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Abstract
Recently, several interesting constructions of vectorial Boolean functions with the maximum
number of bent components (MNBC functions, for short) were proposed. However, many of
them have component functions from the completed Maiorana-McFarland classM#. More-
over, no examples of MNBC functions containing component functions provably outside
M# are known. In this paper, we classify all MNBC functions in six variables. Based on the
analysis of the obtained equivalence classes, we propose several infinite families of MNBC
functions with component functions outside the M# class. In particular, two of our new
constructions are solutions to the open problem [Bapić et al (eds) Proceedings of the twelfth
international workshop on coding and cryptography, 2022, Item 1., p. 9].
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1 Introduction

LetFn
2 be the vector space of dimension n overF2 = {0, 1}, whichwill be frequently endowed

with the structure of the finite field (F2n ,+, ·). An element α ∈ F2n is said to be a primitive
element, if it is a generator of the multiplicative group F

∗
2n . For m | n, the trace mapping

Trnm : F2n → F2m is given by Trnm(x) = ∑ n
m −1
i=0 x2

i ·m
. The mapping Trn1 : F2n → F2 is

called the absolute trace.
Amapping F : Fn

2 → F
m
2 is called an (n,m)-function. Form = 1, a function f : Fn

2 → F2

is called aBoolean function in n variables.WithBn , wewill denote the set of all Boolean func-
tions in n variables. Any (n,m)-function F can be written as F(x) = ( f1(x), . . . , fm(x)),
where the Boolean functions fi on F

n
2 are called coordinate functions of F . The Walsh

transform W f : F2n → Z of a Boolean function f ∈ Bn at λ ∈ F2n is defined by
W f (λ) = ∑

x∈F2n (−1) f (x)+Trn1 (λx). A Boolean function f ∈ Bn , where n = 2k, is called

bent if |W f (λ)| = 2n/2 for all λ ∈ F2n . Note that for n odd, such functions do not exist.
For a Boolean bent function f ∈ Bn , the Boolean function f̃ ∈ Bn defined for any u ∈ F2n

by W f (u) = 2
n
2 (−1) f̃ (u), is also bent and is called the dual of f . The algebraic normal

form (ANF, for short) of a Boolean function f : Fn
2 → F2 is a multivariate polynomial

in the ring F2[x1, . . . , xn]/(x1 + x21 , . . . , xn + x2n ), given by f (x) = ∑
a∈Fn2 ca

(∏n
i=1 x

ai
i

)
,

where x = (x1, . . . , xn), a = (a1, . . . , an) ∈ F
n
2. The algebraic degree of a Boolean function

f : Fn
2 → F2, denoted by deg( f ), is the algebraic degree of its ANF as a multivariate polyno-

mial, that is, deg( f ) = maxa∈Fn2 {wt(a) : ca �= 0}, where wt(a) = |{i : ai �= 0, 1 ≤ i ≤ n}|.
The algebraic normal form of a vectorial (n,m)-function F is defined coordinate-wise and
its algebraic degree is defined as deg(F) := max1≤i≤m deg( fi ). The first-order derivative of
an (n,m)-function F in direction a ∈ F

n
2 is an (n,m)-function DaF(x) := F(x+a)+F(x).

For a, b ∈ F
n
2, the mapping Da,bF(x) := F(x + a + b) + F(x + a) + F(x + b) + F(x) is

called the second-order derivative of an (n,m)-function F .
For (n,m)-functions, the bent property is introduced with the notion of component func-

tions Fλ ∈ Bn defined by Fλ(x) = Trm1 (λF(x)) for λ ∈ F
∗
2m . An (n,m)-function is called

(n,m)-bent (vectorial bent for m ≥ 2), if for all λ ∈ F
∗
2m , its component functions Fλ are

Boolean bent. Vectorial (n,m)-bent functions exist only for m ≤ n/2; this result is also
known as the Nyberg’s Bound [16]. The Maiorana-McFarland construction of (n,m)-bent
functions describes the functions of the form G(x, y) = L(xπ(y)) + g(y) for x, y ∈ F2n/2 ,
where π is a permutation on F2n/2 , L is a surjective linear (n/2,m)-function, and g is an
arbitrary (n/2,m)-function. With the Nyberg’s bound, one can interpret the bent property of
a vectorial function as follows. An (n,m)-function F with m ≤ n/2 is vectorial bent, if it
has the maximum number of bent components Fλ, which is equal to 2m − 1. Due to the non-
existence of (n,m)-bent functions for m > n/2, the maximum number of bent components
of (n,m)-functions with m > n/2 is less than 2m − 1.

In 2018, Pott et al. [22] addressed for the first time the question about themaximumnumber
of bent components for vectorial functions beyond the Nyberg’s bound. It was shown that an
(n, n)-function F can have at most 2n −2n−n/2 bent components and that this bound is sharp.
This result was generalized in [27] for (n,m)-functions, for which the maximum number of
bent components equals to 2m − 2m−n/2.

Definition 1.1 Let n = 2k and m > k. An (n,m)-function F is called an (n,m)-MNBC
function, if it has the maximum number of bent components 2m − 2m−k .

On the set of (n,m)-functions we define the following equivalence relations preserving
the MNBC property [15, 22]. Two (n,m)-functions F and F ′ are called EA-equivalent, if
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MNBC functions beyond the Nyberg’s bound 533

there exist two affine permutations A1 : Fm
2 → F

m
2 , A2 : Fn

2 → F
n
2 and an affine function

A3 : Fn
2 → F

m
2 s.t. A1 ◦ F ◦ A2 + A3 = F ′; functions F and F ′ are called CCZ-

equivalent, if there exists an affine permutation L on F
n
2 × F

m
2 s.t. L (GF ) = GF ′ , where

GF = {(x, F(x)) : x ∈ F2n } is the graph of F . Note that CCZ-equivalence is a coarser
equivalence relation than EA-equivalence.

Since the introduction of MNBC functions, several constructions of these functions have
been proposed. Among them, are several constructions in the univariate representation [15,
22, 26], the trivial construction and the Maiorana-McFarland construction. The trivial con-
struction describes (n,m)-MNBC functions of the form x ∈ F

n
2 
→ (b(x), 0), where b is

a vectorial (n, n/2)-bent function, while the Maiorana-McFarland construction describes
(n,m)-MNBC functions of the form (x, y) ∈ F2n/2 × F2n/2 
→ (G(x, y), h(y)), where G
is a Maiorana-McFarland (n, n/2)-bent function and h is an arbitrary (n/2,m)-function. In
this article, we denote by M both classes of (n,m)-bent and (n,m)-MNBC functions, and
the set of (n,m)-functions EA-equivalent to theM class is called the completed Maiorana-
McFarland class and denoted by M#. We say that an (n,m)-function F (either bent or
MNBC) is outside the M# class if at least one bent component Fλ is outside M#. The fol-
lowing lemma, due to Dillon [8], is of crucial importance for the discussion on inclusion in
M#.

Lemma 1.2 [8, p. 102] A bent function f in n variables belongs to M# if and only if there
exists an (n/2)-dimensional vector subspace U of Fn

2 such that the second-order derivatives

Da,b f (x) = f (x) + f (x + a) + f (x + b) + f (x + a + b)

vanish for any a, b ∈ U.

The construction of (n,m)-MNBC functions outside theM# class is a difficult theoretical
problem. As presented in [1], several nontrivial constructions of (n,m)-MNBC functions
contain vectorial (n, n/2)-bent functions, and hence many Boolean bent components from
M# class. On the other hand, employing a trivial construction, it is also hard to construct
(n,m)-MNBC functions outside the M# class, since only few examples of (n, n/2)-bent
functions outside M# are known [3, 19, 21]. In this article, we construct several infinite
families of nontrivial MNBC functions outside the M# class using the extension approach,
considered recently in [14, 19] in the context of vectorial bent functions. The main idea of
our approach is to extend vectorial (n, n/2)-bent functions by non-bent coordinates in such
a way, that the remaining bent components fall into secondary constructions of Boolean
bent functions outside the M# class, what guarantees that the obtained (n,m)-functions are
MNBC and outside M#.

The rest of the article is organized in the followingway. In Sect. 2, we consider in detail the
notion of a t-step extensionMNBC function, whichwe use to distinguish inequivalentMNBC
functions, and, particularly, to classify all MNBC functions in six variables. Moreover, we
show that some of them are nontrivial and do not belong to the M# class. In the sequel, we
present several theoretical constructions of such functions based on the analysis of several
large classes of Boolean bent functions, namely, PSap , D0 and C. In Sect. 3, we propose a
partial spread construction of 1-step extension MNBC functions based on PSap vectorial
bent functions. In Sect. 4, by applying similar techniques, we provide constructions of 1-step
and 2-step extension MNBC functions outside M# based on the secondary constructions
of Boolean bent functions, namely, D0, C and SC classes. In Sect. 5, we combine several
techniques presented in Sect. 4 for the construction of 1-step and 2-step extension MNBC
functions and provide a construction of t-step extension (n, n)-MNBC functions outside the
M# class, where 3 ≤ t ≤ n/6. With these results, we give a solution to the open problem [4,
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Item 1., p. 9]. The paper is concluded in Sect. 6 and representatives of equivalence classes of
MNBC functions on F6

2 are given in Appendix 1.

2 Complete classification of MNBC functions in six variables

For vectorial Boolean functions with the maximum number of bent components below the
Nyberg’s bound, i.e., vectorial bent functions, CCZ- and EA-equivalence coincide [6, 9, 12].
Recently, it was proven that for a vectorial function (beyond the Nyberg’s bound), theMNBC
property is invariant under CCZ-equivalence [15]. In view of this recent result, it is reason-
able to conjecture, that CCZ-equivalence and EA-equivalence coincide for MNBC functions
beyond the Nyberg’s bound as well. Now we give an example of two EA-inequivalent, but
CCZ-equivalent MNBC functions in six variables.

Example 2.1 Let x ∈ F
6
2 and y ∈ F

4
2 be written as column-vectors. Consider the following

MNBC functions F : F6
2 → F

4
2 and F ′ : F6

2 → F
4
2 given by algebraic normal forms:

F(x) =

⎛

⎜
⎜
⎝

x1x4 + x2x5 + x3x6
x1x5 + x1x6 + x2x4 + x2x5 + x3x4

x1x4 + x1x5 + x2x4 + x2x5 + x2x6 + x3x5
x1x2 + x1x5 + x1x6 + x2x4 + x2x5 + x3x4

⎞

⎟
⎟
⎠ ,

F ′(x) =

⎛

⎜
⎜
⎝

x1x2x3 + x1x4 + x2x5 + x3x6
x1x2x4 + x1x3 + x1x5 + x2x3 + x4x6
x1x2x5 + x1x3 + x2x4 + x2x5 + x5x6
x1x2x3 + x1x2 + x1x4 + x2x5 + x3x6

⎞

⎟
⎟
⎠ .

It is easy to see, that deg(F) = 2 and deg(F ′) = 3, from what follows that F and F ′ are
EA-inequivalent. However, as we show now, the functions F and F ′ are CCZ-equivalent.
Consider the following affine permutation L on F

6
2 × F

4
2, which is given by

L(x, y) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x2
1 + x1 + x2
x1 + x5 + x6
1 + x3 + x4
x2 + x3 + x5

1 + x2 + x3 + y2 + y4
x1 + x2 + x3 + x6 + y1 + y3
1 + x3 + x4 + x5 + x6 + y2

1 + x1 + x2 + x4 + y3
x1 + x2 + x3 + x6 + y1 + y2 + y3 + y4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

,

for x ∈ F
6
2 and y ∈ F

4
2. With a computer algebra system, one can check that the sets

{L (x, F(x)) : x ∈ F
6
2} and {(x, F ′(x)) : x ∈ F

6
2} are equal, thus L (GF ) = GF ′ , and hence

F and F ′ are CCZ-equivalent. With the mapping L, the functions F and F ′ are related
in the following way. As described in [9, Sect. 7], the mapping L can be represented as
L(x, y) = (A11x + A12y + a, A21x + A22y + b), where a = (0, 1, 0, 1, 0, 1)T ∈ F

6
2, b =

(0, 1, 1, 0)T ∈ F
4
2, and the matrices A11 ∈ F

(6,6)
2 , A12 ∈ F

(6,4)
2 , A21 ∈ F

(4,6)
2 , A22 ∈ F

(4,4)
2
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MNBC functions beyond the Nyberg’s bound 535

are given by

A11 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 1 1 0 0
0 1 1 0 1 0
0 1 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A12 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A21 =

⎛

⎜
⎜
⎝

1 1 1 0 0 1
0 0 1 1 1 1
1 1 0 1 0 0
1 1 1 0 0 1

⎞

⎟
⎟
⎠, A22 =

⎛

⎜
⎜
⎝

1 0 1 0
0 1 0 0
0 0 1 0
1 1 1 1

⎞

⎟
⎟
⎠.

With the defined above vectors and matrices, it is possible to show that the equality

F ′(A11x + A12F(x) + a) = A21x + A22F(x) + b

holds for all x ∈ F
6
2.

Remark 2.2 With Example 2.1, we conclude that CCZ-equivalence is more general than
EA-equivalence for the class of MNBC functions.

Recently, the complete classification of vectorial bent functions in six variables [19, 21], as
well as of quadratic vectorial bent functions in eight variables [18] was obtained. With the
same approach, we classify all MNBC functions on F

6
2 and check, which of them belong to

the M# class. First, we give the following definition.

Definition 2.3 Let F be an (n,m)-MNBC function, where n/2 + 1 ≤ m ≤ n. Let the linear
code CF over F2 be defined as the row space of the (n + m + 1) × 2n-matrix over F2

with columns (1, x, F(x))Tx∈F2n . We call an (n,m)-MNBC function F a t-step extension if
dim(CF ) = 1 + n + n/2 + t , where 1 ≤ t ≤ n/2.

Remark 2.4 1. Let F be a t-step extension (n,m)-MNBC function. The value t gives a mea-
sure of non-triviality of MNBC-functions. With Definition 2.3, an (n,m)-MNBC function is
trivial, if it is a 0-step extension.
2. Note that if two MNBC functions F and F ′ are t-step and t ′-step extension with t �= t ′,
then F and F ′ are CCZ-inequivalent, since inequivalent linear codes CF and CF ′ define
CCZ-inequivalent functions [9, Theorem 9].
3. Let 1 ≤ t ≤ n/2 − 1. Given a t-step extension (n,m)-MNBC function F , it is easy to
obtain a (t − 1)-step extension (n,m)-MNBC function F ′, by removing a suitable non-bent
component function of F . On the other hand, it seems to be a difficult problem to find a
function f ∈ Bn such that the function F ′′ : x 
→ (F(x), f (x)) is a (t + 1)-step extension
(n,m + 1)-MNBC function.

In the following proposition, we summarize our computational results about the classifi-
cation of MNBC functions in six variables.

Proposition 2.5 On F6
2, there exist 40 CCZ-equivalence classes of MNBC functions. Among

them, there are:

1. 13 CCZ-equivalence classes of 0-step extension; these are the (6, 3)-bent functions in
[21, Table A2(c)].

2. 17 CCZ-equivalence classes of 1-step extension.
3. 7 CCZ-equivalence classes of 2-step extension.
4. 3 CCZ-equivalence classes of 3-step extension.

If an MNBC function F on F6
2 is a 2-step or a 3-step extension, then F ∈ M#.
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Fig. 1 The structure of CCZ-equivalence classes of (6,m)-MNBC functions. If an equivalence class i is
extendable to an equivalence class j , we put a directed edge between them. The equivalence classes denoted
by gray are inside M# and by red are outside M# (Color figure online)

Nowwebriefly discuss themain steps of the used approach. Since any (n,m)-MNBCfunction
F has 2m−n/2 non-bent components, which form an (m − n/2)-dimensional vector space
[22, 27], one can represent F in the form

F(x) = (b1(x), . . . , bn/2(x), n1(x), . . . , nm−n/2(x)),

where all bi are bent, all n j are non-bent and 〈n1, . . . , nm−n/2〉 is a vector space of non-bent
functions of dimension m − n/2. Applying a non-degenerate linear transformation to the
output of F , we get

F ′(x) = (b1(x), . . . , bn/2(x), bn/2+1(x), . . . , bm(x)),

where bn/2+i := bi +ni is bent for 1 ≤ i ≤ m−n/2, since by [27, Theorem 3.1], all non-bent
components of F belong to 〈n1, . . . , nm−n/2〉. In this way, we may assume that all coordinate
functions of an MNBC function F are bent. Consequently, any (n,m)-MNBC function F
can be represented as F(x) = (F̄(x), f (x)), where F̄(x) is an (n,m − 1)-MNBC function
and f is a Boolean bent function on F

n
2 (for m = n/2 + 1 we let F̄ be (n, n/2)-bent). In

this case, we say that F̄ is extendable to F . With this representation of MNBC functions, we
start with inequivalent vectorial (6, 3)-bent functions from [21] and extend them recursively
to (6,m)-MNBC functions by appending at each step a Boolean bent function without affine
terms exhaustively. The extension relation between the obtained CCZ-equivalence classes is
given in Fig. 1.

We check CCZ-equivalence of MNBC functions F and F ′ via equivalence of linear codes
CF and CF ′ (see [9, Theorem9])with the algebra systemMagma [5].With the implementation
[20, Algorithm 1] of Lemma 1.2 applied coordinate-wise to all EA-inequivalent MNBC
functions contained in a CCZ-equivalence class, we check whether a given CCZ-equivalence
class belongs toM#. Finally, we list representatives of the obtained CCZ-equivalence classes
in the Appendix.

Remark 2.6 1. Alternatively to [20, Algorithm 1], one can use a graph-theoretic approach in
order to check, whether a given bent function f on F

n
2 belongs to M#. Let G = (V , E) be

a graph with the vertex-set V = F
n
2 and the edge-set E = {{a, b} ∈ V × V : Da,b f = 0}.

Then the existence of a vector space U ⊂ F
n
2 with dim(U ) = n/2 s.t. Da,b f = 0 for any

a, b ∈ U is equivalent to the existence of a cliqueU of size 2n/2 in G, whose elements form
a vector space of dimension n/2. For details on the implementation, we refer to [17].
2. On F

6
2, there are 17 CCZ-equivalence classes of 1-step extension MNBC functions, and

there are 23 EA-equivalence classes of 1-step extension MNBC functions. CCZ-equivalence
classes 14 and 21 contain 3 EA-equivalence classes (each), CCZ-equivalence classes 23 and
27 contain 2 EA-equivalence classes (each), and every other CCZ-equivalence class i with
14 ≤ i ≤ 30 contains exactly one EA-equivalence class.
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MNBC functions beyond the Nyberg’s bound 537

Finally, we suggest to work on the following problem in order to shed more light on the
phenomenon observed in Example 2.1.

Openproblem 2.7 Find explicit constructions of (n,m)-MNBC functions for all n ≥ 6 and
n/2 + 1 ≤ m ≤ n, which are EA-inequivalent, but CCZ-equivalent.

3 MNBC functions from thePSap class

In order to introduce a partial spread construction of MNBC functions, we first give a defi-
nition of a partial spread.

Definition 3.1 A partial spread of order s in F
n
2 with n = 2k is a set of s vector subspaces

U1, . . . ,Us of Fn
2 of dimension k each, such that Ui ∩ Uj = {0} for all i �= j . The partial

spread of order s = 2k + 1 in F
n
2 with n = 2k is called a spread.

In the following, we denote by 1U : Fn
2 → F2 the indicator function of U ⊆ F

n
2, i.e.,

1U (x) = 1 if x ∈ U , and 0 otherwise. Using the notion of a partial spread, Dillon [8]
introduced a partial spread construction of bent functions, which splits the following two
classes:

• The PS+ class is the set of Boolean bent functions of the form

f (x) =
2k−1+1∑

i=1

1Ui (x),

where the vector spaces U1, . . . ,U2k−1+1 of F
n
2 form a partial spread in F

n
2.• The PS− class is the set of Boolean bent functions of the form

f (x) =
2k−1
∑

i=1

1U∗
i
(x),

where the vector spaces U1, . . . ,U2k−1 of Fn
2 form a partial spread in F

n
2 and U∗

i :=
Ui \ {0}.
TheDesarguesian partial spread classPSap ⊂ PS− is the set ofBoolean bent functions f

on F2k ×F2k of the form f : (x, y) ∈ F2k ×F2k 
→ h (x/y), where x
0 = 0, for all x ∈ F2k and

h : F2k → F2 is a balanced Boolean function with h(0) = 0. Similarly to the Boolean case,
theDesarguesian partial spread class PSap of (n, k)-bent functions with k = n/2 is defined
as the set of (n, k)-functions F on F2k ×F2k of the form F : (x, y) ∈ F2k ×F2k 
→ H (x/y),
where x/y = 0 if y = 0 for x, y ∈ F2k and H is a permutation on F2k s.t. H(0) = 0.

In the following theorem, we give the partial spread construction of MNBC functions.

Theorem 3.2 Let n = 2k and let G be a vectorial (n, k)-bent function from thePSap class. Let
alsoU be a spread line of the formU = {(0, y) : y ∈ F2k }. Then the function F : F2k ×F2k →
F
k+1
2 defined as

F(x, y) = (G(x, y),1U (x, y)) (1)

is an (n, k + 1)-MNBC function.

Proof Since1U ∈ Bn is the indicator of the vector spaceU of dimension k, we havewt(1U ) =
2k and hence 1U is not bent. In this way, it is enough to show that for any PSap Boolean
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bent function g on F2k × F2k , which is a bent component of the function G, the function
g + 1U on F2k ×F2k is bent. For a, b ∈ F2k , we compute the Walsh transform Wg+1U (a, b)
of g + 1U at a, b ∈ F2k , by considering the following two cases.
Case 1 Let a, b ∈ F2k with b �= 0. The Walsh transform of g + 1U is given by

Wg+1U (a, b) =
∑

x,y∈F2k
(−1)g(x,y)+1U (x,y)+Trk1 (ax+by)

=
∑

y∈F2k
(−1)g(0,y)+1U (0,y)+Trk1 (by)

+
∑

x∈F∗
2k

∑

y∈F2k
(−1)g(x,y)+1U (x,y)+Trk1 (ax+by) = Wg(a, b) = ±2k,

since
∑

y∈F2k (−1)g(0,y)+1U (0,y)+Trk1 (by) = −∑
y∈F2k (−1)Tr

k
1 (by) = 0 (because b �= 0), and

the function g is bent on F2k × F2k .
Case 2 Let a, b ∈ F2k with b = 0. The Walsh transform of g + 1U is given by

Wg+1U (a, 0) =
∑

x,y∈F2k
(−1)g(x,y)+1U (x,y)+Trk1 (ax)

=
∑

y∈F2k
(−1)g(0,y)+1U (0,y) +

∑

x∈F∗
2k

∑

y∈F2k
(−1)g(x,y)+1U (x,y)+Trk1 (ax)

= − 2k + Wg(a, 0) − 2k .

Since for PSap bent function g on F2k × F2k the Walsh transform Wg(a, 0) = +2k for any
a ∈ F2k , we have that Wg+1U (a, 0) = −2k . This completes the proof. ��
Remark 3.3 1. In the sameway, it is possible to show that for the spread lineU = {(x, 0) : x ∈
F2k } the (n, k + 1)-function F of the form (1) is MNBC. 2. The bent component functions
of MNBC functions of the form (1) belong to the PSap and PS+ classes. Addition of the
indicator of the spread line F2k × {0} or the indicator of {0} × F2k to a PSap bent function
g on F2k × F2k gives a bent function in PS+ class, because the PSap bent function g is
constant 0 on thementioned spread lines. Similarly, one can use other spreads (not necessarily
Desarguesian) for the construction of MNBC functions.
3. Weng, Feng and Qiu [24] proved that almost every PSap bent function on F

n
2 is outside

M#. Since 2n/2 − 1 component functions of MNBC functions of the form (1) belong to
PSap , we have that almost every MNBC function of this form is outside M#. Remarkably,
with this construction one can extend a vectorial bent function in PSap ∩ M# to an MNBC
function outside M#, as the example of equivalence classes 11 and 19 in Fig. 1 shows; this
is the only such an example in six variables, since the only equivalence classes of (6, 3)-bent
functions inside PSap are 11, 12 and 13 (see Fig. 1 and [21, Table IV.2.]).
4.Any PSap vectorial bent function (x, y) ∈ F2k ×F2k 
→ H(x/y) in n = 2k = 6 variables
can be extended to at least two inequivalent 1-step extensionMNBC functions from thePSap
class. With Magma [5], one can show that for any permutation H on F2k , MNBC functions
of the form

F : (x, y) ∈ F2k × F2k 
→ (H(x/y),1U (x, y)),

F ′ : (x, y) ∈ F2k × F2k 
→ (H(x/y),1V (x, y)),
(2)

where U = {(0, y) : y ∈ F2k } and V = {(x, 0) : x ∈ F2k }, are CCZ-inequivalent.
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MNBC functions beyond the Nyberg’s bound 539

Conjecture 1 n view of the last observation in Remark 3.3, we conjecture that MNBC func-
tions F and F ′ defined by (2) are inequivalent for any permutation H on F2k .

4 MNBC functions from secondary constructions of Boolean bent
functions

In this section, using secondary constructions of Boolean bent functions, we construct three
families of MNBC functions: two families of 1-step extension stemming from D0 and C
classes, and one family of 2-step extension stemming from the SC class, which is a superclass
of D0 and C.

4.1 MNBC functions stemming from theD0 class

In the following, we define δ0 ∈ Bk to be the indicator of 0 ∈ F2k , i.e., δ0 = 1{0}. With this
notation, Boolean functions f : F2k × F2k → F2 of the form

f (x, y) = Trk1 (xπ(y)) + δ0(x) for x, y ∈ F2k , (3)

where π is a permutation on F2k , are bent and the set of bent functions of the form (3) is
called the D0 class of Boolean bent functions [7]. Carlet [7] proved, that bent functions of
the form (3), where π is a quadratic permutation such that there is no affine hyperplane of
F2k on which π is affine, do not belong to the M# class. In a recent work [11], the authors
provided a complete characterization of D0 ∩ M#, which we summarize in the following
theorem.

Theorem 4.1 [11, Theorems 5,7] Let k be an integer, k ≥ 4. Let π be a permutation of F2k

with one of the following two properties:

1. The algebraic degree of π satisfies deg(π) ≥ 3;
2. The permutation π is quadratic and there is no affine hyperplane of F2k on which π is

affine.

Then the function f : F2k × F2k → F2 defined by f (x, y) = Trk1 (xπ(y)) + δ0(x) for
x, y ∈ F2k is a bent function in D0 outside M#. Moreover, the second condition is also a
necessary one for quadratic permutations.

With the use of bent functions from D0 \ M# class, we derive the following family of
MNBC functions.

Theorem 4.2 Let n = 2k ≥ 8 and let γ ∈ F2n \F2k . Let π be a permutation on F2k satisfying
one of conditions of Theorem 4.1. Then the (n, n)-function F defined by

F(x, y) = xπ(y) + γ δ0(x) for x, y ∈ F2k , (4)

is a 1-step extension (n, n)-MNBC function outside the M# class.

Proof First, we show that the function F has the maximum number of bent components and
is outside M#. Let λ ∈ F

∗
2n be arbitrary. Then

Fλ(x, y) = Trk1 (xπ(y)Trnk (λ)) + δ0(x)Tr
n
1 (λγ )
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is not bent if and only if Trnk (λ) = 0. This holds, if λ ∈ F
∗
2k
. Thus, there are (2n − 1) −

(2k − 1) = 2n − 2k bent components. Since |{x ∈ F2n : Trn1 (γ x) = 1}| = |{x ∈ F2n :
Trn1 (γ x) = 0}| = 2n−1, there exist at least 2n − 2k − 2n−1 = 2k(2k−1 − 1) many λ /∈ F2k

such that Trn1 (λγ ) = 1. In this case, we have that Fλ ∈ D0 \ M#. Now we show that F is
a 1-step extension. Since G(x, y) := xπ(y) is an (n, k)-function, we can write G(x, y) =
(g1(x, y), . . . , gk(x, y)), where g1, . . . , gk : F2k × F2k → F2 . Since γ ∈ F2n \ F2k , we can
construct the function F ′ in the following form

F ′(x, y) = (g1(x, y), . . . , gk(x, y), δ0(x)).

Thus, F ′ is an MNBC (n, k + 1)-function, since the non-bent component functions of F ′
are 0 and δ0. Furthermore, we note that the dimension of the linear code CF ′ is given by
dim(CF ′) = 1 + n + k + 1 which, by definition, means that F ′ is a nontrivial MNBC
(n, k + 1)-function. Consequently, the MNBC (n, n)-function F is a 1-step extension. ��

4.2 MNBC functions stemming from the C class

In this section, we present several infinite families of MNBC functions provably outside
the M# class based on the generic construction of MNBC functions introduced in [2]. This
construction is based on the property (PU ), which was introduced in [23] and has several
applications in the construction of vectorial Boolean bent functions [26] andMNBC functions
[2].

Definition 4.3 Let n, τ ∈ Nwith n even and τ ≤ n/2 and let g ∈ Bn . Then g is said to satisfy
property (PU ) with the defining set U = {u1, . . . , uτ } ⊂ F2n if for all 1 ≤ i < j ≤ τ the
equation g(x + ui + u j ) + g(x + ui ) + g(x + u j ) + g(x) = 0 holds for all x ∈ F2n .

In [2], Bapić and Pasalic generalized the results of [26] and provided the following generic
method for the construction of MNBC functions. Below we give a slightly reformulated
version of [2, Construction 2].

Construction 4.4 Let n = 2k and let U = {u1, . . . , uτ } be a set of τ ≤ k linearly indepen-
dent elements in F

∗
2n . Let G : F2n → F2k be any vectorial bent function whose dual bent

components G̃λ, λ ∈ F
∗
2k

satisfy the property (PU ) with the defining set U. Let s | k and let
h : Fτ

2 → F2s be any (τ, s)-function. Then for any γ ∈ F2n \F2k , the function F : F2n → F2n

defined as follows

F(x) = G(x) + γh(Trn1 (u1x), . . . , Tr
n
1 (uτ x)), (5)

has the maximum number of bent components.

In [2], it was shown that several Maiorana-McFarland vectorial bent functions G : F2k ×
F2k → F2k satisfy the conditions of Construction 4.4. Now we show that for these vectorial
bent functions G : F2k ×F2k → F2k one can specify a vectorial function h, such that MNBC
functions, obtained via Construction 4.4, are outside theM# class. The choice of the function
h is strongly relatedwith C andD0 classes of Boolean bent functions, which contain functions
provably outside M#.

Recall that the C class of bent functions introduced by Carlet [7] is the set of Boolean
functions f : F2k × F2k → F2 of the form

f (x, y) = Trk1 (xπ(y)) + 1L⊥(x), (6)
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where L is any vector subspace of F2k , 1L⊥ is the indicator function of the orthogonal
complement L⊥ = {x ∈ F2k : Trk1 (xy) = 0,∀ y ∈ L}, and π is any permutation on F2k such
that

(C) π−1(a + L) is a flat (affine subspace), for all a ∈ F2k .

The permutation π−1 and the subspace L are then said to satisfy the (C) property. For short,
we also write (π−1, L) has property (C). Recall that a Boolean function f ∈ Bn has a linear
structure if there exists an element a ∈ F

∗
2n such that x 
→ f (x + a) + f (x) is a constant

function. In [25], the following set of sufficient conditions for Boolean bent functions in
C \ M# class was proposed.

Theorem 4.5 [25, Theorem 1] Let n = 2k ≥ 8 be an even integer and let f (x, y) =
Trk1 (xπ(y)) + 1L⊥(x), where x, y ∈ F2k , L is any vector subspace of F2k and π is a
permutation on F2k s.t. (π−1, L) has property (C). If dim(L) ≥ 2 and for all λ ∈ F

∗
2k

the

function x ∈ F2k 
→ Trk1 (λπ(x)) has no nonzero linear structure, then f /∈ M#.

Using Construction 4.4 and Theorem 4.5, we obtain the following family of MNBC
functions outside the M# class.

Theorem 4.6 Let U = {u1, . . . , uτ } be a set of τ linearly independent elements in F
∗
2k
,

where n = 2k ≥ 8 and τ | k. Let π be a permutation on F2k and G(x, y) = xπ(y), where
x, y ∈ F2k , be an (n, k)-bent function whose dual bent components G̃λ, λ ∈ F

∗
2k
, satisfy the

property (PU ) with the defining set U. Let h ∈ Bτ be defined by its ANF as follows

h(x1, . . . , xτ ) =
τ∏

i=1

(xi + 1). (7)

If ((λπ)−1, 〈U 〉) satisfies the (C) property and the conditions of Theorem 4.5 for all λ ∈ F
∗
2k
,

then the (n, n)-function F constructed from G and h as

F(x, y) = G(x, y) + γh(Trk1 (u1x), . . . , Tr
k
1 (uτ x)), (8)

where γ ∈ F2n \ F2k , is a 1-step extension (n, n)-MNBC function outside M#.

Proof From Construction 4.4, it follows that the function F is an (n, n)-MNBC function.
The function h, defined in such a way, represents the indicator function of the subspace 〈U 〉⊥
of F2k . If Tr

k
1 (λγ ) = 1 for λ ∈ F

∗
2k
, then Fλ(x, y) = Trk1 (xλπ(y)) + 1〈U 〉⊥(x). Since

((λπ)−1, 〈U 〉) satisfies the (C) property and the conditions of Theorem 4.5 for all λ ∈ F
∗
2k
,

it follows that Fλ ∈ C\M#. If Trk1 (λγ ) = 0 then Fλ ∈ M#, hence F is outside M#. Now
we show that F is a 1-step extension. Since G(x, y) := xπ(y) is an (n, k)-function, we can
write G(x, y) = (g1(x, y), . . . , gk(x, y)), where gi : F2k × F2k → F2 for all 1 ≤ i ≤ k.
Since γ ∈ F2n \ F2k , we can construct the function F ′ (see Remark 2.4) in the following
form F ′(x, y) = (g1(x, y), . . . , gk(x, y), gk+1(x, y)), where the function gk+1 is defined
by gk+1(x, y) := h(Trk1 (u1x), . . . , Trk1 (uτ x)). Thus, F ′ is an (n, k + 1)-MNBC function,
since the non-bent components of F ′ are 0 and gk+1. Finally, since CF = CF ′ , we have that
dim(CF ) = dim(CF ′) = 1+n+k+1, consequently the (n, n)-MNBC function F is a 1-step
extension. ��

Following the proof of [3, Proposition 3], we give the following family of 1-step extension
(n, n)-MNBC functions outsideM# by specifying the permutation π to be a power mapping.
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Proposition 4.7 Let k ≥ 4 and s be a positive divisor of k such that k/s is odd. Let U =
{1, α, . . . , ατ−1} be a set of τ linearly independent elements in F∗

2s , α is a primitive element
in F2s and τ | k. Let G(x, y) = xπ(y), where x, y ∈ F2k , π(y) = yd is a permutation on
F2k for a positive integer d such that wt(d) ≥ 3 and d(2s + 1) ≡ 1 (mod 2k − 1). Then
(π−1, 〈U 〉), satisfies the (C) property and for any γ /∈ F2k , the function

F(x, y) = xyd + γh(Trk1 (x), Trk1 (αx), . . . , Trk1 (ατ−1x)),

where h is defined by (7), is a 1-step extension (n, n)-MNBC function outside theM# class.

Proof By [2, Proposition 3], the dual bent components G̃λ of G satisfy the property (PU )

with the defining setU given above for any λ ∈ F
∗
2k
. Thus, from Construction 4.4, it follows

that the function F is an (n, n)-MNBC function. We will show that F is outside M#. Let
λ ∈ F

∗
2k

be arbitrary. If Trk1 (λγ ) = 0, we have that Fλ(x, y) = Gλ(x, y) ∈ M#. Suppose

that Trk1 (λγ ) = 1, then Fλ(x, y) = Trk1 (λxyd) + 1〈U 〉⊥(x). For any permutation π on

F2k , let σλ(y) := λπ(y). Note that σ−1
λ (y) = π−1(λ−1y). Let π(y) = yd , where d is

defined above. Then, σ−1
λ (y) = λ−2s−1π−1(y), where π−1(y) = y2

s+1. We will show that
(σ−1

λ , 〈U 〉) satisfies the (C) property. Let a ∈ F2k be arbitrary. Then

σ−1
λ (a + 〈U 〉) = λ−2s−1(a + 〈U 〉)2s+1 = λ−sπ−1(a + 〈U 〉)

is a flat as π−1(a+〈U 〉) is a flat by [13, Theorem 5.8]. Since wt(d) ≥ 3, by [25, Proposition
5] it follows that Trk1 (λπ) has no nonzero linear structures. Thus, by Theorem 4.5 it follows
that Fλ is in C outsideM#. Hence, F is outsideM#. Finally, from Theorem 4.6, we conclude
that F is a 1-step extension. ��

4.3 MNBC functions stemming from theSC class

In [3, Sect. 3], the first two authors defined a new superclass of bent functions obtained from
the C and D0 class as follows. Let π be a permutation on F2k and let L ⊂ F2k be a linear
subspace ofF2k such that (π

−1, L) satisfies the (C) property. Then the class of bent functions
f : F2k × F2k → F2 containing all functions of the form

f (x, y) = Trk1 (xπ(y)) + a01L⊥(x) + a1δ0(x), ai ∈ F2, (9)

is called SC and is a superclass of D0 and C.
As the following result shows, under certain conditions, the functions in SC are outside

the completed Maiorana-McFarland class M#.

Theorem 4.8 [3, Theorem 5] Let π be a permutation on F2k and let L ⊂ F2k be a linear
subspace of F2k such that (π

−1, L) satisfies the (C) property and the conditions of Theorem
4.5. Then the function f : F2k × F2k → F2 defined by

f (x, y) = Trk1 (xπ(y)) + 1L⊥(x) + δ0(x) (10)

is a bent function in SC outside M#.

With the notation of Proposition 4.7, we construct the following family of MNBC func-
tions.

Theorem 4.9 Let x, y ∈ F2k . The function F : F2k × F2k → F2n defined by

F(x, y) = xyd + γ1h(Trk1 (x), Trk1 (αx), . . . , Trk1 (αt−1x)) + γ2δ0(x), (11)
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where t < k, is a 2-step extension (n, n)-MNBC function outside M#, for all γ1, γ2 ∈
F2n \ F2k .

Proof First, we show that F has the maximum number of bent components and is outside
M#. Let λ ∈ F

∗
2n be arbitrary. Then

Fλ(x, y) = Trk1 (xπ(y)Trnk (λ)) + h(Trk1 (x), Trk1 (αx), . . . , Trk1 (αt−1x))Trn1 (λγ1)

+ δ0(x)Tr
n
1 (λγ2)

is not bent if and only if Trnk (λ) = 0. This holds, if λ ∈ F
∗
2k
. Thus, there are

(2n − 1) − (2k − 1) = 2n − 2k bent components. Since |{x ∈ F2n : Trn1 (γi x) = 1}| =
|{x ∈ F2n : Trn1 (γi x) = 0}| = 2n−1, there exist at least 2n − 2k − 2n−1 = 2k(2k−1 − 1)
many λ /∈ F2k such that Trn1 (λγi ) = 1, for i = 1, 2. When Trk1 (λγ1) = Trk1 (λγ2) = 1,
the component is in SC outside M#, if Trk1 (λγ1) = 1, Trk1 (λγ2) = 0, the component is in
C outside M#, and if Trk1 (λγ1) = 0, Trk1 (λγ2) = 1, the component is in D0 outside M#.
Now we show that F is a 2-step extension. Since G(x, y) := xπ(y) is an (n, k)-function,
we can write G(x, y) = (g1(x, y), . . . , gk(x, y)), where g1, . . . , gk : F2k × F2k → F2 .
Since γ1, γ2 ∈ F2n \ F2k , we can construct the function F ′ in the following form
F ′(x, y) = (g1(x, y), . . . , gk(x, y),h(X), δ0(x)), X = (Trk1 (x), . . . , Trk1 (αt−1x)). Thus,
F ′ is an MNBC (n, k + 2)-function, since the non-bent component functions of F ′ are 0, δ0
and h. Note that if t = k, then δ0 = h. Thus, we assume that t < k. Furthermore, we note
that the dimension of the linear code CF ′ is given by dim(CF ′) = 1 + n + k + 2 which,
by definition, means that F ′ is a nontrivial MNBC (n, k + 2)-function. Consequently, the
MNBC (n, n)-function F is a 2-step extension. ��

Example 4.10 Let n = 12 and the multiplicative group of F212 be given by F
∗
2n = 〈α〉, where

the primitive element α satisfies α12 + α7 + α6 + α5 + α3 + α + 1 = 0. Let λ = α
212−1

3 .
If we choose L = 〈1, λ〉 and π(y) = y38, then (π−1, L) satisfies the (C) property (see [25,
Example 1]) and wt(38) = 3, that is, π admits no linear structures. Using a computer algebra
system, one can check that the following (12, 12)-MNBC functions

F1(x, y) =xy38 + α233(Tr61 (x) + 1)(Tr61 (λx) + 1) and

F2(x, y) =xy38 + α233(Tr61 (x) + 1)(Tr61 (λx) + 1) + α121δ0(x)

are 1-step and 2-step extension, respectively. That is, the dimensions of the linear codes CF1
and CF2 , are equal to 1 + n + n/2 + 1 = 20 and 1 + n + n/2 + 2 = 21, respectively.

5 A family of t-step extensionMNBC functions

In [3], the authors presented the following secondary construction of vectorial bent functions
outsideM#, which can be used to construct nontrivial (n, n)-MNBC functions outsideM#.

Theorem 5.1 Let n = 2k ≥ 8 and t ≥ 3 be a positive divisor of k such that k/t is odd. Let
π(y) = yd be a permutation on F2k such that d(2t + 1) ≡ 1 (mod 2k − 1) and wt(d) ≥ 3.
Let α be a primitive element of F2t . Then the (n, n)-function F defined by

F(x, y) = xyd + H(x), x, y ∈ F2k
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with

H(x) =
(
Trk1 (x) + 1

)
·
(

t−1∑

i=1

γiα
i
(
Trk1 (αi x) + 1

)
)

+ μδ0(x),

where γi , μ /∈ F2k , γi �= γ j (i �= j), is a t-step extension (n, n)-function outside M#.

Proof Similarly as in the proof of Theorems 4.2 and 4.9, we note that F has (2n −1)− (2k −
1) = 2n − 2k bent components, some of which are outside M#.

Let Trk1 (λ) = 1.When Trk1 (λγiα
i ) = 1 for at least one i ∈ {1, . . . , t−1} and Trk1 (λμ) =

0, the component is in C outside M# (as shown in [3, Proposition 2]). If Trk1 (λγiα
i ) = 1

for at least one i ∈ {1, . . . , t − 1} and Trk1 (λμ) = 1, the component is in SC outside M#

(as shown in [3, Corollary 3]). Lastly, if Trk1 (λγiα
i ) = 0 for all i ∈ {1, . . . , t − 1} and

Trk1 (λμ) = 1, the component is in D0 outsideM#. For the remaining cases, it is easy to see
that the components are in M#. Now we show that F is an t-step extension.

Since G(x, y) := xπ(y) is an (n, k)-function, we can write

G(x, y) = (g1(x, y), . . . , gk(x, y)),

where gi : F2k × F2k → F2 , for i = 1, . . . , k. For μ, γ1, . . . , γt−1 ∈ F2n \ F2k and
1, α, . . . , αt−1 ∈ F2t , we have that {μ, γ1α, . . . , γt−1α

t−1} is a linearly independent set
over F2 (since α is a primitive element of F2t ). Furthermore, because γi , μ /∈ F2k we have
that γiαi , μ /∈ F2k for i = 1, . . . , t − 1, and thus the set

{1, ω, . . . , ωk−1, μ, γ1α, . . . , γt−1α
t−1}

is linearly independent over F2 , where ω is a primitive element of F2k satisfying

ω(2k−1)/(2t−1) = α. Let us show that the functions ht = δ0, hi = 1〈1,αi 〉⊥ , i = 1, . . . , t − 1,
are linearly independent. Let us consider their linear combination λ1h1 + . . . + λt−1ht−1 +
λt ht . Suppose that for some i ∈ {1, . . . , t} we have λi = 1.

If λt = 1, then

δ0 =
t−1∑

j=1

λ j h j =
∑

j∈J

h j ,

where J = { j : 1 ≤ j ≤ t − 1, λ j = 1}. We have that

1〈1,α,...,αk−1〉⊥ = δ0 =
∑

j∈J

h j

= (Trk1 (x) + 1)

⎛

⎝Trk1

⎛

⎝
∑

j∈J

α j x

⎞

⎠ +
∑

j∈J

λ j

⎞

⎠

=
{
1〈1,∑ j∈J α j 〉⊥ , if

∑
j∈J λ j = 1

1〈1,∑ j∈J α j 〉⊥ + l, otherwise
,

where l(x) = Trk1 (x)+1. It is easy to note that the left- and right-hand side cannot be equal,
no matter what the choice of λi ∈ F2 is.

Hence, without loss of generality, we may assume that λt = 0. Suppose that for some
i ∈ {1, . . . , t − 1} we have λi = 1. Then

hi =
t−1∑

i �= j=1

λ j h j =
∑

j∈J

h j ,
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where J = { j : 1 ≤ j ≤ t − 1, j �= i, λ j = 1}. Let ξ = ∑
j∈J α j . It is easy to compute

that

1〈1,αi 〉⊥ = hi = (Trk1 (x) + 1)(Trk1 (ξ x) + ε), ε =
∑

j∈J

λ j .

If ε = 1, it follows that 〈1, ξ 〉 = 〈1, αi 〉, which implies that ξ ∈ 〈1, αi 〉. This is not
possible because ξ is a linear combination of {α, . . . αt−1} \ {αi } and α is a primitive element
of F2t . If ε = 0, we have that

1 = hi (0) = (Trk1 (0) + 1)(Trk1 (ξ0)) = 0,

which is not true. Thus, we must have that λi = 0 for all i = 1, . . . , t . In other words,
h1, . . . , ht are linearly independent over F2 . Furthermore, we have that the functions
g1, . . . , gk, h1, . . . , ht are also linearly independent. Hence we can construct the function F ′
in the following form

F ′(x, y) = (g1(x, y), . . . , gk(x, y), h1(x), . . . , ht (x)).

Thus, F ′ is an (n, k + t)-MNBC function, since the non-bent component functions of F ′ are
0 and v · (h1, . . . , ht ) for v ∈ F

t∗
2 . Furthermore, as the coordinates g1, . . . , gk, h1, . . . , ht

are linearly independent, we note that the dimension of the linear code CF ′ is given by
dim(CF ′) = 1 + n + k + t which, by definition, means that F ′ is a nontrivial (n, k + t)-
MNBC function. Consequently, the (n, n)-MNBC function F is an t-step extension. ��
Example 5.2 Let k = 9 and t = 3. Suppose that α is a primitive element of F23 . Since
284 · (23 + 1) mod 29 − 1 = 1, let π(y) = y284 be a permutation on F29 . Let γ1, γ2, γ3 be
distinct elements in F218 \ F29 . Then

F(x, y) = xy284 + (Tr91 (x) + 1)(γ1α(Tr91 (αx) + 1)

+ γ2α
2(Tr91 (α2x) + 1)) + γ3δ0(x)

is a 3-step (18, 18)-MNBC function outside M#.

Additionally, we specify the bounds for the value of t in Theorem 5.1, thus determining
a measure of non-triviality of the constructed MNBC-functions.

Remark 5.3 Let n = 2k and k/t be odd, i.e., k = mt , m odd. Note that m > 1 as for m = 1
we obtain that d(2t +1) mod (2t −1) = 1 holds for d = 2t−1 and wt(d) = 1 which implies
that the function is in M#. Hence, without loss of generality, we may assume that m ≥ 3,
then t = n

2m ≤ n
6 , i.e., we have that 3 ≤ t ≤ n/6. Furthermore, since t is a positive divisor of

k and k/ gcd(k, t) = k/t is odd it follows that gcd(2t + 1, 2k − 1) = 1. From [10, Theorem
4.1.-(i)], there exists a unique solution of the linear congruence d(2t + 1) ≡ 1 (mod 2k − 1).

Finally, we give a precise expression of d for t = 3, and hence, show that Example 5.2 is
a particular instance of an explicit infinite family of MNBC functions.

Proposition 5.4 Let k = 3m, where m = 3 + 2 l for some l ∈ N0. Let also

d = 2k−1 +
l+1∑

i=1

(
2k−6i+1 + 2k−6i + 2k−6i−1

)
.

Then we have that wt(d) ≥ 3 and d(23 + 1) ≡ 1 (mod 2k − 1).
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Proof The fact that wt(d) ≥ 3 follows from the definition of d . Denote by θ the number
(23 + 1)d − 1 and compute it in the following way:

θ = 2k+2 + 2k−1

+
l+1∑

i=1

(
2k−6i+4 + 2k−6i+3 + 2k−6i+2 + 2k−6i+1 + 2k−6i + 2k−6i−1

)
− 1

= 2k+2 + 2k−1 +
(
2k−2 + 2k−3 + 2k−4 + 2k−5 + 2k−6 + 2k−7

)

+
(
2k−8 + 2k−9 + 2k−10 + 2k−11 + 2k−12 + 2k−13

)
+ . . .

+
(
2k−6l−2 + 2k−6l−3 + 2k−6l−4 + 2k−6l−5 + 2k−6l−6 + 2k−6l−7

)

+ 2 + 1 − 2 − 1 − 1

= 2k+2 + 2k − 1 − 4 = 22(2k − 1) + (2k − 1) = (2k − 1)(22 + 1),

because k − 6 l = 9 and 2k − 1 = ∑k−1
i=0 2

i . Since (2k − 1)|θ , the result follows. ��

6 Conclusion and open problems

In this paper, we classified all MNBC functions in six variables and proposed several con-
structions of MNBC functions outside the M# class. In addition to the questions raised in
Sects. 2 and 3, we would like to mention the following open problems.

1. In n = 6 variables, all (n/2−1)-step and n/2-step extensionMNBC functions belong to
theM# class. In view of this observation, it is interesting to ask whether (n/2− 1)-step
and n/2-step extension MNBC functions outside M# can in general exist for n > 6.

2. To the best of our knowledge, for a t-step extension (n, n)-MNBC function outside the
M# class, the largest known value of t is equal to n/6 and achieved by the construction in
Theorem 5.1. In view of this result, we suggest to find constructions of t-step extension
(n, n)-MNBC functions outside the M# class with t > n/6.

Acknowledgements Amar Bapić and Enes Pasalic are partly supported by bilateral project BI-DE/19-20-005
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Appendix: CCZ-inequivalent MNBC functions in six variables

Below we list representatives of CCZ-equivalence classes of MNBC functions in n = 6
variables as polynomials fi : F26 → F26 , where F

∗
26

= 〈a〉 with a6 + a4 + a3 + a + 1 = 0.
Note that the representatives fi of CCZ-equivalence classes 1 ≤ i ≤ 13 are univariate
representations of the mappings z ∈ F

6
2 → (F3

i (z), 0), where F3
i is a vectorial (6, 3)-

bent function in [21, Table A2(c)] and 0 is the null-vector. For convenience, we sort the
representatives of the first 13 CCZ-equivalence classes as in Fig. 1.

0-step extensions:

f3. a8x48 + a57x40 + a13x36 + a20x34 + a3x33 + a60x32 + a47x24 + a10x20 + a45x18+
a59x17 +a35x16 +a10x12 +a2x10 +a48x9 +a47x8 +a50x6 +a55x5 +a18x4 +a47x3+
a25x

f6. a35x56 + a21x52 + a10x50 + a55x49 + a41x48 + a3x44 + a18x42 + a50x41 + a22x40+
a9x38 + a20x37 + a16x36 + a34x35 + a48x34 + a62x33 + a12x32 + a26x28 + a59x26

+a11x24 + a51x22 + a51x21 + a40x20 + a46x19 + a32x18 + a26x17 + a50x16 + a62x14

+a32x13 + a7x12 + a12x11 + a43x10 + a30x9 + a16x8 + a62x7 + a2x6 + a34x5 + a42x3

+a23x2 + a3x
f7. a58x56 + a38x52 + a27x50 + a59x49 + a58x48 + a28x44 + a16x42 + a17x41 + a36x40+

a23x38+a23x37+a51x36+a25x35+a52x34+a37x33+a21x32+a10x28+ x26+a57x25

+a16x24+a40x22+a4x21+a14x20+a38x19+a53x18+a45x17+a36x16+a15x14+a46x13

+a29x12 + a24x11 + a39x10 + a37x9 + a39x8 + a50x7 + a22x6 + a6x5 + a46x4 + a36x3

+a16x2 + x
f13. a52x56 + a42x52 + a22x50 + a28x49 + a21x48 + a4x44 + a58x42 + a57x41 + a13x40

+a26x38+a6x37+a53x36+a20x35+a51x34+a12x33+a37x32+a53x28+a61x26+a53

x25 + a50x24 + a29x22 + a25x21 + a14x20 + a42x19 + a22x18 + a24x17 + a39x16 +
a48x14 +a30x13 + a41x12 + a17x11 + a41x10 + a16x9 + a59x8 + a23x7 + a8x6 + a53x5

+a15x4 + a28x3 + a6x2 + a46x
f2. a34x48 + a58x40 + a28x36 + a39x34 + a14x33 + a36x32 + a25x24 + a24x20 + a5x18

+a13x17 + a17x16 + a35x12 + a54x10 + a14x9 + a26x8 + a6x6 + a6x5 + a57x4 + a60x3

+a50x2 + a18x
f12. a48x56 + a9x52 + a41x50 + a25x49 + a37x48 + a38x44 + a58x42 + a61x41 + a5x40

+a5x38+a32x37+a58x36+a38x35+a6x34+a13x33+a61x32+a32x28+a23x26+a12x25

+a32x22+a25x21+a15x20+a58x19+a34x18+a8x17+a32x16+a35x14+a22x13+a60

x12 + a47x11 + a3x10 + a62x9 + a54x8 + a33x7 + a34x6 + a34x5 + a47x4 + a2x3

+a25x2 + a19x
f4. a19x56 + a3x52 + a40x50 + a36x49 + a55x48 + a43x44 + a44x42 + a4x41 + a32x40

+a10x38+a15x37+a25x36+a7x35+a5x34+a11x33+a21x32+a42x28+a34x26+a21x25

+a41x24+a54x22+a23x21+a55x20+a6x19+a39x18+a60x17+a54x16+a22x14+a18

x13 + a11x12 + a28x11 + a48x10 + a24x9 + a56x8 + a12x7 + a48x6 + a34x5 +a12x4

+a62x3 + a20x2 + a27x
f1. a42x48 + a23x40 + a21x36 + a27x33 + a22x32 + a57x24 + a7x20 + a26x18 + a30x17

+a30x16+a13x12+a29x10+a35x9+a45x8+a7x6+a14x5+a23x4+ax3+a25x2+a19x
f5. a13x56 + a56x52 + a28x50 + a39x49 + a53x48 + a25x44 + a24x42 + a34x41 + a27x40

+a49x38+a57x37+a16x36+a42x35+a17x34+a30x33+a32x32+a8x28+a61x26+a33x25

+a41x24 + a14x22 + a55x21 + a30x20 + a2x19 + a32x18 + a29x17 + a26x16 + a37x14

+a43x13 + a56x12 + a14x11 + a56x10 + a30x9 + a6x8 + a53x7 + a6x6 + a21x5 + a34x4

+a6x3 + a48x2 + a11x
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f9. a56x56 + a4x52 + a42x50 + a49x49 + a22x48 + a55x44 + a60x42 + a3x41 + a20x40

+a55x38+a61x37+a9x36+a57x35+a39x34+a11x33+a31x32+a7x28+a52x26+a51x24

+a56x22+a9x21+a24x20+a41x19+a36x18+a35x17+a56x16+a22x14+a8x13+a15

x12 + a37x11 + a60x10 + a18x9 + a29x8 + a52x7 + a13x6 + a12x5 + a28x4 + a26

x3 + a53x2 + a59x
f8. a16x52 + a9x50 + a33x49 + a57x48 + a35x44 + a27x42 + a32x41 + a9x40 + a48x38

+a57x37+a42x36+a61x35+a33x34+a28x33+a35x32+a53x28+a40x26+a56x25+a57

x24+a11x22+a10x21+a25x20+a18x19+a30x18+a44x17+a17x16+a17x14+a25x13

+a16x12 +a22x11+a26x10 +a41x9+a41x8+a24x7+a12x6+a36 x5+ax4+a53x3+
a4x2 + a3x

f11. a55x56 + a39x50 + a8x49 + a14x48 + a14x44 + a27x42 + a52x41 + a18x40 + a55x38

+a46x37+a53x36+a56x35+x34+a17x33+a35x32+a42x28+a39x26+a50x25+a45x24

+ax22+a10x21+a2x20+a62x19+a22x18+a34x17+a11x16+a24x14+a3x13+a22x12

+a45x11+a31x10+a16x9+a21x8+a44x7+a40x6+a48x5+a18x4+a46x3+a33x2+a3x
f10. a55x56 + a39x50 + a8x49 + a57x48 + a14x44 + a27x42 + a52x41 + a42x40 + a55x38

+a46x37+a32x36+a56x35+a24x34+a11x33+a8x32+a42x28+a39x26+a50x25+a48

x24+ax22+a10x21+a12x20+a62x19+a36x18+a19x17+a16x16+a24x14+a3x13+a29

x12 + a45x11 + a24x10 + a51x9 + a49x8 + a44x7 + a57x6 + a13x5 + a42x4 +a52x3 +
a14x2 + a47x

1-step extensions

f14. a62x48 + a17x40 + a29x36 + a26x34 + a26x33 + a48x32 + a49x24 + a8x20 + a13 x18 +
a26x17 + a27x16 + a31x12 + a41x10 + a9x9 + a42x8 + a16x6 +a8x5 + a25x4 + a23x3

+a11x2 + a62x
f15. a2x56 + a32x52 + a18x50 + a46x49 + a52x48 + a54x44 + a45x42 + a56x41 + a7x40

+a46x38 + a32x37 + a6x36 + a44x35 + a41x34 + a50x33 +a21x32 + a34x28 + a49x26 +
a50x25+x24+a60x22 +a15x21+a34x20+a46x19+a47x18+a4x17 +a7x16+a50x14+
a7x13 + a5x12 + a57x11 +a17x10 + a12x9 + a17x8 + a60x6 + a2x5 + a7x4 + a23x3 +
a49x2 + a34x

f16. a52x56 + a43x52 + a34x50 + a28x49 + a31x48 + a60x44 + a58x42 + a54x41 + a46x40

+a55x38 + a9x37 + a15x36 + a20x35 + a42x34 + a54x33 + a38x32 +a53x28 + a40x26 +
a29x25+a49x24+a62x22+a25x21+a17x20 +a48x19+a26x18+a13x17+a3x16+a48x14

+a59x13 +a44x12 +a8x11 +a21x10 +a32x9 +a43x8 +a23x7 +a20x6 +a38x5 +a49x4

+a32x3 + a27x2 + a6x
f17. a27x56 + a27x52 + a17x50 + a23x49 + a31x48 + a44x44 + a2x42 + a53x41 +a29x40

+a48x38 + a23x37 + a24x36 + a26x35 + a43x34 + a17x33 +a8x32 + a4x28 + a20x26

+a2x25 + a30x24 + a7x22 + a49x21 + a39x20 +a26x19 + a24x18 + a62x17 + a37x16 +
a49x14 +a53x13 + a37x12 + a37x11 +a28x10 + a2x9 + a51x8 + a53x7 + a45x6 + a18x5

+a38x4 + a34x3 +a52x2 + a15x
f18. a20x56 + a4x52 + a41x50 + a37x49 + a8x48 + a44x44 + a45x42 + a5x41 + a12x40

+a11x38+a16x37+a61x36+a8x35+a34x34+a37x33+a35x32 +a43x28+a35x26+a22x25

+a59x24+a55x22+a24x21+a30x20+a7x19 +a52x18+a25x17+a22x16+a23x14+a19

x13 + a26x12 + a29x11 + a26x10 +a26x9 + a18x8 + a13x7 + a52x6 + a7x5 + a51x4

+a50x3 +a37x2 + a22x
f19. a15x56 + a25x52 + a33x49 + a14x48 + a61x44 + a18x42 + a14x41 + a2x40 +a39x38 +

a27x37 + a55x36 + a53x35 + a62x34 + a17x33 + a22x32 + a20x28 +a9x26 + a2x25

+a45x24+a34x22+a26x21+a19x20+a43x19+a14x18+a59x17 +a24x16+a45x14+a46

x13 + a22x12 + a62x11 + a49x10 + a47x9 + a6x8 +a27x7 + a40x6 + a16x5 + a22x4

+a46x3 + a58x2 + a32x
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f20. a20x56 + a4x52 + a41x50 + a37x49 + a46x48 + a44x44 + a45x42 + a5x41 +a46x40

+a11x38+a16x37+a57x36+a8x35+ax34+a11x33+a48x32 +a43x28+a35x26+a22x25

+a16x24+a55x22+a24x21+a44x20+a7x19 +a14x18+a34x17+a6x16+a23x14+a19x13

+ax12 +a29x11 +a10x10 +a31x9 +a19x8 +a13x7 +a49x6 +a33x5 +a41x4 +a23x3 +
a59x2 + a34x

f21. a42x48 + a47x40 + a30x36 + a58x34 + a27x33 + a55x32 + a57x24 + a32x20 +a22x18

+a58x17 + a5x16 + a13x12 + a59x10 + a60x9 + a22x8 +a7x6 + a59x5 + a48x4 + ax3 +
ax2 + a23x

f22. a20x56 + a4x52 + a41x50 + x48 + a44x44 + a45x42 + a59x41 + a31x40 +a11x38 + a43

x37+a6x36+a17x35+a55x34+a2x33+a58x32+a43x28 +a35x26+a31x25+a17x24+
a55x22+a15x21+a45x20+a52x19 +a47x18+a10x17+a32x16+a23x14+ax13+a19x12

+a47x11+a20x10 +a12x9+a56x8+a49x7+a31x6+a24x5+a44x4+a37x3+a13x2+a3x
f23. a21x56 + a16x52 + a31x50 + a23x49 + a62x48 + a10x44 + a3x42 +a49x41 + a23x40

+a44x38 + a40x37 + a32x36 + a23x35 + a56x34 + a23x33 +a22x32 + a12x28 + a41x26+
a45x25+a6x24+a38x22+a20x21+a58x20 +a32x19+a46x18+a8x17+a45x16+a39x14

+a60x13 + a29x12 + a48x11 +x10 + a39x9 + a62x8 + ax7 + a28x6 + a50x5 + a49x4

+a56x3 + a33x2 + a52x
f24. a30x56 + a53x52 + a53x50 + a11x49 + a48x48 + a13x44 + a18x42 +a26x41 + a55x40

+a43x38+a8x37+a52x36+a51x35+a18x34 +a29x33+a62x32+a15x28+a58x26+a24

x25 + a30x24 + a5x22 + a26x21 +a24x20 + a12x19 + a48x18 + a15x17 + a50x16 + a5x14

+a24x13+a46x12 +a47x11+a24x10+a56x9+a18x8+a50x7+a22x5+a35x4+a55x3

+a47x2 + a51x
f25. a9x56 + a55x52 + a42x50 + a6x49 + a24x48 + a56x44 + a18x42 +a28x41 + a8x40

+a11x38+a9x37+a19x36+a42x35+a28x34+a33x33 +a23x32+a4x28+ax26+a21x25

+a2x24+a55x22+a26x21+a13x20 +a39x19+a21x18+a35x17+x16+a2x14+ax13+a18

x12+a18x11+a33x10 +a55x9+a15x8+a33x7+a58x6+a52x5+a24x4+x3+a8x2+a57x
f26. a9x56 + a55x52 + a42x50 + a6x49 + a62x48 + a56x44 + a18x42 + a28x41 +a30x40

+a11x38+a9x37+a13x36+a42x35+a15x34+a4x33+a13x32 +a4x28+ax26+a21x25

+a34x24+a55x22+a26x21+a11x20+a39x19 +a43x17+a33x16+a2x14+ax13+a23x12

+a18x11+a38x10+a49x9 +a58x8+a33x7+a50x6+a18x5+a28x4+a5x3+a19x2+a5x
f27. a34x56 + a15x52 + a36x50 + a61x49 + a9x48 + a20x44 + a44x42 + a61x41 + a10x40

+a10x38+a11x37+a52x36+a11x35+a14x34+a23x33+a16x32 +x28+a50x26+a58x25

+a44x24 + a13x22 + a11x21 + a52x20 + a48x19 +a48x18 + a38x17 + a36x16 + a41x14

+a50x13 + a43x12 + a46x11 + a4x10 +a56x9 + a42x8 + a57x7 + a61x6 + a19x5 + a3x4

+a43x3 + a22x2 + a34x
f28. a55x56 + a35x52 + a43x50 + a8x49 + a49x48 + a32x44 + a27x42 + a23x41 +a56x40

+a26x38+a28x37+a15x36+a56x35+a26x34+a31x33+a60x32 +a42x28+a13x26+a44

x25+a55x24+a14x22+a10x21+a60x20+a25x19 +a26x18+a20x17+a54x16+a24x14

+a10x13 + a50x12 + a32x11 + a29x10 +a32x9 + a3x8 + a44x7 + a34x6 + a26x5 + a7x4

+a22x3 + a4x2 + a21x
f29. a55x56 + a35x52 + a43x50 + a8x49 + a56x48 + a32x44 + a27x42 + a23x41 +a14x40

+a26x38+a28x37+a40x36+a56x35+a19x34+a53x33+a3x32 +a42x28+a13x26+a44

x25 + a9x24 + a14x22 + a10x21 + a41x20 + a25x19 +a55x18 + a27x17 + a2x16 + a24x14

+a10x13 + a5x12 + a32x11 + a4x10 +a29x9 + a50x8 + a44x7 + a49x6 + a61x5 + a31x4

+a16x3 + a36x2 + a61x
f30. a55x56 + a35x52 + a43x50 + a8x49 + a35x48 + a32x44 + a27x42 + a23x41 + a6x40

+a26x38+a28x37+a46x36+a56x35+a60x34+a57x33+a54x32+a42x28+a13x26+a44

x25 +a5x24 +a14x22 +a10x21 +a46x20 +a25x19 +a15x18 +a58x17 +a44x16 +a24x14
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+a10x13+a24x12+a32x11+a42x10+a9x9+a56x8+a44x7 +a7x6 +a44x5+a19x4+
a12x3 + a29x2 + a44x

2-step extensions:

f31. a21x56 + a5x52 + a42x50 + a38x49 + a24x48 + a45x44 + a46x42 + a6x41 + a24x40

+a12x38+a17x37+a10x36+a9x35+a3x34+a19x33+a35x32+a44x28+a36x26+a23

x25 +a55x24 +a56x22 +a25x21 +a17x20 +a8x19 +a58x18 +a2x17 +a42x16 +a24x14

+a20x13+a37x12+a30x11+a5x9+a57x8+a14x7+a53x6+a31x5 +a53x4+a62x3+
a52x2 + a19x

f32. ax48 + a29x36 + a57x34 + a12x33 + a12x32 + a6x24 + a27x20 + a40x18 + a23x17

+a55x16+a2x12+a9x10+a34x9+a49x8+a24x6+a39x5+a41x4+a42x3+a21x2+a30x
f33. a14x56 + a9x52 + a24x50 + a62x49 + a11x48 + a3x44 + a59x42 + a15x41 + a11x40

+a37x38+a34x37+a36x36+a10x35+a18x34+a12x33+a61x32+a5x28+a34x26+a27

x25 +a56x24 +a31x22 +a18x21 +a3x20 +a10x19 +a25x18 +a48x17 +a52x16 +a32x14

+a3x13 + a44x12 + a15x11 + a13x10 + a8x9 + a46x8 + a43x7 + a8x6 + a6x5 +a8x4 +
a53x3 + a52x2 + a35x

f34. a14x56 + a9x52 + a24x50 + a62x49 + a61x48 + a3x44 + a59x42 + a15x41 + a57x40

+a37x38 + a34x37 + a36x36 + a10x35 + a35x34 + a14x33 + a23x32 + a5x28 + a34x26

+a27x25+a17x24+a31x22+a18x21+ax20+a10x19+a25x18+ax17+a13x16+a32x14+
a3 x13 + a14x12 + a15x11 + a29x10 + a8x9 + a61x8 + a43x7 + a12x6 + a30x5 + a23x4

+a39x3 + a4x2 + a32x
f35. a28x52 + a54x50 + a57x49 + a53x48 + a14x44 + a40x42 + a43x41 + a2x40 + a40x38

+a28x37+a61x36+a25x35+a29x34+a31x33+a51x32+a40x28+a3x26+a6x25+a51x24

+a29x22+a50x21+a39x20+a49x19+a3x18+a11x17+a32x16+a58x14+a8x13+a49

x12 +a21x11 +a16x10 +a61x9 +a11x8 +a4x7 +a4x6 +a33x5 +a46x4 +a38x2 +a55x
f36. a51x56+x52+a25x50+a52x49+a27x48+a45x44+a30x42+a11x41+a9x40 +a46x38+

a2x37 + a10x36 + a50x35 + a50x34 + a5x33 + a26x32 + a8x28 + a15x26 + a54x25

+a23x24+a45x22+a27x21+a5x20+a51x19+a41x18+a33x17+a8x16+a9x14+a51x13

+a54x12 + a53x11 + x10 + a42x9 + a16x8 + a19x7 + a41x6 + a47x5 + x4 + a50x3 +
a13x2 + a11x

f37. a51x56 + x52 + a25x50 + a52x49 + a43x48 + a45x44 + a30x42 + a11x41 + a46x38

+a2x37+a30x36+a50x35+a30x34+a2x33+a48x32+a8x28+a15x26+a54x25+a19x24

+a45x22+a27x21+a43x20+a51x19+a47x18+a62x17+a13x16+a9x14+a51x13+a24x12

+a53x11+a42x10+a37x9+a46x8+a19x7+a49x6+a57x5+a29x4+a4x3+a36x2+a24x

3-step extensions:

f38. a22x56 + a6x52 + a43x50 + a39x49 + a35x48 + a46x44 + a47x42 + a7x41 + a36x40

+a13x38+a18x37+a46x36+a10x35+a21x34+a46x33+a3x32+a45x28+a37x26+a24

x25 +a51x24 +a57x22 +a26x21 +a22x20 +a9x19 +a9x18 +a52x17 +a12x16 +a25x14

+a21x13+a52x12+a31x11+a49x10+a49x9+a10x8+a15x7+a50x6+a34x5+a11x4

+a50x3 + x2 + a25x
f39. a15x40 + a46x36 + a34x34 + a31x33 + a54x32 + a16x24 + a49x20 + a9x18 + a9x17

+ax16+a51x12+a14x10+a49x9+a55x8+a13x6+a61x5+a33x4+a39x3+a59x2+a26x
f40. a23x56 + a15x52 + a12x50 + a55x49 + a45x48 + a61x44 + a9x42 + a20x41 + a57x40

+a3x38 +a3x37 +a6x36 +a37x35 +a40x34 +a61x33 + x32 +a20x28 +a54x26 +a9x25

+a15x24 +a52x22 +a41x21 +a48x20 +a56x19 +a52x18 +a13x17 +a15x16 +a17x14 +
a22 x13 + a20x12 + a59x11 + a56x10 + a6x9 + ax8 + a52x7 + a59x6 + a46x5 + a36

x4 + a4x3 + a4x2 + a49x
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17. Pasalic E., Bapić A., Zhang F.,Wei Y.: Explicit infinite families of bent functions outsideM#. Des. Codes
Cryptogr.

18. Polujan A., Pott A.: Towards the classification of quadratic vectorial bent functions in 8 variables. In: The
7th international workshop on Boolean functions and their applications (2022)

19. Polujan A.A.: Boolean and vectorial functions: A design-theoretic point of view. Ph.D. thesis, Otto-von-
Guericke-Universität Magdeburg (2021). https://doi.org/10.25673/37956

20. PolujanA.A., Pott A.: Cubic bent functions outside the completedMaiorana-McFarland class. Des. Codes
Cryptogr. 88(9), 1701–1722 (2020). https://doi.org/10.1007/s10623-019-00712-y.

21. Polujan A.A., Pott A.: On design-theoretic aspects of Boolean and vectorial bent functions. IEEE Trans.
Inf. Theory 67(2), 1027–1037 (2021). https://doi.org/10.1109/TIT.2020.3040754.
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