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Abstract
LowMC is a family of block ciphers proposed by Albrecht et al. at EUROCRYPT 2015,
which is tailored specifically for FHE and MPC applications. At ToSC 2018, a difference
enumeration attack was given for the cryptanalysis of low-data instances of full LowMCv2
with few applied S-boxes per round. Recently at CRYPTO 2021, an efficient algebraic tech-
nique was proposed to attack 4-round LowMC adopting a full S-box layer. Following these
works, we present a new difference enumeration attack framework, which is based on our
new observations on the LowMCS-box, to analyze LowMC instances with a full S-box layer.
As a result, with only 3 chosen plaintexts, we can attack 4-round LowMC instances which
adopt a full S-box layer with block size of 129, 192, and 255 bits, respectively. We show
that all these attacks have either a lower time complexity or a higher success probability than
those reported in the CRYPTO paper.
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1 Introduction

The LowMC family of block ciphers [1] was first proposed by Albrecht et al. at EURO-
CRYPT 2015 and was designed to achieve low multiplicative complexity, which is tailored
specifically for MPC [16, 18, 24, 29, 30] and FHE [7, 15] applications. LowMC uses flexible
Substitution–Permutation-Network (SPN) constructions, where instantiations can be created
by independently choosing the block size n, the key size k, the number of S-boxes m in
the substitution layer and the allowed data complexity d of attacks. Especially, some of
the instances adopt the so-called partial Substitution–Permutation Network (P-SPN), i.e. in
which the S-boxes are applied over only partial state bits of the cipher.

LowMC has been utilized as the underlying block cipher of the post-quantum signature
scheme Picnic [9], which is an alternative candidate in the third round NIST’s Post-Quantum
Cryptography competition [25]. Recently, alternative parameters of LowMCwere chosen for
Picnic3 [17]. Different from Picnic2where a partial S-box layer is adoptedwhen instantiating
LowMC, a full S-box layer is used when generating the three instances of LowMC in Picnic3.
In Picnic3, 4-roundLowMC is recommended and 5-roundLowMC is treated as an alternative.

The proposal of LowMC not only starts a new trend to design symmetric-key primitives,
like FLIP [23], MiMC [2], Kreyvrium [8], Rasta [13], GMiMC [3], and Ciminion [14], but
also raises new challenges for cryptanalysis to evaluate its security. Soon after its publica-
tion, a higher-order differential attack (ICISC 2015, Dobraunig et al. [12]) and an optimized
interpolation attack (ASIACRYPT 2015, Dinur et al. [11]) were given, which directly made
LowMC move to LowMC v2, although with a high data complexity. Later at FSE 2018,
Rechberger et al. [27] proposed the so-called difference enumeration technique to analyse
LowMC instances with a few S-boxes in each round. Rechberger et al.’s approach requires
very little data—as little as 3 chosen plaintext–ciphertext pairs. To resist such attack, LowMC
was further updated to LowMC v3.1 At CRYPTO 2021, Liu et al. [19] revisited the difference
enumeration technique for LowMC and showed that some important LowMC instances are
still insecure. They achieved efficient key recovery attacks on 3 instances of 4-round LowMC,
with only 2 chosen plaintexts. Recently, Liu et al. [22] proposed an algebraic meet-in-
the-middle (MITM) technique to analyze LowMC with a partial S-box layer. As a result, the
attacks on LowMC and LowMC-M [26] published at CRYPTO 2021 are further improved
and some LowMC instances could be broken for the first time.

In another direction, cryptanalysis of theLowMCblock cipherwhen the attacker has access
to a single known plaintext/ciphertext pair is particularly relevant while arguing the security
of the Picnic digital signature scheme. In Picnic, the plaintext/ciphertext pair generated by the
LowMC block cipher serves as the public (verification) key and the corresponding LowMC
encryption key also serves as the secret (signing) key of the signature scheme. Therefore, a
data complexity one key recovery attack on LowMC block cipher will lead to a signature
forgery on Picnic. Until now, there have been several attacks on LowMC in such scenario
[4–6, 10, 20, 21]. At ToSC 2020, Banik et al. [4] proposed guess-and-determine attacks on
reduced 2-round LowMC in the Picnic setting. Following this work, at ASIACRYPT 2021,
Banik et al. [5] proposed 2-stage Meet-in-the-Middle (MITM) attack with gray-code based
approach, which reduced the computational complexity of 2 rounds and extended the number
of attacked round to 3 rounds. A parallel work [10] also shows that 2 out of 3 instances of
the 4-round LowMC in the Picnic3 setting can be broken, but it requires a huge amount
of memory. Later, Banik et al. [6] combine the linearization techniques of [4, 5] and the
equation solving methods of [10] to analyse LowMC instances with complete non-linear

1 For simplicity, LowMC represents LowMC v3 in the remaining part of this paper.

123



New cryptanalysis of LowMC with algebraic techniques 2059

layers, which yields a drastic reduction in terms of memory complexity. At ToSC 2022,
Liu et al. [21] significantly improve the attacks on LowMC in the Picnic Setting by using
better time-memory tradeoffs. For a survey of key recovery attacks on LowMC in such attack
scenario, readers may check the work done by Grassi et al. [31].

In this paper, we study the security of LowMC with low data complexity and we are most
interested in Rechberger et al.’s work [27] and Liu et al.’s work [19]. In [27], Rechberger
et al. presented a difference enumeration attack to analyse LowMC instances with a partial
S-box layer. The difference enumeration attack is a chosen-plaintext attack, which consists
of two steps. The first step is to encrypt a pair (or more) of chosen plaintexts and then recover
the difference evolutions between the plaintexts through each component in each round with
a meet-in-the-middle method, i.e. to recover the differential trail. This step is called the
difference enumeration phase. The second step is to derive the secret key from the recovered
differential trail. This step is called the key-recovery phase. As a result, the number of the
required plaintexts can be as small as 4. Furthermore, the authors showed that it is more
effective to consider d-differences instead of simple differences.

However, the original difference enumeration attack [27] doesn’t fit well with LowMC
instances with a full S-box layer. At CRYPTO 2021, Liu et al. [19] showed a new difference
enumeration attack framework to attack the constructions adopting a full S-box layer with 2
chosen plaintexts.

1.1 Our contributions

We propose a new difference enumeration attack framework for LowMC instances with a
full S-box layer. Instead of considering the traditional difference, we turn to consider the
2-difference and give some new observations on the LowMC S-box which can be exploited
in our attack. We then enumerate 2-differences with algebraic techniques and efficiently
derive the master key from the recovered 2-differential trails with the linearization technique.
Finally, we apply our attack framework to 4-round LowMC with block size of 129, 192, 255
bits, respectively. Our results are summarized in Table 1. Our attacks have a quite low data
complexity, which is only 3 chosen plaintexts. And all these attacks have either a lower time
complexity or a higher success probability than those reported by Liu et al. in the previous
CRYPTO paper.

1.2 Organization of the paper

We give a brief introduction of LowMC and some definitions in Sect. 2. In Sect. 3, we revisit
the difference enumeration techniques. In Sect. 4, we introduce our approach in a high level
and show some new observations on LowMC S-box. In Sect. 5, we introduce how to find
all valid 4-round compact 2-differential trials in our attack by solving linear equations. In
Sect. 6, we show how to recover the master key with the algebraic method. The analysis and
experimental results of our attack on 4-round LowMC instances are given in Sect. 7. Finally,
we conclude the paper in Sect. 8.
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Table 1 A summary of the results for 4-round LowMC instances with a full S-box layer, where the time
complexity is estimated in units which equal to a single encryption operation of the relevant 4-round LowMC

n k m Data Time Memory Success Pro. References

129 129 43 3 2123 Negligible 0.83 This paper

2 2122.6 Negligible 0.80a [19]

2 2104 Negligible 0.24 [19]

192 192 64 3 2185.6 Negligible 0.994 This paper

2 2187.6 Negligible 0.99 [19]

2 2180 Negligible 0.82 [19]

2 2156 Negligible 0.247 [19]

255 255 85 3 2243 Negligible 0.994 This paper

3 2242 Negligible 0.989 This paper

2 2246.6 Negligible 0.986 [19]

2 2236.6 Negligible 0.848 [19]

2 2208 Negligible 0.2465 [19]

For the case of (n, k,m) = (129, 129, 43), our attack has a higher success probability; for (n, k,m) =
(192, 192, 64), our attack is 22 times faster than that proposed in [19] when limiting the success probability
to 0.99 or more; for (n, k,m) = (255, 255, 85), our attack is 24.6 times faster than that proposed in [19] when
limiting the success probability to 0.986 or more
aSuccess probability recalculated is higher than that reported in [19]

2 Preliminaries

2.1 A brief description of LowMC

LowMC [1] is a family of block ciphers with flexible SPN constructions. When instantiating
LowMC, users can independently choose the parameters: the block size n, the key size k,
the number of S-boxes m in each round and the allowed data complexity 2D of attacks.
The number of rounds R needed to reach the security against several known attacks with
reasonable security margins is then derived from these parameters. The block cipher uses a
3-bit S-box which is the only non-linear transformation in the construction. Both the linear
layers and the round key generation are done by multiplying with full rank matrices over
GF(2) of appropriate dimensions.

The encryption procedure of LowMC starts with a key whitening (WK), and then iterates
the round function (as depicted in Fig. 1) R times, which consists of four operations in the
following order.

1. SBoxLayer(SB): A 3-bit S-box (y0, y1, y2) = S(x0, x1, x2) with (y0, y1, y2) = (x0 ⊕
x1x2, x0 ⊕ x1 ⊕ x0x2, x0 ⊕ x1 ⊕ x2 ⊕ x0x1) is applied to the first 3m bits of the state in
parallel. For the remaining n − 3m bits, an identity mapping is applied.

2. LinearLayer(L): The n-bit state is multiplied with an invertible n×n matrix Li in GF(2).
The matrix Li is randomly chosen from all invertible binary n × n matrices.

3. ConstantAddition(AC): The n-bit state is XORed with an n-bit binary round constant
RCi . The round constant RCi is randomly chosen from all binary vectors of length n.
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Fig. 1 The LowMC Round
Function
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4. KeyAddition(AK): The n-bit state is XORed with the n-bit round key Ki+1. To generate
Ki+1, a matrixUi+1 is randomly chosen from all full rank n×k binary matrices, and then
the Ki+1 is obtained by multiplying the k-bit master key with Ui+1.

The whitening key K0 is also calculated by multiplying the master key with a random
full-rank n × k binary matrix U0.

2.2 Definitions

Definition 1 (d-Difference [28]) For a tuple of (d+1) texts (s0, s1, . . . , sd), the corresponding
d-difference is defined as (�1, �2, · · · ,�d) = (s0 ⊕ s1, s0 ⊕ s2, . . . , s0 ⊕ sd). And the
reference text s0 is called the anchor of the d-difference.

We denote the plaintext by p and the ciphertext by c. The state after WK is denoted by
X0. In the i-th round, the input state of SB is denoted by Xi and the output state of SB is
denoted by Xi_S , as shown below:

p
WK−−→ X0

SB−→ X0_S
L−→ AC−−→ AK−−→ X1 · · · XR−1

SB−→ X(R−1)_S
L−→ AC−−→ AK−−→ c.

In particular, the 1-difference of plaintexts is denoted by �p . In the i-th round, we denote
the 1-difference of the input state of SB by �i , and the 1-difference of the output state of SB
by �i_S , as shown below:

�p
WK−−→ �0

SB−→ �0_S
L−→ AC−−→ AK−−→ �1 · · · �R−1

SB−→ �(R−1)_S
L−→ AC−−→ AK−−→ �R .

Definition 2 (Compact 1-Differential Trail [19]) Let �0 → �1 → · · · → �r be a 1-
differential trail, in which we may not know all �i (0 ≤ i ≤ r). If all (� j ,� j_S) (0 ≤ j ≤
r − 1) and �r are known, we call it an r -round compact 1-differential trail.

Definition 3 (Compact d-Differential Trail (d > 1)) Let α0 → α0_S → α1 → · · · → αr
where αi = (�1

i ,�
2
i , · · · ,�d

i ) with (0 ≤ i ≤ r) and α j_S = (�1
j_S,�

2
j_S, · · · ,�d

j_S)

with (0 ≤ j ≤ r − 1) be a d-differential trail, in which we may not know all (α j , α j_S)

(0 ≤ j ≤ r − 1) and αr . If all (α j , α j_S) (0 ≤ j ≤ r − 1) and αr are known, we call it an
r -round compact d-differential trail.
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3 The difference enumeration attack framework

In this section, we briefly revisit the original difference enumeration attack [27] on instances
with a partial S-box layer and the extended difference enumeration attack [19] on instances
with a full S-box layer.

At ToSC 2018, the LowMC team proposed a difference enumeration attack [27] to analyze
the security of LowMCv2 with a low data complexity. The difference enumeration attack
consists of two phases. The first phase is called the difference enumeration phase, which is to
recover internal d-differences for a chosen (d + 1)-tuple of plaintexts and the corresponding
ciphertexts. In this phase, a meet-in-the-middle approach is applied. The second phase is
the key-recovery phase, which is to derive the secret key from the recovered compact d-
differential trail.

However, the original difference enumeration attack [27] is not quite efficient when it
comes to a full S-box layer. To refine the original difference enumeration attack, in the
difference enumeration phase, Liu et al. [19] consider to choose a desirable input difference
such that it will activate as few S-boxes as possible in the first two rounds. Moreover, they
consider to enumerate the solutions of a linear equation system. In the key-recovery phase,
for a retrieved 4-round compact 1-differential trail, they recover the full key by solving linear
equations with k-bit master key and some internal variables.

The algebraic techniques used in this extended attack are based on the following
observations on LowMC S-box.

Observation 1 [19] For each valid non-zero 1-difference transition (�x0,�x1, �x2) →
(�y0,�y1,�y2), the inputs conforming to such a difference transition will form an affine
space of dimension 1. In addition, (y0, y1, y2) becomes linear in (x0, x1, x2). A similar
property also applies to the inverse of the S-box.

Observation 2 [19] For each non-zero input 1-difference (�x0,�x1,�x2), its valid output
1-differences form an affine space of dimension 2. A similar property also applies to the
inverse of the S-box.

Observation 3 [19] For an inactive S-box, the input becomes linear in the output after guess-
ing two output bits, and the output becomes linear in the input after guessing two input bits.
The same property holds for its inverse.

4 Approach overview and new observations on the LowMC S-box

In this section, we give an overview of our new difference enumeration attack on LowMC
with a full S-box layer, and show our new observations on LowMC S-box.

4.1 Overview of our approach

In our new difference enumeration attack, we consider the 2-difference, and we call it
2-difference enumeration attack in the following. It also consists of two phases, i.e. the
2-difference enumeration phase and the key-recovery phase.

First, for the construction with a full S-box layer, the cost of enumerating d-differences
in the original difference enumeration attack [27] is rather high, especially when d > 1.
And if we enumerate 2-differences for more than one round, the time complexity will be
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Fig. 2 The framework of the 2-difference enumeration attack

higher than that of the brute force attack. In order to overcome this obstacle, we choose a
desirable input 2-difference such that the number of inactive S-boxes in the 0th round is
maximized, as depicted in Fig. 2. Moreover, based on the algebraic techniques used in [19],
we introduce some variables to represent internal 2-differences, and then construct and solve
linear equations to find the valid 2-differences in the middle 2 rounds.

Second, for a recovered 4-round compact 2-differential trail, we can derive the master
key by some algebraic techniques. Specifically, by exploiting the special property of the
LowMC S-box, we can linearize the S-box. And if a S-box is active, the input and output will
satisfy some linear equations. Finally, we can obtain a linear equation system in terms of the
master key and some internal variables. Each solution of this equation system corresponds
to a candidate master key, and check its correctness via a plaintext-ciphertext pair.

4.2 New observations on the LowMC S-box

Before introducing the details of our attacks on LowMC, it is necessary to describe our
new observations on the LowMC S-box with respect to 2-differences. Denote a tuple of 3
input states of the S-box by (X0, X1, X2) and the corresponding 6-bit input 2-difference
(X0 ⊕ X1, X0 ⊕ X2) of which the anchor is X0 by (�x10 ,�x11 ,�x12 ,�x20 ,�x21 ,�x22 ). Also,
denote a tuple of 3 output states of the S-box by (Y0, Y1, Y2) where Yi = S(Xi )(0 ≤ i ≤ 2)
and the corresponding 6-bit output 2-difference (Y0 ⊕ Y1, Y0 ⊕ Y2) of which the anchor is
Y0 by (�y10 ,�y11 ,�y12 ,�y20 ,�y21 ,�y22 ).

Observation 4 For each non-zero input 2-difference (�x10 ,�x11 ,�x12 ,�x20 ,�x21 , �x22 ):

1. if (�x10 ,�x11 ,�x12 ) = (�x20 ,�x21 ,�x22 ), or (�x10 ,�x11 ,�x12 ) = (0, 0, 0), or
(�x20 ,�x21 ,�x22 ) = (0, 0, 0), its valid output 2-differences will form an affine space
of dimension 2.

2. else, its valid output 2-differences will form an affine space of dimension 3.

A similar property also applies to the inverse of the S-box.
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Example When the input 2-difference is (0, 0, 1, 0, 0, 1), the corresponding output 2-
difference (�y10 ,�y11 ,�y12 ,�y20 ,�y21 ,�y22 ) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�y10 ⊕ �y20 = 0,

�y11 ⊕ �y21 = 0,

�y12 ⊕ �y22 = 0,

�y12 = 1.

Then the corresponding valid output 2-differences form an affine space of dimension 2.
When the input 2-difference is (0, 0, 1, 1, 1, 0), the corresponding output 2-difference

(�y10 ,�y11 ,�y12 ,�y20 ,�y21 ,�y22 ) satisfies
⎧
⎪⎨

⎪⎩

�y20 ⊕ �y21 = 1,

�y10 ⊕ �y11 ⊕ �y22 = 1,

�y12 = 1.

Then the corresponding valid output 2-differences form an affine space of dimension 3.

Definition 4 For each valid non-zero 2-difference transition (�x10 ,�x11 ,�x12 , �x20 ,�x21 ,
�x22 ) → (�y10 ,�y11 ,�y12 ,�y20 ,�y21 ,�y22 ):

1. if (�x10 ,�x11 ,�x12 ) = (�x20 ,�x21 ,�x22 ), or (�x10 ,�x11 ,�x12 ) = (0, 0, 0), or
(�x20 ,�x21 ,�x22 ) = (0, 0, 0), we call the S-box special-active (with respect to the
2-difference);

2. else, we call the S-box non-special-active (with respect to the 2-difference).

For the 2-difference transition (0, 0, 0, 0, 0, 0) → (0, 0, 0, 0, 0, 0), we call theS-box inactive
(with respect to the 2-difference).

Observation 5 For each valid non-zero 2-difference transition (�x10 ,�x11 ,�x12 , �x20 ,�x21 ,
�x22 ) → (�y10 ,�y11 ,�y12 ,�y20 ,�y21 ,�y22 ), if the S-box is non-special-active (with respect
to the 2-difference), the value of anchor X0 will be determined.

Example If the 2-difference transition (�x10 ,�x11 ,�x12 ,�x20 ,�x21 ,�x22 ) → (�y10 ,
�y11 , �y12 ,�y20 ,�y21 ,�y22 ) is (0, 1, 1, 1, 0, 1) → (0, 1, 0, 0, 0, 1), the value of anchor
X0 will be determined, i.e. X0 = (0, 1, 0).

4.2.1 Generalization

The above Observations 4 and 5 hold for all 3-bit almost perfect nonlinear (APN) S-boxes.
As for Observation 5, this generalization is trivial. As for Observation 4, a simplified proof
for this generalization can be referred to Appendix 1.

5 2-Difference enumeration

In this section, we first introduce how to enumerate 2-differences in the middle 2 rounds by
solving linear equations, and then describe the procedure of 2-difference enumeration phase
in our attack. Since we only consider 2-differences in the following, we will omit the phrase
“with respect to the 2-difference” for simplicity.
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5.1 Enumerating 2-differences via solving equations

Assume that αi = (�1
i ,�

2
i ) and α(i+1)_S = (�1

(i+1)_S,�
2
(i+1)_S) are known in the i-th round

and (i + 1)-th round. We aim to enumerate all values of αi_S = (�1
i_S,�

2
i_S) such that the

2-difference transition αi → αi_S → α(i+1)_S is valid. Consider the general case: there are
a inactive S-boxes and b special-active S-boxes in the i-th round, and there are c inactive
S-boxes and d special-active S-boxes in the (i + 1)-th round.

First, we introduce some variables to represent internal 2-differences in the i-th round. For
the input 2-differenceαi , we can introduce atmost 6m variables to represent the 6m-bit output
2-difference αi_S = (�1

i_S,�
2
i_S). However, by exploitingObservation 4, we could introduce

3m−3a−b variables to represent αi_S = (�1
i_S,�

2
i_S). Specifically, 1) for an inactive S-box,

the output 2-difference is determined, i.e. (0, 0, 0, 0, 0, 0), so there is no need to introduce
variables to represent them. 2) For a special-active S-box, the valid output 2-differences form
an affine space of dimension 2, sowe need to introduce 2 variables to represent them. Thus,we
need introduce 2b variables (v0, v1, . . . , v2b−1) to represent the output 2-differences of the b
special-active S-boxes. 3) For a non-special-active S-box, the valid output 2-differences form
an affine space of dimension 3, so we need to introduce 3 variables to represent them. Thus,
we need introduce 3(m − a − b) variables (v2b, v2b+1, . . . , v2b+3(m−a−b)−1) to represent
the output 2-differences of the (m − a − b) non-special-active S-boxes. As a result, we only
need to introduce 2b+ 3(m − a − b) = 3m − 3a − b variables (v0, v1, . . . , v3m−3a−b−1) to
denote the valid output 2-difference αi_S . In this way, each bit of αi+1 = (�1

i+1,�
2
i+1) can

be written as a linear expression with variables (v0, v1, . . . , v3m−3a−b−1).
Then, in the (i+1)-th round, the output 2-differenceα(i+1)_S is known, sowe can construct

an equation system with the above variables (v0, v1, . . . , v3m−3a−b−1) based on Observation
4. Specifically, (1) for an inactive S-box, the input 2-difference is (0, 0, 0, 0, 0, 0), i.e. in
αi+1 the values of 6 bits which are linear in the above variables are known. Thus, six linear
equations with the above variables can be obtained. (2) For a special-active S-box, its valid
input 2-differences form an affine space of dimension 2, i.e. the value of 6-bit input 2-
difference satisfies 4 linear equations. Thus, four linear equations with the above variables
can be obtained. (3) For a non-special-active S-box, its valid input 2-differences form an affine
space of dimension 3, i.e. the value of 6-bit input 2-difference satisfies 3 linear equations.
Thus, three linear equations with the above variables can be obtained. Therefore, we can
obtain 6c+ 4d + 3(m − c− d) = 3m + 3c+ d linear equations with the above 3m − 3a − b
variables. Since 3m − 3a − b ≤ 3m ≤ 3m + 3c + d , we can expect the equation system has
at most one solution. And the solution will correspond to a valid value of αi_S .

5.1.1 Complexity evaluation

The time complexity of solving the above 3m + 3c + d linear equations with 3m − 3a − b
variables is estimated as n3+2n2 bit operations. Specifically, we first solve 3m−3a−b linear
equations among them by Gaussian elimination (GE), which costs around n3 bit operations.
And we can expect the number of solutions is one. Then we check the correctness of this
solution by the remaining (3m + 3c + d) − (3m − 3a − b) linear equations, which costs
((3m + 3c + d) − (3m − 3a − b))(3m − 3a − b) ≤ 2n2 bit operations. Since performing
a LowMC encryption costs around 2n2R bit operations, the time complexity of solving the

above equation system is equivalent to n3+2n2

2n2R
≈ n3

2n2R
encryptions.
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Fig. 3 The procedure of the 2-difference enumeration phase

5.2 Recovering valid 2-differential trails

Now we introduce the 2-difference enumeration phase of our attack on 4-round LowMC
with a full S-box layer in detail. As depicted in Fig. 3, our 2-difference enumeration phase
consists of the following 4 steps:

1. We choose a desirable input 2-difference α0 such that there are 1 non-special-active S-box
and m − 1 inactive S-boxes in the 0th round.

2. Encrypt 3 plaintexts (p0, p1, p2) whose 2-difference is α0, and obtain the corresponding
ciphertexts (c0, c1, c2). Then we compute the 2-difference α4 of (c0, c1, c2) and α3_S .

3. For each of 8 possible values of α0_S , we compute the value of α1 from α0_S and introduce
3m−3a−b variables (v0, v1, . . . , v3m−3a−b−1) to representα2 using themethoddescribed
in 5.1, where there are a inactive S-boxes and b special-active S-boxes in the 1st round.
Then go to the next step.

4. Enumerate 2-differences backwards for 1 round from α3_S to α2_S . According to each
value of α2_S , by the method described in 5.1, we obtain 3m + 3c + d linear equations
with the 3m − 3a − b variables (v0, v1, . . . , v3m−3a−b−1), where there are c inactive
S-boxes and d special-active S-boxes in the 2nd round. Solve this equation system and
we can expect it has at most one solution. For each solution, a valid 4-round compact
2-differential trail is found.

5.2.1 Complexity evaluation

As in [19], we compute the expected number of iterations to enumerate the 2-differences
backwards in the 2-difference enumeration phase. In our attack using 3 chosen plaintexts,
α3_S is a random fixed value.We assume that there are t inactive S-boxes and j special-active
S-boxes in the 3rd round. In this phase, for each possible value of α0_S , the expected number
of iterations to enumerate the 2-differences backwards is

T0 = 4 j × 8m−t− j
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Fig. 4 Introduce extra variables and extract linear equations in the i-th round (1 ≤ i ≤ 3), where inactive
S-boxes are colored in orange, special-active S-boxes are colored in green and non-special-active S-boxes are
colored in black. Note that ji = (9 − 3i)m

= 23m−3t− j . (1)

Thus the expected number of iterations to enumerate the 2-differences backwards in total is

T1 = 8 × 4 j × 8m−t− j

= 23m−3t− j+3. (2)

As in 5.1, we simply estimate the cost of solving the equation system as n3

2n2R
= n

2R when
enumerating 2-differences backwards each time. Thus, the expected time complexity of
solving the equation systems in this phase is

T2 = 23m−3t− j+3 × n

2R
. (3)

Therefore, the expected time complexity of the 2-difference enumeration phase is

Td = T1 + T2

≈ 23m−3t− j+3 × n

2R
. (4)

6 Key recovery with algebraic techniques

In this section, we show the algebraic techniques which are used to derive the full key when a
4-round compact 2-differential trail is recovered in our attack. For each compact 2-differential
trail we find, there are 1 non-special-active S-box andm−1 inactive S-boxes in the 0th round.
And we consider the general case: there are a inactive S-boxes and b special-active S-boxes
in the 1st round, c inactive S-boxes and d special-active S-boxes in the 2nd round, and t
inactive S-boxes and j special-active S-boxes in the 3rd round.

Now we consider the encryption path from p0 to c0. The procedure starts from the 3rd
round and can be divided into the following steps (as depicted in Fig. 4):
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1. Denote the round key bits used in the 3rd round by (e0, e1, . . . , e3m−1). Then X3_S

becomes linear in (e0, . . . , e3m−1). For the t inactive S-boxes, introduce extra 3t variables
(v0, v1, . . . , v3t−1) to represent their input bits. Based on Observation 1, for the j special-
active S-boxes, we obtain 2 j linear equations with the output bits of these S-boxes, and
the input bits become linear in the output bits for these S-boxes. Based on Observation 5,
for them− t− j non-special-active S-boxes, we obtain 3(m− t− j) linear equations with
the output bits of these S-boxes, and the input bits of these S-boxes are determined. Then
we obtain 2 j + 3(m − t − j) = 3m − 3t − j linear equations with (e0, e1, . . . , e3m−1)

and X3 becomes linear in (v0, v1, . . . , v3t−1, e0, e1, . . . , e3m−1).
2. Move to the 2nd round, and denote the round key bits used in

this round by (e3m, e3m+1, . . . , e6m−1). Then X2_S becomes linear in
(v0, v1, . . . , v3t−1, e0, . . . , e6m−1). For each inactive S-box, we guess 2 bits for its
output and then its input bits become linear in the output bits according to Observation 3.
From the 2 guessed bits, we obtain 2 linear equations with the output bits of the inactive
S-box. Similarly to that in the 3rd round, for each special-active S-box, we obtain 2 linear
equations with its output bits and its input bits become linear in the output bits. For each
non-special-active S-box, we obtain 3 linear equations with its output bits and its input
bits are determined. Then we obtain 2c+ 2d + 3(m − c− d) ≥ 2m linear equations with
(v0, v1, . . . , v3t−1, e0, . . . , e6m−1) and X2 becomes linear in these variables.

3. Move to the 1st round, and denote the round key bits used in this round by
(e6m, e6m+1, . . . , e9m−1). Then X1_S becomes linear in (v0, v1, . . . , v3t−1, e0, . . . ,
e9m−1). Similarly to that in the 2nd round and 3rd round, for the special-active S-boxes
and non-special-active S-boxes, we obtain 2b + 3(m − a − b) = 3m − 3a − b linear
equations with (v0, v1, . . . , v3t−1, e0, . . . , e9m−1).

4. Move to the 0th round. For the non-special-active S-box, there are 3 linear equations in
terms of the plaintext and the whitening key.

5. Since each round key bit is linear in the k-bit master key, we obtain (3m−3t − j)+2m+
(3m − 3a− b)+ 3 = 8m + 3− 3a− b− 3t − j linear equations with (v0, v1, . . . , v3t−1)

and k-bit master key. For each solution of the equation system, we get a candidate master
key and check it via the plaintext-ciphertext pair. Then try another guess in the 2nd round
and repeat the same procedure until all possible guesses are traversed.

6.1 Complexity evaluation

Assume that there are t inactive S-boxes and j special-active S-boxes in the 3rd round.
For the valid value of α0_S with a inactive S-boxes and b special-active S-boxes in the 1st
round, when recovering a compact 2-differential trail each time, we derive the master key by
constructing 8m + 3− 3a − b− 3t − j linear equations with k + 3t variables after guessing
some bits. If k + 3t ≤ 8m + 3− 3a − b− 3t − j , i.e. 6t + j ≤ 5m + 3− 3a − b, then it can
be expected that the equation system has at most 1 solution. The expected time complexity
of retrieving the master key for this case is

T3 =
m∑

c=0

m−c∑

d=0

4b × 8m−a−b × 4 j × 8m−t− j ×
(
m

c

)(
m − c

d

)(
1

64

)c

×
(
21

64

)d

×
(
42

64

)m−c−d

× 4d × 8m−c−d × 2−2n × 22c

≤ 22.73m−3t− j−3a−b. (5)
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If k+3t > 8m+3−3a−b−3t− j , i.e. 6t+ j > 5m+3−3a−b, then it can be expected
that the equation system has 26t+ j−5m−3+3a+b solutions. The expected time complexity of
retrieving the master key for this case is

T3 =
m∑

c=0

m−c∑

d=0

4b × 8m−a−b × 4 j × 8m−t− j ×
(
m

c

)(
m − c

d

)(
1

64

)c

×
(
21

64

)d

×
(
42

64

)m−c−d

× 4d × 8m−c−d × 2−2n × 22c × 26t+ j−5m−3+3a+b

≤ 23t−2.27m−3. (6)

A detailed explanation for the complexity T3 can be referred to Appendix 2.

7 Attacks on LowMCwith a full S-box layer

Combining the two phases in Sects. 5 and 6, we now apply our attack framework (as
shown in Algorithms 1 and 2) to analyse three 4-round LowMC instances with parame-
ters (n, k,m, D) ∈ {(129, 129, 43, 2), (192, 192, 64, 2), (255, 255, 85, 2)}. The results are
summarized in Table 1.

Algorithm 1: 2-Difference Enumeration Attack
Input: Encryption oracle of a 4-round LowMC instance with parameter (n, k,m).

Output: The master key.

1 Choose a input 2-difference α0 which has 1 non-special-active S-box and m − 1 inactive S-boxes.
2 Ask the encryption oracle to provide the encryption of (p0, p1, p2) whose 2-difference equals α0.
Obtain the corresponding ciphertexts (c0, c1, c2) and compute α3_S .

3 for valid value of α0_S do
4 Introduce variables to represent α2.
5 for α2_S enumerated backwards do
6 Construct and solve linear equations.
7 for solution obtained do
8 Come to Algorithm 2.

Now we calculate the time complexity and success probability of our attack, which needs
a negligible memory. In our attack with 3 chosen plaintexts, α3_S is a random fixed value. For
each S-box in the 3rd round, the probability that this S-box is inactive is 1

64 , the probability
that this S-box is special-active is 21

64 , and the probability that this S-box is non-special-active
is 42

64 . In the following, we denote the probability of event w happening by Pr[w].
Attack on (129, 129, 43, 2). For (n, k,m, D, R) = (129, 129, 43, 2, 4), as Pr[3t + j ≥
13] ≈ 0.83, we conclude that with the success probability 0.83, the total time complexity to
enumerate 2-differences will be 23m+3−3t− j × n

2R ≤ 2123 based on Eq. 4, and the total time
complexity to retrieve the master key will not exceed 8×max{22.73m−3t− j , 23t−2.27m−3} ≤
2107.4 based on Eqs. 5 and 6. Thus, we can break the parameter (n, k,m, D, R) =
(129, 129, 43, 2, 4) with time complexity less than 2123 and success probability 0.83.
Attack on (192, 192, 64, 2). For (n, k,m, D, R) = (192, 192, 64, 2, 4), as Pr[3t + j ≥
14] ≈ 0.994, we conclude that with success probability 0.994, the total time complexity to
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Algorithm 2: Derive Master Key from a Compact 2-Differential Trail
Input: A 4-round compact 2-differential trail.

Output: The master key.

1 for S-box in the 3rd round do
2 if S-box is inactive then
3 Introduce 3 variables to represent its input.

4 if S-box is special-active then
5 Obtain 2 linear equations with its output.

6 if S-box is non-special-active then
7 Obtain 3 linear equations with its output.

8 Move to the 2nd round.
9 for value of guessed output bits of the inactive S-boxes do

10 Obtain 2m linear equations in total with the output of the m S-boxes.
11 for S-box in the 1st round do
12 if S-box is special-active then
13 Obtain 2 linear equations with its output.

14 if S-box is non-special-active then
15 Obtain 3 linear equations with its output.

16 Move to the 0th round and obtain 3 linear equations with the input of the non-special-active S-box.
17 Solve the linear equations.
18 for solution obtained do
19 Check it via a plaintext-ciphertext pair.
20 if passes the verification then
21 return the solution.

enumerate 2-differences will be 23m+3−3t− j × n
2R ≤ 2185.6 based on Eq. 4, and the total time

complexity to retrieve the master key will not exceed 8×max{22.73m−3t− j , 23t−2.27m−3} ≤
2163.7 based on Eqs. 5 and 6. Thus, we can break the parameter (n, k,m, D, R) =
(192, 192, 64, 2, 4) with time complexity less than 2185.6 and success probability 0.994.
Attack on (255, 255, 85, 2). For (n, k,m, D, R) = (255, 255, 85, 2, 4), as Pr[3t + j ≥
20] ≈ 0.994, we conclude that with success probability 0.994, the total time complexity to
enumerate 2-differences will be 23m+3−3t− j × n

2R ≤ 2243 based on Eq. 4, and the total time
complexity to retrieve the master key will not exceed 8×max{22.73m−3t− j , 23t−2.27m−3} ≤
2215 based on Eqs. 5 and 6. Thus, we can break the parameter (n, k,m, D, R) =
(255, 255, 85, 2, 4) with time complexity less than 2243 and success probability 0.994.

In addition, as Pr[3t + j ≥ 21] ≈ 0.989, we conclude that with success probability
0.989, the total time complexity to enumerate 2-differences will be 23m+3−3t− j × n

2R ≤ 2242

based on Eq. 4, and the total time complexity to retrieve the master key will not exceed
8 × max{22.73m−3t− j , 23t−2.27m−3} ≤ 2214 based on Eqs. 5 and 6. Thus, we can break the
parameter (n, k,m, D, R) = (255, 255, 85, 2, 4) with time complexity less than 2242 and
success probability 0.989.
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7.1 Experiments

In order to confirm the correctness of our methods, similarly to that in [19], we performed
experiments on the toy LowMC instance with parameter (n, k,m, D, R) = (21, 21, 7, 2, 4).
We provide our code at https://github.com/wxqiao/LowMC_new_attack_2diff.

By choosing different desirable input 2-differences, we performed several experiments
with 100 random tests each. In each test, for every valid α0_S , the number of iterations to
enumerate 2-differences backwards is equal to the value computed based on Eq. 1 and the
number of iterations to enumerate all compact 2-differential trails is much smaller than it.
As for the guessing times to recover the master key, it is found that the obtained value indeed
matches well with the theoretical value computed based on Eqs. 5 or 6.

8 Conclusion

In this paper, we present a 2-difference enumeration attack framework to analyze 4-round
LowMCwith a full S-box layer.With only 3 chosen plaintexts, we attack the 4-round LowMC
instances adopting a full S-box layer with block size of 129, 192, and 255 bits, respectively.
All these attacks have either a lower time complexity or a higher success probability than
those proposed in the previous CRYPTO paper [19].
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Appendix A: A simplified proof for the generalization of observation 4

We denote the input and output of the 3-bit APN S-box by (x0, x1, x2) and (y0, y1, y2),
respectively.

For a 3-bit APN S-box, its algebraic degree must be 2. Thus, it can be defined in the
following way:
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y0 = φ0(x0, x1, x2) ⊕ a0x0x1 ⊕ a1x0x2 ⊕ a2x1x2 ⊕ c0,

y1 = φ1(x0, x1, x2) ⊕ a3x0x1 ⊕ a4x0x2 ⊕ a5x1x2 ⊕ c1,

y2 = φ2(x0, x1, x2) ⊕ a6x0x1 ⊕ a7x0x2 ⊕ a8x1x2 ⊕ c2,

where φi (x0, x1, x2)(0 ≤ i ≤ 2) are linear boolean functions and a j ∈ F2(0 ≤ j ≤ 8),
c j ∈ F2(0 ≤ j ≤ 2).

Since Observation 2 holds for all 3-bit APN S-box [19], the generalization holds for
the case when (�x10 ,�x11 ,�x12 ) = (�x20 ,�x21 ,�x22 ), or (�x10 ,�x11 ,�x12 ) = (0, 0, 0), or
(�x20 ,�x21 ,�x22 ) = (0, 0, 0).

For the other case, we can write the accurate 8 valid output 2-differences, and it can be
found that the 8 valid output 2-differences form an affine space of dimension 3.

For example, when input 2-difference is (0, 0, 1, 1, 0, 1), the possible output 2-differences
are listed below:

(x0, x1, x2) →(�y10 ,�y11 ,�y12 ,�y20 ,�y21 ,�y22 )

(0, 0, 0) →(�φ0,�φ1,�φ2,˜�φ0 ⊕ a1,˜�φ1 ⊕ a4,˜�φ2 ⊕ a7),

(0, 0, 1) →(�φ0,�φ1,�φ2,˜�φ0,˜�φ1,˜�φ2),

(0, 1, 0) →(�φ0 ⊕ a2,�φ1 ⊕ a5,�φ2 ⊕ a8,˜�φ0 ⊕ a0 ⊕ a1 ⊕ a2,˜�φ1 ⊕ a3⊕
a4 ⊕ a5,˜�φ2 ⊕ a6 ⊕ a7 ⊕ a8),

(1, 0, 0) →(�φ0 ⊕ a1,�φ1 ⊕ a4,�φ2 ⊕ a7,˜�φ0,˜�φ1,˜�φ2),

(0, 1, 1) →(�φ0 ⊕ a2,�φ1 ⊕ a5,�φ2 ⊕ a8,˜�φ0 ⊕ a0 ⊕ a2,˜�φ1 ⊕ a3 ⊕ a5,

˜�φ2 ⊕ a6 ⊕ a8),

(1, 0, 1) →(�φ0 ⊕ a1,�φ1 ⊕ a4,�φ2 ⊕ a7,˜�φ0 ⊕ a1,˜�φ1 ⊕ a4,˜�φ2 ⊕ a7),

(1, 1, 0) →(�φ0 ⊕ a1 ⊕ a2,�φ1 ⊕ a4 ⊕ a5,�φ2 ⊕ a7 ⊕ a8,˜�φ0 ⊕ a0 ⊕ a2,

˜�φ1 ⊕ a3 ⊕ a5,˜�φ2 ⊕ a6 ⊕ a8),

(1, 1, 1) →(�φ0 ⊕ a1 ⊕ a2,�φ1 ⊕ a4 ⊕ a5,�φ2 ⊕ a7 ⊕ a8,˜�φ0 ⊕ a0 ⊕ a1⊕
a2,˜�φ1 ⊕ a3 ⊕ a4 ⊕ a5,˜�φ2 ⊕ a6 ⊕ a7 ⊕ a8).

where we denote φi (0, 0, 1) by �φi (0 ≤ i ≤ 2) and φi (1, 0, 1) by˜�φi (0 ≤ i ≤ 2).
As {(0, 0, 0, 0, 0, 0), (0, 0, 0, a1, a4, a7), (a2, a5, a8, a0⊕a1⊕a2, a3⊕a4⊕a5, a6⊕a7⊕

a8), (a1, a4, a7, 0, 0, 0), (a2, a5, a8, a0⊕a2, a3⊕a5, a6⊕a8), (a1, a4, a7, a1, a4, a7), (a1⊕
a2, a4⊕a5, a7⊕a8, a0⊕a2, a3⊕a5, a6⊕a8), (a1⊕a2, a4⊕a5, a7⊕a8, a0⊕a1⊕a2, a3⊕
a4 ⊕ a5, a6 ⊕ a7 ⊕ a8)} is a linear subspace of dimension 3 of F62, the 8 possible output
2-differences form an affine space of dimension 3.

Appendix B: A detailed explanation for the complexity T3

In our attack using 3 chosen plaintexts, assume that there are t inactive S-boxes and j special-
active S-boxes in the 3rd round. For each valid value of α0_S with a inactive S-boxes and b
special-active S-boxes in the 1st round, the number of values of α2 such that the 2-difference
transition α0_S → α2 is valid equals
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M = 4b × 8m−a−b.

When enumerating 2-differences backwards, the number of valid values of α2_S which
satisfies there are c inactive S-boxes and d special-active S-boxes in the 2nd round is

N 0
cd = 4 j × 8m−t− j ×

(
m

c

)(
m − c

d

) (
1

64

)c

×
(
21

64

)d

×
(
42

64

)m−c−d

.

And for each valid α2_S which satisfies there are c inactive S-boxes and d special-active
S-boxes in the 2nd round, the number of values of α2 such that the 2-difference transition
α2 ← α2_S is valid equals

N 1
cd = 4d × 8m−c−d .

Thus, the number of valid 4-round compact 2-differential trail where there are c inactive
S-boxes and d special-active S-boxes in the 2nd round is

Ncd = M × N 0
cd × N 1

cd × 2−2n

= 4b × 8m−a−b × 4 j × 8m−t− j ×
(
m

c

)(
m − c

d

) (
1

64

)c

×
(
21

64

)d

×
(
42

64

)m−c−d

× 4d × 8m−c−d × 2−2n .

For each valid 4-round compact 2-differential trail where there are c inactive S-boxes and
d special-active S-boxes in the 2nd round, we need to iterate 22c times to guess 2 bits for each
inactive S-box in the 2nd round. In each iteration, we construct 8m+3−3a−b−3t− j linear
equationswith k+3t variables. If k+3t ≤ 8m+3−3a−b−3t− j , i.e. 6t+ j ≤ 5m+3−3a−b,
then it can be expected that the equation system has at most 1 solution. The cost equals 1. If
k + 3t > 8m + 3− 3a − b− 3t − j , i.e. 6t + j > 5m + 3− 3a − b, then it can be expected
that the equation system has 26t+ j−5m−3+3a+b solutions. The cost equals 26t+ j−5m−3+3a+b.

Thus, if k + 3t ≤ 8m + 3− 3a − b− 3t − j , i.e. 6t + j ≤ 5m + 3− 3a − b, the expected
time complexity to retrieve the master key is

T3 =
m∑

c=0

m−c∑

d=0

Ncd × 22c

=
m∑

c=0

m−c∑

d=0

4b × 8m−a−b × 4 j × 8m−t− j ×
(
m

c

)(
m − c

d

)(
1

64

)c

×
(
21

64

)d

×
(
42

64

)m−c−d

× 4d × 8m−c−d × 2−2n × 22c

≤ 22.73m−3t− j−3a−b. (B1)

If k + 3t > 8m + 3− 3a − b− 3t − j , i.e. 6t + j > 5m + 3− 3a − b, the expected time
complexity to retrieve the master key is

T3 =
m∑

c=0

m−c∑

d=0

Ncd × 22c × 26t+ j−5m−3+3a+b
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=
m∑

c=0

m−c∑

d=0

4b × 8m−a−b × 4 j × 8m−t− j ×
(
m

c

)(
m − c

d

)(
1

64

)c

×
(
21

64

)d

×
(
42

64

)m−c−d

× 4d × 8m−c−d × 2−2n × 22c × 26t+ j−5m−3+3a+b

≤ 23t−2.27m−3. (B2)
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