above passes, it returnsW = (I , s, r).

3. If it finds no witness W of the above form, then it returnsW = ⊥.
We analyze the probability of A winning the multi-proof online extractability game with

the above online extractor OnlineExtract. Below, P ′ and V ′ are the prover and verifier of the
base traceable OR sigma protocol �base

� in Fig. 3.

• We say a tuple inputbase = (X, salt, j, com, chall, resp) is valid if the following prop-
erties hold:

– chall = 1;
– V ′O(salt‖ j‖·)

2 (com, chall, resp) outputs accept (i.e., it is a valid transcript for �base
�

with challenge 1);
– there exists (seed, s′, r ′,bits1, · · · ,bitsN ) such that

(
(salt ‖ j ‖ Expand ‖

seed), (s′, r ′,bits1, · · · ,bitsN )
) ∈ LO , and if we execute P ′O(salt‖ j‖·)

1 with random-

ness seed, it produces com. Here, we use the fact that P ′O(salt‖ j‖·)
1 can be executed

without the witness. By correctness of �base
� , this implies that (com, 0, seed) is a

valid transcript.

• We say a tuple inputbase = (X, salt, j, com, chall, resp) is invalid if chall = 1,

V ′O(salt‖ j‖·)
2 (com, chall, resp) outputs accept, but it is not valid.

Observe that if inputbase is valid, then the online extractor can recover a valid transcript
(com, 0, seed) from inputbase. Then, it can (informally) extract a witness by combining
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it with (com, 1, resp) and using the extractor from �base
� constructed in Theorem 6.1. In

contrast, if inputbase is invalid, then intuitively, no adversary would be able to prepare a
valid response resp = seed for the challenge chall = 0 since LO (i.e., the random oracle
query the adversary makes) does not contain a valid response. However, to make this claim
formal, we need to also take into account the fact that the adversary may learn non-trivial
information about resp = seed via the proof output by the prove query. That is, when the
challenger runs PO, the adversary may learn non-trivial input/output pairs without directly
querying the random oracle itself. In this case, even though no useful information is stored
in LO , the adversary may still be able to forge a proof.

We formally show in Lem. 7.2 below that if an adversaryA submits an extract query on a
valid input (lbl,X, π), then a valid inputbase must be included in π (i.e., it cannot consist of
inputbase that are all invalid). This allows us to argue that the online extractor will be able to
recover two valid transcripts with overwhelming probability, which then further allows the
online extractor to extract the witness by running the extractor for the special soundness of
the base traceable OR sigma protocol �base

� .

Lemma 7.2 Assume an adversaryA submits a total of T extract queries of the form {(lblk, Xk,
πk)}k∈[T ], where everyπk is a valid proof including the same salt and satisfies (lblk, Xk, πk) /∈
LP . Let {(comk, j , challk, j , respk, j )} j∈[M] be the transcript of the base traceable OR sigma

protocol �base
� that the verification algorithm reconstructs when verifying πk (see Line 7

of Verification VO
2 in Fig.4). Then, with probability at least 1 − T · (Qsalt/22λ−1 + (M ·

Qsalt)/2λ+1/|CM,K |
)
, for all k ∈ T there exists at least one j ∈ [M] such that inputbase =

(Xk, salt, j, comk, j , challk, j = 1, respk, j ) is valid.

Proof For any k ∈ [T ], let us redefine πk = (com, chall, resp), (com, chall) =
((salt, com1, · · · , comM ), c = (c1, · · · , cM )) where c = O(FS ‖ lbl ‖ X ‖ com), resp =
(seedsinternal, {resp j } j s.t. c j=1). Namely, we omit the subscript k for better readability. We

consider two cases: (1) there exists (lbl,X, π ′) ∈ LP such that π ′ = (com, chall, resp′) and
resp′ �= resp and (2) no such entry in LP exists.

We consider the first case (1). This corresponds to the case where A reuses the proof π ′
obtained through the prove query by simplymodifying the response.We claim that this cannot
happenwith overwhelming probability. Let resp′ = (seed′internal, {resp′j } j s.t. c j=1). It is clear
if seed′internal is different from seedsinternal, then A finds a collision in the random oracle.
Since we use a seed tree to generate the randomness used in each base sigma protocol, we
can very loosely upper bound the probability ofA outputting such transcript for any k ∈ [T ]
by Qsalt/22λ. Similarly, consider resp′j �= resp j for some j such that c j = 1. Then, it either
finds a collision in O(Coll ‖ ·) (used by the Merkle tree) or O(Com ‖ ·). We can again
very loosely upper bound the probability of A outputting such transcript for any k ∈ [T ] by
Qsalt/22λ. Thus, case (1) occurs with probability at most Qsalt/22λ−1.

We next consider the second case (2). If com included in π is the same as π ′, then chall is
the same challenge included in π since the challenge is generated asO(FS ‖ lbl ‖ X ‖ com).
However, this results in a tuple that falls in the first case (1). Therefore, there exists no π ′
in LP that contains the same com as π . This, in particular, implies that the output chall←
O(FS ‖ lbl ‖ X ‖ com) is distributed uniform random from the view of A before it makes
the hash query.

Now, for the sake of contradiction, we assume inputbase, j = (X, salt, j, com j , c j , resp j )

is invalid for all j ∈ [M] such that c j = 1. Let LOP be a list that contains all the inputs/outputs
of the random oracle queries ProveO makes when the challenger answers the prove query
made by A. We prove the following corollary.
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Corollary 7.3 For any j∗ ∈ [M], if inputbase, j∗ is invalid, then either of the following holds:
• there exists no tuple (s′, r ′, bits1, · · · , bitsN , seed) and j ′ ∈ [M] such that

(
(salt ‖ j ′ ‖

Expand ‖ seed), (s′, r ′, bits1, · · · , bitsN )
) ∈ LOP , but if we execute P ′O(salt‖ j ′‖·)

1 with
randomness seed, it produces com j∗ ;
• there exists such a tuple but seed retains λ-bits of min-entropy from the view ofA except

with probability at most (MQsalt)/2λ.

Proof Assume such an entry is found in LOP . This corresponds to the caseA is reusing com j∗
thatwas included in a proofπ obtained through the prove query. Let {(com′j , c′j , resp′j )} j∈[M]
be the transcript of the base traceable OR sigma protocol�base

� that the verification algorithm
reconstructs from such π (see Line 7 of Verification VO

2 in Fig. 4), where com′j ′ = com j∗ .
Our current goal is to prove that c′j ′ = 1 (i.e., seed was not used as a response). Since
com′j ′ and com j∗ are roots of a Merkle tree and the indices j ′ and j∗ are used as prefix to
the hash when constructing the roots, respectively, the probability of A outputting com j∗
such that j ′ �= j∗ is upper bounded by ((M − 1)Qsalt)/2λ. Below, we assume j ′ = j∗.
Recall by definition of the online extractability game (see Def. 3.10),A runs the verification
algorithm to check if π is valid. Therefore, if inputbase, j∗ is invalid, then we have c′j ′ = 1.

Otherwise, there must exist an entry
(
(salt ‖ j∗ ‖ Expand ‖ seed), (s′, r ′,bits1, · · · ,

bitsN )
) ∈ LO , which contradicts that inputbase, j∗ is invalid. This further implies that resp′j ′

does not include seed. Then, by Lem. A.3 regarding the seed tree, seed that was used to
construct com j ′ = com j∗ is statistically hidden to the adversary with all but probability
Qsalt/2λ. The proof is completed by collecting all the bounds. ��

By Lem. 7.3, if inputbase, j is invalid, then A cannot prepare a valid response for the
challenge c j = 0 with all but probability at most (MQsalt)/2λ. This is because such response
is either not recorded in both LO and LOP , or it is recorded in LOP but the seed retains
λ-bits of min-entropy from the view of A except with probability (MQsalt)/2λ. Moreover,
since chall is statistically hidden to A before it queries the random oracle, the probability
that chall coincides with challenges for whichA can open to is at most 1− 1/|CM,K |, where
recall CM,K is the challenge space (or equivalently the output space of O(FS ‖ ·)).

Taking the union bound and collecting all the bounds together, at least one of the inputbase
must be valid with the probability stated in the statement. This completes the proof of the
lemma. ��

We are now prepared to analyze the probability that A wins the multi-proof online
extractability game with the aforementioned online extractor OnlineExtract. By Lem. 7.2, if
A makes at most T extract queries, then by a simple union bound and using the inequality∑

i Qsalti ≤ Q, with probability at least 1 − T · ((2Q)/22λ + (M · Q)/2λ + 1/|CM,K |
)
,

all the inputbase included in the queried proof are valid. Then, by the definition of valid and
the description of OnlineExtract, OnlineExtract is able to extract two valid transcripts for
all T proofs queried by A. Recalling Thms. 6.1 and 6.3, OnlineExtract either succeeds in
extracting a witnessW = (I , s, r) ∈ [N ]×(S2+ S3)×(S2+ S3) or a witness that consists of
a collision inO(salt ‖ j ‖ Coll ‖ ·) orO(salt ‖ j ‖ Com ‖ ·) for some j ∈ [M]. Hence, with
all but probability Q2/22λ, OnlineExtract succeeds in extracting a witness W = (I , s, r) as
desired, conditioned on all the inputbase included in the queried proof are valid. Collecting
the bounds, we arrive at our statement. ��
Theorem 7.4 TheNIZKwith labels�NIZK,lbl in Fig.7 is zero-knowledge. Precisely, there exists
a PPT simulator Sim = (Sim0, Sim1) such that, for any statement-witness pair (X,W) ∈ Rsig
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Fig. 8 Zero-knowledge simulator Sim = (Sim0, Sim1) for �NIZK,lbl

Fig. 9 Intermediate simulator
Simint , where P = (P1, P2) is
the prover of the traceable OR
sigma protocol �tOR

� in Fig. 4

and any computationally-unbounded adversary A that makes at most Q1 queries to O or
Sim0, and Q2 queries to Prove or S, we have

AdvZK�NIZK,lbl
(A) =

∣∣∣Pr
[
AO,Prove(1λ) = 1

]
− Pr

[
ASim0,S(1λ) = 1

]∣∣∣

≤ Q2 · (Q1 + Q2)

22λ
+ Q1

2λ
.

Proof To prove the zero-knowledge property of �NIZK,lbl = (ProveO,VerifyO), we define a
zero-knowledge simulator Sim = (Sim0, Sim1) in Fig. 8, where Sim0 and Sim1 share states,
including a list L which is initially empty. At a high level, Sim0 simulates the random oracle
O in an on-the-fly manner but replaces certain queries for consistency with Sim1. On the
other hand, Sim1 simulates the prover oracle using the simulator from the underlying sigma
protocol, which we denote here by Sim� (see Theorem 6.4), as a subroutine. Specifically,
Sim1 is given a valid statement X = ({Xi }i∈[N ],pk, ct), and samples a random challenge
chall from the challenge space CM,K , which is also the output space of O(FS ‖ ·). It then
runs Sim� on challenge chall by providing it oracle access to Sim0, and updates the list L
accordingly. In Fig. 8, we denote by Dx the distribution of O(x), where the probability is
taken over the random choice of the random oracleO. Without loss of generality, we assume
Dx to be efficiently sampleable.

To show the indistinguishability of (O, Prove) and (Sim0,S), we use a hybrid argument
by introducing an intermediate pair of simulators (Sim0, Simint ), where Simint is defined in
Fig. 9. Let Sint , analog to Prove and S, be an oracle that on input (lbl,X,W) returns ⊥ if
lbl /∈ L ∨ (X,W) /∈ Rsig and otherwise returns Simint (lbl,X,W).

Suppose A makes Q1 queries to the oracles O or Sim0, and Q2 queries to the oracles
Prove,Sint , orS. For each i ∈ {1, 2, 3},wedenote byEi the event thatA returns 1 respectively.
We analyze the differences by defining three games as follows:

Game1 : This is the real zero-knowledge game where A is given access to O and Prove.
Game2 : The game is modified to provideA access to Sim0 and Sint instead. The view of

A is identical to the previous game unless Simint outputs ⊥ in Line 4. Roughly,

123



2186 W. Beullens et al.

this occurs when the reprogramming of the random oracle fails due to the input
being already defined. By Theorem 6.3, com has 2λ bits of min-entropy. Since at
most Q1 + Q2 queries of the form (FS ‖ lbl ‖ X ‖ com) are made in this game,
we have |Pr[E1] − Pr[E2]| ≤ Q2·(Q1+Q2)

22λ
.

Game3 : The game is modified to provide A access to Sim0 and S instead. The only
difference is that rather than computing honestly via (P1, P2) from the traceable
OR sigma protocol �tOR

� , the simulator Sim1 simulates these using the simulator
Sim� provided by �tOR

� .
Let salti represent the salt that Simint or Sim1 samples on its i-th invocation.
For i ∈ [Q2], let Q′i be the number of queries the adversary makes to oracle
Sim0 of the form (salti ‖ ·). By Theorem 6.4, the advantage of the adversary in

distinguishing Simint or Sim1 is bounded by
Q′i
2λ for each i ∈ [Q2]. Therefore,

|Pr[E2] − Pr[E3]| ≤
∑Q2

1 Q′i
2λ ≤ Q1

2λ

Collecting the bounds, we obtain the bound in the statement. ��

8 Instantiations

We instantiate the building blocks required for our generic construction of an accountable
ring signature scheme presented in Sect. 4 via isogenies based on CSIDH group action and
lattices.

8.1 Instantiation from isogenies

We instantiate a group-action-based HIG and PKE, and the corresponding NIZKs for the rela-
tions Rsig and Ropen based on the CSIDHparadigm. In particular we assume that the structure
of the ideal class group C�(O) is known, and cyclic of odd order n, so that it is isomorphic
to Zn . Given a generator g of C�(O), Zn acts freely and transitively on E��p(O, π) via the
group action � : (a, E) �→ ga ∗ E , which we can compute efficiently. Note that in case the
class group structure is not known (e.g., at higher security levels where computing the class
group is currently not feasible.) we can still instantiate all the building blocks using rejection
sampling à la SeaSign.
Group-Action-Based HIG. We instantiate the group-action-based HIG defined by the algo-
rithms (RelSetup, IGen) as follows. The output of RelSetup describes a setup for a CSIDH
group action � : C�(O)× E��p(O, π)→ E��p(O, π), sets G = S1 = S2 = C�(O), δ = 1,
X = E��p(O, π), and X0 = E0, where E0 is the elliptic curve E0 : y2 = x3 + x over
Fp . The output of IGen is then (E0, a�E0), where a is uniformly sampled from C�(O). Then
the properties of Def. 5.1 are easily verified. In particular, the security of the hard instance
generator is equivalent to the hardness of GAIP for CSIDH. Moreover, it is not difficult to see
that the group-action-based HIG is also a hard multi-instance generator based on the same
assumption. Concretely, given one instance (E0, E), the reduction can rerandomize this arbi-
trarily many times to obtain fresh statements (E0, b�E), where b is uniformly sampled from
C�(O). If an adversary succeeds in breaking any of these instances, then the reduction can
subtract b from it to solve its original instance.
Group-Action-Based PKE. We can define an ElGamal-like public-key encryption scheme
�GA-PKE = (Setup, KeyGen, Enc,Dec) based on the CSIDH group action, as follows. Note
that the decryption algorithm works by enumerating the message space, so the PKE is only
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efficient when the message spaceM (which is a subset of C�(O)) is polynomially large. This
relaxed notion of decryption suffices for our ARS generic construction.

Setup(1λ)→ pp: On input a security parameter 1λ, it returns the setup for a CSIDH
group action � : C�(O) × E��p(O, π) → E��p(O, π), and
sets G = GM = S1 = S2 = C�(O),Y = E��p(O, π) ×
E��p(O, π), δy = 1. The “message” group action �M : G×Y →
Y is defined as (a, (E1, E2)) �→ (E1, a�E2) (i.e., �M acts on the
second component only).

KeyGen(pp)→ (pk, sk): On input a public parameter pp, it returns a secret key sk sampled
uniformly from C�(O), and a public key pk = (�pk, Ypk), where
�pk : G × Y → Y is defined as (a, (E1, E2)) �→ (a�E1, a�E2)

(i.e., �pk acts on both components), and Ypk = (E0, sk�E0).
Enc(pk,M; r)→ ct: On input a public key pk = (�pk, Ypk) and a message M ∈M, it

returns the ciphertext ct = (M�M(r�pkYpk)) ∈ Y , where r ← G.
Dec(sk, ct)→ M: On input a secret key sk and a ciphertext ct = (ct1, ct2), the

decryption algorithm tries all messages M ∈ M until it finds a
message M such that M�ct1 = −sk�ct2. If such a message exists,
it is unique, and the algorithm outputs it; otherwise, ⊥ is output.

It is not difficult to verify that the above-defined �GA-PKE is correct (with probability 1).
The decryption scheme of �GA-PKE differs from that of ElGamal since it is not possible to
divide out sk�ct1 from ct2. Therefore, retrieving M from ct1, ct2, sk requires the resolution
of an instance of GAIPwith input (sk�ct1, ct2). Dec solves this problem by a brute force over
the message space M. In case M is polynomially large, then we have efficient decryption
as desired.
Multi-challengeIND-CPA Security. The scheme is multi-challenge IND-CPA secure based on
the dCSIDH assumption. Since�GA-PKE is an ElGamal-like encryption scheme in the CSIDH
setting — where each exponentiation is replaced by a group action — for the security proof
it is sufficient to adapt the usual proof for the group-based ElGamal encryption scheme. Note
that the the reduction loses a factor 1/Qct, where Qct is the number of challenge ciphertext
the adversary observes. This is the only reason why we do not achieve tight security for our
accountable ring signature and group signature.

We point out that by ignoring the PKE, we obtain a ring signature identical to Beullens et
al. [14]. Thus we obtain the first tightly secure and efficient isogeny-based ring signature in
this work.
(R′,KR′)-correctness. In the isogeny setting, it is not needed to relax the key relation
(contrary to our lattice instantiation where some relaxation is necessary in order to get
an efficient opening proof). We can simply set KR′ = KR = {(E, sk) | sk�E0 = E} ⊆
E��p(O, π) × C�. Similarly, since S2 = S1, there is no relaxation in the encryption ran-
domness. Therefore (R′,KR′)-correctness is equivalent to the standard correctness property
(with probability 1), which is satisfied by our PKE.
Multi-Proof Online Extractable NIZKwith Labels�NIZK,lbl. Using the group-action-based
HIG and PKE, we can instantiate �NIZK,lbl for the signing relation Rsig (see Sect. 4.1) as
explained in Sects. 6 and 7.
Statistically Sound NIZK without Labels �NIZK. The last ingredient for our ARS is a NIZK
for the opening relation Ropen, which in our instantiation is

Ropen = {((pk, ct = (E1, E2),M), sk) | sk�E0 = pk ∧M�sk�E1 = E2} .
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A sigma protocol for this relation was introduced in [43, Sect. 3.2]. We can then turn this
sigma protocol into an NIZK by applying the Fiat-Shamir transform. (Note that we do not
need this NIZK to be online-extractable.)
Concrete Instantiation for Tab. 1. For our isogeny-based instantiation, we chose an HIG
and a PKE based on the CSIDH-512 group action. The structure of this class group has been
computed [15], which allows formore efficient proofs.We chose the challenge space as string
of length M = 855 with Hamming weight K = 19. Most of the signature is independent
of N , and contains a fixed number of curves and class group elements as well as some
overhead from the generic construction such as a hash value, the internal nodes in the seed
tree, and commitment randomness to open the commitments. The only reason the signature
size increases with N is that the signature contains a fixed amount of paths in a Merkle tree
of depth log2 N . This makes for a very mild dependence on N .

8.2 Instantiation from lattices

We instantiate a group-action-based HIG and PKE, and the corresponding NIZKs for the rela-
tions Rsig and Ropen based on lattices under the MSIS and MLWE assumptions. The choices
for the integer n, modulus q , and ring Rq are provided in Sect. 3.6.
Group-Action-Based HIG. By Def. 5.1, it suffices to define the public parameter pp1 =
(G, S1, S2, δx , X0,X , �) generated by RelSetup and to check that the output of IGen defines
a hard relation. The public parameters pp are defined as follows:

• (G,X ) = (R�
q × Rk

q , R
k
q), where X0 is an arbitrary element in X ,

• For b ∈ {0, 1}, Sb = {(s, z) ∈ G|‖s‖∞, ‖e‖∞ ≤ Bb}, where B1, B2 are positive integers
such that B1 < B2 < q ,
• δx =

( 2(B2−B1)+1
2B2+1

)n(k+�),

• The group action � : G×X → X is defined as (s, e)�w = (As+z)+w, whereA ∈ Rk×�
q

is a fixed matrix sampled uniformly by RelSetup.

We define S3 to be a subset of G with coefficients all bounded by B2− B1. It can be checked
that pp satisfies all the conditions in Def. 5.1, where δx follows by simply counting the
points included in S2 and S3. It remains to check that the relation R̃pp = {(b, (s, z))|b =
As + e ∧ (s, e) ∈ S2 + S3} defines a hard relation as defined in Sect. 4.1, where S2 + S3.
Note that if the adversary A is restricted to output a witness (s, e) ∈ S1, then this follows
directly from the MLWEn,q,B1 assumption. For our application, we have to further consider
the scenario whereAmay output a witness (s, e) outside of S1. We need to consider this case
since our online extractor for the NIZK can only extract a witness in the relaxed relation R̃pp
rather than Rpp.

The hardness of our group-action-based HIG follows naturally from the MSISn,q,k,�,2B2
and sMLWEn,q,k,�,B1 assumptions. We only focus on an adversary A that outputs a witness
(s, e) outside of S1, since the other case simply follows from MLWE as we seen above. Let
us construct an adversary B against the MSISn,q,k,�,2B2 problem by using A as a subroutine.
B, given A as input, samples a random (s, e) ← S1, sets b = As + e and invokes A on
input pp,b, where pp includes A. When A outputs (s′, e′), B submits (s + s′, e + e′) as
its solution. By assumption, ‖s + s′‖∞, ‖e + e′‖∞ ≤ B1 + B2 + B3 = 2B2 and they are
non-zero. Therefore, B breaks the MSISn,q,k,�,2B2 problem as desired.

Finally, the same proof shows that our group-action-based HIG is a hard multi-instance
generator based on the same assumptions.
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Group-Action-Based PKE. We use a PKE scheme based on the Lindner-Peikert framework
[73]. We first explain the public parameters pp2 = (G,GT,Y, S1, S2, δy, DY , �M,M) gen-
erated by PKE.Setup.11

• (G,GT,Y) = (Rk
q × R�

q × Rq , Rq , Rk
q × Rq),

• For b ∈ {0, 1}, Sb = {(r, e, e) ∈ G|‖r‖∞, ‖e‖∞, ‖e‖∞ ≤ Bb}, where B1, B2 are
positive integers such that B1 < B2 < q and 4(nk + 1)(2B2 − B1) ≤ q ,

• δy =
( 2(B2−B1)+1

2B2+1
)n(k+�+1),

• DY is a distribution that samples a uniform random (A, s, z) ∈ Rk×� × R�
q × Rk

q and

outputs a group action � : G × Y → Y defined as (r, e, e)�(w, w) = ((A�r + e +
w,b�r+ e + w) and an element Y = (w, w) ∈ Y , where b = As+ z,
• �M : GT × Y → Y is a group action defined as M�M(c, c) = (c, c +M · �q/2�),
• The message space M is a subset of GT = Rq with coefficients in {0, 1}.
We define S3 to be a subset of G with coefficients all bounded by B2 − B1. It can be

checked that pp satisfies the conditions in Def. 5.2, where δy follows by simply counting the
points included in S2 and S3. The remaining algorithms (KeyGen, Enc,Dec) are defined as
follows, where U (B) denotes elements in Rq with infinity norm at most B ∈ N:

KeyGen(pp): It samples a uniform random (A, s, z) ∈ Rk×� ×U (B1)
� ×U (B1)

k and
outputs (pk, sk) = ((�pk, 0), s), where 0 is the zero polynomial in Y
and �pk is a group action defined as (r, e, e)�pk(w, w) = (A�r + e +
w,b�r + e + w), where b = As + z. Note that pk is distributed as a
sample from DY .

Enc(pk,M): On input a public key pk = (�pk, Ypk = 0) and a message M ∈ M, it
samples (r, e, e)← S1 and returns ct = M�M((r, e, e)�pk0) = (A�r+
e,b�r+ e +M · �q/2�) ∈ Y .

Dec(sk, ct)→ M: It parses (c, c)← ct and computes w = c− c�s over Rq . It rounds each
coefficient back to either 0 or �q/2� whichever is closest modulo q and
outputs the polynomial.

Correctness is a consequence of (R′,KR′)-correctness, which we show below, and
decryption efficiency clearly holds as well. We discuss the remaining properties.
Multi-challengeIND-CPA Security. The security follows by a standard proof using dMLWE.
For completeness, we provide the proof: We consider a sequence of games and prove that
the adversary’s advantage only changes negligibly in each adjacent games. The first game
is the original security game. In the second game, we modify the group action �pk included
in the public key to be defined by a random (A,b)← Rk×� × Rk

q . By the dMLWEn,q,k,�,B1
assumption, this game is indistinguishable from the previous game. In the final game, we
sample each ciphertext as ct← Rk × Rq . By the dMLWEn,q,�+1,k,B1 assumption, this game
is indistinguishable from the previous game. Note that we appropriately parse the matrix
A′ ∈ R(�+1)×k

q provided by the challenge as A and b, and query the oracle once for each
ciphertext. Since the challenge bit b is statistically hidden from the adversary, no adversary
has advantage in winning this game. This concludes the proof.

We note that we can prove multi-challenge IND-CPA security while only relying on the
dMLWE assumption with a fixed number of instances (i.e., those that do not rely on the
number of challenge ciphertexts), ifwe can tolerate choosing slightly less efficient parameters.
Specifically, we can use the dual-Regev encryption [56], where A is a tall matrix. When A

11 Note that although we use the same (q, B1, B2) as those used by the group-action-based HIG, they can be
set differently. We only use the same notations for better readability.
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is tall enough, A�r and b�r is distributed statistically close to random under appropriate
choices of parameters owing to the regularity lemma [77]. Hence, we only need the dMLWE
assumption to jump from the first to second game above.
(R′,KR′)− correctnessWedefineR′ andKR′ as follows, where the choice ofR′ coincides
with those considered in Theorem 6.1:

• (R′,KR′) = (S2 + S3,U (2B2 − B1)
� × U (2B2 − B1)

k), where recall S3 is a subset
of G with ring elements whose coefficients are all bounded by B2 − B1. Specifically,
S2 + S3 = {(r, e, e) ∈ G|‖r‖∞, ‖e‖∞, ‖e‖∞ ≤ 2B2 − B1}.

We check that correctness holds even if the ciphertext is encrypted using randomness
(r, e, e) ∈ R′ and a secret key sk = (s, e) ∈ KR′. Let ct = (A�r+ e,b�r+ e+M · �q/2�),
then c− c�s = M · �q/2�+ e+ e�s− z�r. Then, ‖e+ e�s− z�r‖∞ ≤ ‖e‖∞ +‖e�s‖∞ +
‖z�r‖∞ ≤ (2B2 − B1) + 2nk(2B2 − B1)

2 ≤ q/4, where the last inequality follows from
our parameter choice. Thus, M can be correctly decrypted with probability 1.
Multi-Proof Online Extractable NIZKwith Labels�NIZK,lbl. Using the group-action-based
HIG and PKE, we can instantiate�NIZK,lbl for the signing relations Rsig and R′sig (see Sect. 4.1)
as explained in Sects. 6 and 7.
Statistically Sound NIZK without Labels �NIZK. It remains to show how to construct �NIZK
for the opening relations Ropen and R′open. We can rewrite the relation Ropen (see Sect. 4.1)
as follows:

Ropen =
{
((pk = b, ct = (c, c),M), sk = (s, z))

∣∣∣∣
‖s‖∞, ‖e‖∞ ≤ B1 ∧ b = As+ z
∧ ‖c − c�s−M · �q/2�‖∞ ≤ q/4

}
.

Notice we can rewrite the righthand side as
[
A
c�

]

︸ ︷︷ ︸
Ã

s+
[
z
0

]

︸︷︷︸
z̃

=
[

b
c −M · �q/2� + d

]

︸ ︷︷ ︸
b̃

,

where d is some element in Rq such that ‖d‖∞ ≤ q/4. Since d is not secret, we can think d
is included in the statement (pk, ct,M). Then, �NIZK can simply viewed as an NIZK for the
standard MLWE-based statement Ãs + z̃ = b̃, where ‖s‖∞, ‖z̃‖∞ ≤ B1. Notice that such a
statement is implicitly used in�NIZK,lbl for the relation Rsig since this statement is essentially
the group-action-based HIG. Specifically, if we remove all the components regarding the OR
proof and leave the proof regarding the group-action-based HIG from Figs. 3,4 and 7, we
arrive at our desired NIZK. Similarly to �NIZK,lbl for the relation Rsig, we can only prove that
a cheating prover was using a witness (i.e., secret key) satisfying ‖s‖∞, ‖z̃‖∞ ≤ B2 + B3.
This is exactly the KR′ defined above and coincides with the relaxed relation R̃open.

One may wonder if we can construct an NIZK for this standardMLWE relation based on a
sigma protocol with a non-binary challenge set. Although the proof size of �NIZK is already
constant, this may further minimize the proof size of the opening proof. We claim that this
may be difficult. The main reason is that when we use a non-binary challenge space, the
extracted witness (s, z̃) typically comes from a furthered relaxed relation such that not only
they have a larger norm, they are guaranteed to only satisfy Ãs + z̃ = t · b̃ for some short
t ∈ Rq . This relaxation may suffice in some settings but it turns out that it won’t for ours
as we can no longer prove (R′,KR′)-correctness. When restricted to binary challenges, we
can control t to be 1 ∈ Rq .

Remark 8.1 (Bai-Galbraith Optimization [7]) We can apply the Bai-Galbraith optimization
[7] by exploiting the lattice structure. This is a common and simple optimization used in
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various lattice-based interactive protocols based on the Fiat-Shamir with aborts paradigm
[78] that allows to roughly halve the proof size, or signature size when viewing the proof as
a signature, with no additional cost. Intuitively, for MLWE, proving knowledge of a short s
indirectly proves knowledge of a short e since it is uniquely defined as b − As. Therefore,
we can remove the components that are used to explicitly prove that e is short. Since the size
of s and e are about the same in our construction, this allows to almost halve the proof size.
For further details, see for example [7, 14, 42].

Concrete Instantiation for Tab. 1. For the concrete instantiation in Tab. 1, we use M =
1749, K = 16. For the HIG, we chose the parameters according to the parameters used in the
Security Level II variant of the (round 3) NIST submission of theDilithium signature scheme.
Concretely, we use the ring Rq = Zq [X ]/(Xn + 1), with n = 256 and q = 223 − 213 + 1,
and we put l = k = 4, B1 = 2, B2 = 217. These parameters are chosen by the Dilithium
team such that the relevantMLWE and MSIS problems are hard enough to reach NIST SL II.

For the PKE, we use the ring R′q with n = 256 and q ′ ≈ 249, and we put k = l = 8, B1 =
1, B2 ≈ 216.3. The LWE estimator of Albrecht et al. estimates that this MLWE instance
has 141 bits of security [3]. Moreover, the (R′,KR′)-correctness holds, because we have
(2B2− B1)+2nk(2B2− B1)

2 ≤ q/4. For the parameter set without manager accountability,
we only require (R′,KR)-correctness, so we only need (2B2 − B1)+ 2nk(2B2 − B1)B1 ≤
q/4. Therefore, we can choose our parameters as q ′ ≈ 230, l = k = 5, B1 = 1, and
B2 = 215.9 for better signature sizes. The LWE estimator of Albrecht et al. estimates that
thisMLWE instance has also 141 bits of security. In either cases, we use an optimization due
to Bai and Galbraith to reduce the size of the proofs (and therefore the size of the signature).

Similar to the isogeny instantiation, the signature size depends very mildly on N because
N only affects the length of some paths in the signature. Finally, we can use Sect. 6.3 to obtain
a tightly secure scheme. Since K = 16, the overhead compared to the non-tight scheme is a
mere 512B.
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Appendix

A Omitted primitives

A.1 Index-hidingMerkle trees

The definition an index-hidingMerkle tree is taken almost verbatim from [14]. Merkle trees
[79] allow one to hash a list of elements A = (a0, · · · , aN ) into one hash value (often called
the root). At a later point, one can efficiently prove to a third party that an element ai was
included at a certain position in the list A. In the following, we consider a slight modification
of the standard Merkle tree construction, such that one can prove that a single element ai was
included in the tree without revealing its position in the list.
Formally, theMerkle tree technique consists of three algorithms (MerkleTree,getMerklePath,
ReconstructRoot) with access to a common hash function HColl : {0, 1}� → {0, 1}2λ.

• MerkleTree(A) → (root, tree): On input a list of 2k elements A = (a1, · · · , a2k ),
with k ∈ N, it constructs a binary tree of height k with {li = HColl(ai )}i∈[2k ] as its
leaf nodes, and where every internal node h with children hleft and hright equals the
hash digest of a concatenation of its two children. While it is standard to consider the
concatenation hleft ‖ hright, we consider a variation which consists in ordering the two
children according to the lexicographical order (or any other total order on binary strings).
We denote by (hleft, hright)lex this modified concatenation. The algorithm then outputs
the root root of the Merkle tree, as well as a description of the entire tree tree.
• getMerklePath(tree, I ) → path: On input the description of a Merkle tree tree and

an index i ∈ [2k], it outputs the list path, which contains the sibling of li (i.e. a node,
different from li , that has the same parent as li ), as well as the sibling of any ancestor of
li , ordered by decreasing height.
• ReconstructRoot(a,path) → root: On input an element a in the list of elements A =

(a1, · · · , a2k ) and path = (n1, · · · , nk), it outputs a reconstructed root root′ = hk ,
which is calculated by putting h0 = HColl(a) and defining hi for i ∈ [k] recursively as
hi = HColl((hi−1, ni )lex).

If the hash function HColl that is used in the Merkle tree is collision-resistant, then the
following easy lemma implies that theMerkle tree construction is binding, i.e. that one cannot
construct a path that “proves" that a value b /∈ A = (a1, . . . , aN ) is part of the list A that was
used to construct the Merkle tree without breaking the collision-resistance of the underlying
hash function HColl.

Lemma A.1 (Binding for merkle tree) There is an efficient extractor algorithm that, given the
description tree of a Merkle tree (having root root and constructed using the list of elements
A) and (b, path) such that b /∈ A and ReconstructRoot(b, path) = root, outputs a collision
for the hash function HColl.

The use of the lexicographical order to concatenate two children nodes in the Merkle
tree construction implies that the output path of the getMerklePath algorithm information-
theoretically hides the index i ∈ [N ] given as input. Formally, we have the following.
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Lemma A.2 (Index Hiding for Merkle Tree) Let N ∈ N be a power of 2, D, D′ be two
arbitrary distributions over {0, 1}∗ and DI , with I ∈ [N ], be the distribution defined as

DI =

⎡
⎢⎢⎣ (aI , path, root)

∣∣∣∣∣∣∣∣

aI ← D,

ai ← D′ ∀ 1 ≤ i �= I ≤ N ,

(tree, root)← MerkleTree(A),

path← getMerklePath(tree, I )

⎤
⎥⎥⎦

where A = (a1, . . . , aN ). Then we have DI = DJ for all I , J ∈ [N ].

A.2 Seed tree

The definition seed tree is taken almost verbatim from [14]. The purpose of a seed tree is
to first generate a number of pseudorandom values and later disclose an arbitrary subset of
them, without revealing information on the remaining values. The seed tree is a complete
binary tree12 of λ-bit seed values such that the left (resp. right) child of a seed seedh is the left
(resp. right) half of Expand(seed ‖ h), where Expand is a pseudorandom generator (PRG).
The unique identifier h of the parent seed is appended to separate the input domains of the
different calls to the PRG. A sender can efficiently reveal the seed values associated with a
subset of the set of leaves by revealing the appropriate set of internal seeds in the tree. We
provide the full detail of the seed tree below. Let Expand : {0, 1}λ+�log2(M−1)� → {0, 1}2λ
be a PRG for any λ, M ∈ N, instantiated by a random oracleO. Then, a seed tree consists of
the following four oracle-calling algorithms.

• SeedTreeO(seedroot, M)→ {leafi }i∈[M] : On input a root seed seedroot ∈ {0, 1}λ and
an integer M ∈ N, it constructs a complete binary tree with M leaves by recursively
expanding each seed to obtain its children seeds. Calls are of the form O(Expand ‖
seedh ‖ h), where h ∈ [M − 1] is a unique identifier for the position of seed in the
binary tree.
• ReleaseSeedsO(seedroot, c)→ seedsinternal : On input a root seed seedroot ∈ {0, 1}λ,

and a challenge c ∈ {0, 1}M , it outputs the list of seeds seedsinternal that covers all the
leaves with index i such that ci = 1. Here, we say that a set of nodes D covers a set of
leaves S if the union of the leaves of the subtrees rooted at each node v ∈ D is exactly
the set S.
• RecoverLeavesO(seedsinternal, c)→ {leafi }i s.t. ci=1 : On input a set seedsinternal and a

challenge c ∈ {0, 1}M , it computes and outputs all the leaves of subtrees rooted at seeds
in seedsinternal. By construction, this is exactly the set {leafi }i s.t. ci=1.
• SimulateSeedsO(c)→ seedsinternal : On input a challenge c ∈ {0, 1}M , it computes the

set of nodes covering the leaves with index i such that ci = 1. It then randomly samples
a seed from {0, 1}λ for each of these nodes, and finally outputs the set of these seeds as
seedsinternal.

By construction, the leaves {leafi }i s.t. ci=1 output by SeedTree(seedroot, M) are the same as
those output by RecoverLeaves(ReleaseSeeds(seedroot, c), c) for any c ∈ {0, 1}M . The last
algorithm SimulateSeeds can be used to argue that the seeds associated with all the leaves
with index i such that ci = 0 are indistinguishable from uniformly random values for a
recipient that is only given seedsinternal and c. More formally, we have the following.

12 A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled,
and all nodes are as far left as possible.
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Lemma A.3 Fix any M ∈ N and any c ∈ {0, 1}M. If we model Expand as a random oracleO,
then any (computationally unbounded) adversary AO that makes Q queries to the random
oracle O can distinguish the following two distributions D1 and D2 with distinguishing
advantage bounded by Q

2λ :

D1 :
⎧⎨
⎩seedsinternal, {leafi }i s.t. ci=0

∣∣∣∣∣∣
seedroot ← {0, 1}λ

{leafi }i∈[M] ← SeedTreeO(seedroot, M)

seedsinternal ← ReleaseSeedsO(seedroot, c)

⎫⎬
⎭

D2 :
{
seedsinternal, {leafi }i s.t. ci=0

∣∣∣∣
∀i s.t. ci = 0 : leafi ← {0, 1}λ

seedsinternal ← SimulateSeedsO(c)

}

Here, the distributions take into account the randomness used by the random oracle as well.

B Dynamic group signatures from accountable ring signatures

In this section, we review briefly the definition of group signatures and explain how account-
able ring signatures can be naturally viewed as group signatures. A formal treatment can be
found in Bootle et al. [20]

B.1 Preliminaries on group signatures

Group signatures can be divided into two primary types: static schemes [8] and dynamic
schemes [9]. Roughly, while static group signature require the group to be fixed at setup,
dynamic group signatures allow members to join and leave the group at any time. This
joining and leaving is administered by the group manager, who has the power to add and
revokemembership—aswell as the ability to revoke anonymity and reveal the specific signer
of a certain signature. For a dynamic group signature scheme, the revocation mechanism can
be handled by a separate entity called opening or tracing authority to offer better flexibility
in the scheme and this makes only little difference regarding the security notions.

Informally, a dynamic group signature scheme consists of a setup algorithm Setup, key
generation algorithms MKGen and UKGen for the group manager and group members (or
users) respectively, and Sign, Verify, Open, and Judge algorithms which are counterparts
of the ARS scheme functions of the same names. Additionally, an interactive Join protocol
run between the group manager and a user allows users to be added to the group, while an
UpdateGroup function allows the groupmanager to revoke a user’s membership in the group
dynamically (this is done via some publicly-published group info info).

Dynamic group signature schemes should satisfy standard security properties of cor-
rectness, anonymity, traceability and non-frameability [9, 20]. Correctness ensures that a
signature produced by a user running Sign after joining the group via Join is accepted by
Verify. The inclusion of the Join function in this definition ensures joining works as intended,
beyond just guaranteeing the signing algorithms’s correctness. Full CCA-anonymity (often
refereed simply as full anonymity) states that even under full key exposure of all group mem-
bers (other than the group manager, who can trivially revoke anonymity via Open), and with
access to an opening oracle, the user who generated a certain signature cannot be identified.
More specifically, an adversary should be unable to distinguish between signatures generated
by any two members of the adversary’s choice— even if the adversary knows all secret keys
involved. This notion is almost identical to its namesake in the ARS setting (Sect. 3.4). In
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contrast, CPA-anonymity is a weaker notion which still allows the adversary to learn all group
members’ keys, but removes access to the opening oracle. Weaker variants of these two are
selfless CCA-anonymity and selfless CPA-anonymity where the adversary cannot obtain any
secret keys of targeted members in the anonymity game. Traceability states that an adversary
who is able to corrupt any members is not able to produce a signature for which Open fails
to return an active member of the group even if the group manager’s secret key is leaked.
Finally, non-frameability states that even if the group manager and all but one of the group
members are corrupted, they cannot forge or falsely attribute a signature to an honest member
who did not produce it. These properties also imply what is usually called unforgeability,
because if an adversary could produce a signature for a group they knew no secret keys for,
the signature must either fail to Open to an active user, or would frame an honest member
of the group—violating either traceability or non-frameability. We also remark a difference,
usually being neglected, that the group manager can be corrupted in the security model of
a dynamic group while a static variant only takes into account the exposure of the opening
secret key [8]. We refer the reader to [20] for more thorough definitions.

B.2 Constructing group signatures from ARS

For completeness, we now review the generic construction of a dynamic group signature
scheme from an accountable ring signature scheme, by Bootle et al. [19, 20]. Let �ARS be a
secure ARS scheme, then we define a group signature scheme �GS as follows:

Let the group manager be the opening authority of �ARS, and let the group manager’s
keypair be (gmpk = opk,gmsk = osk). The group public key gpk is then set to (gmpk,pp),
where pp is the output of GS.Setup := ARS.Setup. Define GS.UKGen := ARS.UKGen,
so that users generate their own keypairs directly. The Join protocol proceeds by a user
submitting their public key pk to the group manager, who appends it to the list of keys in
infoτ := [vk0, . . . , vki ] (the group info at epoch τ ) and publishes infoτ+1. Membership is
similarly revoked by the group manager via UpdateGroup by removing the user’s public key
from infoτ and publishing the updated info. Finally, define:

• GS.Sign(gpk, infoτ , ski ,M) := ARS.Sign(gmpk, ski , infoτ ,M).
• GS.Verify(gpk, infoτ ,M, σ ) := ARS.Verify(gmpk, infoτ ,M, σ ).
• GS.Open(gpk, infot au,gmsk,M, σ ) calls (vk j , π) ← ARS.Open(gmsk, infoτ ,M, σ )

and returns ( j, π).
• GS.Judge(gpk, infoτ ,M, σ, ( j, π)) := ARS.Judge(gmpk, infoτ , vk j ,M, σ, π).

Note that infoτ defines the ring of signers at epoch τ and should be publicly accessible,
as too should be the index-to-public-key ( j ↔ vk j ) correspondence table, maintained by
the group manager. As shown in [20], this generic construction of a group signature from an
ARS is tightly secure assuming the ARS is secure. Hence, our ARS construction in Sect. 4.1
implies a secure dynamic group signature scheme. The type of security notions satisfied by
the resulting group signature, e.g., full or selfless, CCA or CPA anonymity, is directly inherited
from the ARS.

We note that this scheme’s group info grows linearly in the number of group members.
This is the same as all other proposed efficient post-quantum group signature constructions
such as [48]. It remains an interesting open problem to construct a efficient group signature
where the group info grows at most logarithmically in the number of group members.
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