
Designs, Codes and Cryptography (2023) 91:1845–1872
https://doi.org/10.1007/s10623-022-01163-8

Short attribute-based signatures for arbitrary Turing
machines from standard assumptions

Pratish Datta1 · Ratna Dutta2 · Sourav Mukhopadhyay2

Received: 26 June 2021 / Revised: 28 May 2022 / Accepted: 6 December 2022 /
Published online: 17 January 2023
© The Author(s) 2023

Abstract
This paper presents the first attribute-based signature (ABS) scheme supporting signing
policies representable by Turing machines (TM), based on well-studied computational
assumptions. Our work supports arbitrary TMs as signing policies in the sense that the
TMs can accept signing attribute strings of unbounded polynomial length and there is no
limit on their running time, description size, or space complexity. Moreover, we are able to
achieve input-specific running time for the signing algorithm.All other known expressiveABS
schemes could at most support signing policies realizable by either arbitrary polynomial-size
circuits or TMs having a pre-determined upper bound on the running time. Consequently,
those schemes can only deal with signing attribute strings whose lengths are a priori bounded,
as well as suffers from the worst-case running time problem. On a more positive note, for
the first time in the literature, the signature size of our ABS scheme only depends on the
size of the signed message and is completely independent of the size of the signing policy
under which the signature is generated. This is a significant achievement from the point of
view of communication efficiency. Our ABS construction makes use of indistinguishability
obfuscation (IO) for polynomial-size circuits and certain IO-compatible cryptographic tools.
Note that, all of these building blocks including IO for polynomial-size circuits are currently
known to be realizable under well-studied computational assumptions.

Keywords Attribute-based signatures · Turing machines · Standard assumptions ·
Indistinguishability obfuscation

Mathematics Subject Classification 94A60

Communicated by R. Steinfeld.

B Pratish Datta
pratish.datta@ntt-research.com

Ratna Dutta
ratna@maths.iitkgp.ernet.in

Sourav Mukhopadhyay
sourav@maths.iitkgp.ernet.in

1 CIS Lab, NTT Research, Inc., Sunnyvale, CA, USA

2 Department of Mathematics, IIT Kharagpur, Kharagpur, West Bengal, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-022-01163-8&domain=pdf

1846 P. Datta et al.

1 Introduction

In a traditional digital signature scheme, each signer possesses a secret signing key and
publishes its corresponding verification key. A signature on somemessage issued by a certain
signer is verified with respect to the public verification key of the respective signer, and hence
during the verification process, the explicit signer gets identified. In other words, standard
digital signatures can guarantee no privacy in the relationship between signers and claims
attested by signatures due to the tight correspondence between the signing and verification
keys.

Attribute-based signatures (ABS), introduced by Maji et al. [19], aims to relax such a firm
relationship between signers and signatures issued by them, thereby ensuring some form
of signer privacy. ABS comes in two flavors, namely, key-policy and signature-policy. In a
key-policy ABS scheme, a setup authority holds a master signing key and publishes system
public parameters. Using its master signing key, the authority can give out restricted signing
keys corresponding to specific signing policies. Such a constrained signing key enables a
signer to sign messages with respect to only those signing attributes which are accepted
by the signing policy embedded within the signing key. The signatures are verifiable by
anyone using solely the public parameters. By verifying a signature on some message with
respect to some signing attributes, a verifier gets convinced that the signature is indeed
generated by a signer possessing a signing key corresponding to some signing policy that
accepts the signing attributes. However, the verifier cannot trace the exact signer or signing
policy used to generate the signature. The signature-policy variant interchanges the roles of
signing attributes and signing policies. Other than being an exciting primitive in its own right,
ABS has countless practical applications such as attribute-based messaging, attribute-based
authentication, anonymous credential systems, trust negotiation, and leaking secrets.

A central theme of research in the field of ABS has been to expand the class of admissible
signing policies in view of implementingABS in scenarioswhere the correspondence between
signers and signatures ismore andmore sophisticated. Startingwith the initial work ofMaji et
al. [19],which supports signing policies representable bymonotone spanprograms, the family
of supported signing policies has been progressively enlarged by Okamoto and Takashima
[20] to admit non-monotone span programs, byDatta et al. [6] to support arithmetic branching
programs, and further byTang et al. [25], Sakai et al. [23], Tsabary [26], aswell asElKaafarani
and Katsumata [16] to realize arbitrary polynomial-size circuits. On the other hand, Bellare
and Fuchsbauer [4] have put forth a versatile cryptographic primitive termed as policy-based
signatures (PBS) and have exhibited a generic transformation from PBS to ABS. Their generic
conversion can be used in conjunction with their proposed PBS construction to build an ABS
scheme for general polynomial-size circuits as well.

While the circuit model is already powerful enough to capture arbitrary computations, an
important bottleneck of this model is that it is non-uniform in nature and thus ABS schemes
supporting circuit-realizable signing policies can withstand only signing attribute strings of
bounded length, where the bound is determined during setup. Another drawback of repre-
senting signing policies as circuits is that generating a signature with respect to some signing
attribute string using a signing key corresponding to certain signing policy is at least as slow
as the worst-case running time of that policy circuit on all possible signing attribute strings.
These are serious limitations not only for ABS itself, but also for all the aforementioned
applications of ABS

In this paper,we aim to express signing policies in a uniform computationalmodel, namely,
the Turing machine (TM) model, which is the most natural direction to overcome the above

123

Short ABS for arbitrary TMs from standard assumptions 1847

problems. First, we would like to mention that concurrently and independently to our work,
Sakai et al. [24] have developed an ABS scheme which can withstand TM-realizable signing
policies under the symmetric external Diffie–Hellman (SXDH) assumption. Unfortunately
however, in their ABS scheme, the size of a signature scales with the running time of the
signing policy TM used to generate it on the signing attribute string with respect to which it is
created. As a result, for ensuring signer privacy, their scheme should impose a universal upper
bound on the running times of the signing policy TMs, and should enforce the size of the
signatures to scale with that system-wide upper bound. Evidently, such a universal running-
time bound in turn induces a bound on the lengths of the allowable signing attribute strings.
Moreover, it implies that the signing algorithm should also have running time proportional
to that universal time bound, i.e., incurs the worst-case running time in order to generate
the signatures. Consequently, it is clear that their scheme actually fails to achieve both the
advanced properties which are the sole utility of considering the richer TM model over the
circuit model, namely, unbounded-length signing attribute strings and input-specific running
time of the signing algorithm. Further, the failure to achieve these rich properties is in fact
the result of their approach that involves giving out non-interactive zero-knowledge (NIZK)
proofs for each of the evaluation steps of the signing policy TM on the signing attribute string
considered in a manner analogous to how an NIZK proof is issued for each gate of the signing
policy circuit in [23]. In contrast, our goal in this paper is to devise techniques to accomplish
both the rich properties expected from the TM model and thereby truly expand the state of
the art in the field of ABS beyond the essential barriers of the circuit model. Additionally, we
aim at making the signature size as small as that of an ordinary digital signature scheme, that
is, dependent only on the size of the signed message—a feature that has remained elusive
despite the tremendous progress in the field of ABS so far.

1.1 Our contribution

In this paper, we present the first ever key-policyABS scheme supporting signing policies rep-
resentable as Turing machines (TM) which can handle signing attribute strings of unbounded
polynomial length, as well as have arbitrary (polynomial) running time, description size,
and space complexity. Thus, our work captures the most general form of signing policies
possible. Moreover, in our ABS scheme, generating a signing key corresponding to a sign-
ing policy takes time polynomial in the description size of that signing policy, which may
be much shorter compared to the worst-case running time of that signing policy. Also, the
signature generation time only depends on the time the used signing policy takes to run on
the signing attribute string with respect to which the signature is being generated, rather than
its worst-case running time. These features were beyond the reach of any other known ABS
construction. On a more positive note, for the first time in the literature, the signature size of
our ABS scheme only depends on the size of the signed message and is completely indepen-
dent of the associated signing policy. This is a significant achievement from the point of view
of communication efficiency. Further, using the technique of universal TM, our key-policy
ABS construction can be readily converted into a signature-policy variant while preserving
the same level of expressiveness as the key-policy version. Table 1presents a comparison of
our work and prior works in the area.

Our ABS construction is shown to possess perfect signer privacy and existential unforge-
ability against selective attribute adaptive chosen message attacks under well-studied
computational assumptions. The construction makes use of indistinguishability obfuscation

123

1848 P. Datta et al.

Ta
bl
e
1

St
at
e
of

th
e
ar
ti
n
A
BS

Sc
he
m
e

Su
pp
or
te
d
si
gn
in
g
po
lic
ie
s

Po
lic
y
as
si
gn
m
en
t

C
om

pl
ex
ity

as
su
m
pt
io
n

A
ttr
ib
ut
e
le
ng
th

Si
gn
at
ur
e
si
ze

Si
gn
in
g
tim

e

SA
H
16

[2
3]

G
en
er
ic
B
oo

le
an

fo
rm

ul
as

K
ey
/s
ig
na
tu
re

SX
D
H

B
ou

nd
ed

p
ol
y(

|m
sg

|,|
A

|)
W
or
st
-c
as
e

SK
A
H
18

[2
4]

TM
K
ey
/s
ig
na
tu
re

SX
D
H

B
ou

nd
ed

p
ol
y(

|m
sg

|,|
A

|)
W
or
st
-c
as
e

K
K
18

[1
6]

A
ri
th
m
et
ic
fo
rm

ul
as

Si
gn

at
ur
e

SI
S
an
d
LW

E
B
ou

nd
ed

p
ol
y(

|m
sg

|,|
A

|)
W
or
st
-c
as
e

D
O
T
19

[6
]

A
BP

Si
gn

at
ur
e

D
LI
N

B
ou

nd
ed

p
ol
y(

|m
sg

|,|
A

|)
W
or
st
-c
as
e

O
T
11

[2
0]

N
on

-M
on

ot
on

e
B
oo

le
an

fo
rm

ul
as

Si
gn

at
ur
e

D
LI
N

B
ou

nd
ed

p
ol
y(

|m
sg

|,i
np

(A
))

W
or
st
-c
as
e

M
PR

11
[1
9]

M
SP

Si
gn

at
ur
e

G
G
M

B
ou

nd
ed

p
ol
y(

|m
sg

|,|
A

|)
W
or
st
-c
as
e

T
L
L
14

[2
5]

M
on

ot
on

e
B
oo

le
an

fo
rm

ul
as

K
ey

M
C
D
H

B
ou

nd
ed

p
ol
y(

|m
sg

|,i
np

(A
)
+

de
p
(A

))
W
or
st
-c
as
e

T
sa
18

[2
6]

G
en
er
ic
B
oo

le
an

fo
rm

ul
as

K
ey

SI
S

B
ou

nd
ed

p
ol
y(

|m
sg

|,i
np

(A
),
de

p
(A

))
W
or
st
-c
as
e

T
hi
s
w
or
k

TM
K
ey
/s
ig
na
tu
re

[
IO

︷
︸
︸

︷

LP
N

+
D
LI
N

+
PR

G
]

+
D
D
H
/D

C
R

+
O
W
F

U
nb

ou
nd

ed
p
ol
y(

|m
sg

|)
In
pu
t-
sp
ec
ifi
c

T
he

no
ta
tio

ns
us
ed

in
th
is
ta
bl
e
ha
ve

th
e
fo
llo

w
in
g
m
ea
ni
ng
s:
A
BP

:
A
ri
th
m
et
ic

B
ra
nc
hi
ng

Pr
og

ra
m
s;
M
SP

:
M
on

ot
on

e
Sp

an
Pr
og

ra
m
s;
TM

:t
ur
in
g
m
ac
hi
ne
s;
SX

D
H
:
sy
m
m
et
ri
c

ex
te
rn
al

D
if
fie
–H

el
lm

an
;
SI
S:

sh
or
t
in
te
ge
r
so
lu
tio

n
pr
ob

le
m
;
LW

E:
le
ar
ni
ng

w
ith

er
ro
rs

pr
ob

le
m
;
D
LI
N
:
de
ci
si
on
al

lin
ea
r
as
su
m
pt
io
n;

G
G
M
:
ge
ne
ri
c
gr
ou

p
m
od

el
;
M
C
D
H
:

m
ul
til
in
ea
r
co
m
pu
ta
tio

na
l
D
if
fie
–H

el
lm

an
;
IO
:
in
di
st
in
gu
is
ha
bi
lit
y
ob
fu
sc
at
io
n;

LP
N
:
le
ar
ni
ng

pa
ri
ty

w
ith

no
is
e
as
su
m
pt
io
n;

PR
G
:
B
oo

le
an

ps
eu
do

-r
an
do

m
ge
ne
ra
to
r
in

N
C
0
;

D
D
H
:d
ec
is
io
na
lD

if
fie
–H

el
lm

an
as
su
m
pt
io
n;
D
C
R:

de
ci
si
on
al
co
m
po
si
te
re
si
du
oc
ity

as
su
m
pt
io
n;
O
W
F:
on

e-
w
ay

fu
nc
tio

ns
;p

ol
y:
ar
bi
tr
ar
y
po

ly
no

m
ia
l;
m
sg
:m

es
sa
ge
;A

:a
cc
es
s

po
lic
y;

|x|
:s
iz
e
of

x;
in
p
(x

):
in
pu

tl
en
gt
h
of

x;
de

p
(x

):
de
pt
h
of

x

123

Short ABS for arbitrary TMs from standard assumptions 1849

(IO) for polynomial-size circuits. Other than IO, we make use of standard digital signa-
tures (SIG), injective pseudorandom generators (PRG), and certain additional IO-compatible
cryptographic tools, namely, puncturable pseudorandom functions, somewhere statistically
binding (SSB) hash functions, positional accumulators, cryptographic iterators, and splittable
signatures. Among the cryptographic building blocks used in our ABS construction in addi-
tion to IO, iterators and splittable signatures are realizable using IO itself in conjunction with
one-way functions, whereas all the others have efficient instantiations based on standard
number theoretic assumptions or one-way functions. Very recently, a series of works [2, 9,
12–15] have finally provided an IO candidate based on the sub-exponential security of three
well-studied computational assumptions, namely, learning parity with noise (LPN), existence
of boolean pseudorandom generators (PRG) in NC0, and Decisional Linear (DLIN).

We note that while the proposed ABS scheme demonstrates asymptotically better per-
formance compared to existing schemes as described above, the concrete computational
overhead might not outweigh that of existing schemes at this point primarily due to fact that
the current realization of IO is highly inefficient. However, IO research has so far advanced
a long way over the last two decade since its inception by Barak et al. [3], and we believe
efficient IO candidates would be discovered in the future improving the concrete overhead
of the proposed ABS scheme. On the other hand, the existing ABS schemes, especially those
supporting comparably expressive signing policies [16, 23–26] would still continue to suffer
from the asymptotic worst-case efficiency bottleneck. Another limitation of the proposed
ABS scheme is that it only achieves selective unforgeability as mentioned above. We leave
it as an interesting open problem to construct an ABS scheme for the same class of access
policies and with the same asymptotic efficiency as ours while achieving adaptive security
at the same time.

To achieve our result, we extend the techniques employed by Koppula et al. [17] for
designing message-hiding encoding schemes for TMs, or by Deshpande et al. [7] for design-
ing constrained pseudorandom functions (CPRF) for TMs secure in the selective challenge
selective constraints model to withstand adaptive signing key queries of the adversary. We
give an overview of our techniques in the next section.

2 Preliminaries

For n ∈ N and a, b ∈ N∪ {0} (with a < b), we let [n] = {1, . . . , n} and [a, b] = {a, . . . , b}.
For any set S, υ

$←− S represents the uniform random variable on S. For a randomized
algorithmR, we denote by ψ = R(υ; ρ) the random variable defined by the output ofR on

input υ and randomness ρ, while ψ
$←− R(υ) has the same meaning with the randomness

suppressed. Also, if R is a deterministic algorithm ψ = R(υ) denotes the output of R on
input υ. We will use the alternative notationR(υ) → ψ as well to represent the output of the
algorithm R, whether randomized or deterministic, on input υ. For any string s ∈ {0, 1}∗,
|s| represents the length of the string s. For any two strings s, s′ ∈ {0, 1}∗, s‖s′ represents
the concatenation of s and s′. A function negl is negligible if for every integer c, there exists
an integer k such that for all λ > k, |negl(λ)| < 1/λc.

123

1850 P. Datta et al.

2.1 Turingmachines

A Turing machine (TM) M is a 7-tuple M = 〈Q, �inp, �tape, δ, q0, qac, qrej〉 with the
following semantics:

– Q: The finite set of possible states of M .
– �inp: The finite set of input symbols.
– �tape: The finite set of tape symbols such that �inp ⊂ �tape and there exists a special

blank symbol ‘_’ ∈ �tape\�inp.
– δ : Q × �tape → Q × �tape × {+1,−1}: The transition function of M .
– q0 ∈ Q: The designated start state.
– qac ∈ Q: The designated accept state.
– qrej(�= qac) ∈ Q: The distinguished reject state.

For any t ∈ [T = 2λ], we define the following variables for M , while running on some input
(without the explicit mention of the input in the notations):

– posM,t : An integer which denotes the position of the header of M after the t th step.
Initially, posM,0 = 0.

– symM,t ∈ �tape: The symbol stored on the tape at the posM,t th location.

– sym(write)
M,t ∈ �tape: The symbol to be written at the posM,t−1th location during the t th

step.
– stM,t ∈ Q: The state of M after the t th step. Initially, stM,0 = q0.

At each time step, the TMM reads the tape at the header position and based on the current state,
computes what needs to be written on the tape at the current header location, the next state,
and whether the header must move left or right. More formally, let (q, ζ, β ∈ {+1,−1}) =
δ(stM,t−1, symM,t−1). Then, stM,t = q, sym(write)

M,t = ζ , and posM,t = posM,t−1 + β. M
accepts at time t if stM,t = qac. In this paperweconsider�inp = {0, 1} and�tape = {0, 1, _}.
Given any TM M and string x ∈ {0, 1}∗, we define M(x) = 1, if M accepts x within T steps,
and 0, otherwise.

2.2 Indistinguishability obfuscation

Definition 2.1 (Indistinguishability obfuscation: IO [3]) An indistinguishability obfuscator
(IO) IO for a circuit class {Cλ}λ is a probabilistic polynomial-time (PPT) uniform algorithm
satisfying the following conditions:

� Correctness: IO(1λ,C) preserves the functionality of the input circuit C , i.e., for any
C ∈ Cλ, if we compute C ′ = IO(1λ,C), then C ′(υ) = C(υ) for all inputs υ.

� Indistinguishability: For any security parameter λ and any two circuits C0,C1 ∈ Cλ

with same functionality, the circuits IO(1λ,C0) and IO(1λ,C1) are computationally
indistinguishable. More precisely, for all (not necessarily uniform) PPT adversariesD =
(D1,D2), there exists a negligible function negl such that, if

Pr
[

(C0,C1, ξ)
$←− D1(1λ) : ∀ υ,C0(υ) = C1(υ)

] ≥ 1 − negl(λ),

then
∣

∣Pr
[D2(ξ, IO(1λ,C0)) = 1

] − Pr
[D2(ξ, IO(1λ,C1)) = 1

]∣

∣ ≤ negl(λ).

� Efficiency: For any security parameter λ and any circuit C ∈ Cλ, the size of the
obfuscated circuit IO(1λ,C) is polynomial in λ and the size of C .

123

Short ABS for arbitrary TMs from standard assumptions 1851

We remark that the two distinct algorithms D1 and D2, which pass state ξ , can be viewed
equivalently as a single stateful algorithm D. In this paper we employ the latter approach,
although here we present the definition as it appears in [3]. When clear from the context, we
will drop 1λ as an input to IO.

The circuit class we are interested in are polynomial-size circuits, i.e., when Cλ is the
collection of all circuits of size at most λ. This circuit class is denoted by P/poly. The first
candidate construction of IO for P/poly was presented by Garg et al. [8] in 2013. Their con-
struction uses nonstandard instance dependent assumption on graded multilinear encodings.
Since then, there has been a rapid progress towards designing IO from better understood
cryptographic tools and complexity assumptions. Very recently, a series of exciting works
[1, 2, 9, 12, 13, 15, 18] have finally provided an IO candidate based on the sub-exponential
security of four well-studied computational assumptions, namely, learningwith errors (LWE),
learning parity with noise (LPN), existence of boolean pseudorandom generators (PRG) in
NC0, and symmetric external Diffie–Hellman (SXDH).

2.3 IO-compatible cryptographic primitives

In this section, we present the syntax and efficiency considerations of certain IO-friendly
cryptographic tools which we use in our ABS construction. The security properties these
primitives are described in Online Appendix A.

2.3.1 Puncturable pseudorandom function

Pseudorandom functions (PRF) [10] are a fundamental tool of modern cryptography. A PRF
is a deterministic keyed function with the following property: Given a key, the function can
be computed in polynomial time at all points of its input domain. But, without the key it is
computationally hard to distinguish the PRF output at any arbitrary input from a uniformly
random value, even after seeing the PRF evaluations on a polynomial number of inputs. A
puncturable pseudorandom function (PPRF), first introduced by Sahai and Waters [22], is an
augmentation of a PRFwith an additional puncturing algorithmwhich enables a party holding
a PRF key to derive punctured keys that allow the evaluation of the PRF over all points of the
input domain except one. However, given a punctured key, the PRF evaluation still remains
indistinguishable from random on the input at which the key is punctured.
Puncturable pseudorandom function PPRF [22]: A puncturable pseudorandom func-
tion (PPRF) F : Kpprf × Xpprf → Ypprf consists of an additional punctured
key space Kpprf- punc other than the usual key space Kpprf and PPT algorithms
(F .Setup,F .Eval,F .Puncture,F .Eval-Punctured) described below. Here, Xpprf =
{0, 1}
pprf- inp and Ypprf = {0, 1}
pprf- out , where
pprf- inp and
pprf- out are polynomials in
the security parameter λ,

F .Setup(1λ) → K : The setup authority takes as input the security parameter 1λ and
uniformly samples a PPRF key K ∈ Kpprf.
F .Eval(K , x) → r : The setup authority takes as input a PPRF key K ∈ Kpprf along
with an input x ∈ Xpprf. It outputs the PPRF value r ∈ Ypprf on x . For simplicity, we
will represent by F(K , x) the output of this algorithm.
F .Puncture(K , x) → K {x} : Taking as input a PPRF key K ∈ Kpprf along with an
element x ∈ Xpprf, the setup authority outputs a punctured key K {x} ∈ Kpprf- punc.
F .Eval-Puncured(K {x}, x ′) → r or ⊥ : An evaluator takes as input a punctured key
K {x} ∈ Kpprf- punc along with an input x ′ ∈ Xpprf. It outputs either a value r ∈ Ypprf

123

1852 P. Datta et al.

or a distinguished symbol ⊥ indicating failure. For simplicity, we will represent by
F(K {x}, x ′) the output of this algorithm.

The algorithms F .Setup and F .Puncture are randomized, whereas, the algorithms F .Eval
and F .Eval-Punctured are deterministic.

� Correctness under puncturing: Consider any security parameter λ, K ∈ Kpprf, x ∈
Xpprf, and K {x} $←− F .Puncture(K , x). Then it must hold that

F(K {x}, x ′) =
{F(K , x ′), if x ′ �= x

⊥, otherwise
.

� Efficiency: The F .Setup algorithm runs in time polynomial in the security parameter
λ, while the algorithms F .Eval and F .Punctured run in time polynomial in λ and the input
size
pprf- inp. Moreover, the size of the full PPRF keys is polynomial in λ, whereas that of
the punctured keys is polynomial in λ and
pprf- inp. Hence, the algorithm F .Eval-Punctured
also runs in time polynomial in λ and
pprf- inp. Boneh and Waters [5], have shown that the
tree-based PRF constructed by Goldreich et al. [10] can be readily modified to build a PPRF
from one-way functions.

2.3.2 Somewhere statistically binding hash function

We provide the definition of somewhere statistically binding hash function as defined by
Hubacek et al. [11]. A somewhere statistically binding hash can be used to create a short
digest of some long string. A hashing key is created by specifying a special binding index
and the generated hashing key gets the property that the hash value of some string created
with the hashing key is statistically binding for the specified index, meaning that the hash
value completely determines the symbol of the hashed input at that index. In other words,
even if some hash value has several pre-images, all of those pre-images agree in the symbol
at the specified index. The index on which the hash is statistically binding should remain
computationally hidden given the hashing key. Moreover, it is possible to prove that the input
string underlying a given hash value contains a specific symbol at a particular index, by
providing a short opening value.
Somewhere statistically binding hash function SSB Hash [11]: A somewhere statistically
binding (SSB) hash consists of PPT algorithms (SSB.Gen, H, SSB.Open,SSB.Verify) along
with a block alphabet �ssb- blk = {0, 1}
ssb- blk , output size
ssb- hash, and opening space
�ssb = {0, 1}
ssb- open , where
ssb- blk,
ssb- hash,
ssb- open are some polynomials in the
security parameter λ. The algorithms have the following syntax:

SSB.Gen(1λ, nssb- blk, i
∗) → hk : The setup authority takes as input the security param-

eter 1λ, an integer nssb- blk ≤ 2λ representing the maximum number of blocks that can
be hashed, and an index i∗ ∈ [0, nssb- blk − 1] and publishes a public hashing key hk.
Hhk : x ∈ �

nssb- blk
ssb- blk → h ∈ {0, 1}
ssb- hash : This is a deterministic function that has the

hash key hk hardwired. A user runs this function on input x = x0‖ . . . ‖xnssb- blk−1 ∈
�

nssb- blk
ssb- blk to obtain as output h = Hhk(x) ∈ {0, 1}
ssb- hash .

SSB.Open(hk, x, i) → πssb : Taking as input the hash key hk, input x ∈ �
nssb- blk
ssb- blk, and

an index i ∈ [0, nssb- blk − 1], a user creates an opening πssb ∈ �ssb.
SSB.Verify(hk, h, i, u, πssb) → β̂ ∈ {0, 1} : On input a hash key hk, a hash value
h ∈ {0, 1}
ssb- hash , an index i ∈ [0, nssb- blk − 1], a value u ∈ �ssb- blk, and an opening
πssb ∈ �ssb, a verifier outputs a bit β̂ ∈ {0, 1}.

123

Short ABS for arbitrary TMs from standard assumptions 1853

The algorithms SSB.Gen and SSB.Open are randomized, while the algorithm SSB.Verify is
deterministic.

� Correctness: For any security parameter λ, integer nssb- blk ≤ 2λ, i, i∗ ∈ [0, nssb- blk
−1], hk $←− SSB.Gen(1λ, nssb- blk, i

∗), x ∈ �
nssb- blk
ssb- blk, and πssb

$←− SSB.Open(hk, x, i),
we have SSB.Verify(hk,Hhk(x), i, xi , πssb) = 1.

� Efficiency: The SSB.Gen algorithm runs in time polynomial in the security parameter
λ and log nssb- blk. Moreover, the hash and opening values have size polynomial in λ

and log nssb- blk. Hence, the SSB.Verify algorithm also runs in time polynomial in λ and
log nssb- blk. On the other hand, the algorithmsHhk and SSB.Open run in time polynomial
in λ and nssb- blk in the worst case. The first construction of an SSB hash is presented by
Hubacek et al. [11]. Their construction is based on fully homomorphic encryption (FHE).
Recently, Okamoto et al.[21] provides alternative constructions of SSB hash based on
various standard number theoretic assumptions such as the Decisional Diffie-Hellman
assumption. In this paper, we consider
ssb- blk = 1 and nssb- blk = 2λ.

2.3.3 Positional accumulator

We will now present the notion of a positional accumulator as defined by Koppula et al.
[17]. Intuitively, a positional accumulator is a cryptographic data structure that maintains
two values, namely, a storage value and an accumulator value. The storage value is allowed
to grow comparatively large, while the accumulator value is constrained to be short. Message
symbols can be written to various positions in the underlying storage, and new accumulated
values can be computed as a string, knowing only the previous accumulator value and the
newly written symbol together with its position in the data structure. Since the accumulator
values are small, one cannot hope to recover everything written in the storage from the
accumulator value alone. However, there are additional helper algorithms which essentially
allow a party who is maintaining the full storage to help a more restricted party maintaining
only the accumulator value recover the data currently written at an arbitrary location. The
helper is not necessarily trusted, so the party maintaining the accumulator value performs a
verification procedure in order to be convinced that it is indeed reading the correct symbols.
Positional accumulator [17]: A positional accumulator consists of PPT algorithms
(ACC.Setup,ACC.Setup-Enforce-Read,ACC.Setup-Enforce-Write,ACC.Prep-Read,ACC.
Prep-Write,ACC.Verify-Read,ACC.Write-Store,ACC.Update) along with a block alpha-
bet �acc- blk = {0, 1}
acc- blk , accumulator size
acc- accumulate, proof space �acc =
{0, 1}
acc- proof where
acc- blk,
acc- accumulate,
acc- proof are some polynomials in the
security parameter λ. The algorithms have the following syntax:

ACC.Setup(1λ, nacc- blk) → (ppacc, w0, store0) : The setup authority takes as input
the security parameter 1λ and an integer nacc- blk ≤ 2λ representing the maximum
number of blocks that can be accumulated. It outputs the public parameters ppacc, an
initial accumulator value w0, and an initial storage value store0.
ACC.Setup-Enforce-Read(1λ, nacc- blk, ((x1, i1), . . . , (xκ , iκ)), i∗) → (ppacc, w0,

store0) : Taking as input the security parameter 1λ, an integer nacc- blk ≤ 2λ represent-
ing themaximum number of blocks that can be accumulated, a sequence of symbol-index
pairs ((x1, i1), . . . , (xκ , iκ)) ∈ (�acc- blk × [0, nacc- blk − 1])κ , and an additional index
i∗ ∈ [0, nacc- blk − 1], the setup authority publishes the public parameters ppacc, an
initial accumulator value w0, together with an initial storage value store0.
ACC.Setup-Enforce-Write(1λ, nacc- blk, ((x1, i1), . . . , xκ , iκ))) → (ppacc, w0,

store0) : On input the security parameter 1λ, an integer nacc- blk ≤ 2λ denoting the

123

1854 P. Datta et al.

maximum number of blocks that can be accumulated, and a sequence of symbol-index
pairs ((x1, i1), . . . , (xκ , iκ)) ∈ (�acc- blk ×[0, nacc- blk −1])κ , the setup authority pub-
lishes the public parameters ppacc, an initial accumulator value w0, as well as, an initial
storage value store0.
ACC.Prep-Read(ppacc, storein, iin) → (xout, πacc) : A storage-maintaining party
takes as input the public parameter ppacc, a storage value storein, and an index
iin ∈ [0, nacc- blk − 1]. It outputs a symbol xout ∈ �acc- blk ∪ {ε} (ε being the empty
string) and a proof πacc ∈ �acc.
ACC.Prep-Write(ppacc, storein, iin) → aux : Taking as input the public parameter
ppacc, a storage value storein, together with an index iin ∈ [0, nacc- blk − 1], a storage-
maintaining party outputs an auxiliary value aux.
ACC.Verify-Read(ppacc, win, xin, iin, πacc) → β̂ ∈ {0, 1} : A verifier takes as input
the public parameter ppacc, an accumulator value win ∈ {0, 1}
acc- accumulate , a symbol
xin ∈ �acc- blk ∪ {ε}, an index iin ∈ [0, nacc- blk − 1], and a proof πacc ∈ �acc. It
outputs a bit β̂ ∈ {0, 1}.
ACC.Write-Store(ppacc, storein, iin, xin) → storeout :On input the public parameters
ppacc, a storage value storein, an index iin ∈ [0, nacc- blk − 1], and a symbol xin ∈
�acc- blk, a storage-maintaining party computes a new storage value storeout.
ACC.Update(ppacc, win, xin, iin,aux) → wout or ⊥ : An accumulator-updating
party takes as input the public parameters ppacc, an accumulator value win ∈
{0, 1}
acc- accumulate , a symbol xin ∈ �acc- blk, an index iin ∈ [0, nacc- blk − 1], and an
auxiliary value aux. It outputs the updated accumulator valuewout ∈ {0, 1}
acc- accumulate
or the designated reject string ⊥.

Following [7, 17], in this paper we will consider the algorithms ACC.Setup,

ACC.Setup-Enforce-Read, and ACC.Setup-Enforce-Write as randomized while all other
algorithms as deterministic.

� Correctness: Consider any symbol-index pair sequence ((x1, i1), . . . , (xκ , iκ))

∈ (�acc- blk × [0, nacc- blk − 1])κ . Fix any (ppacc, w0, store0)
$←− ACC.Setup(1λ,

nacc- blk). For j = 1, . . . , κ , iteratively define the following:

– store j = ACC.Write-Store(ppacc, store j−1, i j , x j).
– aux j = ACC.Prep-Write(ppacc, store j−1, i j).
– w j = ACC.Update(ppacc, w j−1, x j , i j ,aux j).

The following correctness properties are required to be satisfied:

(i) For any security parameter λ, nacc- blk ≤ 2λ, index i∗ ∈ [0, nacc- blk − 1], sequence
of symbol-index pairs ((x1, i1), . . . , (xκ , iκ)) ∈ (�acc- blk × [0, nacc- blk − 1])κ , and
(ppacc, w0, store0)

$←− ACC.Setup(1λ, nacc- blk), if storeκ is computed as above,
then ACC.Prep-Read(ppacc, storeκ , i∗) returns (x j , πacc) where j is the largest value
in [κ] such that i j = i∗.

(ii) For any security parameter λ, nacc- blk ≤ 2λ, sequence of symbol-index pairs
((x1, i1), . . . , (xκ , iκ)) ∈ (�acc- blk × [0, nacc- blk − 1])κ , i∗ ∈ [0, nacc- blk − 1],
and (ppacc, w0, store0)

$←− ACC.Setup(1λ, nacc- blk), if storeκ and wκ are com-
puted as above and (xout, πacc) = ACC.Prep-Read(ppacc, storeκ , i∗), thenACC.Verify-
Read(ppacc, wκ, xout, i

∗, πacc) = 1

�Efficiency: The ACC.Setup algorithm runs in time polynomial in the security parameter
λ and log nacc- blk. Moreover, the accumulator values and proofs have size polynomial in λ

and log nacc- blk. Thus, the algorithms ACC.Verify-Read and ACC.Update also run in time

123

Short ABS for arbitrary TMs from standard assumptions 1855

polynomial in λ and log nacc- blk. The storage has size polynomial in the number of values
stored so far. Hence, the algorithms ACC.Write-Store, ACC.Prep-Read, and ACC.Prep-Write
run in time polynomial in λ and nacc- blk in the worst case. The first construction of a posi-
tional accumulator is presented by Koppula et al. [17] based on IO and one-way function.
Recently, Okamoto et al. [21] provided an alternative construction of positional accumu-
lator from standard number theoretic assumptions. Such as the Decisional Diffie–Hellman
assumption.

2.3.4 Iterator

Here, we define cryptographic iterators again following [17]. Informally speaking, a crypto-
graphic iterator consists of a small state that is updated in an iterative fashion as messages are
received. An update to incorporate a new message given the current state is performed with
the help of some public parameters. Since, states are relatively small regardless of the number
of messages that have been iteratively incorporated, there is in general many sequences of
messages that lead to the same state. However, the security property requires that the normal
public parameters should be computationally indistinguishable from specially constructed
enforcing parameters which ensure that a particular state can only be obtained as the outcome
of an update to precisely one other state-message pair. Note that this enforcement is a very
localized property to a specific state and hence can be achieved information-theoretically
when it is fixed ahead of time where exactly this enforcement is desired.
Iterator [17]: A cryptographic iterator consists of PPT algorithms (ITR.Setup,
ITR.Setup-Enforce, ITR.Iterate) along with a message spaceMitr = {0, 1}
itr- msg and iterator
state size
itr- st, where
itr- msg,
itr- st are some polynomials in the security parameter λ.
Algorithms have the following syntax:

ITR.Setup(1λ, nitr) → (ppitr, v0) :The setup authority takes as input the security param-
eter 1λ along with an integer bound nitr ≤ 2λ on the number of iterations. It outputs the
public parameters ppitr and an initial state v0 ∈ {0, 1}
itr- st .
ITR.Setup-Enforce(1λ, nitr, (μ1, . . . , μκ)) → (ppitr, v0) : Taking as input the security
parameter 1λ, an integer bound nitr ≤ 2λ, together with a sequence of κ messages
(μ1, . . . , μκ) ∈ Mκ

itr, where κ ≤ nitr, the setup authority publishes the public
parameters ppitr and an initial state v0 ∈ {0, 1}
itr- st .
ITR.Iterate(ppitr, vin ∈ {0, 1}
itr- st , μ) → vout : On input the public parameters
ppitr, a state vin, and a message μ ∈ Mitr, an iterator outputs an updated state
vout ∈ {0, 1}
itr- st . For any integer κ ≤ nitr, we will write ITR.Iterateκ (ppitr,
v0, (μ1, . . . , μκ)) to denote ITR.Iterate(ppitr, vκ−1, μκ), where v j is defined iteratively
as v j = ITR.Iterate(ppitr, v j−1, μ j) for all j = 1, . . . , κ − 1.

The algorithm ITR.Iterate is deterministic, while the other two are randomized.
� Efficiency: The algorithms ITR.Setup and ITR.Iterate run in time polynomial in the

security parameter λ and log nitr. Also, the state has size polynomial in λ and log nitr.
Koppula et al. [17] have presented a construction of cryptographic iterators from IO and
one-way function.

2.3.5 Splittable signature

The following background on splittable signatures is taken verbatim from Koppula et al. [17]
as well. A splittable signature scheme is essentially a normal signature scheme augmented

123

1856 P. Datta et al.

by some additional algorithms that produce alternative signing and verification keys with
different capabilities. More precisely, there are “all-but-one” signing and verification keys
which work correctly for all messages except for a specific one, as well as there are “one”
signing and verification keys which work only for a particular message. Additionally, there
are “reject” verification keys which always reject signatures.
Splittable signature SPS [17]: A splittable signature scheme (SPS) for message space
Msps = {0, 1}
sps- msg and signature space Ssps = {0, 1}
sps- sig , where
sps- msg,
sps- sig
are some polynomials in the security parameter λ, consists of PPT algorithms
(SPS.Setup, SPS.Sign, SPS.Verify, SPS.Split, SPS.Sign-ABO) which are described below:

SPS.Setup(1λ) → (sksps,vksps,vksps- rej) : The setup authority takes as input the
security parameter 1λ and generates a signing key sksps, a verification keyvksps, together
with a reject verification key vksps- rej.
SPS.Sign(sksps,m) → σsps : A signer given a signing key sksps along with a message
m ∈ Msps, produces a signature σsps ∈ Ssps.
SPS.Verify(vksps,m, σsps) → β̂ ∈ {0, 1} : A verifier takes as input a verification key
vksps, a message m ∈ Msps, and a signature σsps ∈ Ssps. It outputs a bit β̂ ∈ {0, 1}.
SPS.Split(sksps,m∗) → (σsps- one,m∗ ,vksps- one, sksps- abo,vksps- abo) : On input a
signing key sksps along with a message m∗ ∈ Msps, the setup authority generates a
signature σsps- one,m∗ = SPS.Sign(sksps,m∗), a one-message verification key vksps- one,
and all-but-one signing-verification key pair (sksps- abo,vksps- abo).
SPS.Sign-ABO(sksps- abo,m) → σsps or ⊥ : An all-but-one signer given an all-but-one
signing key sksps- abo and a message m ∈ Msps, outputs a signature σsps ∈ Ssps or a
distinguished string ⊥ to indicate failure. For simplicity of notation, we will often use
SPS.Sign(sksps- abo,m) to represent the output of this algorithm.

We note that among the algorithms described above, SPS.Setup and SPS.Split are randomized
while all the others are deterministic.

� Correctness: For any security parameter λ, message m∗ ∈ Msps, (sksps,vksps,

vksps- rej)
$←− SPS.Setup(1λ), and (σsps- one,m∗ , vksps- one, sksps- abo, vksps- abo)

$←−
SPS.Split(sksps,m∗) the following correctness conditions hold:

(i) ∀m ∈ Msps, SPS.Verify(vksps,m, SPS.Sign(sksps,m)) = 1.
(ii) ∀m �= m∗ ∈ Msps, SPS.Sign(sksps,m) = SPS.Sign-ABO(sksps- abo,m).
(iii) ∀ σsps ∈ Ssps, SPS.Verify(vksps- one,m

∗, σsps) = SPS.Verify(vksps,m∗, σsps).
(iv) ∀m �= m∗ ∈ Msps, σsps ∈ Ssps,

SPS.Verify(vksps- abo,m, σsps) = SPS.Verify(vksps,m, σsps).
(v) ∀m �= m∗ ∈ Msps, σsps ∈ Ssps, SPS.Verify(vksps- one,m, σsps) = 0.
(vi) ∀ σsps ∈ Ssps, SPS.Verify(vksps- abo,m

∗, σsps) = 0.
(vii) ∀m ∈ Msps, σsps ∈ Ssps, SPS.Verify(vksps- rej,m, σsps) = 0.

�Efficiency: The algorithms SPS.Setup, SPS.Sign, and SPS.Verify run in time polynomial
in the security parameter λ and the supported message length
sps- msg. Koppula et al. [17]
have constructed a splittable signature scheme using IO and one-way function.

123

Short ABS for arbitrary TMs from standard assumptions 1857

3 Our attribute-based signature for TMs

3.1 Notion of attribute-based signatures for TMs

First, wewill formally define the notion of an attribute-based signature schemewhere signing
policies are associated with TMs. This definition is similar to that defined in [23, 25] for
circuits.

Definition 3.1 (Attribute-based signature for turing machines: ABS) Let Mλ be a class of
TMs, themembers ofwhich have (worst-case) running time bounded by T = 2λ. An attribute-
based signature (ABS) scheme for signing policies associated with the TMs inMλ comprises
of an attribute universe Uabs ⊂ {0, 1}∗, a message space Mabs = {0, 1}
abs- msg , a signature
space Sabs = {0, 1}
abs- sig , where
abs- msg,
abs- sig are some polynomials in the security
parameter λ, and PPT algorithms (ABS.Setup, ABS.KeyGen, ABS.Sign, ABS.Verify) described
below:

ABS.Setup(1λ) → (ppabs,mskabs) : The setup authority takes as input the security
parameter 1λ. It publishes the public parameters ppabs while generates a master secret
key mskabs for itself.
ABS.KeyGen(mskabs, M) → skabs(M) : Taking as input the master secret key mskabs
and a signing policy TM M ∈ Mλ of a signer, the setup authority provides the
corresponding signing key skabs(M) to the legitimate signer.
ABS.Sign(skabs(M), x,msg) → σabs or ⊥ : On input the signing key skabs(M) cor-
responding to the legitimate signing policy TM M ∈ Mλ, a signing attribute string
x ∈ Uabs, and a message msg ∈ Mabs, a signer outputs either a signature σabs ∈ Sabs
or ⊥ indicating failure.
ABS.Verify(ppabs, x,msg, σabs) → β̂ ∈ {0, 1} : A verifier takes as input the public
parameters ppabs, a signing attribute string x ∈ Uabs, a message msg ∈ Mabs, and a
purported signature σabs ∈ Sabs. It outputs a bit β̂ ∈ {0, 1}.

We note that all the algorithms described above except ABS.Verify are randomized. The
algorithms satisfy the following properties:

� Correctness: For any security parameter λ, (ppabs,mskabs)
$←− ABS.Setup(1λ),

M ∈ Mλ, skabs(M)
$←− ABS.KeyGen(mskabs, M), x ∈ Uabs, and msg ∈ Mabs, if

M(x) = 1, then ABS.Sign(skabs(M), x,msg) outputs σabs ∈ Sabs such that ABS.Verify
(ppabs, x,msg, σabs) = 1.
� Signer privacy: An ABS scheme is said to provide signer privacy if for any

security parameter λ, message msg ∈ Mabs, (ppabs,mskabs)
$←− ABS.Setup(1λ),

signing policies M, M ′ ∈ Mλ, signing keys skabs(M)
$←− ABS.KeyGen(mskabs, M),

skabs(M
′) $←− ABS.KeyGen(mskabs, M

′), x ∈ Uabs such that M(x) = 1 = M ′(x),
the distributions of the signatures outputted by ABS.Sign(skabs(M), x,msg) and
ABS.Sign(skabs(M

′), x,msg) are identical.
� Existential unforgeability against selective attribute adaptive chosen message
attack: This property of an ABS scheme is defined through the following experiment
between an adversary A and a challenger B:
• A submits a challenge attribute string x∗ ∈ Uabs to B.
• B generates (ppabs,mskabs)

$←− ABS.Setup(1λ) and provides A with ppabs.

123

1858 P. Datta et al.

• A may adaptively make a polynomial number of queries of the following types:
– Signing key query: When A queries a signing key corresponding to a signing

policy TM M ∈ Mλ subject to the restriction that M(x∗) = 0, B gives back

skabs(M)
$←− ABS.KeyGen(mskabs, M) to A.

– Signature query:WhenA queries a signature on amessagemsg ∈ Mabs under
an attribute string x ∈ Uabs, B samples a signing policy TM M ∈ Mλ such that

M(x) = 1, creates a signing key skabs(M)
$←− ABS.KeyGen(mskabs, M), and

generates a signature σabs
$←− ABS.Sign(skabs(M), x,msg), which B returns to

A.
• At the end of interaction A outputs a message-signature pair (msg∗, σ ∗

abs). A wins
if the following hold simultaneously:
(i) ABS.Verify(ppabs, x

∗,msg∗, σ ∗
abs) = 1.

(ii) A has not made any signature query onmsg∗ under x∗.

The ABS scheme is said to be existentially unforgeable against selective attribute adaptive
chosen message attack if for any PPT adversary A, for any security parameter λ,

Advabs,uf- cmaA (λ) = Pr[A wins] ≤ negl(λ),

for some negligible function negl.

Remark 3.1 Note that in the existential unforgeability experiment above without loss of gen-
erality, we can consider signature queries on messages only under the challenge attribute
string x∗. This is because any signature query under some attribute string x �= x∗ can be
replaced by a signing key query for a signing policy TM Mx ∈ Mλ that accepts only the
string x . Since x �= x∗, Mx (x∗) = 0, and thus Mx forms a valid signing key query. We use
this simplification in our proof.

3.2 Overview of the proposedABS scheme

Here we explain the high level technical ideas underlying our ABS scheme. We start by
adapting the techniques of Deshpande et al. [7] and Koppula et al. [17] to the ABS setting.
Our master signing key consists of a PPRF key k and a set of public parameters ppacc
of a positional accumulator. We assign a different signing key-verification key pair of a
standard SIG scheme to each of the possible signing attribute strings and we define such an
SIG signing key-verification key pair associated with a signing attribute string x as those
obtained by running the setup algorithm of SIG using the randomness obtained by evaluating
the underlying PPRFwith key k onwinp, wherewinp is the accumulation of the bits of x using
ppacc. Our signing key corresponds to some TM M would comprise of two IO-obfuscated
programs P1 and Pabs. The first program P1, also known as the initial signing program,
takes as input an accumulator value and outputs a signature on it together with the initial
state and header position of the TM M . The second program, Pabs, also known as the next
step program, has the PPRF key k hardwired in it. It takes as input a state and header position
of M , along with an input symbol and an accumulator value. It essentially computes the
next step function of M on the input state-symbol pair, and eventually outputs the proper
SIG signing-verification key pair, if M reaches the accepting state. More precisely, in case of
reaching to the accepting state, Pabs first computes the PPRF with key k on input winp. After
that, it generates and outputs a SIG signing key-verification key pair by running the setup
algorithm of SIG using the computed pseudorandom string.

123

Short ABS for arbitrary TMs from standard assumptions 1859

The program Pabs also performs certain authenticity checks before computing the next
step function of M in order to prevent illegal inputs. For this purpose,Pabs additionally takes
as input a signature on the input state, header position, and accumulator value, together with
a proof for the positional accumulator. The program Pabs verifies the signature in order to
ensure authenticity, as well as checks the accumulator proof to get convinced that the input
symbol is indeed the one placed at the input header position of the underlying storage of the
input accumulator value. If all these verifications pass, then Pabs determines the next state
and header position of M , as well as the new symbol that needs to be written to the input
header position. The program Pabs then updates the accumulator value by placing the new
symbol at the input header position, as well as signs the updated accumulator value along
with the computed next state and header position of M .

Our ABS public parameters would contain ppacc along with the IO-obfuscated verifying
program Vabs, which has the PPRF key k hardwired in it. It takes as input an accumulator
value and performs the following steps: First, it runs the PPRFwith key k on the accumulator
value to generate a pseudorandom string. Next, it runs the setup algorithm of SIG using
that pseudorandom string to generate and output the SIG verification key associated with the
accumulator value.

In order to sign a message under some signing attribute string accepted by the TM embed-
ded in its signing key, a signer first computes the accumulation winp of the bits of x using
ppacc which are also included in the PPRF key k, and then obtains a signature onwinp together
with the initial state and header position of M , by running the program P1. The signer then
repeatedly runs the program Pabs, each time on input the current accumulator value, current
state and header position of M , along with the signature on them. Additionally, in each iter-
ation, the signer also feeds winp to Pabs. The iteration is continued until the program Pabs
either outputs the proper signing-verification key pair or the designated symbol ⊥ indicating
failure. After that, the signer signs the message using the obtained SIG signing key. The
ABS signature consists of the generated SIG verification key-signature pair. The signature
verification process on some message under some claimed signing attribute string requires
first generating the SIG verification key associated with the claimed signing attribute string
by accumulating the bits of the claimed signing attribute string using ppacc and inputting
the accumulated value to Vabs. It then checks whether the generated SIG verification key
matches the one included within the ABS signature, as well as whether the SIG signature
included within the ABS signature verifies under that SIG verification key.

While the above strategy appears to be sound, there still remain some subtle issues.Observe
that to handle the positional accumulator related verifications andupdations, the programPabs
must have ppacc hardwired in it. During the course of the selective unforgeability proof, we
have to modify the signing keys given to the adversary A to embed the punctured PPRF key
k{w∗

inp} punctured at w∗
inp instead of the full PPRF key k. Here, w∗

inp is the accumulation of
the bits of the challenge signing attribute string x∗, committed by A at the beginning of the
experiment, using ppacc included within the public parameters given to the adversary A. In
order to make this substitution, it is to be ensured that the programs Pabs included in those
signing keys always outputs ⊥ for signing attribute strings corresponding to w∗

inp even if
reaching the accepting state. As usual, we would carry out the transformation one signing
key at a time through multiple hybrid steps. Now, suppose for transforming the signing keys
we attempt to follow a strategy similar to that of [7, 17]. Let the total number of signing keys
queried by A be q̂key. Consider the transformation of the νth signing key (1 ≤ ν ≤ q̂key)
corresponding to the TM M (ν) that runs on the challenge signing attribute string x∗ for
t∗(ν) steps and reaches the rejecting state. In the course of transformation, the program P(ν)

abs

123

1860 P. Datta et al.

contained in the νth signing key would first be altered to one that always outputs⊥ for inputs
corresponding to w∗

inp within the first t∗(ν) steps. Towards accomplishing this transition, in
successive hybrids, the steps of execution ofM (ν) on x∗ would be repeatedly programmed and
unprogrammed withinP(ν)

abs taking the help of IO. In order to perform this operation using IO,
at various stages, we need to guarantee program functional equivalence, and for that we need
to generate ppacc in read/write enforcing mode, certain special statistically binding modes
indistinguishable from the normal setup mode. However, in the prefixed version of positional
accumulator employed in [7] or in [17], to setup ppacc in read/write-enforcing mode, we
require the entire sequence of symbol-position pairs arising from iteratively running M (ν)

on x∗ up to the step we are programming in. This was not a problem for [7, 17] since in
their security model the adversary A was bounded to declare the TM queries prior to setting
up the system. On the contrary, in our unforgeability experiment, A is allowed to adaptively
submit signing key queries corresponding to signing policy TMs of its choice throughout the
experiment. In such a case, we would be able to determine those symbol-position pairs only
after receiving the νth queried TM M (ν) from A. However, we would require ppacc while
creating the signing keys queried by A before making the νth signing key query, and even
for preparing the public parameters. Thus, it is immediate that we must generate ppacc prior
to receiving the νth signing key query from A. This is clearly impossible as setting ppacc in
read/write enforcing mode requires the knowledge of the TM M (ν), which is not available
before the νth signing key query of A.

Observe that the root cause of the problem discussed above is the use of a single set of
public parameters ppacc of the positional accumulator throughout the system. Therefore, we
attempt to assign a fresh set of public parameters of the positional accumulator to each signing
key. However, for compressing the signing attribute strings to a fixed length, on which the
PPRF can be applied to produce the pseudorandom strings specifying the SIG signing key-
verification key pairs associated with those signing attribute strings, we need a system-wide
compressing tool. We employ a somewhere statistically-binding (SSB) hash function for this
purpose.

Our idea is that while signing a message under some signing attribute string x using its
legitimate signing key for some TMM , the signer first computes the hash value h by hashing x
using the system-wide SSB hash key, which is part of the ABS public parameters. The signer
also computes the accumulator value winp by accumulating the bits of x using the public
parameters of positional accumulator, specific to its signing key. Then, using the obfuscated
initial signing program P1 included in its signing key, the signer will obtain a signature on
winp along with the initial state and header position of M . Finally, the signer will repeatedly
run the obfuscated next step program Pabs included in its signing key, each time giving as
input all the quantities as earlier, except that it would now have to feed the SSB hash value h
in place of winp in each iteration. This is because, in case Pabs reaches the accepting state,
it would require h to apply the PPRF for producing the SIG signing key-verification key pair
associated with x . The same change would also apply to the public verifying program Vabs,
namely, it would also take as input the SSB hash value of a signing attribute string in place
of the accumulator value obtained by accumulating its bits.

However, this approach is not completely sound yet. Observe that, a possibly malicious
signer can compute the SSB hash value h on the signing attribute string x , with respect to
which it wishes to generate a signature despite of the fact that its signing policy TM M does
not accepts it, but initiates the computation by accumulating the bits of only a substring of x
or some entirely different signing attribute string, which is accepted by M . To prevent such
malicious behavior, we include another IO-obfuscated program P2 within the signing key,

123

Short ABS for arbitrary TMs from standard assumptions 1861

we call the accumulating program, whose purpose is to restrict the signer from accumulating
the bits of a different signing attribute string rather than the hashed one. The program P2

takes as input an SSB hash value h, an index i , a symbol, an accumulator value, a signature
on the input accumulator value (along with the initial state and header position of M), and
an opening value for SSB. The program P2 verifies the signature, and also checks whether
the input symbol is indeed present at the index i of the string that has been hashed to form
h, using the input opening value. If all of these verifications pass, then P2 updates the input
accumulator value by writing the input symbol at the i th position of the accumulator storage,
and signs the updated accumulator value (along with the initial state and header position of
M). The signature used by P2 is also a splittable signature that facilitates the security proof.
The obfuscated initial signing program P1 included in the signing key is also modified to
take as input a hash value, and output a signature on the accumulator value corresponding to
the empty accumulator storage together with the initial state and header position of M .

Moreover, for forbidding the signer from performing the computation by accumulating an
M-accepted substring of the hashed input, we define the SIG signing key-verification key pair
associated with a signing attribute string as the output of the setup algorithm of SIG using the
pseudorandom string generated by applying the PPRF on the pair (hash value, length) of the
signing attribute string instead of just the hash value. Note that, without loss of generality,
we can set the upper bound of the length of signing attribute strings to be 2λ, where λ is
the underlying security parameter, in view of the fact that by suitably choosing λ we can
accommodate signing attribute strings of any polynomial length. Since the lengths of the
attribute strings are bounded by 2λ, the lengths can be expressed as bit strings of size λ.
Hence, the total size of the hash value-length pair corresponding to a signing attribute string
would still be bounded. Also, the obfuscated next step programsPabs included in our signing
keys, must also take as input the length of the signing attribute strings for applying the PPRF
if reaching to the accepting state.

Thus, the signing procedure of our ABS scheme becomes the following: to sign a message
under some signing attribute string using its legitimate signing key corresponding to some
TM M , a signer first hash the signing attribute string with the system-wide SSB hash key. The
signer also obtains a signature on the empty accumulator value, by running the obfuscated
initial signing program P1 on input the computed hash value. Next, it repeatedly runs the
obfuscated accumulating program P2 to authentically accumulate the bits of the hashed
signing attribute string. Finally, it runs the obfuscated next step program Pabs iteratively
on the current accumulator value along with other legitimate inputs, until it obtains either
the SIG signing key-verification key pair associated with the signing attribute string under
consideration or ⊥. Once it obtains the SIG signing key-verification key pair associated with
the signing attribute string, it simply signs the message using the SIG signing key, and outputs
the SIG verification key-signature pair as the ABS signature on the message.

Notice that the problemwith enforcing the public parameters of the positional accumulator
while transforming the adaptively queried signing keys will not appear in our case as we have
assigned a separate set of public parameters of positional accumulator to each signing key.
However, our actual proof of selective unforgeability involvesmany subtleties that are difficult
to describe with this high level description, and is provided in full details in the sequel. We
would only like to mention here that to cope up with certain issues in the proof, another
IO-obfuscated program P3 is also included within the signing keys, we call the signature
changing program, that changes the splittable signature obtained fromP2 on the accumulation
of the bits of the signing attribute string, before starting the iterative computation with the
obfuscated next step program Pabs.

123

1862 P. Datta et al.

Fig. 1 Verify.Progabs

3.3 The proposedABS scheme

We now formally describe our ABS scheme. Let λ be the underlying security parameter.
Let Mλ denote a family of TMs, the members of which have (worst case) running time
bounded by T = 2λ, input alphabet �inp = {0, 1}, and tape alphabet �tape = {0, 1, _}.
Our ABS construction supporting signing attribute universe Uabs ⊂ {0, 1}∗, signing policies
representable by TMs inMλ, and message spaceMabs = {0, 1}
abs- msg utilizes the following
cryptographic building blocks.

(i) IO: An indistinguishability obfuscator for general polynomial-size circuits.
(ii) SSB = (SSB.Gen, H, SSB.Open, SSB.Verify): A somewhere statistically binding hash

function with block alphabet �ssb- blk = {0, 1}.
(iii) ACC = (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-Enforce-Write,

ACC.Prep-Read,ACC.Prep-Write,ACC.Verify-Read,ACC.Write-Store,ACC.Update):
A positional accumulator with block alphabet �acc- blk = {0, 1, _}.

(iv) ITR = (ITR.Setup, ITR.Setup-Enforce, ITR.Iterate): A cryptographic iterator with an
appropriate message space Mitr.

(v) SPS = (SPS.Setup, SPS.Sign, SPS.Verify, SPS.Split, SPS.Sign-ABO): A splittable
signature scheme with an appropriate message space Msps.

(vi) PRG : {0, 1}λ → {0, 1}2λ: A length-doubling pseudorandom generator.
(vii) F = (F .Setup, F .Puncture, F .Eval): A puncturable pseudorandom function whose

domain and range are chosen appropriately.
(viii) SIG = (SIG.Setup, SIG.Sign, SIG.Verify): A digital signature scheme with associated

message space Mabs = {0, 1}
abs that is existentially unforgeable against chosen
message attack (CMA).

Our ABS scheme is described below:

ABS.Setup(1λ) → (ppabs = (hk,Vabs),mskabs = (K ,hk)): The setup authority takes
as input the security parameter 1λ and proceeds as follows:

1. It first chooses a PPRF key K
$←− F .Setup(1λ).

2. Next it generates hk
$←− SSB.Gen(1λ, nssb- blk = 2λ, i∗ = 0).

3. Then, it creates the obfuscated program Vabs = IO(Verify.Progabs[K]), where the
program Verify.Progabs is described in Fig. 1.

4. It keeps themaster secret keymskabs = (K ,hk) and publishes the public parameters
ppabs = (hk,Vabs).

ABS.KeyGen(mskabs, M) → skabs(M) = (hk, ppacc, w0, store0, ppitr, v0,P1, P2,

P3,Pabs): On input the master secret key mskabs = (K ,hk) and a signing policy TM
M = 〈Q, �inp, �tape, δ, q0, qac, qrej〉 ∈ Mλ, the setup authority performs the following
steps:

1. At first, it selects PPRF keys K1, . . . , Kλ, Ksps,A, Ksps,E
$←− F .Setup(1λ).

123

Short ABS for arbitrary TMs from standard assumptions 1863

Fig. 2 Init-SPS.Prog

Fig. 3 Accumulate.Prog

Fig. 4 Change-SPS.Prog

2. Next, it generates (ppacc, w0, store0)
$←− ACC.Setup(1λ, nacc- blk = 2λ) and

(ppitr, v0)
$←− ITR.Setup(1λ, nitr = 2λ).

3. Then, it constructs the obfuscated programs
– P1 = IO(Init-SPS.Prog[q0, w0, v0, Ksps,E]),
– P2 = IO(Accumulate.Prog[nssb- blk = 2λ,hk, ppacc, ppitr, Ksps,E]),
– P3 = IO(Change-SPS.Prog[Ksps,A, Ksps,E]),
– Pabs = IO(Constrained-Key.Progabs[M, T = 2λ, ppacc, ppitr, K ,

K1, . . . , Kλ, Ksps,A]),
where the programs Init-SPS.Prog,Accumulate.Prog, Change-SPS.Prog and
Constrained-Key.Progabs are shown respectively in Figs. 2, 3, 4 and 5.

4. It provides the constrained key skabs(M) = (hk, ppacc, w0, store0, ppitr,
v0,P1,P2,P3,Pabs) to a legitimate signer.

ABS.Sign(skabs(M), x,msg) → σabs = (vksig, σsig) or ⊥: A signer takes as input
its signing key skabs(M) = (hk, ppacc, w0, store0, ppitr, v0,P1,P2,P3,Pabs), corre-
sponding to its legitimate signing policy TM M = 〈Q, �inp, �tape, δ, q0, qac, qrej〉 ∈

123

1864 P. Datta et al.

Fig. 5 Constrained-Key.Progabs

Mλ, an attribute string x = x0 . . . x
x−1 ∈ Uabs with |x | =
x , and a message
msg ∈ Mabs. If M(x) = 0, it outputs ⊥. Otherwise, it proceeds as follows:

1. It first computes h = Hhk(x).
2. Next, it computes σ̆sps,0 = P1(h).
3. Then for j = 1, . . . ,
x , it iteratively performs the following:

(a) It computes πssb, j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes aux j = ACC.Prep-Write(ppacc, store j−1, j − 1).
(c) It computes out = P2(j − 1, x j−1, q0, w j−1,aux j , v j−1, σ̆sps, j−1, h,

πssb, j−1).
(d) If out = ⊥, it outputs out. Else, it parses out as out = (w j , v j , σ̆sps, j).

(e) It computes store j = ACC.Write-Store
(

ppacc, store j−1, j − 1, x j−1

)

.

4. It computes σsps,0 = P3(q0, w
x , v
x , h,
x , σ̆sps,
x).
5. It sets posM,0 = 0 and seed0 = ε.
6. Suppose, M accepts x in tx steps. For t = 1, . . . , tx , it iteratively performs the

following steps:
(a) It computes (symM,t−1, πacc,t−1) = ACC.Prep-Read(ppacc, store
x+t−1,

posM,t−1).
(b) It computes aux
x+t = ACC.Prep-Write(ppacc, store
x+t−1, posM,t−1).
(c) It computes out = Pabs(t, seedt−1, posM,t−1, symM,t−1, stM,t−1,

w
x+t−1, πacc,t−1,aux
x+t , v
x+t−1, h,
x , σsps,t−1).
(d) If t = tx , it parses out as out = (sksig,vksig). Otherwise, it parses out as

out = (posM,t , sym
(write)
M,t , stM,t , w
x+t , v
x+t , σsps,t , seedt).

123

Short ABS for arbitrary TMs from standard assumptions 1865

(e) It computes store
x+t = ACC.Write-Store(ppacc, store
x+t−1,

posM,t−1, sym
(write)
M,t).

7. Finally, it computes σsig
$←− SIG.Sign(sksig,msg).

8. It outputs the signature σabs = (vksig, σsig) ∈ Sabs.
ABS.Verify(ppabs, x,msg, σabs) → β̂ ∈ {0, 1}:Averifier takes as input the public param-
eters ppabs = (hk,Vabs), an attribute string x = x0 . . . x
x−1 ∈ Uabs, where |x | =
x , a
messagemsg ∈ Mabs, together with a signature σabs = (vksig, σsig) ∈ Sabs. It executes
the following:

1. It first computes h = Hhk(x).
2. Next, it computes ̂vksig = Vabs(h,
x).
3. If [vksig = ̂vksig] ∧ [SIG.Verify(vksig,msg, σsig) = 1], it outputs 1. Otherwise, it

outputs 0.

Remark 3.2 (Efficiency of the proposed ABS scheme) From the efficiency of the underlying
building blocks discussed in Sect. 2.3, it follows that our ABS.Setup algorithm runs in time
polynomial in the security parameter λ and log T , while the ABS.KeyGen algorithm runs in
time polynomial in λ, the size of the TM M for which the signing key is being generated,
and log T , where T is the upper bound on the worst-case running time of the supported TM
family. On the other hand, the algorithm ABS.Verify runs in time polynomial in λ, the size
of the signing attribute string x considered, the size of the signed message msg, and log T ,
whereas the algorithm ABS.Sign additionally depends on the description size of the TM M
embedded within the used signing key, and the running time tx of M on the signing attribute
string x . In all prior ABS constructions, the ABS.Sign algorithm depends polynomially on
the worst-case running time T of the supported class of signing policies (in addition to the
sizes of the signing policy, the signing attribute string, and the message considered), which
in general is much larger compared to the actual running time of the used signing policy on
the signing attribute string considered. Moreover, the size of signatures of our ABS scheme
depends only on λ and the size of the signed message msg, in particular independent of
the size of the signing attribute string x under which the signature is generated. This is
evidently an important achievement from the point of view of communication efficiency that
was beyond the reach of all prior ABS constructions.

4 Security analysis

Theorem 4.1 (Security of the proposed ABS scheme) Assuming IO is a secure indistin-
guishability obfuscator for P/poly,F is a secure puncturable pseudorandom function, SSB is
a somewhere statistically binding hash function, ACC is a secure positional accumulator, ITR
is a secure cryptographic iterator, SPS is a secure splittable signature scheme, PRG is a secure
injective pseudorandom generator, and SIG is existentially unforgeable against chosen mes-
sage attack, the proposed ABS scheme satisfies signer privacy and existential unforgeability
against selective attribute adaptive chosen message attack.

4.1 Proof overview of Theorem 4.1

Signer privacy: Observe that the ABS scheme described in Sect. 3.3 clearly preserves signer
privacy since the signature on somemessagewith respect to some signing attribute string only

123

1866 P. Datta et al.

contains the SIG verification key obtained from hashing the signing attribute string with the
system wide SSB hash function and its length together with an SIG signature on the message
verifiable under that SIG verification key. In particular, the ABS signatures do not depend on
the signing keys used to generate them.
Existential unforgeability: We provide here a bird’s eye view of the proof of existential
unforgeability of the ABS scheme proposed in Sect. 3.3. We avoid many subtle technical
details which are actually not easy to describe at an informal level and can hinder the intuitive
blueprint of proof. Recall that in the selective unforgeability experiment, the adversaryA has
to commit to some signing attribute string x∗, under which it wishes to output a forgery, at the
beginning of the experiment, and then is supplied with the public parameters, and is allowed
to adaptively request any polynomial number of signatures and signing keys associated with
signing policies that do not accept x∗. At the end, A outputs a forged signature on some
message msg∗ under x∗, and is declared to be the winner if it has not queried any signature
on msg∗ under x∗.

To argue selective unforgeability of the aboveABS construction,wefirst change the original
unforgeability experiment into one in which we hardwire the punctured PPRF key k{x∗}
punctured at x∗ within the verifying program Vabs included within the public parameters
given to A, as well as in the signing programs Pabs included within all the signing keys
provided to A. More precisely, we modify the program Vabs into a new program V ′

abs as
follows:When run on some signing attribute string x �= x∗, the program V ′

abs runs identically
to Vabs, but it uses the punctured PPRF key k{x∗} in place of the full PPRF key k. On the
other hand, when run on x∗, it uses a hardwired string r̂∗

sig as the randomness for generating
the SIG verification key corresponding to x∗. We set r̂∗

sig to be the evaluation of the PPRF
with key k on x∗. We similarly modify the signing programs Pabs into new programs P ′

abs
as follows: When run on some signing attribute string x �= x∗, P ′

abs runs identically to Pabs
except that it uses the punctured PPRF key k{x∗} in place of the full PPRF key k. On the other
hand, when run on input x∗, P ′

abs outputs ⊥.
Observe that the programs Vabs and V ′

abs are clearly functionally identical since the punc-
tured PPRF key behaves identically to the full PPRF key on all inputs x �= x∗. For the same
reason, for all the signing keys given toA, the programs Pabs and P ′

abs are also functionally
identical since A is allowed to request signing keys for only those signing policies that does
not accept x∗. Thus, by the security of IO, which stipulates that obfuscations of function-
ally identical programs are computationally indistinguishable, the modified experiment is
computationally indistinguishable from the original one. After that, we apply the pseudo-
randomness at punctured point property of PPRF to change the pseudorandom string r̂sig
hardwired within V ′

abs to a uniformly random one. This modification essentially ensures that
a perfectly distributed SIG signing key-verification key pair gets associated to x∗. Note that
once this alteration is made, we can directly prove the unforgeability of our ABS scheme
relying on the unforgeability property of SIG.

We follow the same technique introduced in [7] for handling the tail hybrids in the final
stage of transformation of the signing keys in our unforgeability experiment. Note that as
in [7], we consider TMs which run for at most T = 2λ steps on any input. Unlike [17],
Deshpande et al. [7] have devised an approach to obtain an end to end polynomial reduction
to the security of IO for the tail hybrids by means of an injective pseudorandom generator
(PRG). We directly adopt that technique to deal with the tail hybrids in our unforgeability
proof. Please refer to [7] for a high level overview of the approach.

123

Short ABS for arbitrary TMs from standard assumptions 1867

Fig. 6 Structure of the hybrid reduction proving unforgeability of our ABS scheme

4.2 Formal Proof of Theorem 4.1

� Signer privacy: Observe that for any message msg ∈ Mabs, (ppabs = (hk,

IO(Verify.Progabs[K])),mskabs = (K ,hk))
$←− ABS.Setup(1λ), and x ∈ Uabs with

|x | =
x , a signature on msg under x is of the form σabs = (vksig, σsig), where
(sksig,vksig) = SIG.Setup(1λ; F(K , (Hhk(x),
x))), σsig = SIG.Sign(sksig, msg).

Here, hk
$←− SSB.Gen(1λ, nssb- blk = 2λ, i∗ = 0) and K

$←− F .Setup(1λ). Thus,
the distribution of the signature σabs is clearly the same regardless of the signing key
skabs(M) that is used to compute it.
� Existential unforgeability: We will prove the existential unforgeability of the ABS
construction of Sect. 3.3 against selective attribute adaptive chosen message attack by
means of a sequence of hybrid experiments. We will demonstrate based on the security
of various primitives that the advantage of any PPT adversary A in consecutive hybrid
experiments differs only negligibly as well as that in the final hybrid experiment is
negligible. We note that due to the selective attribute setting, the challenger B knows the
challenge attribute string x∗ = x∗

0 . . . x∗

∗−1 ∈ Uabs and the SSB hash value h

∗ = Hhk(x
∗)

before receiving any signing key or signature query from the adversary A. Suppose, the
total number of signing key query and signature query made by the adversaryA be q̂key
and q̂sign respectively. As noted in Remark 3.1, without loss of generality we will assume
thatA only queries signatures onmessages under the challenge attribute string x∗. Please
refer to Fig. 6 for an overview of the hybrid transitions and their analysis. The description
of the hybrid experiments follows:

4.3 Sequence of hybrid experiments

Hyb0: This experiment corresponds to the real selective attribute adaptive chosen message
unforgeability experiment described in Sect. 3.1. More precisely, this experiment proceeds
as follows:

123

1868 P. Datta et al.

• A submits a challenge attribute string x∗ = x∗
0 . . . x∗

∗−1 ∈ Uabs with |x∗| =
∗ to B.
• B generates (ppabs = (hk, IO(Verify.Progabs[K])), mskabs = (hk, K))

$←−
ABS.Setup(1λ), as described in Sect. 3.3, and provides ppabs to A.

• For η = 1, . . . , q̂key, in response to the ηth signing key query corresponding to signing
policy TM M (η) = 〈Q(η), �inp, �tape, δ

(η), q(η)
0 , q(η)

ac , q(η)
rej〉 ∈ Mλ with M (η)(x∗) = 0,

B creates

skabs(M
(η)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

hk, pp(η)
acc, w

(η)
0 , store(η)

0 , pp(η)

itr, v
(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 , K (η)

sps,E])
IO(Accumulate.Prog[nssb- blk = 2λ,hk, pp(η)

acc, pp
(η)

itr, K
(η)
sps,E])

IO(Change-SPS.Prog[K (η)
sps,A, K (η)

sps,E])
IO(Constrained-Key.Progabs[M (η), T = 2λ, pp(η)

acc, pp
(η)

itr, K ,

K (η)
1 , . . . , K (η)

λ , K (η)
sps,A])

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

$←− ABS.KeyGen(mskabs, M
(η)),

as described in Sect. 3.3 and returns skabs(M
(η)) to A.

• For θ = 1, . . . , q̂sign, in reply to the θ th signature query on message msg(θ) under
attribute string x∗, B identifies some TM M∗ ∈ Mλ such that M∗(x∗) = 1, gen-

erates skabs(M
∗) $←− ABS.KeyGen(mskabs, M

∗), and computes σ
(θ)

abs = (vk∗
sig, σ

(θ)
sig)

$←− ABS.Sign(skabs(M
∗), x∗,msg(θ)) as described in Sect. 3.3. B gives back σ

(θ)

abs to A.
• Finally, A outputs a forged signature σ ∗

abs on some messagemsg∗ under attribute string
x∗.
Hyb0,ν (ν = 1, . . . , q̂key): This experiment is similar to Hyb0 except that for η ∈ [q̂key],

in reply to the ηth signing key query of A corresponding to signing policy TM M (η) ∈ Mλ

with M (η)(x∗) = 0, B returns the signing key

skabs(M
(η)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

hk, pp(η)
acc, w

(η)
0 , store(η)

0 , pp(η)

itr, v
(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 , K (η)

sps,E])
IO(Accumulate.Prog[nssb- blk = 2λ,hk, pp(η)

acc, pp
(η)

itr, K
(η)
sps,E])

IO(Change-SPS.Prog[K (η)
sps,A, K (η)

sps,E])
IO(Constrained-Key.Prog′

abs[M (η), T = 2λ, pp(η)
acc, pp

(η)

itr, K ,

K (η)
1 , . . . , K (η)

λ , K (η)
sps,A, h∗,
∗])

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

if η ≤ ν, where the program Constrained-Key.Prog′
abs is an alteration of the program

Constrained-Key.Progabs (Fig. 5) and is described in Fig. 7 , while it returns the signing
key

skabs(M
(η)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

hk, pp(η)
acc, w

(η)
0 , store(η)

0 , pp(η)

itr, v
(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 , K (η)

sps,E])
IO(Accumulate.Prog[nssb- blk = 2λ,hk, pp(η)

acc, pp
(η)

itr, K
(η)
sps,E])

IO(Change-SPS.Prog[K (η)
sps,A, K (η)

sps,E])
IO(Constrained-Key.Progabs[M (η), T = 2λ, pp(η)

acc, pp
(η)

itr, K ,

K (η)
1 , . . . , K (η)

λ , K (η)
sps,A])

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

123

Short ABS for arbitrary TMs from standard assumptions 1869

Fig. 7 Constrained-Key.Prog′
abs

if η > ν. Observe that Hyb0,0 coincides with Hyb0.
Hyb1: This experiment coincides with Hyb0,q̂key . More formally, in this experiment for
η = 1, . . . , q̂key, in reply to the ηth signing key query of A corresponding to signing policy
TM M (η) ∈ Mλ with M (η)(x∗) = 0, B generates all the components of the signing key as in
Hyb0, however, it returns the signing key

skabs(M
(η)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

hk, pp(η)
acc, w

(η)
0 , store(η)

0 , pp(η)

itr, v
(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 , K (η)

sps,E])
IO(Accumulate.Prog[nssb- blk = 2λ,hk, pp(η)

acc, pp
(η)

itr, K
(η)
sps,E])

IO(Change-SPS.Prog[K (η)
sps,A, K (η)

sps,E])
IO(Constrained-Key.Prog′

abs[M (η), T = 2λ, pp(η)
acc, pp

(η)

itr, K ,

K (η)
1 , . . . , K (η)

λ , K (η)
sps,A, h∗,
∗])

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The rest of the experiment is analogous to Hyb0.
Hyb2: This experiment is identical to Hyb1 other than the following exceptions:

(I) Upon receiving the challenge attribute string x∗, B proceeds as follows:

1. It selects a PPRF key K
$←− F .Setup(1λ) and generates hk

$←− SSB.Gen(1λ,

nssb- blk = 2λ, i∗ = 0) just as in Hyb1,

123

1870 P. Datta et al.

Fig. 8 Verify.Prog′
abs

2. It computes h∗ = Hhk(x
∗) and creates the punctured PPRF key K {(h∗,
∗)}

$←− F .Puncture(K , (h∗,
∗)),
3. It computes r̂∗

sig = F(K , (h∗,
∗)), forms (̂sk
∗
sig,

̂vk
∗
sig) = SIG.Setup(1λ; r̂∗

sig),
4. It sets the public parameters ppabs to be given to A as ppabs =

(hk, IO(Verify.Prog′
abs[K {(h∗,
∗)}, ̂vk

∗
sig, h∗,
∗])), where the program

Verify.Prog′
abs is an alteration of the program Verify.Progabs (Fig. 1) and is depicted

in Fig. 8.

(II) For η = 1, . . . , q̂key, in response to the ηth signing key query of A corresponding to
signing policy TM M (η) ∈ Mλ with M (η)(x∗) = 0, B provides A with the signing key

skabs(M
(η)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

hk, pp(η)
acc, w

(η)
0 , store(η)

0 , pp(η)

itr, v
(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 , K (η)

sps,E])
IO(Accumulate.Prog[nssb- blk = 2λ,hk, pp(η)

acc, pp
(η)

itr, K
(η)
sps,E])

IO(Change-SPS.Prog[K (η)
sps,A, K (η)

sps,E])
IO(Constrained-Key.Prog′

abs[M (η), T = 2λ, pp(η)
acc, pp

(η)

itr, K {(h∗,
∗)},
K (η)
1 , . . . , K (η)

λ , K (η)
sps,A, h∗,
∗])

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hyb3: This experiment is similar toHyb2 with the only exception thatB selects r̂∗
sig

$←− Ypprf.
More formally, this experiment has the following deviations from Hyb2:

(I) In this experiment B creates the punctured PPRF key K {(h∗,
∗)} as in Hyb2, how-

ever, it generates (̂sk
∗
sig,

̂vk
∗
sig)

$←− SIG.Setup(1λ). It includes the obfuscated program

IO(Verify.Prog′
abs[K {(h∗,
∗)}, ̂vk

∗
sig, h

∗,
∗]) within the public parameters ppabs to be
provided to A as earlier.

(II) Also, for θ = 1, . . . , q̂sign, to answer the θ th signature query ofA on messagemsg(θ) ∈
Mabs under attribute string x

∗,B computesσ (θ)
sig

$←− SIG.Sign(̂sk
∗
sig,msg(θ)) and returns

σ
(θ)

abs = (̂vk
∗
sig, σ

(θ)
sig) to A.

4.4 Analysis

LetAdv(0)
A (λ),Adv(0,ν)

A (λ) (ν = 1, . . . , q̂key),Adv
(1)
A (λ),Adv(2)

A (λ), andAdv(3)
A (λ) represent

respectively the advantage of the adversaryA, i.e.,A’s probability of successfully outputting a
valid forgery, in Hyb0,Hyb0,ν (ν = 1, . . . , q̂key),Hyb1, Hyb2, and Hyb3 respectively. Then,

by the description of the hybrid experiments it follows that Advabs,uf- cmaA (λ) ≡ Adv(0)
A (λ) ≡

123

Short ABS for arbitrary TMs from standard assumptions 1871

Adv(0,0)
A (λ) and Adv(1)

A (λ) ≡ Adv(0,q̂key)

A (λ). Hence, we have

Advabs,uf- cmaA (λ) ≤
q̂key
∑

ν=1

|Adv(0,ν−1)
A (λ) − Adv(0,ν)

A (λ)|+

2
∑

j=1

|Adv(j)
A (λ) − Adv(j+1)

A (λ)| + Adv(3)
A (λ).

(4.1)

Lemmas B.1–B.4 presented in Online Appendix B will show that the RHS of Eq. (4.1) is
negligible and thus the existential unforgeability of the ABS construction of Sect. 3.3 follows.

��

5 Conclusion

In this paper, we construct the first ABS scheme supporting signing policies expressible as
Turing machines (TM) which can handle signing attribute strings of arbitrary polynomial
length and at the same time features input-specific running time for the signing algorithm.
On the technical side, we devise new ideas to empower the techniques of [7, 17] to deal with
adaptive key queries.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10623-022-01163-8.

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ananth P., Jain A., Sahai A.: Indistinguishability obfuscation without multilinear maps: io from lwe,
bilinear maps, and weak pseudorandomness. In: Cryptology ePrint Archive, Report 2018/615 (2018).

2. Ananth P., Jain A., Lin H., Matt C., Sahai A.: Indistinguishability obfuscation without multilinear maps:
new paradigms via low degree weak pseudorandomness and security amplification. In: CRYPTO 2019,
pp. 284–332. Springer (2019).

3. Barak B., Goldreich O., Impagliazzo R., Rudich S., Sahai A., Vadhan S., Yan, K.: On the (im) possibility
of obfuscating programs. In: CRYPTO 2001, pp. 1–18. Springer (2001).

4. Bellare M., Fuchsbauer G.: Policy-based signatures. In: PKC 2014, pp. 520–537. Springer (2014).
5. BonehD.,Waters B.: Constrained pseudorandom functions and their applications. In: ASIACRYPT 2013,

pp. 280–300. Springer (2013).
6. Datta P., Okamoto T., Takashima K.: Efficient attribute-based signatures for unbounded arithmetic

branching programs. In: PKC 2019, pp. 127–158. Springer (2019).
7. Deshpande A., Koppula V., Waters B.: Constrained pseudorandom functions for unconstrained inputs.

In: EUROCRYPT 2016, pp. 124–153. Springer (2016).

123

https://doi.org/10.1007/s10623-022-01163-8
https://doi.org/10.1007/s10623-022-01163-8
http://creativecommons.org/licenses/by/4.0/

1872 P. Datta et al.

8. GargS.,GentryC.,Halevi S., RaykovaM., SahaiA.,WatersB.: Candidate indistinguishability obfuscation
and functional encryption for all circuits. In: FOCS 2013, pp. 40–49. IEEE (2013).

9. Gay R., Jain A., Lin H., Sahai A.: Indistinguishability obfuscation from simple-to-state hard problems:
new assumptions, new techniques, and simplification. In: EUROCRYPT 2021, pp. 97–126. Springer
(2021).

10. Goldreich O., Goldwasser S., Micali S.: How to construct random functions. J. ACM 33(4), 792–807
(1986).

11. Hubacek P., Wichs D.: On the communication complexity of secure function evaluation with long output.
In: ITCS 2015, pp. 163–172. ACM (2015).

12. Jain A., Lin H., Matt C., Sahai A.: How to leverage hardness of constant-degree expanding polynomials
over R to build iO. In: EUROCRYPT 2019, pp. 251–281. Springer (2019).

13. Jain A., Lin H., Sahai A.: Simplifying constructions and assumptions for iO. In: Cryptology ePrint
Archive, Report 2019/1252 (2019).

14. Jain A., Lin H., Sahai A.: Indistinguishability obfuscation from LPN over Fp , DLIN, and PRGs in NC0.
In: Cryptology ePrint Archive, Report 2021/1334 (2021).

15. Jain A., Lin H., Sahai A.: Indistinguishability obfuscation from well-founded assumptions. In: STOC
2021, pp. 60–73. ACM (2021).

16. Kaafarani A.E., Katsumata S.: Attribute-based signatures for unbounded circuits in the rom and efficient
instantiations from lattices. In: PKC 2018, pp. 89–119. Springer (2018).

17. Koppula V., LewkoA.B.,Waters B.: Indistinguishability obfuscation for turingmachines with unbounded
memory. In: STOC 2015, pp. 419–428. ACM (2015).

18. Lin H., Matt C.: Pseudo flawed-smudging generators and their application to indistinguishability
obfuscation. In: Cryptology ePrint Archive, Report 2018/646 (2018).

19. Maji H.K., Prabhakaran M., Rosulek M.: Attribute-based signatures. In: CT-RSA 2011, pp. 376–392.
Springer (2011).

20. Okamoto T., Takashima K.: Efficient attribute-based signatures for non-monotone predicates in the
standard model. In: PKC 2011, pp. 35–52. Springer (2011).

21. Okamoto T., Pietrzak K., Waters B., Wichs D.: New realizations of somewhere statistically binding
hashing and positional accumulators. In: ASIACRYPT 2015, pp. 121–145. Springer (2015).

22. Sahai A., Waters B.: How to use indistinguishability obfuscation: deniable encryption, and more. In:
STOC 2014, pp. 475–484. ACM (2014).

23. Sakai Y., Attrapadung N., Hanaoka G.: Attribute-based signatures for circuits from bilinear map. In: PKC
2016, pp. 283–300. Springer (2016).

24. Sakai Y., Katsumata S., AttrapadungN., HanaokaG.: Attribute-based signatures for unbounded languages
from standard assumptions. In: ASIACRYPT 2018, pp. 493–522. Springer (2018).

25. Tang F., Li H., Liang B.: Attribute-based signatures for circuits from multilinear maps. In: ISC 2014, pp.
54–71. Springer (2014).

26. Tsabary R.: An equivalence between attribute-based signatures and homomorphic signatures, and new
constructions for both. In: TCC 2018, pp. 489–518. Springer (2018).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Short attribute-based signatures for arbitrary Turing machines from standard assumptions
	Abstract
	1 Introduction
	1.1 Our contribution

	2 Preliminaries
	2.1 Turing machines
	2.2 Indistinguishability obfuscation
	2.3 IO-compatible cryptographic primitives
	2.3.1 Puncturable pseudorandom function
	2.3.2 Somewhere statistically binding hash function
	2.3.3 Positional accumulator
	2.3.4 Iterator
	2.3.5 Splittable signature

	3 Our attribute-based signature for TMs
	3.1 Notion of attribute-based signatures for TMs
	3.2 Overview of the proposed ABS scheme
	3.3 The proposed ABS scheme

	4 Security analysis
	4.1 Proof overview of Theorem 4.1
	4.2 Formal Proof of Theorem 4.1
	4.3 Sequence of hybrid experiments
	4.4 Analysis

	5 Conclusion
	References

