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Abstract
Bipartite secret sharing schemes realize access structures inwhich the participants are divided
into two parts, and all the participants in the same part play an equivalent role. Such a bipartite
structure can be described by the collection of its minimal points. The complexity of a scheme
is the ratio between the maximum share size given to the participants and the secret size,
and the Shannon complexity of a structure is the best lower bound provided by the entropy
method.Within this work, we compute the Shannon complexity of regular bipartite structures
and provide optimal constructions for some bipartite structures defined by 2 and 3 points.

Keywords Secret sharing · Bipartite access structures · Information ratio ·
Shannon-complexity

Mathematics Subject Classification 94A62

1 Introduction

Secret sharing is a method to distribute sensitive information amongst participants (P) such
that only some predefined coalitions called qualified sets can recover the secret. A secret
sharing is perfect if the unqualified sets cannot compute any nontrivial information about
the secret. In this paper all secret sharing schemes are perfect. The set of qualified sets is
monotone and called access structure (�). Secret sharing was introduced by Shamir [29] and
Blakley [4] independently and is used inmany cryptographic protocols, e.g. securemultiparty
computation [3, 8, 9],multi-signatures [2], secure aggregations [6], attribute-based encryption
[21] and many others, see [1].
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Fig. 1 A staircase defined by four
points (� = 4), (1,4), (3,3), (4,1),
(7,0)

We measure the complexity of an access structure with the information ratio, that is, the
largest amount of information each participant has to store about the size of the secret. If this
value is 1, then the access structure is ideal. Computing the information ratio of an arbitrary
access structure is usually a hard problem, the exact value is known only for small structures
and specific families, for example, access structures on at most 5 participants [19, 25], some
graph based [5, 14, 20, 22, 23, 30, 32], a few bipartite [15, 18] and some ideal access structures
[7, 17, 26, 27, 31].

A secret sharing scheme is called k-threshold if the qualified sets are the ones that have at
least k elements [4, 29]. All participants in a threshold scheme have the same role, however,
in some applications for example in the case of hierarchy wewant to provide more control for
certain participants, like leaders. A possible generalization is to divide the participants into
two parts and a set of participants is qualified if it contains enough elements from each part.
Instead of considering only one threshold pair (a threshold for each part), we can consider
multiple instances of pairs, for example, a set is qualified if it contains at least 5 participants
from the first and 2 from the second, or 3 participants from the first and 6 from the second
part. Such access structures are called bipartite [27]. Formally let P = P1 ∪ P2, P1 ∩ P2 = ∅
and n1 = |P1|, n2 = |P2|. The bipartite � is given by an integer � and two integer sequences

0 ≤ x1 < x2 < . . . < x� ≤ n1 and n2 ≥ y1 ≥ y2 ≥ . . . ≥ y� ≥ 0 (1)

such that A ∈ � if and only if |A ∩ P1| ≥ xk and |A ∩ P2| ≥ yk for some 1 ≤ k ≤ �. The
sequence (x1, y1), . . . , (x�, y�) is a staircase in the non-negative grid, see Fig. 1.

It is worth defining the widths wk = xk+1 − xk and the heights hk = yk − yk+1 of the
staircase as the complexity of the bipartite structure depends on the widths and heights and
not the actual coordinates of the points. The widths and heights in Fig. 1 are 2,1,3, and 1,2,1
respectively. The bipartite structure is regular if all widths are the same and all heights are
the same.

Padró and Sáez [27] determined all ideal bipartite structures. Csirmaz, Matus, and Padró
[15] computed the value of the information ratio of some regular bipartite structures. Assume
all widths are w, and all heights are h. In this case, the staircase is regular.

• If w = h then the Shannon complexity of the structure is 2 − 1/w, that is independent
from �.

• If h = 1 and all the widths arew then for every � the Shannon complexity of the structure
is 1 + (�−1)(w−1)

�+w−2 .
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Secret sharing on regular bipartite access structures 1953

Our first result is a generalization of these statements. We give a lower bound on the infor-
mation ratio for every regular staircase, more precisely we compute the Shannon complexity
of such access structures.

Farras et. al. [18] and Csirmaz et. al. [15] constructed optimal secret sharing schemes
on bipartite access structures given by two points (x1, y1), (x2, 0) and three points
(0, 3)(1, 1), (3, 0) respectively.

Our second result is an optimal secret sharing scheme on bipartite access structures defined
by three points (0, x1), (x2, y2), (x3, 0). By duality, this also yields an optimal secret sharing
scheme to bipartite access structures defined by two points (x1, y1), (x2, y2) where x1, y2 �=
0. Albeit the case y2 = 0 was already solved by [18] as we mentioned earlier, we provide a
different optimal secret sharing scheme for this case too.

The paper is organized as follows. In the next section, we introduce the main concepts and
recall some of the results from previous works (focusing on [15]) that are essential for the
later sections. In Sects. 3 and 4 we present our results; we compute the Shannon complexity
of regular staircases in the former, and present the optimal secret sharing schemes in the latter.
Let P be a finite set of participants and � ⊂ 2P be a monotone increasing set system on
P . The elements of � are called qualified sets, while the other subsets of P are unqualified.
There exists a few different definitions of secret sharing, we use the one from [11].

Definition 1 Aperfect secret sharing scheme S realizing� is a collection of random variables
ξp for every p ∈ P and ξs with a joint distribution such that

(i) if A ∈ �, then {ξp : p ∈ A} determines ξs;
(ii) if A /∈ �, then {ξp : p ∈ A} is independent of ξs .

A secret sharing scheme is linear if the shares of the participants and the secret can be
represented as linear subspaces of a vector space.

The complexity of a secret sharing scheme is the ratio between the maximum share size
of the participants and the size of the secret. The information ratio measures the complexity
of the most efficient secret sharing scheme.

Definition 2 Let � be an access structure. Then the information ratio of � is

σ(�) = inf
S
max
p∈P

H(ξp)

H(ξs)

where H(·) is the Shannon entropy and the infimum is taken over all perfect secret sharing
schemes S realizing �.

The linear complexity of an access structure is

λ(�) = inf
S linear

max
p∈P

H(ξp)

H(ξs)
,

and clearly σ(�) ≤ λ(�).
Define f to be the normalized entropy function, i.e. f : 2P 
→ R and f = H(ξp : p ∈

A)/H(ξs) where H is the Shannon entropy, A ⊆ P and s is the secret. Using the properties
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of the entropy function [16] and the secret sharing we have [10]

(1) f (∅) = 0, and in general f (A) ≥ 0 (positivity);

(2) f (B) ≥ f (A) if A ⊆ B (monotonicity);

(3) f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B) (submodularity);

(4) f (B) ≥ f (A) + 1 if A ⊆ B and B is qualified

but A is not (strong monotonicity);

(5) f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B) + 1, if

both A and B are qualified but A ∩ B is not (strong submodularity).

(2)

Let f be any real-valued function satisfying (2). Then any lower bound given to
maxp∈P f (p) is also a lower bound for the information ratio. The value

κ(�) = min
f

max
v∈V f (v)

is called Shannon complexity and can be computed by solving the corresponding LP. Usually,
the LP is too large to be solved, and its size is exponential in the number of participants,
however, in the case of bipartite structures due to the symmetry the number of inequalities can
be decreased drastically. We enlist the reduced version of (2) from [15]. f is now a function
on the grid, for more details see [15]. In the strong variants, we use f • and f ◦ to emphasize
that the argument is qualified and unqualified respectively.

f (i, j) ≥ 0, f (0, 0) = 0 non-negativity

f (i + 1, j) − f (i, j) ≥ 0
f (i, j + 1) − f (i, j) ≥ 0

}
monotonicity

( f (i, j) − f (i − 1, j) − ( f (i + 1, j) − f (i, j) ≥ 0
( f (i, j) − f (i, j + 1)) − ( f (i, j + 1) − f (i, j)) ≥ 0

}
submodularity - 1

( f (i + 1, j) − f (i, j)) − ( f (i + 1, j + 1) − f (i, j + 1)) ≥ 0 submodularity - 2

f •(i + 1, j) − f ◦(i, j) ≥ 1
f •(i, j + 1) − f ◦(i, j) ≥ 1

}
strong monot.

( f •(i, j) − f ◦(i − 1, j)) − ( f •(i + 1, j) − f •(i, j)) ≥ 1
( f •(i, j) − f ◦(i, j + 1)) − ( f •(i, j + 1) − f •(i, j)) ≥ 1

}
strong submod. - 1

( f •(i + 1, j) − f ◦(i, j)) − ( f •(i + 1, j + 1) − f •(i, j + 1)) ≥ 1 strong submod. - 2

(3)

Finally let H = f (1, 0), and V = f (0, 1). Determining the Shannon complexity is
equivalent to the following problem:

κ(�) = inf
f

{max(H , V ) : f satisfies (3)}. (4)

Every submodular function f on the non-negative grid that satisfies (3) yields an upper
bound for κ . (3) is only needed to be satisfied for adjacent points on the grid, therefore it is
more convenient to give the values of f as the difference between two adjacent points on the
grid. We assign the differences to the edges that connect the points (Fig. 2). As f (0, 0) = 0,
the values assigned to the edges determine f uniquely. (3) can be reformulated in terms of
edge values [15]. We note that an additional property, consistency, has to be satisfied as well.

• Monotonicity - edge values are non-negative.

• Consistency - on each 1 × 1 square, the sum of the left and top edges
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Fig. 2 Non-zero edge values for a
submodular function f (the
values are multiples of 1/3). The
bipartite structure is defined by
points (1,5), (2,2), and (5,1). The
qualified points are the ones
above, to the right or on the solid
line. The value of f at any point
is the sum of the differences all
along any shortest path from the
point to the origin

Fig. 3 Lemma 1. The points may
be on a vertical line, in the order
A, B,C, D from bottom up

equals the sum of bottom and right edges.

• Submodularity - values are decreasing from left to right, and from bot-

tom up (both for vertical and horizontal edges).

• Strong monotonicity - an edge between a qualified and an unqualified

vertex has a value at least 1.

• Strong submodularity 1 - the increment between two adjacent horizontal

(vertical) edges is at least one if the second edge has two qualified endpo-

ints and the first edge has only one.

• Strong submodularity 2 - in an 1 × 1 square with three qualified nodes

the left edge is at least 1 more than the right edge.

(5)

We do a little abuse of notation as we denote both the point of the grid and the value of
f in that point with the same notation such as A, B, A1, etc. We recall three lemmas from
[15]: Lemmas 1, 2 and 3. The first two are used in Sect. 3, to calculate a lower bound on the
Shannon complexity while the third is needed in Sect. 4 and it provides a lower bound for
the Shannon complexity based on the maximal width.

Lemma 1 With the notation of Fig. 3

(a) B−A
k ≥ C−B

�
,

(b) C−A
k+�

≥ C−B
�

,
(c) if A is unqualified, B is qualified, and there are s qualified nodes between A and B (not

including B), then B−A
k ≥ C−B

�
+ k−s

k .

Lemma 2 Let A, B, A′, B ′ be as in Fig. 4. Then B − A ≥ B ′ − A′ + k−V
k−1 .
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Fig. 4 The arrangement of the
points in Lemma 2.

Fig. 5 Regular staircase with
width w = 6 and height h = 4

Lemma 3 Suppose � has a step of width w = wk = ik+1 − ik ≥ 2 such that ik �= 0. Then
κ(�) ≥ 2 − 1/w.

Finally, we need the concept of duality. The dual of an access structure � consists of
the complements of the unqualified subsets of �, �⊥ = {P − A | A /∈ �}. Especially
the minimally qualified elements in �⊥ are the complements of the maximal unqualified
elements of �. Clearly (�⊥)⊥ = �. There is a close relationship between an access structure
and its dual as λ(�) = λ(�⊥) [24]. We mention that there is a similar connection between
the Shannon complexities, κ(�) = κ(�⊥) [13], however, it is unknown if the same holds for
the information ratio.

2 Shannon-complexity of regular staircases

The main result of this section is the following theorem.

Theorem 1 Consider the regular staircase � of widthw, height h and length � where x1 �= 0
and w ≥ h ( (x1, y1) is the leftmost point). Then

κ(�) = (�w − 1)(2w − 1)

(�h − 1)w + (2w + � − 2)(w − h)
.

The Shannon complexity only depends on if x1 �= 0, the exact value is not important.
We note that Theorem 1 gives back the values from [15] for the special choice of � and

h. If � = 2 or h = w then clearly the Shannon complexity is 2 − 1/w and with the choice
h = 1, it is �w−1

�+w−2 .
We prove Theorem 1 in two separate parts. First, we compute a lower bound using the

reduced entropy inequalities, then we construct an f function on the grid satisfying (5).
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Fig. 6 The arrangement of the
points in Lemma 3.

2.1 Lower bound

Theorem 2 Consider the regular staircase � of widthw, height h and length � where x1 �= 0
and w ≥ h ((x1, y1) is the leftmost point). Then

κ(�) ≥ (�w − 1)(2w − 1)

(�h − 1)w + (2w + � − 2)(w − h)
.

Before we start the proof of Theorem 2, we introduce two lemmas that are two different
generalizations of Lemma 2. The lemmas estimate the increment of the values in the grid for
one step on the staircase at two different places.

Lemma 4 Let A, B,C, D, E, F,G, A′, B ′ be points as in Fig.6. Then

B − A − (B ′ − A′) ≥ w − V

w − 1
− (h − 1)V

w
+ F − B ′

w
.

Proof Recall that V = f (0, 1) is the maximal vertical value. By part (c) of Lemma 1 we
have

B − A ≥ C − B

w − 1
+ 1. (6)

First, use the consistency for the BCDE rectangle, then the strong monotonicity for CE , the
(a) part of Lemma 1, and that B − D is at most the vertical maximum V :

C − B = (C − E) + (E − D) − (B − D) ≥ 1 + w − 1

w
(F − D) − V . (7)

Substituting (7) in (6) yields

B − A ≥ F − D

w
+ w − V

w − 1
. (8)

Applying the consistency for the DFGB ′ rectangle, then the (b) part of Lemma 1 and that
D − G is at most h − 1 times the vertical maximum results in:

F − D = (F − B ′) + (B ′ − G) − (D − G) ≥
≥ F − B ′ + w(B ′ − A′) − (h − 1)V . (9)

Finally substituting (9) into (8) yields the statement of the lemma. ��
Lemma 5 With the notation of Fig. 7,

(B − A) − (B ′ − A′) ≥ w − V

w − 1
− B − D

w − 1
.
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Fig. 7 The arrangement of the
points in Lemma 4

Fig. 8 The points from Lemmas 3 and 4 in the same diagram

Proof By part (c) of Lemma 1,

B − A ≥ C − B

w − 1
+ 1, (10)

by the consistency of the rectangle BCDE we have

C − B = (C − E) + (E − D) − (B − D). (11)

C − E ≥ 0 because of monotonicity. The consistency for the rectangle DEFA′ yields
E − D = (E − A′) + (A′ − F) − (D − F). E − A′ ≥ 1 because of strong monotonicity,
A′ − F ≥ (w − 1)(B ′ − A′) by part (a) of Lemma 1, and D − F ≤ V , thus

E − D ≥ 1 − V + (w − 1)(B ′ − A′). (12)

Substituting (11) and (12) subsequently into (10) finishes the proof. ��

Proof (Theorem 2): Let B� be the leftmost corner point of the staircase, that is (x1, y1) and
A� is the one strictly left to B�. As H ≥ B� − A�, our goal is to estimate B� − A� using only
w, h, � and V . First, we only restrict our attention to one step on the staircase.

With the notation of Fig. 8 the statement of Lemmas 4 and 5 respectively yield

Bi − Ai − (Bi−1 − Ai−1) ≥ w − V

w − 1
− (h − 1)V

w
+ Di − Bi−1

w
, (13)

Di − Ci − (Di−1 − Ci−1) ≥ w − V

w − 1
− Di − Bi−1

w − 1
. (14)
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Adding up (13) with (w − 1)/w times (14) cancels out the Di − Bi−1 part, the remaining
is

Bi − Ai − (Bi−1 − Ai−1) + w − 1

w
(Di − Ci − (Di−1 − Ci−1))

≥ w − V

w − 1
− (h − 1)V

w
+ w − V

w
= 2w − 1

w − 1
− V

(
1

w − 1
+ h

w

)
= �.

(15)

The left-hand side is a telescopic sequence, while the right-hand side contains only fixed
values and V . Adding up the inequalities (15) for i = 2, 3, . . . , � − 1 we get

B�−1 − A�−1 − (B1 − A1) + w − 1

w
(D�−1 − C�−1 − (D1 − C1)) ≥ (� − 2)� (16)

Clearly B�−1 − A�−1 ≤ H , and D1 − C1 ≥ 1. Lemma 2 implies that Bi − Ai ≥
w−V
w−1 +Di −Ci for i = 1 and i = �−1. Thus B1−A1 ≥ w−V

w−1 +1, and w−1
w

(D�−1−C�−1) ≤
w−1
w

H − w−V
w

.
Substituting each of these bounds into the inequality (16) we have

H − w − V

w − 1
− 1 +

(
w − 1

w
H − w − V

w

)
− w − 1

w
=

=H
2w − 1

w
+ V

(
1

w
+ 1

w − 1

)
− 2 − w − 1

w
− w

w − 1
=

=H
2w − 1

w
+ V

2w − 1

w(w − 1)
− (2w − 1)2

w(w − 1)
≥ (� − 2)�.

Substituting back the value of � yields

H(2w2 − 3w + 1) + V (w(h� − 2h + �) − h� + 2h − 1) ≥ (2w − 1)(�w − 1).

The left hand side can be bounded from above by max(H , V )(2w2 − 3w + 1 + w(h� −
2h + �) − h� + 2h − 1), therefore

max(H , V ) ≥ (�w − 1)(2w − 1)

(�h − 1)w + (2w + � − 2)(w − h)
.

��
Theorem 3 Consider the regular staircase � of widthw, height h and length � where x1 �= 0
and w ≥ h ((x1, y1) is the leftmost point). Then

κ(�) ≤ (�w − 1)(2w − 1)

(�h − 1)w + (2w + � − 2)(w − h)
. (17)

Proof Weconstruct the function f ,more precisely the non-negative grid satisfying (5). Letw0

be the minimal number of participants such that all qualified sets have at leastw0 participants
from P1. Similarly, let h0 be the minimal number of participants such that all qualified sets
have at least h0 participants from P2. The value of κ(�) does not depend on the exact values
of w0 and h0, just on the fact whether w0 and h0 are zero or not.

Instead of giving values to all edges on the grid, we focus on rectangles of width 2w and
height h. The four coordinates of the rectangle, denoted byMi are (w0+(�−2−i)w, h0+ih),
(w0+(�−i)w, h0+ih), (w0+(�−i)w, h0+(i+1)h) and (w0+(�−2−i)w, h0+(i+1)h).
The value of i goes from 0 to � − 1. The last rectangle, M�−1 is shorter if w0 < w.

First, we specify the values of the edges in M0 (see Fig. 11 for general or Fig. 12 for
concrete values), this is the most important part of the proof. Next, we show how to modify
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Fig. 9 First we define the values of the grid for rectangles of size (2w × h), which are marked in red, e.g.
M0,M1,…,M�−1 (Color figure online)

Fig. 10 Row and column values in a rectangle

M0 to get the edge values in Mi i = 1, . . . , � − 1 (see Fig. 12 for example). At this stage, all
the edge values are determined inside the union of the rectangles. The last step is to extend
the values to the whole grid.

Let V be the right hand side of the inequality in (17) and define α = V−1
w−1 and β = V

2w−1 .
Denote the j th value in the i th column with ci, j and similarly denote the j th value in the i th
row with ri j starting the indexing from 0 as in Fig. 10.

The values c0,0, c1,0, . . . , cw,0 form a linear sequence startingwith c0,0, = V and decreas-
ing by α, and cw+1,0, . . . , c2w,0 are all zeros. That is ci,0 = V − iα for i ≤ w and ci,0 = 0
if i > w. c0, j , c1, j , . . . , c2w−1, j j > 0 is also a linear sequence starting from c0, j = V and
decreasing by β. Hence ci, j = V − iβ if i ≤ 2w − 1 and c2w, j = 0, j > 0 in both cases.

The values in the first row are different from the other rows just as in the column case:
r0, j = 1 − α if j ≤ w − 1 and r0, j = 0 otherwise. r1, j , r2, j , . . . , rh, j is a linear sequence
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Fig. 11 The values in M0. The empty edges are 0, xi = iβ, yi = iα, and + means that we add +1 to the
value. E.g. 0+ means 0 + 1 = 1

for j = 0, . . . , 2w. The only difference is that if j ≤ w, then the linear sequence starts from
r1, j = 1 and ri, j = 1 + (i − 1)β, and if j > w, then r1, j = 0 and ri, j = (i − 1)β.

We note that all elements in a column are identical except the first one. Similarly, except for
the first row, the elements in all rows are almost identical, but the elements in the non-qualified
part are larger by 1.

Figure 12 presents the values of f in M0 (bottom), in M1 (middle) and in M2 (top) for the
case of � = 3, w = 4, h = 3. The Shannon complexity is 77/41, α = 12/41, β = 11/41 and
� = 7/41. For simplicity, we omit the zeros and the denominators. The thick line separates
the qualified and the unqualified sets (points on the line are qualified too). The four lower-
right edges of M1 and M2 have the same value as the four upper-left edges of M0 and M1

since these edges are identical.

It is easy to check that the grid satisfies consistency, nonnegativity, monotonicity, and
submodularity. It also satisfies strong monotonicity and strong submodularity.

We now construct M1 from M0. he column values are identical and the row values are
almost the same, the only difference is that we add � = r0,0 − rh,w = (1 − α) − (h − 1)β
to each row value except the last element of each row, see Fig. 12. M2, M3, . . . , M�−2 are
constructed from M1 similarly, the columns are unchanged, and in Mi we add (i − 1)� to
each row values. Finally, in M�−1 the first value of each column is 0, and the rest is the same
as in M1. The row values are constructed by adding (� − 2)� to each value, except the first
w values of the 0th row. These values are all (� − 2)� + 1, which are equal to the first w

values of the first row, see Fig. 12. It is clear that Mi satisfies (5) for i = 1, . . . , � − 1, too.
Notice that Mi and Mi+1 have a common line segment of length w. � was chosen in

a way that the first w row values in the 0th row in Mi (which are (1 − y + i�, . . . , 1 −
y + i�, i�)), are equal to the last w row values in the hth (last) row in Mi+1 (that is
((h − 1)β + (i + 1)�, . . . , (h − 1)β + (i + 1)�, i�)), thus these values are equal. (5)
remains true if we consider the union of Mi i = 0, . . . , �−1. The only non-trivial inequality
is the strong submodularity for the column values where Mi and Mi+1 meet. It is enough
to check for M0 and M1 because the column values are equal in each rectangle. The values
in the i th column are: V − iα in M0 and (w − 1 − i)β in M1, thus all we need is that
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Fig. 12 An example of the edge values on the grid

ai = (V − iα) − (w − 1 − i)β ≥ 1. a0, a1, . . . , aw−1 is a linear sequence, the first element
is V − (w − 1)β = wβ > 1, and the last element is V − (w − 1)α = 1, hence all elements
of the linear sequence is at least 1.

Let M =
�−1⋃
i=0

Mi . We have defined all the edge values in M , we extend these values for

the whole grid.
First, we complete the upper right part of the grid. All column values are 0. For the row

values, consider the uppermost row values of M , and give the same value to all row values
that are above it as in Fig. 14. The column upper border of M is all zero, thus the consistency
remains true. The upper bound part clearly inherits the monotonicity and submodularity of
M . All points are qualified thus the strong variants need not be checked.

The left lower part can be extended similarly. The column values are now V , and for the
row values, consider the lowermost row values of M , and give the same value to all row
values that are below it as in Fig. 15. The column lower border of M is all along V , thus
the consistency remains true. The lower bound part clearly inherits the monotonicity and
submodularity of M . All points are unqualified thus the strong variants need not be checked.

Set the value of all the edges both in columns and rows right from M to zero. Now the
only undetermined values are the edges left from w0 − w (if they exist). Let all row values
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Fig. 13 Values in M (area demarcated in red) are known, we need to extend it to the whole grid (Color figure
online)

Fig. 14 Above M , the value of every vertical edge is 0, and the value of a horizontal edge is the value of the
one strictly below it

Fig. 15 Below M , the value of
every vertical edge is V , and the
value of a horizontal edge is the
value of the one strictly above it

be 1+ (h − 1)β + (� − 1)� (this is the largest value in M�−1), all column values below the
y = �h − 1 line be V , and the values above that line be 0.

We have defined the values for the whole grid. The largest column value is clearly V , and
the largest row value is 1 + (h − 1)β + (� − 1)�.

Recall thatα,β, and�were chosen asα = V−1
w−1 ,β = V

2w−1 , and� = (1−α)−(h−1)β. It
is a routine to check that usingV as the bound in (17),� ≥ 0, andV = 1+(h−1)β+(�−1)�)

indeed, which finishes the proof. ��
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Theorem 4 Consider the regular staircase � of width w, height h and length � with x1 = 0
and w ≥ h ((x1, y1) is the leftmost point). Then

κ(�) = ((� − 1)w − 1)(2w − 1)

((� − 1)h − 1)w + (2w + (� − 1) − 2)(w − h)
.

Remark: The Shannon complexity of � is the same as if we consider the regular staircase
of width w, height h, and length � − 1 for which x1 �= 0.

Proof A regular staircase of width w, height h and length � contains every other regular
staircase with the same width, height, and less length (the containing does not depend if the
leftmost point of the staircases is on the y axis or not). Thus the lower bound for κ(�) is
trivial.

M0

M1

M2

M3

0 w 2w 3w 4w

h

2h

3h

4h

For the upper bound construct the values for M0, M1,…,M�−2 as in the previous proof.
For M�−1, only the right w × h part is in the non-negative grid, hence we only need to define
the values in that part. Let the right part of M�−1 be the right part of M�−2 increased by �.
The values in the grid can be easily extended to the whole grid.

The largest vertical value is V = κ(�). The largest horizontal values are now in the 0th
row of M�−2 (or equivalently in the hth row of M�−1), that is 1+ (h − 1)β + (� − 2)�. The
same calculation can be applied as before to show that this is equal to κ(�). ��

3 An optimal secret sharing scheme

We investigate the bipartite access structure given by the three points, (0,m+k), (�, k), (n+
�, 0) for m, k, n, � ∈ N. The Shannon-complexity of this access structure is 2 − 1/n [15] if
n ≥ m, but it was unknown if this bound can be achieved. We were able to create an optimal
secret sharing scheme for this family of bipartite access structures. The optimal secret sharing
scheme for the case (m, k), (m+n, 0)was created in [18], we also present a different optimal
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scheme. Our schemes are linear: the shares of the participants and the secret are represented
as linear subspaces of a vector space. By the duality, our construction yields an optimal secret
sharing scheme for bipartite staircases defined by two points if neither of them is on the axes.

It is more convenient to make our constructions over the reals. It does not make any
difference because for any vector space V over R and finitely many vectors {vi ∈ V : i ∈ I }
there is a vector space W of the same dimension over every finite field F of large enough
characteristic and vectors {wi ∈ W : i ∈ I } such that for every I ′ ⊆ I , the dimension of the
subspace spanned by {vi : i ∈ I ′ is the same as the dimension of the subspace spanned by
{wi : i ∈ I ′} [28].

Anoptimal secret sharing scheme for the bipartite staircase definedbypoints (0,3),(1,1),(3,0)
was presented in [15]. That work has served as a starting point for us, our construction uses
the same techniques but in a more general way.

Before we start the proof, we would like to introduce an important concept from [15] that
will be used in the proof. The construction requires the use of independent values, we refer
to these as generic numbers. To be more precise, if we consider all vectors as rows of a huge
matrix then any k × k submatrix that contains a generic entry is non-singular. This can be
achieved easily by choosing all unspecified values to be algebraically independent.

We begin our construction for the bipartite access structure defined by the points (0,m +
1), (1, 1), (n + 1, 0). This construction will be the base of our secret sharing schemes, as all
the other construction can be obtained from it by only making small modifications.

Proposition 1 There exists a linear scheme with complexity 2 − 1/n for the bipartite access
structure � defined by the points (0,m + 1), (1, 1), (n + 1, 0) where n ≥ m, n,m ∈ N,
n,m ≥ 1.

Proof Following ideas of [15], we represent the shares of the participants and the secret
with a linear subspace of a linear space. The actual shares (and secret) can be computed by
orthogonal projection of a random element of the vector space on these subspaces. Denote
the subspace assigned to a ∈ P1, b ∈ P2 and the secret by Ea , Eb and E0 respectively. First,
we summarize the requirements that the construction has to satisfy.

(a) for every a ∈ P1 and b ∈ P2, the linear hull of Ea ∪ Eb contains E0;
(b) For every n + 1 participants from P1, the linear hull of subspaces assigned to them

contains E0.
(c) For every m + 1 participants from P2, the linear hull of subspaces assigned to them

contains E0.
(d) For every n participants from P1, the linear hull of subspaces assigned to them intersects

E0 trivially.
(e) For everym participants from P2, the linear hull of subspaces assigned to them intersects

E0 trivially.

Let N = n2 + 2n − 1 be the dimension of the vector space we work in. For every a ∈ P1
and b ∈ P2, Ea and Eb are of dimension 2n − 1, while E0 is an n dimensional subspace. We
define the subspaces with their bases.

The construction uses strings (vectors of length shorter than N ) of different lengths. To
make it easier to follow we write the length as superscript. For example, vk denotes a string
of length k, eNi denotes the string with 1 in the i th coordinate and 0 in every other, 0k is
a string with all k coordinates zero, and finally, αk is a string of length k with k different
generic elements, each chosen independently.
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Fig. 16 Ea , Eb, E0 in the case of n = 3, m = 2, α1, . . . , α9, β1, . . . , β8, s1, . . . s15 are generic values. The
basis vectors are in the rows of the matrices.

The secret E0 can be generated by n vectors. The basis is: s2n−1
i 0n

2
for i = 1, . . . , n

where s2n−1
i is composed from 2n − 1 generic values. We note that the last n2 coordinates

of s ∈ E0 are 0.
The vectors that are in the basis of Ea and Eb are composed of two parts. The first 2n − 1

coordinates of Ea and Eb are used to recover the secret (as the secret has non-zero coordinates
in only these places), while the goal of the second n2 part is to provide security if there are
at most n participant from P1 or m from P2.

The subspace Ea assigned to a ∈ P1 can be generated by 2n − 1 vectors. It is useful
to define γ n2

i ∈ R
n2 as a concatenation of n(i − 1) zeros, αn , and n(n − i) zeros: γ n2

i =
(0n(i−1), αn, 0n(n−i)). It is important that each γ n2

i uses the same generic α for every i =
1, . . . , n. Now we can present a basis of Ea . There are two types of vectors in Ea , for an
example see Fig. 16:

• First type: xNi = (11, αn−1
i , 0n−1, γ n2

i ) for i = 1, . . . , n. αn−1
i consists of different

generic values for every i .
• Second type: eNi for i = n + 1, . . . , 2n − 1.

The subspace assigned to b ∈ P2 can be generated by 2n−1 vectors. δmn
i ∈ R

mn is a vector
of lengthmn, startingwith i−1 zeros, thenβ1, β2, . . . , βm generic values separatedwith 0n−1

each, and finally n − i zeros in the end: δmn
i = (0i−1, β1, 0n−1, β2, 0n−1, . . . , βm−1, 0n−1,

βm, 0n−i ). The generic values with the same index are the same for every δmn
i . The basis of

Eb is (see Fig. 16 for an example):

• First type: yNi = (11, 0n−1, ρn−1
i , δmn

i 0(n−m)n) for i = 1, . . . , n. ρn−1
i is composed from

n − 1 generic values, which are chosen independently for each i .
• Second type: eNi for i = 2, . . . , n.

We note thatwith the choice ofm = n = 2, the bipartite access structure is (0,3),(1,1),(3,0)
from [15], and this secret sharing scheme is identical to the one they presented. The proof
that conditions (a)–(e) hold is also similar to the one in [15] but it is more complex due to the
larger size and more number of vectors. Our goals in (a)–(c) are to show that the subspace
corresponding to a qualified set contains e1, . . . , e2n−1, while in (d)–(e) we show that the
intersection of the subspaces assigned to the secret and an unqualified set is trivial.
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(a) eN2 , . . . , eN2n−1 is in Ea ∪ Eb, hence we only need to show that eN1 is in the linear hull of
∈ Ea ∪ Eb. There is a non-trivial linear combination of xN1 , . . . , xNn , yN1 , . . . , yNn such
that the last n2 coordinates are 0s. If αn = (t1, . . . , tn), then

m∑
i=1

βiγ
n2
i −

n∑
i=1

ti (δ
mn
i 0(n−m)n) = 0n

2
,

m∑
i=1

βi x
N
i −

n∑
i=1

ti y
N
i = ψ2n−10n

2
,

where ψ2n−1 is 2n − 1 non-zero values, the exact value is not interesting. ψ2n−10n
2
and

eNi i = 2, . . . , 2n − 1 are in the linear hull of ∈ Ea ∪ Eb, hence ψ10n
2+2n−2 also for

some non-zero ψ and so thus eN1 too is in the linear hull.
(b) First we note that eNi for i = n + 1, . . . 2n − 1 is in the linear hull. Consider xNi for

all the n + 1 chosen participants from P1. These have n non-zero coordinates in the last
n2 coordinates, all in the same positions, hence the vector (11, ψn−1, 0n

2+n−1) is in the
linear hull of these n + 1 vectors for some non-zero ψn−1. Computing these values for
i = 1, . . . , n, we get n different vectors with all zeros but the first n coordinates. These
are generic, hence these n vectors must be linearly independent and therefore the linear
hull of the vectors must contain eN1 , . . . , eNn .

(c) The same works as in (b), the only difference is that there are only m + 1 participants,
but there are only m non-zero values in the last n2 coordinates, so that is not a problem.

(d) First consider only the n2 vectors of the first type. The last n2 coordinates of the vectors in
E0 are zeros, thus a non-trivial linear combinationmust have the same property. However
as αn is generic, the n2 × n2 matrix made from the last n2 coordinates from all the n2

vectors of the first type must be non-singular. Therefore there is no non-trivial linear
combination of vectors of the first type with zeros in the last n2 coordinates. The linear
hull of eNn+1, . . . e

N
2n−1 intersects E0 trivially, because E0 is generic, hence the linear hull

of the subspaces intersect E0 trivially as well.
(e) The proof is essentially the same as for part (d).

��
Theorem 5 There is a linear schemewith complexity 2−1/n for the bipartite access structure
� defined by the points (0,m + k), (�, k), (n + �, 0) where n ≥ m, n,m, k, � ∈ N, and
m, n, k, � ≥ 1.

Proof We use the previous construction as a base and slightly modify it. The main idea is
that if we add a new coordinate with a generic value to the end of each vector in the previous
construction, then a new participant is needed to eliminate this extra coordinate. We need
to execute that step independently for all vectors in Ea or Eb if we want to increase the
participants needed from P1 or P2.

First, we show the constructions for the bipartite structures defined by the points
(0,m + 1), (2, 1), (n + 2, 0) and (0,m + 2), (1, 2), (n + 1, 0). The construction for
(0,m + k), (�, k), (n + �, 0) can be established by combining the two methods separately
multiple times.

(0,m+1), (2, 1), (n+2, 0): Extend each vector with 2n−1 coordinates. Let ε2n−1
i denote

a string with a generic value at the i th coordinate, and zeros in the others. The new share of
a ∈ P1 is:

• (xNi , ε2n−1
i ) for i = 1, . . . , n,
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Fig. 17 Ea , Eb, E0 in the case of n = 2, m = 1. We add a generic value to the end of every vector in the base
of Ea , while only zeros in the case of Eb and E0

• (eNi , ε2n−1
i ) for i = n + 1, . . . , 2n − 1.

The share of b ∈ P2 and the secret are only changed by adding 02n−1 to the end of all vectors.
(0,m + 2), (1, 2), (n + 1, 0): The construction is very similar to the previous one. The

only difference is that we add ε2n−1
i to the end of the vectors in Eb, b ∈ P2, and 02n−1 to the

end of the vectors in Ea , a ∈ P1.
To get a secret sharing scheme on (0,m+k), (�, k), (n+�, 0), perform the first extension

step (as for (0,m + 1), (2, 1), (n+ 2, 0)) �− 1 and the second extension step (as for (0,m +
2), (1, 2), (n + 1, 0)) k − 1 times one after the other.

The arrangement realizes the bipartite structure (0,m+k), (�, k), (n+�, 0) if the following
five conditions hold:

(a) For every � participants from P1 and every k participants from P2, the linear hull of
subspaces assigned to them contains E0.

(b) For every n + � participants from P1, the linear hull of subspaces assigned to them
contains E0.

(c) For every m + k participants from P2, the linear hull of subspaces assigned to them
contains E0.

(d) For every n+ �− 1 participants from P1 and every k − 1 participants from P2, the linear
hull of subspaces assigned to these participants intersect E0 trivially.

(e) For every �−1 participants from P1 and everym+ k−1 participants from P2, the linear
hull of subspaces assigned to these participants intersect E0 trivially.

We prove that the constructed secret sharing scheme satisfies all of these conditions. First,
let v and w be two vectors with the following properties: supp(v) = supp(w) (supp(v)

denotes the support of v), the first coordinate of both vectors is 1 and the other non-zero
coordinates are different generic values. Denote the index of one of the non-zero coordinates
by i , i �= 1. It is possible to construct a new vector v′ (or in other words eliminate the i
coordinate of v withw) such that the first coordinate of v′ is 1, and supp(v′) = supp(v)∪{i}.
The construction of v′ is easy, v′ = 1

wi−vi
(wiv − viw). (vi and wi are the i th coordinates of

v and w respectively, vi �= wi ).
(a),(b),(c): Every vector in Ea , a ∈ P1 has �−1, and every vector in Eb, b ∈ P2 has k−1

extra non-zero coordinates in compare to the construction in Proposition 1. However there
are � − 1 more participants from P1 in (a) and (b), and k − 1 more participants from P2 in
(a) and (c). The share of each of those extra participants can be used to eliminate one extra
coordinate from the vectors of the others (see the method above). As the number of the extra
non-zero coordinates and the extra participants are equal, therefore after eliminating all the
extra coordinates, they can recover the secret as in Proposition 1.
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Fig. 18 Eb in the case of (1,1),(3,0)

(d): Suppose that there exists a non-trivial linear combination of the vectors of the partici-
pants that is equal to a vector s from E0. We note that s has only zero coordinates, except for
the first 2n − 1. The last (k − 1)(2n − 1) coordinates of every vector from Ea , a ∈ P1 is 0,
however, if we put the last (k−1)(2n−1) coordinates of all the 2n−1 vectors of all the k−1
participants from P2 in a square matrix, then the resulting matrix is non-singular because of
the generic values. Therefore none of the shares of the participants from P2 was used for the
linear combination. Now consider only vectors of the first type of the participants from P1
and put them in a matrix. Remove the first 2n − 1 columns and those columns that contain
only zero elements. The remaining entries form a non-singular n(n + � − 1) × n(n + � − 1)
matrix because of the generic values, therefore no vector of the first type is used in the linear
combination. E0 intersects the linear hull of vectors of the second type trivially and so we
get a contradiction.

(e): The proof is essentially the same as for part (d), but the roles of a and b are reversed.
��

Theorem 6 There exists a linear scheme with complexity 2 − 1/n for the bipartite access
structure � defined by the points (m, k), (m + n, 0), m, k, n ∈ N,m, n, k ≥ 1.

Proof The proof is very similar to Theorem 5, hence we provide only a sketch. First, we
construct the shares for (1, 1), (n + 1, 0). The subspaces assigned to participants in P1 and
the secret are the same as in the case of the bipartite structure (0,m + 1), (1, 1), (n + 1, 0).
The subspaces assigned to participants in Eb are slightly changed:

• First type: yi = (02n−1, δn·n
i ) for i = 1, . . . , n.

• Second type: eNi for i = 2, . . . , n.

The shares for (m, k), (m + n, 0) are made from the shares (1, 1), (n + 1, 0) the same
way as the shares of (0,m + k), (�, k), (n + �, 0) made from (0,m + 1), (1, 1), (n + 1, 0)
by adding εi and 02n−1 to the end of the shares. ��

Using the properties of duality we can compute the linear complexity and the information
ratio for bipartite access structures defined by two points. It is easy to show that the dual of
a bipartite access structure is also bipartite.

Theorem 7 There exists a linear scheme with complexity 2 − 1/n for the bipartite access
structure � defined by the points (�,m + k), (n + �, k) if n,m, �, k �= 0 and n ≥ m.

Proof Let s = P1 and t = P2. The maximal unqualified sets in � are (� − 1, t), (n + � −
1,m + k − 1) and (s, k − 1) hence the dual of � is a bipartite access structure given by the
points (0, t − k + 1), (s − n − � + 1, t − m − k + 1), (s − � + 1, 0). With the notation
a = s − n − � + 1, b = t − m − k + 1, the three points can be written in the more familiar
form (0,m + b), (a, b), (n + a, 0). Theorem 5 implies that the linear complexity of �⊥ is
λ(�⊥) = 2 − 1/n. Using the properties of the duality

λ(�) = λ(�⊥) = 2 − 1/n
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��
Corollary 1 Let � be an access structure given by two points, (�,m + k), (n + �, k), n ≥ m.
If � = k = 0 then σ(�) = 1, otherwise σ(�) = 2 − 1/n.

Proof There are three cases, depending on if both, one of, or neither of � and k is 0. If
� = k = 0, the access structure is ideal [27]. If exactly one of � and k is 0, then the lower
bound is due to Lemma 3, while the upper bound is from [18] or Theorem 6. If neither of �

and k is 0, then the lower bound is due to Lemma 3 once again, and the upper bound is from
Theorem 7. ��

4 Conclusions

In this paper, we presented two results on bipartite access structures. We computed the
Shannon complexity of regular bipartite access structures. An interesting open question is
to construct efficient secret sharing schemes for such structures, as the best-known share is
proportional to the length of the staircase. Our second result is optimal linear secret sharing
schemes for bipartite structures defined by three points (0, y1), (x2, y2), (x3, 0). As a con-
sequence of duality, the construction also yields an optimal secret sharing scheme for the
bipartite access structures given by two points (x1, y1), (x2, y2), x1, y2 �= 0.
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