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Abstract
In this paper, we construct multi-key homomorphic and fully homomorphic encryption (resp.
MKHE and MKFHE) schemes with malicious circuit privacy. Our schemes are based on
learning with errors (LWE) besides appropriate circular security assumptions. In contrast,
the previous maliciously circuit-private MKFHE scheme by Chongchitmate and Ostrovsky
(PKC, 2017) is based on the non-standard decisional small polynomial ratio (DSPR) assump-
tion with a super-polynomial modulus, besides ring learning with errors and circular security
assumptions.We note that it was shown byAlbrecht et al. (CRYPTO, 2016) that there exists a
sub-exponential time attack against this type of DSPR assumption. The main building block
of our maliciously circuit-private MKFHE scheme is a (plain) MKFHE scheme by Brakerski
et al. (TCC, 2017), and the security of our schemes is proven under the hardness of LWE
with sub-exponential modulus-to-noise ratio and circular security assumptions related to the
Brakerski et al. scheme. Furthermore, based on our MKFHE schemes, we construct four-
round multi-party computation (MPC) protocols with circuit privacy against a semi-honest
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server and malicious clients in the plain model. The protocols are obtained by combining our
schemes with a maliciously sender-private oblivious transfer protocol and a circuit garbling
scheme, all of which can be instantiated only assuming LWE.

Keywords Multi-key fully homomorphic encryption · Circuit privacy · Learning with
errors · Multi-party computation

Mathematics Subject Classification 94A60

1 Introduction

Fully homomorphic encryption (FHE) [8, 11, 12, 22, 23, 40] is a special type of public
key encryption that allows functions to be evaluated over encrypted data. FHE is a powerful
primitive often used as a building block in other schemes and protocols. A typical application
of FHE is the construction of a multi-party computation (MPC) protocol between two semi-
honest parties, which allows the parties to jointly perform a computation over their inputs,
while revealing nothing more than the output of the computation. Specifically, the MPC
protocol can be constructed as follows. The first party P1 encrypts his input x under his
own public key and sends the ciphertext c to the second party P2. Then P2 evaluates a
function f homomorphically on c and his own input y, and sends the result back to P1, who
decrypts the final ciphertext to obtain f (x, y). An important property of this protocol is that
the communication complexity is independent of the complexity of the function f being
evaluated. Multi-key fully homomorphic encryption (MKFHE) [2, 10, 18, 31, 35] is a variant
of FHEwhich allows evaluation of functions over ciphertexts generated under different public
keys. Similar to FHE leading to a natural construction of a two-party computation protocol,
MKFHE can be used as a basis for a multi-party computation protocol, where the parties
encrypt their input under their own public key, then homomorphically evaluate the relevant
function over all ciphertexts, and collaboratively run a multiparty decryption protocol on the
evaluated ciphertext.
Client-ServerMPC. In this paper, we consider a special type ofMPC protocols called client-
server MPC protocols in which the parties play different roles, namely server and client. The
single server is given a description of a function to be computed in the protocol, and clients
are given inputs to the function. Such protocols have been considered in the literature of
server-aided MPC [29, 31] and circuit-private homomorphic encryption [17, 28, 36]. (The
formal definition of the client-server MPC protocol can be found on Definition 5.1.) In
client-server MPC, we can consider two types of security notions: client privacy and circuit
privacy 1. Client privacy requires that the clients’ inputs are kept semantically secure, whereas
circuit privacy requires that no information about the function computed in theMPC protocol
is revealed beyond the output with respect to the clients’ inputs. In this paper, we consider
circuit privacy againstmalicious adversaries [28], namely even if the server is givenmalicious
inputs (such as ill-formed ciphertexts or public keys) from clients, the output of the MPC
protocol does not reveal any information about the computed function.
FHE and MPC with malicious circuit privacy. In [17], Chongchitmate and Ostrovsky
showed a three-round MPC protocol with circuit privacy. Their protocol is secure against
a semi-honest server and malicious clients in the plain model under the (non-standard)
decisional small polynomial ratio (DSPR) assumption with super-polynomial modulus (in
addition to learning with errors over a polynomial ring and appropriate circular security

1 This is referred to as server privacy in [28], but here we use the term “circuit privacy” to relate the notion
to circuit privacy of FHE.
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Maliciously circuit-private MKFHE and MPC 1647

assumptions for the underlying building blocks). We note that it was shown by Albrecht et
al. [1] that there exists a sub-exponential time attack against this type of DSPR assumption.
This gives rise to the following natural question:

Can a client-server MPC protocol with (malicious) circuit privacy be obtained from
standard assumptions?

The main building block of the protocol in [17] is a MKFHE scheme with circuit privacy
against malicious adversaries. This scheme is in turn constructed based on the MKFHE
scheme by Lopez-Alt et al. [31], which leads to the dependency on the DSPR assumption,
as the scheme from [31] requires this.

In general, a client-server MPC protocol with circuit privacy against malicious clients
can be constructed from any maliciously circuit-private MKFHE scheme by combining this
with a statistically sender-private oblivious transfer (OT) protocol and information-theoretic
randomized encoding [27]. Such an OT protocol exists under standard assumptions, e.g. the
LWE-based protocol [9], so the above question can be rephrased as the following question,
which was also raised in [17] as an open problem:

Can a maliciously circuit-private MKFHE scheme be obtained from standard assump-
tions?

1.1 Our results

In this paper, we answer the above questions in the affirmative, with the only caveat being that
appropriate circular security assumptions are additionally required (note that all of the cur-
rently known (non-leveled) FHE schemes not based on obfuscation, require circular security
assumptions). Concretely, we firstly construct a maliciously circuit-private MKHE 2 scheme
for branching programs based onLWEaswell asweak circular security of the (plain)MKFHE
scheme by Brakerski et al. [15], which is one of the main building blocks of our scheme.
Informally, we prove the following theorem:

Theorem 1.1 (Informal) Assuming the hardness of LWE with sub-exponential modulus-to-
noise ratio (and weak circular security of [15]), there exists a maliciously circuit-private
MKHE scheme with distributed setup for branching programs.

Secondly, we show how the obtained scheme can be combined with a plain MKFHE
scheme (such as [15]), to obtain a fully homomorphic maliciously circuit-private scheme. To
obtain this result, we rely on a somewhat non-standard circular security assumption. We note
that a similar assumption is required to show the security of the previous construction of a
maliciously circuit-private MKFHE in [17]. (The details of the circular security assumption
are discussed in Sect. 4.3.) Informally, we show the following result.

Theorem 1.2 (Informal) Assuming the existence of a distributed-setup maliciously circuit-
private MKHE scheme for branching programs and a distributed-setup (plain) MKFHE
scheme which are “jointly circular secure”, there exists a maliciously circuit-private MKFHE
scheme with distributed setup.

Based on either of our MK(F)HE schemes, we can build a four-round MPC protocol with
circuit privacy against a semi-honest server and malicious clients in the plain model. All the
additional building blocks required for our protocol can be instantiated assuming only LWE,

2 Here we purposely write “MKHE” (without “F”) since it does not support all circuits.
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Table 1 A comparison among MPC protocol paradigms for circuits

MPC for circuits Main tools Communication complexity Can client computation be
independent of circuit size? independent of circuit size?

GMW/BGW paradigm secret sharing × ×
e.g., [6, 7, 19, 24]

Yao/BMR paradigm garbled circuit × ×
e.g., [5, 26, 30, 41]

FHE based paradigm multi-key FHE � �
e.g., [31, 35] (and this work)

and hence, from our circuit-private MKHE scheme for branching programs (Theorem 1.1),
we obtain the following:

Theorem 1.3 (Informal) Assuming the hardness of LWE with sub-exponential modulus-to-
noise ratio (and weak circular security of [15]), there exists a four-round client-server MPC
protocol for branching programs (NC1 circuits) with circuit privacy against a malicious
adversary corrupting only clients in the plain model.

Furthermore, based on our MKFHE scheme (Theorem 1.2), we obtain:

Theorem 1.4 (Informal) Assuming the existence of a distributed-setup maliciously circuit-
private MKHE scheme for branching programs and a distributed-setup (plain) MKFHE
scheme which are jointly circular secure, there exists a four-round client-server MPC protocol
with circuit privacy against a malicious adversary corrupting only clients in the plain model.

Comparison with ExistingMPCProtocols.We first loosely compareMKFHE-basedMPC
protocols for circuits with other well-known general paradigms, namely, secret-sharing-
based and garbled-circuit-based MPC in Table 1 .3 4 MPC protocols based on the latter
two paradigms generally do not aim at hiding the evaluated circuit. While it is in principle
possible to hide the structure of the circuit, as we highlight below in our discussion of a
related primitive called private function evaluation (PFE), information regarding the circuit
size leaks as the communication complexity depends on this. In contrast,MKFHE-basedMPC
protocols makes the communication complexity and also client computation independent of
the circuit size.

We next compare our MPC results among existing MK-FHE based client-server MPC
protocols in the plain model in Table 2. We remark that these protocols achieve communica-
tion complexity and client computation independent of the circuit being evaluated. The main
feature of our protocols is that they can be based on more standard computational assump-
tions (LWE), while the previous two works [17, 31] make use of the non-standard DSPR
assumptions. Note that besides the computational assumptions listed, appropriate circular
security assumptions are needed in all of the listed schemes. As a trade-off, our protocols
require one more round compared to [17]; intuitively, this is due to our design where partic-
ipating parties have to share individual public parameters used to generate public and secret
keys for the underlying maliciously circuit-private MKFHE scheme.

3 Note that there are also combinations of these paradigms such asABY/ABY3 [20, 32]which combine secret-
sharing-based and garbled-circuit-based MPC; these protocols inherit the circuit size dependency properties
(the last two columns in Table 1) from their components.
4 Note that in Table 1, we compare general MPC, not only client-server MPC.
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Table 2 Comparison among existing MKFHE-based client-server MPC protocols in the plain model. Besides
the computational assumptions listed, appropriate circular security assumptions are needed in all of the listed
schemes. Client privacy refers to privacy of honest clients’ input against corrupted clients

Construction Circuit Rounds Assumptions Circuit Client
class Privacy Privacy

[31] Any 5 DSPR, RLWE No Semi-honest

[17] Any 3 DSPR, RLWE Yes Malicious

Ours 1 NC1 4 LWE Yes Malicious

Ours 2 Any 4 LWE Yes Malicious

Relation to private function evaluation Private function evaluation (PFE) is a special type
of MPC which allows a function, held by one party, to be computed while being kept secret.
Such a protocol can be achieved by computing a universal circuit in an ordinary MPC pro-
tocol, and treating the (description of the) function as a client input. While the universal
circuit approach hides the function itself, it does not guarantee that the size of the evaluated
function is kept secret. In contrast, our MPC protocol provides this guarantee and achieves
a communication complexity that is independent of the size of the evaluated function due to
the use of MKFHE. Furthermore, the use of universal circuits incurs a significant overhead in
terms of computation. A (boolean or arithmetic) circuit of size g requires a universal circuit
of size at least O(g log g) [37, 39] to be computed. A more practical approach to PFE that
does not rely on a universal circuit is considered in [33, 34] (in particular, [34] constructs
an actively secure PFE which, unlike the security considered in this paper, allows corrupting
the function holder), but the complexity of their protocols still depends on the size of the
evaluated circuit.

1.2 Overview of our constructions

Here, we give an overview of the construction techniques we use to obtain our maliciously
circuit-private MK(F)HE schemes. As our basic approach is similar to that of [17], we start
by recalling the ideas behind the circuit-private MKFHE construction from [17].
Prior approach to circuit-privateMKFHEChongchitmate andOstrovsky [17] constructed
the first (maliciously) circuit-private MKFHE scheme. The scheme is built on a MKFHE
scheme with a special property called private expandability. To homomorphically evaluate a
function over ciphertexts, aMKFHEschemeusually transforms an input ciphertext cti (gener-
ated under a single public keypki ) into a ciphertext˜ct that relates to all the keys {pki }i involved
in the homomorphic evaluation. Private expandability guarantees that no efficient algorithm
can distinguish ˜ct, from an expanded ciphertext ˜ct′ obtained by expanding a ciphertext ct j

under a different public keypk j for any j �= i . The authors constructed a privately-expandable
scheme from the MKFHE scheme of [31]. The private expansion algorithm of the scheme
uses the noise smudging technique of [14, 21, 25] to remove the dependency on the key
pki under which the original ciphertext cti is constructed. Private expandability leads to a
semi-honest circuit-privateMKHE scheme for branching programs by using the technique of
[28]. Intuitively, private expandability hides by which key the expanded input was originally
encrypted. The semi-honest circuit-private scheme for branching programs is transformed
into a maliciously circuit-private scheme by using the maliciously circuit-private single-key
FHE scheme of [36] to homomorphically check whether all pki ’s and cti ’s are well-formed.
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1650 N. Attrapadung et al.

Finally, a fully homomorphic scheme is obtained by combining themaliciously circuit-private
scheme with a normal MKFHE scheme with decryption in NC1. It should be noted that all
of the above schemes [17] (and technique of [36]) are in the plain model.
Privately-expandable MKFHE with distributed setup The definitions and constructions
in [17] crucially rely on the use of a setup-freeMKFHE scheme to obtain a scheme in the plain
model. This eventually leads to their instantiation being based on the non-standard DSPR
assumption (via [31]). We take a different approach. Specifically, we construct a maliciously
circuit-privateMKFHE schemewith distributed setup, in which every party Pi independently
generates a public parameter ppi , and {ppi }i are used to generate keys and ciphertexts. This
will allow us to obtain a scheme based on standard assumptions, without having to introduce
a common reference string (CRS) or trusted setup. The concept of a distributed setup for
a MKFHE scheme is not new, and Brakerski, Halevi, and Polychroniadou [15] proposed a
scheme with this property for the purpose of obtaining a four-round secure MPC protocol
in the plain model. Note, however, that the results from [15] cannot be used directly in our
approach, as the concept of private expandability was not considered in [15]. To address this,
we firstly introduce a generalization of private expandability to MKFHE with distributed
setup, in which the ciphertext expansion algorithm Expand takes as input {ppi }i generated
by the Pi ’s. We then proceed to prove that the scheme of [15] can in fact be extended to
yield a scheme providing our notion of private expandability. To prove this, we use the noise
smudging technique, which incurs the sub-exponential modulus-to-noise ratio in the LWE
assumption. As a result, we obtain a privately-expandable MKFHE scheme based on LWE
without having to introduce a CRS or trusted setup.
Achieving malicious circuit privacy. To obtain a maliciously circuit-private MKFHE
scheme, we extend the approach taken by [17] to our setting. Specifically, we firstly define
malicious circuit privacy for MK(F)HE with distributed setup, in which {ppi }i generated
in the distributed setup are given to the homomorphic evaluation algorithm. We then con-
struct a maliciously circuit-private scheme using a privately-expandable MKFHE scheme
with distributed setup. More precisely, private expandability allows us to construct a semi-
honest circuit-privateMKHE for branching programs in a similar way to [17, 28]. To achieve
malicious circuit privacy, we use an additional (maliciously) circuit-private single-key FHE
scheme to homomorphically check whether inputs to the homomorphic evaluation algorithm
are well-formed. Note that for this to work, it must be possible for the evaluation algorithm
to check the validity of the public parameters generated by the distributed setup proce-
dure (without access to the randomness used to generate these). However, for our particular
privately-expandable MKFHE scheme, all values ppi are picked uniformly at random from
the appropriate domain, and hence we can check the validity of the ppi ’s simply via a mem-
bership test. Furthermore, similar to [17], the construction requires public keys to contain
bit-wise encryptions of private keys of the privately-expandable MKFHE scheme, and hence
requires the latter to be weakly circular secure. Lastly, note that the required maliciously
circuit-private single-key FHE scheme can be constructed from an information-theoretic
randomized encoding scheme, an OT protocol, and a single-key FHE scheme, as shown by
Ostrovsky et al. [36]. Since the latter two primitives can be instantiated assuming only LWE
[8, 9, 12], we obtain a maliciously circuit-private scheme for branching programs based on
LWE (besides the required circular assumption).

Finally, we construct a fully homomorphic scheme by combining the maliciously circuit-
private scheme for branching programs and a standard MKFHE scheme (such as the fully
homomorphic variant of [15] based on LWE). Inputs are encrypted by the standard MKFHE
scheme, and homomorphic evaluation is done via the evaluation algorithm of the standard
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MKFHE scheme, while the validity of the inputs is checked using our maliciously circuit-
private scheme for branching programs. Furthermore, since the key generation and encryption
of the MKFHE scheme from [15] are in NC1, the maliciously circuit-private scheme for
branching programs can homomorphically evaluate these to check whether the inputs to the
homomorphic evaluation are generated properly. As a result, we obtain a maliciously circuit-
private MKFHE scheme with distributed setup. We emphasize that, compared to the scheme
from [17], the computational assumption required for our scheme is significantly weakened,
from the non-standard DSPR assumption to the LWE assumption.
MPC protocol with malicious circuit privacy based on LWE. In a similar fashion to [17],
we show that we can construct a MPC protocol with malicious circuit privacy based on
our circuit-private MKFHE scheme combined with OT secure against malicious receivers
and circuit garbling. However, as our scheme has a distributed setup procedure, we need
one additional round in our MPC protocol for sharing the public parameters generated by the
clients. Note that the observationmade in [3, 15] is equally valid for our protocol: as the public
parameters shared by clients in the first round are just uniformly random strings, the server
need not check whether the parameters shared by malicious clients are properly generated.
This allows us to obtain a client-server MPC protocol with malicious circuit privacy. We
note that the additional building blocks required in our protocol (OT and circuit gabling) are
known to exist under LWE [9, 41].

1.3 Organization

The rest of this paper is organized as follows. Section 2 introduces mathematical prelimi-
naries and definitions of cryptographic primitives for this paper. In Sect. 3, we show how to
construct a privately-expandable MKFHE scheme with distributed setup under LWE with
sub-exponential modulus-to-noise ratio and the circular security of the underlying MKFHE
scheme [15]. In Sect. 4, we first construct a (maliciously) circuit-private MKHE with dis-
tributed setup for branching programs from the privately-expandable scheme, and then build
up a fully homomorphic scheme via a LWE-based MKFHE scheme with distributed setup.
Section 5 shows our four-round MPC protocols based on our MK(F)HE schemes with
distributed setup.

2 Preliminaries

In this section, we review notations, mathematical preliminaries, and definitions for
homomorphic encryption.
NotationsWe denote the set of natural numbers, integers, and real numbers by N, Z, and R,

respectively. For d ∈ N, we represent {1, 2, . . . , d} by [d]. For a countable set S, a
$←− S

denotes that a ∈ S is chosen uniformly at random from S. For a probability distribution P
(over some set), [P] denotes the support ofP (i.e. {x : Pr[P = x] > 0}), and b

$←− P denotes
that b is sampled according to P . negl(λ) represents an unspecified negligible function.
Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles of random variables, and �(X , Y ) be
the statistical distance between them. For ε > 0, we say that the two ensembles of random
variables, X andY , are ε-close if�(X , Y ) ≤ ε, and X andY are statistically indistinguishable
if they are ε-close for ε = negl(λ), and denote it by X ≈s Y . Also we use X ≈c Y to mean
that X and Y are computationally indistinguishable, i.e., |Pr[D(Xλ) → 1] − Pr[D(Yλ) →
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1]| = negl(λ) for any probabilistic polynomial-time (PPT) TuringmachineD. For simplicity,
we sometimes abuse notation and write Xλ ≈s Yλ (instead of X ≈s Y ), and we do the same
for ≈c.

Vectors are in column formandwritten by bold lower-case letters (e.g., x). The i-th element
of the vector x is represented by xi . We denote the �∞ norm (max norm) of the vector x by
‖x‖. The inner-product of two vectors x and y is written as 〈x, y〉. We denote matrices as bold
capital letters (e.g., X) and the (i, j)-th element of the matrix X is represented by X[i, j].
For a matrix X ∈ R

m×n , the �∞ norm of X is defined as ‖X‖ := maxi∈[n], j∈[m]{‖X[i, j]‖}.
The notation XT ∈ Z

n×m represents the transpose of X. For two matrices A ∈ Z
m×n1 and

B ∈ Z
m×n2 , [A‖B] ∈ Z

m×(n1+n2) is the matrix obtained by concatenating A and B. In

denotes the n × n identity matrix, and 0n×m denotes the n × m matrix all of whose entries
are 0. For any i ∈ [n], ui ∈ {0, 1}n represents the i-th standard basis vector of dimension n.

2.1 Gaussian, learning with errors, and gadget matrix

Gaussian For any real σ > 0, a Gaussian function onR
n centered around 0with parameter σ

is defined as ρσ (x) := exp(−π ·‖x‖2/σ 2) for all x ∈ R
n . The (discrete) Gaussian distribution

over Z
n of parameter σ , denoted by Dσ , is defined to be the distribution with the probability

density function Dσ (x) := ρσ (x)/
∑

x∈Zn ρσ (x) for all x ∈ Z
n .

We recall the noise smudging (or so-called noise flooding) lemma. It states that adding a
noise according to the Gaussian distribution with parameter superpolynomial in λ vanishes
dependence on the original distribution.

Lemma 2.1 (Gaussian Noise Smudging [14, 25]) Let σ ′ > 0 and y ∈ Z be arbitrary. Then,
�(Dσ ′ , Dσ ′ + y) ≤ ‖y‖

σ ′ .

Learningwith errorsThe learning with errors (LWE) problemwas first introduced byRegev
[38]. We will base the security of our construction on the hardness of the decisional version
of the problem, called the decisional LWE problem. For positive integers n and q ≥ 2, let

As,D be the distribution obtained by choosing a vector a
$←− Z

n
q uniformly at random and

noise term e
$←− D, and outputting (a, sT a + e mod q) ∈ Z

n
q × Zq . The (decisional) LWE

problem is to distinguish As,D where s
$←− Z

n
q , from the uniform distribution over Z

n
q × Zq .

The LWE assumption states that this problem is intractable for any PPT algorithm. In this
paper, we will use the LWE assumption in which q is superpolynomial in λ, and D is a
Gaussian distribution whose samples have norm bounded by some B ∈ N polynomial in λ

with overwhelming probability.
Gadget matrix Let gT := (1, 2, . . . , 2�log q�−1) be the vector consisting of the powers of 2.
For n ∈ N, we define the special matrixG ∈ Z

n×n·(�log q�)
q (called the gadget matrix) that has

the vector g in diagonal and 0 in other elements, namely

G :=

⎡

⎢

⎢

⎢

⎣

—gT—

. . .

— gT—

⎤

⎥

⎥

⎥

⎦

∈ Z
n×n·(�log q�)
q .

Let G−1 : Z
n
q → {0, 1}n·(�log q�) be the operation such that G · G−1(x) = x for any vector

x ∈ Z
n
q . Such operation can be obtained by decomposing every element of the given vector

x in binary representation. We will also abuse the notation and allow G−1 to take a matrix
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M ∈ Z
n×k as input, apply G−1 to each column vector of M, and output the (n · (�log q�))-

by-k matrix consisting of the (horizontal) concatenation of all of the outputs, for any k ∈ N.
Then, for a matrix M ∈ Z

n×k , it holds that G · G−1(M) = M.

2.2 Branching programs

Here, we recall the definition of branching programs. (The definition here is mostly taken
verbatim from [17].)

Definition 2.1 (Branching program) A (binary) branching program P over {0, 1}n consists
of a tuple (G = (V , E), v0, T , φV , φE ) with the following properties:

• G is a connected directed acyclic graph. We denote by 
(v) the set of the child nodes of
v ∈ V .

• v0 is the initial node with indegree 0.
• T ⊆ V is the set of terminal nodes of outdegree 0. Any node in V \T has outdegree 2.
• φV : V → [n] ∪ {0, 1} is the node-labeling function with φV (v) ∈ {0, 1} for v ∈ T , and

φV (v) ∈ [n] for v ∈ V \T .
• φE : E → {0, 1} is the edge-labeling function, such that the outgoing edges from each

vertex are labeled by different values.

The height of v ∈ V , denoted height(v), is the length of the longest path from v to a node in
T . The length of P is the height of v0. The width of P is the maximum number of vertices
with the same height.

On input x ∈ {0, 1}n , P(x) is defined as follows: Follow the path induced by x from v0 to
a node v� ∈ T , where an edge (v, v′) is in the path if xφV (v) = φE (v, v′). (By the property of
φE , such v′ is unique.) Then P(x) := φV (v�). Similarly, we also define Pv(x) by following
the path from any node v ∈ V instead of v0.

We say that a branching program P = (G = (V , E), v0, T , φV , φE ) is layered if for any
e = (v, v′) ∈ E , we have height(v) = height(v′) + 1.

ByBarrington’s theorem [4], all languages inNC1 can be computed by a poly-sized layered
branching program with constant width. Since the decryption circuit of a number of existing
LWE-based FHE schemes (e.g., [13, 15, 23, 35]) is in NC1, there exists a layered branching
program of polynomial length that computes the decryption circuit of such LWE-based FHE
schemes.

2.3 Single-key homomorphic encryption and its circuit privacy

Here, we recall the definitions for single-key HE.

Definition 2.2 (Single-key Homomorphic Encryption) A single-key HE scheme SKHE for a
class of circuits C consists of the four algorithms (KG, Enc,Dec, Eval) with the following
properties:

• (Syntax)

– (pk, sk)
$←− KG(1λ): This is the key generation algorithm that takes a security

parameter 1λ as input, and outputs a public/secret key pair (pk, sk).

– ct
$←− Enc(pk, x): This is the encryption algorithm that takes a public key pk and a

plaintext x ∈ {0, 1} as input, and outputs a ciphertext ct.
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1654 N. Attrapadung et al.

– ̂ct
$←− Eval(C,pk, (ctk)k∈[n]) : This is the homomorphic evaluation algorithm that

takes a circuit C ∈ C (with domain {0, 1}n), a public key pk, and n ciphertexts
(ctk)k∈[n] as input, and outputs an evaluated ciphertext ̂ct.

– x̂ := Dec(sk, ̂ct): This is the (deterministic) decryption algorithm that takes a secret
key sk and an evaluated ciphertext ̂ct as input, and outputs a decryption result x̂ .

• (Correctness) For any circuit C ∈ C (with n-bit input), and any (x1, . . . , xn) ∈
{0, 1}n , if (pk, sk)

$←− KG(1λ), ctk
$←− Enc(pk, xk) for every k ∈ [n], and ̂ct

$←−
Eval(C,pk, (ctk)k∈[n]), then we have Pr[Dec(sk, ̂ct) �= C(x1, . . . , xn)] = negl(λ).

• (Semantic Security) Defined in the same way as that for ordinary public-key encryption.

We say that SKHE isweakly circular secure if it remains secure even if bit-wise encryptions
of a secret key are attached to a public key. We say that SKHE is fully homomorphic if C is a
set of all circuits of polynomial size.

Circuit privacy Here, we recall the formal definition of malicious circuit privacy for single-
key HE [36].

Definition 2.3 (Malicious Circuit Privacy for Single-Key HE [36]) Let SKHE =
(KG, Enc, Eval,Dec) be a single-key HE for a circuit class C. We say that SKHE is maliciously
circuit private if there exist an unbounded algorithm Sim (called the simulator) and an
unbounded deterministic algorithm Ext (called the extractor) such that for all circuits C ∈ C
(with n-bit input), and all possibly malformed public keys pk∗ and ciphertexts ct∗1, . . . , ct∗n ,
we have

Eval(C,pk∗, (ct∗k)k∈[n]) ≈s Sim(pk∗, (ct∗k)k∈[n], C(x∗
1 , . . . , x∗

n )),

where x∗
k := Ext(pk∗, ct∗k) for all k ∈ [n].

2.4 Oblivious transfer

Here, we recall the definition of a statistically sender-private two-message oblivious transfer
(OT) protocol againstmalicious receivers, which is known to exist under the LWEassumption
due to Brakerski and Döttling [9].

Definition 2.4 A two-message OT protocol OT consists of the three algorithms (Q,A,D)

with the following properties:

• (Syntax)

– (q, st)
$←− Q(1λ, b): This is the receiver’s first algorithm that takes a security param-

eter 1λ and a selection bit b ∈ {0, 1} as input, and outputs a receiver message q and
a secret state st.

– a
$←− A(q, s0, s1) : This is the sender’s algorithm that takes a receiver message q and

two strings s0, s1 as input, and outputs a sender message a.
– s′ := D(a, st) : This is the (deterministic) receiver’s second algorithm that takes a

sender message a and a secret state st as input, and outputs a string s′.

• (Correctness) For all λ ∈ N, b ∈ {0, 1}, and s0, s1 ∈ {0, 1}∗ such that ‖s0‖ = ‖s1‖, if
(q, st)

$←− Q(1λ, b) and a
$←− A(q, s0, s1), then it holds that sb = D(a, st).

• (Receiver Privacy) It holds that Q(1λ, 0) ≈c Q(1λ, 1).
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• (Statistical Sender Privacy against Malicious Receivers) There exist possibly computa-
tionally unbounded algorithms Ext (called the extractor) and Sim (called the simulator)
such that for any receiver message q (which could be outside the image of Q) and inputs
(s0, s1) with ‖s0‖ = ‖s1‖, we have A(q, s0, s1) ≈s Sim(q, sb∗), where b∗ := Ext(q).

2.5 Circuit garbling

Here, we recall the definition of a circuit garbling scheme. In our MPC construction, we will
use a projective circuit garbling scheme whose encoding is a list of tokens, one pair for each
bit of an input x ∈ {0, 1}n for a circuit being garbled. Such a garbling scheme can be realized
from any one-way function, and thus under the LWE assumption.

Definition 2.5 A (projective) circuit garbling scheme GC is a pair of the algorithms
(GCircuit,GEval) with the following properties:

• (Syntax)

– (G, e)
$←− GCircuit: This is the garbling algorithm that takes a security parameter 1λ

and a circuit C with n-bit input (for some polynomial n = n(λ)) as input, and outputs
a garbled circuit G and a set of tokens e = (X0

i , X1
i )i∈[n].

– y = GEval(G, (Xi )i∈[n]: This is the (deterministic) evaluation algorithm that takes
a garbled circuit G and n tokens (Xi )i∈[n] as input, and outputs some value y.

• (Correctness) For any λ, n ∈ N, any n-bit input circuit C , and any x =
(x1, . . . , xn) ∈ {0, 1}n , if (G, e = (X0

i , X1
i )i∈[n])

$←− GCircuit(1λ, C), then we have
GEval(G, (X xi

i )i∈[n]) = C(x).
• (Security) For any two circuits C0, C1 (with n-bit input) of the same size and any two

inputs x0 = (x1,0, . . . , xn,0), x1 = (x1,1, . . . , xn,1) ∈ {0, 1}n such thatC0(x0) = C1(x1),

if (Gb, eb = (X0
i,b, X1

i,b)i∈[n])
$←− GCircuit(1λ, Ci ) for both b ∈ {0, 1}, then we have

(G0, (X
xi,0
i,0 )i∈[n]) ≈c (G1, (X

xi,1
i,1 )i∈[n]).

2.6 Multi-key homomorphic encryption with distributed setup

Here, we recall the definitions formulti-keyHE (MKHE)with distributed setup. In this paper,
we will treat both MKHE schemes for circuits and for branching programs. Below, we only
give the formal definitions for the former since recovering the definitions for the latter is
straightforward given those for the former.

In this paper, we will also make use of ordinary single-key HE (without setup). We review
the formal definition of this type of HE in Sect. 2.3.

Definition 2.6 (Multi-key HE with Distributed Setup, adapted from [15, 17]) An MKHE
scheme with distributed setup MKHE for a class of circuits C, consists of the five algorithms
MKHE = (dSetup, KG, Enc, Eval,Dec) with the following properties:

• (Syntax)

– ppi
$←− dSetup(1λ, 1N , i): This is the distributed setup algorithm that takes a security

parameter 1λ, the maximal number of inputs N (in unary), and an index i ∈ [N ] as
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input, and outputs the i-th user’s public parameter ppi . We require that given i ∈ [N ]
and pp, whether pp ∈ [dSetup(1λ, 1N , i)] or not is efficiently checkable. 5

– (pki , ski )
$←− KG((pp j ) j∈[N ], i): This is the key generation algorithm that takes N

public parameters (ppi )i∈[N ] and an index i ∈ [N ] as input, and outputs the i-th
user’s public/secret key pair (pki , ski ).

– ct
$←− Enc(pki , x): This is the encryption algorithm that takes a public key pki and a

plaintext x ∈ {0, 1} as input, and outputs a ciphertext ct.
– ̂ct

$←− Eval(C, (pp j ) j∈[N ], (pk j ) j∈[N ], {(Ik, ctk)}k∈[n]): This is the homomorphic
evaluation algorithm that takes as input a circuit C ∈ C (with domain {0, 1}n), N
public parameters (pp j ) j∈[N ], N public keys (pki )i∈[N ], and n pairs (Ik, ck)k∈[n],
where Ik ∈ [N ] and ctk is presumed to be a ciphertext underpkIk

. Then, this algorithm
outputs an evaluated ciphertext ̂ct.

– x̂ := Dec((ski )i∈[N ], ̂ct): This is the (deterministic) decryption algorithm that takes
N secret keys (ski )i∈[N ] and an evaluated ciphertext 6

̂ct as input, and outputs a
decryption result x̂ .

• (Correctness) For any N ∈ N, any circuit C ∈ C (with n-bit input), any indices

I1, . . . , In ∈ [N ], and any bits x1, . . . , xn ∈ {0, 1}, the following holds: If pp j
$←−

dSetup(1λ, 1N , j) for all j ∈ [N ], (pk j , sk j )
$←− KG((pp j ) j∈[N ], j) for all j ∈ [N ],

ctk
$←− Enc(pkIk

, xk) for all k ∈ [n], and ̂ct
$←− Eval(C, (pp j ) j∈[N ], (pk j ) j∈[N ],

(Ik, ctk)k∈[n]), then we have

Pr[Dec((sk j ) j∈[N ], ̂ct) �= C(x1, . . . , xn)] = negl(λ).

• (Semantic Security) For any PPT adversary A, we have

|Pr[ExpMKHE,A(λ, 0) → 1] − Pr[ExpMKHE,A(λ, 1) → 1]| = negl(λ),

where ExpMKHE,A(λ, b) for b ∈ {0, 1} is the following experiment run between the chal-
lenger and the (rushing) adversary A (namely, A generates corrupted public parameters
after seeing an honest public parameter):

1. A chooses the maximal number of inputs N and the challenge index i ∈ [N ], and
sends them to the challenger.

2. The challenger returns public parameters ppi
$←− dSetup(1λ, 1N , i).

3. A chooses public parameters pp j for all j ∈ [N ]\{i}, and sends {pp j } j∈[N ]\{i} to
the challenger.

4. The challenger generates (pki , ski )
$←− KG((pp j ) j∈[N ], i) and sends pki to A.

5. A sends the challenge plaintexts x0, x1 to the challenger.

6. The challenger returns the challenge ciphertext ct∗ $←− Enc(pki , xb) to A.
7. A outputs its guess b′ ∈ {0, 1}, which is treated as output of the experiment

ExpMKHE,A(λ, b).

We say thatMKHE isweakly circular secure if it remains secure even if bit-wise encryptions
of the secret key ski are attached to the public keypki .We say thatMKHE is fully homomorphic

5 This property is trivially satisfied by the MKFHE scheme with distributed setup by Brakerski et al. [15].
6 For simplicity, in this paper we only consider the decryption algorithm for evaluated ciphertexts for (single-
key/multi-key) HE schemes.
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(and call it multi-key fully homomorphic encryption (MKFHE)) if C is a set of all circuits
of polynomial size. We say that MKHE is compact if there exists a polynomial p such that
|̂ct| < p(λ, N ), which is independent of C and n.

To ease notation, for an MKHE scheme with distributed setup, we will often write pp, pk,
and sk to mean N public parameters (pp j ) j∈[N ], N public keys (pk j ) j∈[N ], and N secret
keys (sk j ) j∈[N ], respectively. (N will always be clear from the context.)
Bootstrapping Gentry’s bootstrapping theorem [22] provides a way to extend the class of
functions a HE scheme supports from a limited class to an unlimited class. This involves
homomorphic evaluation of so-called the augmented decryption function. Here we recall its
multi-key variant.

Definition 2.7 (Multi-key Augmented Decryption Function) LetMKHE = (dSetup, KG, Enc,
Eval,Dec) be an MKHE scheme (for some circuit class). For hardwired values ̂ct, ̂ct′, the
multi-key augmented decryption function h

̂ct,̂ct′ is defined by

h
̂ct,̂ct′((sk j ) j∈[N ]) := Dec((sk j ) j∈[N ], ̂ct) ∧ Dec((sk j ) j∈[N ], ̂ct′).

That is, the function h
̂ct,̂ct′ interprets its input as N secret keys (sk j ) j∈[N ], decrypts the

hardwired ciphertexts ̂ct and ̂ct′, and returns the NAND of the results.

López-Alt et al. [31] showed a multi-key analogue of the bootstrapping theorem, which
states that if anMKHE scheme supports homomorphic evaluation of circuits that can compute
the multi-key augmented decryption function, and is furthermore (weakly) circular secure,
then the scheme can be turned into a fully homomorphic one.

3 Privately expandable MKHEwith distributed setup

In this section,we present an LWE-basedMKFHE schemewith distributed setup,which addi-
tionally satisfies the privacy notion of private expandability. Specifically, we firstly extend
the definition of private expandability for MKHE by [17] to schemes with a distributed setup,
and then show that the MKFHE scheme with distributed setup by [15] can be modified to
satisfy this notion, by introducing an alternative ciphertext expansion algorithm based on the
approach of [17]. This modified scheme will be the main building block for our constructions
of maliciously circuit-private MKHE and MKFHE presented in Sect. 4.

This section is organized as follows. In Sect. 3.1, we first formalize private expandability
for MKHE with distributed setup. Next, in Sect. 3.2, we recall the MKFHE scheme with
distributed setup by Brakerski et al. [15]. Then, in Sect. 3.3, we show how tomake it privately
expandable.Throughout this section, let N = N (λ) ∈ Nbe apolynomial denoting thenumber
of users.

3.1 Private expandability of MKHEwith distributed setup

Here, we define private expandability ofMKHEwith distributed setup, extending the original
definition by [17]. For ease of exposition, we firstly introduce plain (possibly non-private)
expandability, and then proceed to define private expandability.

Definition 3.1 (Expandability) A MKHE scheme with distributed setup (dSetup, KG, Enc,
Eval,Dec) for a circuit class C is expandable if there exist two algorithms (Expand, Ẽval)
with the following properties:
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• (Syntax)

– ˜ct
$←− Expand(pp,pk, i, ct): This is the expansion algorithm that takes N public

parameters pp, N public keys pk, an index i ∈ [N ], and a ciphertext ct as input, and
outputs an expanded ciphertext ˜ct.

– ̂ct
$←− Ẽval(C,pp,pk, (˜ctk)k∈[n]): This is the homomorphic evaluation algorithm for

expanded ciphertexts. It takes a circuit C ∈ C (with n-bit input), N public parameters
pp, N public keys pk, and n expanded ciphertexts (˜ctk)k∈[n] as input 7, and outputs
an evaluated ciphertext ̂ct.

• (Correctness) For any circuitC ∈ C (with n-bit input), any plaintexts x1, . . . , xn ∈ {0, 1},
and indices I1, . . . , In ∈ [N ], ifpp j

$←− dSetup(1λ, 1N , j) for all j ∈ [N ], (pk j , sk j )
$←−

KG(pp, j) for all j ∈ [N ], ctk $←− Enc(pkIk
, xk) for all k ∈ [n], ˜ctk $←− Expand(pp,pk,

Ik, ctk) for all k ∈ [n], and ̂ct
$←− Eval(pp,pk, (˜ctk)k∈[n]), then

Pr

[ ∃k ∈ [n] : Dec(sk, ˜ctk) �= xk

∨ Dec(sk, ̂ct) �= C(x1, . . . , xn)

]

= negl(λ).

As in [17], for an expandable MKHE scheme with distributed setup, we overload the
notation for the algorithms, and replace the evaluation algorithm Eval of the original scheme

with Ẽval. Hence, when we consider a MKHE scheme to consist of the six algorithms
(dSetup, KG, Enc, Expand, Eval,Dec), Eval is the homomorphic evaluation algorithm for

expanded ciphertexts (corresponding to Ẽval above).

Definition 3.2 (Private Expandability) Let MKHE = (dSetup, KG, Enc, Expand, Eval,
Dec) be an expandable MHFE scheme with distributed setup. We say that MKHE is pri-
vately expandable if it satisfies the following property: For all j ∈ [N ], let pp j ∈
[dSetup(1λ, 1N , j)] and (pk j , sk j ) ∈ [KG(pp, j)].

Let i, i ′ ∈ [N ], x ∈ {0, 1}, cti ∈ [Enc(pki , x)], and cti ′ ∈ [Enc(pki ′ , x)]. Then, we have
Expand(pp,pk, i, cti ) ≈s

Expand(pp,pk, i ′, cti ′),

where the statistical indistinguishability is guaranteed only by the random coins of Expand.

3.2 LWE-based expandable MKFHE by brakerski et al.

We now present the MKFHE scheme of [15] which we will denote MKHEBHP. Although
the original scheme has expandability, how this is supported is only informally
sketched in [15]. Below we give a full description of the scheme which explicitly
describes the expansion algorithm. The expandable MKFHE scheme MKHEBHP =
(dSetupBHP, KGBHP, EncBHP, ExpandBHP, EvalBHP,DecBHP) is as follows.

• dSetupBHP(1
λ, 1N , i ∈ [N ]): Let n = n(λ) be a polynomial in security parameter λ,

q = q(λ) be a superpolynomial in λ, � := �log q�, m = O(n�), w := m�, and D
be a Gaussian distribution whose samples have norm bounded by some polynomial

B = B(λ) ∈ N except with negligible probability. Sample a matrix Ai
$←− Z

m×n
q , and

output ppi := Ai . (Note that any member in Z
m×n
q is a possible public parameter.)

7 Note that Ẽval does not take indices Ik for expanded ciphertexts ˜ctk as input.
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• KGBHP(pp, i ∈ [N ]): Sample si
$←− {0, 1}m−1, and set tT

i := [sT
i ‖1] ∈ Z

1×m
q . For every

j ∈ [N ], compute bT
i, j := tT

i A j ∈ Z
1×n
q and

Bi, j := Ai −
[

0(m−1)×n

bT
i, j

]

∈ Z
m×n
q ,

which satisfies tT
i Bi, j = bT

i,i − bT
i, j ∈ Z

1×n
q . Let Bi := Bi,i .

For every k ∈ [m], sample Rk
$←− Dn×w and Ek

$←− Dm×w , and compute an encryption
of the k-th bit ti [k] of the secret key ti by

Ti,k := BiRk + Ek + ti [k]G ∈ Z
m×w
q .

Output pki := ((bi, j ) j∈[N ], (Ti,k)k∈[m]) and ski := ti .

• EncBHP(pki , x ∈ {0, 1}): Sample R
$←− Dn×w and E

$←− Dm×w , and compute

C := BiR + E + xG ∈ Z
m×w
q .

For every τ ∈ [n] and k ∈ [w], sample Rτ,k
$←− Dn×w and Eτ,k

$←− Dm×w , and compute
an encryption of the (τ, k)-entry R[τ, k] of R by

Uτ,k := BiRτ,k + Eτ,k + R[τ, k]G ∈ Z
m×w
q .

Output cti := (C, (Uτ,k)τ∈[n],k∈[w]).
• ExpandBHP(pp,pk, i, cti ): This algorithm uses the “linear combination” algorithm

LComb described below as a sub-algorithm. Roughly, LComb takes encryptions of the
randomness matrix, i.e. (Uτ,k)τ∈[n],k∈[w], used to encrypt a message, and some input
vector in Z

n
q as input, and generates an encryption of the multiplication between the

randomness matrix and the input vector. This is used to erase junk terms in decryption.

– LComb((Uτ,k ∈ Z
m×w
q )τ∈[n],k∈[w], v ∈ Z

n
q): First define a matrix Z(v)

τ,k ∈ Z
n×w for

τ ∈ [n] and k ∈ [w] as

Z(v)
τ,k[a, b] :=

{

vτ if a = n and b = k

0 otherwise,

then output X := ∑

τ∈[n],k∈[w] Uτ,kG−1(Z(v)
τ,k) ∈ Z

m×w
q .

Using LComb, ExpandBHP proceeds as follows: For every j ∈ [N ] \ {i}, compute

X j := LComb((Uτ,k)τ∈[n],k∈[w],bi,i − b j,i ).

Then, output the expanded ciphertext ˜C ∈ Z
N ·m×N ·w
q that consists of N 2 submatrices of

size m × w, has the input ciphertext C in diagonal, and X j in the (i, j)-th submatrix for
j ∈ [N ] \ {i}. More visually, the expanded ciphertext ˜C is of the following form

˜C :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C
. . .

C
X1 · · · Xi−1 C Xi+1 · · · XN

C
. . .

C

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ Z
N ·m×N ·w
q ,
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where all the empty submatrices are zero matrices.
• EvalBHP(C,pp,pk, (˜Ck)k∈[n]): This algorithm homomorphically evaluates the given cir-

cuit C over input ciphertexts (˜Ck)k∈[n] gate-by-gate (assuming C is described via NAND
gates only), and outputs the final result as an evaluated ciphertext ̂ct. To implement the
NAND evaluation algorithm NAND, the algorithm makes use of homomorphic addition
Add and multiplication Mult algorithms described below.

– Add(˜C1,˜C2): Homomorphic addition can be just computed by adding the expanded
ciphertext matrices: ˜CAdd := ˜C1 + ˜C2 ∈ Z

N ·m×N ·w
q . We can see correctness of this

homomorphic addition from the condition satisfied for the expanded ciphertexts.
– Mult(˜C1,˜C2): Homomorphic multiplication is computed by first decomposing the

expanded ciphertexts by the gadget inverse function and multiplying it to the nor-
mal expanded ciphertext: ˜CMult := ˜C1G−1(˜C2) ∈ Z

N ·m×N ·w
q . Also, correctness of

the homomorphic multiplication can be easily checked from the relation between
expanded ciphertexts and the concatenation of the involved secret keys.

– NAND(pp,pk,˜C1,˜C2): For all j ∈ [N ], k ∈ [m], compute the expanded bootstrap-
ping keys ˜T j,k := ExpandBHP(pp,pk, j,T j,k). 8 Compute a ciphertext ˜CNAND by
evaluating the multi-key augmented decryption function h

˜C1,˜C2
(in Definition 2.7)

on ˜T j,k’s gate-by-gate via Add and Mult.

• DecBHP(sk, ̂ct): Parse ̂ct as ˜C ∈ Z
N ·m×N ·w
q .

Set ˜tT := [tT
1 ‖ · · · ‖tT

N ], and output x ′ := �(2/q) · ˜tT
˜CuN ·w�, where uN ·w :=

(0, . . . , 0, 1) ∈ {0, 1}N ·w .

The above completes the description of MKHEBHP. For completeness, we show the cor-
rectness of the above described expansion algorithm ExpandBHP, namely, that an expanded
ciphertext output from ExpandBHP can be correctly decrypted.

Lemma 3.1 (Correctness of ExpandBHP) Let i ∈ [N ] and x ∈ {0, 1}. If pp j
$←−

dSetupBHP(1
λ, 1N , j) for every j ∈ [N ], (pk j , sk j )

$←− KGBHP(pp, j) for every j ∈ [N ],
cti

$←− EncBHP(pki , x), and ˜Ci := ExpandBHP(pp,pk, i, cti ), then

Pr
[

DecBHP(sk,˜Ci ) �= x
] = negl(λ).

We first give the following property of LComb. This is an analogy of [16, Lemma A.3],
showing an analogous property of the linear combination algorithm for [35].

The proof is almost the same as the one of [16] except the estimation of noise growth
incurred by this algorithm.

Claim 3.1 Let R ∈ Z
n×w be a matrix, and tT = [sT , 1] ∈ {0, 1}m for s ∈ {0, 1}m−1.

For τ ∈ [n] and k ∈ [w], let Uτ,k ∈ Z
m×w
q be such that tTUτ,k = eT

τ,k + tTR[τ, k]G
for R[τ, k] ∈ ZB and eτ,k ∈ Z

w with ‖eτ,k‖ < m B. Let b = (b1, . . . , bn) ∈ Z
n
q and

X = LComb((Uτ,k)τ,k,b). Then we have

tTX = e′′T + bTR ∈ Z
w
q

for some e′′T ∈ Z
w with ‖e′′T ‖ < nw2m B.

8 The expanded bootstrapping keys need to be computed only once and are reused across multiple calls of
NAND.
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Proof of Claim For the above vector t and matrix X, it holds that

tTX = tT
∑

τ∈[n],k∈[w]
Uτ,kG−1(Z(b)

τ,k)

=
∑

τ,k

(eT
τ,k + tTR[τ, k]G)G−1(Z(b)

τ,k)

=
∑

τ,k

(e′T
τ,k + tTR[τ, k]Z(b)

τ,k)

= e′′T + tT
∑

τ,k

R[τ, k]Z(b)
τ,k ,

where e′′T = ∑

τ∈[n],k∈[w] e′T
τ,k satisfying ‖e′′‖ < nw2m B, and

∑

τ,k

R[τ, k]Z(b)
τ,k =

⎡

⎢

⎢

⎢

⎣

0 · · · 0
...

...

0 · · · 0
∑

τ R[τ, 1] · bτ · · · ∑

τ R[τ,w] · bτ

⎤

⎥

⎥

⎥

⎦

=
[

0
bTR

]

.

Therefore we have

tTX = e′′T + [sT , 1]
[

0
bTR

]

= e′′T + bTR.

��

We now turn to the proof of the correctness of ExpandBHP. Let˜t
T := [tT

1 ‖ · · · ‖tT
N ] ∈

{0, 1}N ·m be the concatenation of the secret keys, cti = (C, (U j,k) j∈[n],k∈[w]) be output by
EncBHP(pki , x), and ˜C := ExpandBHP(pp,pk, i, cti ). Then

˜tT
˜C =

[

tT
1 ‖ · · · ‖tT

N

]

·

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C
. . .

C
X1 · · · Xi−1 C Xi+1 · · · XN

C
. . .

C

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= [

tT
1 C+tT

i X1‖···‖tT
i−1C+tT

i Xi−1‖tT
i C‖tT

i+1C+tT
i Xi+1‖···‖tT

NC+tT
i XN

]

where X j = LComb((U j,k) j∈[n],k∈[w],bi,i − b j,i ) for each j ∈ [N ] \ {i}. By the above
claim, for every j ∈ [N ], we have tT

j C = (b j,i − bi,i )
TR + tT

j Ei + x · tT
j G, and tT

i X j =
eT

j + (bi,i − b j,i )
TR for some matrix R (randomness of Enc), and noise e j and Ei such that

‖e j‖ < nw2m B and ‖Ei‖ < B with high probability. Thus, it holds that

˜tT
˜C = [

tT
1 Ei +eT

1 ‖···‖tT
i−1Ei +eT

i−1‖tT
i Ei ‖tT

i+1Ei +eT
i+1‖···‖tT

NEi +eT
N

] + x ·˜tTG,

which implies DecBHP(sk,˜C) = x .
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3.3 MakingMKHEBHP privately expandable

It is straightforward to see that MKHEBHP is not privately expandable. Specifically, the posi-
tions of non-zero submatrices of an expanded ciphertext ˜C output from ExpandBHP directly
reveal the user index.

We now show a special ciphertext expansion algorithm pExpandBHP that can make
MKHEBHP privately expandable. The simple idea behind the construction is to hide the zero
submatrices in an expanded ciphertext by adding dummy ciphertexts of zero generated by
using “larger” noise.

In addition to the algorithms ExpandBHP and Add from the original scheme MKHEBHP,
pExpandBHP uses two sub-algorithms which we denote by Enc∗ and Add∗. The former
algorithm is the same as EncBHP except that it uses “larger noise”, and the latter is just the
homomorphic addition algorithm over pre-expanded ciphertexts and is simply implemented
by element-wise addition.

The formal description of the algorithms are as follows:

• Enc∗(pki , x): Generate a ciphertext ct = (C, (Uτ,k)τ∈[n],k∈[w]) in the same way as
EncBHP(pki , x), except that each entry in R, E, Rτ,k , and Eτ,k for every τ ∈ [n] and
k ∈ [w], is sampled from Dt where t is superpolynomial in λ.

• Add∗(ct, ct′): Parse ct as (C, (Uτ,k)τ∈[n],k∈[w]) and ct′ as (C′, (U′
τ,k)τ∈[n],k∈[w]). Com-

pute C′′ := C + C′ ∈ Z
m×w
q and U′′

τ,k := Uτ,k + U′
τ,k ∈ Z

m×w
q for all τ ∈ [n] and

k ∈ [w]. Output ct′′ := (C′′, (U′′
τ,k)τ∈[n],k∈[w]).

• pExpandBHP(pp,pk, i, cti ): For every j ∈ [N ], compute

ct∗j :=
{

Add∗(cti , Enc∗(pki , 0)) if j = i

Enc∗(pk j , 0) otherwise
.

and ˜ct∗j := ExpandBHP(pp,pk, j, ct∗j ). Output ˜cti := ∑

j∈[N ] ˜ct∗j , where the summation

of ˜ct∗j ’s is realized by Add.

Since the algorithm Add∗ just homomorphically adds fresh ciphertexts of MKHEBHP that
corresponds to ciphertexts of the dual scheme of [23], we can easily check that correctness
of Add∗ holds. Hence, the correctness of pExpandBHP can be seen as follows.

Lemma 3.2 (Correctness of pExpandBHP) Let i ∈ [N ] and x ∈ {0, 1}. If pp j
$←−

dSetupBHP(1
λ, 1N , j) for every j ∈ [N ], (pk j , sk j )

$←− KGBHP(pp, j) for every j ∈ [N ],
ct

$←− EncBHP(pki , x), and ˜ct := ˜C
$←− pExpandBHP(pp,pk, i, ct), then

Pr
[

DecBHP(sk,˜ct) �= x
] = negl(λ).

Proof Let˜tT := [tT
1 ‖ · · · ‖tT

N ] where t j = sk j for each j ∈ [N ]. Then, by the correctness of
Add and Add∗, we have˜tT

˜C = (
∑

j∈[N ] ẽ′T
j ) + (

∑

j∈[N ] x j ) ·˜tTG, where x j = x if j = i ,
and x j = 0 otherwise by the construction of pExpandBHP. If ‖̃e‖ < q/4 for ẽ := ∑

j∈[N ] ẽ′
j

(that can be satisfied by an appropriate choice of q), then x = DecBHP(sk, ˜ct). ��
In the following, we show that the output of pExpandBHP hides user indices.

Lemma 3.3 (Privacy of pExpandBHP) For all j ∈ [N ], let pp j ∈ [dSetupBHP(1λ, 1N , j)], and
(pk j , sk j ) ∈ [KGBHP(pp, j)]. Then, for any i, i ′ ∈ [N ], x ∈ {0, 1}, cti ∈ [EncBHP(pki , x)],
and cti ′ ∈ [EncBHP(pki ′ , x)], we have

pExpandBHP(pp,pk, i, cti ) ≈s pExpandBHP(pp,pk, i ′, cti ′)
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where the statistical indistinguishability is guaranteed only by the random coins of
pExpandBHP.

Proof We first show a simple fact about Add∗ useful for showing the lemma.

Claim 3.2 For all j ∈ [N ], let pp j ∈ [dSetupBHP(1λ, 1N , j)], and (pk j , sk j ) ∈
[KGBHP(pp, j)]. Then, for any i ∈ [N ], x ∈ {0, 1}, and ct ∈ [EncBHP(pki , x)], we have

Add∗(ct, Enc∗(pki , 0)) ≈s Enc
∗(pki , x),

where the statistical indistinguishability is guaranteed only by the random coins of Enc∗.

Proof of the claim Let r = (R,E, (Rτ,k)τ∈[n],k∈[w]), (Eτ,k)τ∈[n],k∈[w]) be the randomness
such that ct = EncBHP(pki , x; r) with ‖R‖, ‖E‖, ‖Rτ,k‖, ‖Eτ,k‖ < r = O(

√
n). Let D′

be the distribution of a randomness in Enc∗, namely, every element is sampled from Dt .
Then, by the designs of EncBHP and Add

∗, the distribution of the left hand side is identical to
Enc∗(pki , x; r +r ′)where r ′ $←− D′ and the addition of the randomnesses is just element-wise

addition. By Lemma 2.1, the distribution r + D′ = {r ′ $←− D′ : r + r ′} (where r is fixed) is

statistically close to D′.Hence,Add(ct, Enc∗(pki , 0)) = {r ′ $←− D′ : Enc∗(pki , x; r+r ′)} ≈s

Enc∗(pki , x). ��
For i ′′ ∈ {i, i ′}, let pExpand′(pp,pk, i ′′, x) be defined in the same way as

pExpandBHP(pp,pk, i ′′, cti ′′) except that ct∗i ′′ is generated as Enc∗(pki ′′ , x) instead of
Add∗(cti ′′ , Enc∗(pki ′′ , 0)). By the above claim, for both i ′′ ∈ {i, i ′}, ct∗i ′′ generated in
pExpand′ and that in pExpandBHP are statistically indistinguishable, and thus we have
pExpandBHP(pp,pk, i ′′, cti ′′) ≈s pExpand′(pp,pk, i ′′, x). Hence, to prove the lemma, it
is sufficient to show pExpand′(pp,pk, i, x) ≈s pExpand′(pp,pk, i ′, x). To this end, we
argue similarly to the proof of [16, Lemma A.5] and show that the distribution of the output
of pExpand′ is identical.

For each i ′′ ∈ {i, i ′}, let˜cti ′′ be an output of pExpand′(pp,pk, i ′′, x). If i = i ′ then clearly
˜cti and ˜cti ′ are distributed identically. When i �= i ′, the only difference in the executions of
pExpand′(pp,pk, i, x) and pExpand′(pp,pk, i ′, x) is in ˜ct∗i and ˜ct∗i ′ (other ciphertexts ˜ct∗j
for j ∈ [N ] \ {i, i ′} are clearly distributed identically), and thus we only have to show that
˜ct∗i,i ′ := ˜ct∗i + ˜ct∗i ′ generated in the two executions of pExpand′ are distributed identically.
pExpand′ generates ˜ct∗i of the form

˜ct∗i =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ci

. . .

Ci

Xi,1 · · · Xi,i−1 Ci Xi,i+1 · · · Xi,N

Ci

. . .

Ci

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where Ci = BiRi + Ei + xG in the execution of pExpand′ for i , and Ci = BiRi + Ei in
the execution for i ′. For i ′ �= i , ˜ct∗i ′ has a similar form but Ci ′ = Bi ′Ri ′ + Ei ′ in the former
execution, and Ci ′ = Bi ′Ri ′ +Ei ′ + xG in the latter execution. Ri and Ri ′ are sampled from
the same distribution and the same for Ei and Ei ′ . Furthermore, in both executions, Xi, j for
each j ∈ [N ] \ {i} is generated according to the same distribution, and the same is true for
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Xi ′, j for each j ∈ [N ] \ {i ′} Both executions generate ˜ct∗i,i ′ = ˜ct∗i + ˜ct∗i ′ of the form (where
w.l.o.g. we assume i < i ′)

˜ct∗i,i ′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ci,i ′
. . .

Xi,1 · · · Ci,i ′ · · · Xi,i ′ · · · Xi,N

. . .

Xi ′,1 · · · Xi ′,i · · · Ci,i ′ · · · Xi ′,N
. . .

Ci,i ′

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where Ci,i ′ := BiRi + Bi ′Ri ′ + (Ei + Ei ′) + xG. Therefore, ˜ct∗i,i ′ in the two exe-
cutions of pExpand′ are distributed identically. This means that the distribution of
pExpand′(pp,pk, i, x) and that of pExpand′(pp,pk, i ′, x) are identical regardless of i, i ′ ∈
[N ]. This in turn implies pExpandBHP(pp,pk, i, cti ) ≈s pExpandBHP(pp,pk, i ′, cti ′). ��

We summarize the consequence of the above lemmas.

Theorem 3.1 Let MKHEpBHP := (dSetupBHP, KGBHP, EncBHP, pExpandBHP, EvalBHP,DecBHP)
be an expandable MKFHE scheme with distributed setup that is the same as MKHEBHP except
that its expansion algorithm ExpandBHP is replaced with pExpandBHP. Then, MKHEpBHP is
privately expandable.

4 Maliciously circuit-private MKHE based on LWE

In this section, we show two constructions of maliciously circuit-private MKHE with dis-
tributed setup, one for branching programs, and the other for circuits of all poly-sized circuits
(i.e. MKFHE), These constructions are based on the construction methodology of [17].

In Sect. 4.1, we give the formal definition of malicious circuit privacy for MKHE with
distributed setup. In Sect. 4.2, we show the first construction: a maliciously circuit-private
MKHE scheme with distributed setup for branching programs from the combination of a
privately expandableMKFHE schemewith distributed setup and amaliciously circuit-private
single-key FHE scheme. In Sect. 4.3, we show how to enhance maliciously circuit-private
MKHE with distributed setup for branching program to fully homomorphic one by using a
(non-circuit-private)MKFHE scheme as an additional building block. (There, we also explain
a somewhat non-standard circular security assumption required to prove the semantic security
of this MKFHE construction.)

Throughout this section, let N = N (λ) ∈ N be a polynomial denoting the number of
users.

4.1 Definition

Here we introduce the definition of malicious circuit privacy for MKHE with distributed
setup.

Definition 4.1 (Malicious Circuit-privacy for MKHE with Distributed Setup, adapted from
[17]) Let MKHE = (dSetup, KG, Enc, Eval,Dec) be an MKHE scheme with distributed
setup for a class of circuits C. We say MKHE is maliciously circuit-private if there exists an
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unbounded algorithm Sim (called the simulator) and an unbounded deterministic algorithm
Ext (called the extractor) such that for all circuits C ∈ C (with n-bit input), all indices
I1, . . . , In ∈ [N ], and all possibly malformed public parameters pp∗ = (pp∗

i )i∈[N ], public
keys pk∗ := (pk∗

i )i∈[N ], and ciphertexts ct∗1, . . . , ct∗n , we have

Eval(C,pp∗,pk∗, (Ik, ct∗k)k∈[n]) ≈s Sim(pp∗,pk∗, (Ik, ct∗k)k∈[n], C(x∗
1 , . . . , x∗

n )),

where x∗
i := Ext(pp∗, Ik,pk

∗
Ik

, ct∗k) for all k ∈ [n].

4.2 Scheme for branching programs

We now show how to construct a maliciously circuit-private MKFHE scheme for branching
programs. The construction is generic and based on the combination of a privately-expandable
MKFHE scheme and a maliciously circuit-private single-key FHE scheme.

The main difference from [17] is that we need to treat public parameters pp generated
by the distributed setup appropriately: We have an additional check in the homomorphic
evaluation algorithm to make sure the public parameters pp are possible outputs of the
distributed setup algorithm of the underlying privately-expandable MKFHE scheme. There
is also a technically subtle but important difference in the design of the evaluation algorithm
(see the explanation in the footnote of the scheme description).
Intuition of our construction In order to achieve malicious circuit-privacy for the homo-
morphic evaluation algorithm, we need to deal with (possibly) malformed input public keys
and ciphertexts. To do this, we use a maliciously circuit-private single-key FHE scheme to
homomorphically check whether the inputs are possible output of semi-honest execution
of the key generation and encryption algorithm. This guarantees that the input public keys
and ciphertexts for the homomorphic evaluation of a branching program are well-formed.
Hence, in the following, we consider the semi-honest circuit-private evaluation of a branching
program.

To explain the intuition of the circuit-private evaluation, first recall how to compute a
branching program. Let P = (G = (V , E), v0, T , φV , φE ) be a length-� branching program
over {0, 1}n . To evaluate P on x ∈ {0, 1}n , we follow the path induced by φV and x from the
initial node v0 to a terminal node in T . As defined in Definition 2.1, Pv(x) refers to follow
the path from any node v ∈ V , and Pv0(x) = P(x). Since every node v ∈ V has two child
nodes v′, v′′ ∈ V such that φE (v, v′) = 0 and φE (v, v′′) = 1, Pv(x) can be defined for
i = φV (v) as Pv(x) := Pv′(x) if xi = 0, and Pv(x) := Pv′′(x) if xi = 1.

Now, consider homomorphically evaluating P on a ciphertext of x . Suppose that every bit
of x is encrypted by MKHE under a different public key, i.e., for i = 1, . . . , n, xi ∈ {0, 1}
is encrypted under a public key pki of MKHE. To homomorphically evaluate P , we need
to evaluate Pv(x) backward from terminal nodes to v0, which results in a ciphertext of
Pv0(x) = P(x). Let (v(�), v(�−1), . . . , v(0)) for v(�) = v0 and v(0) ∈ T be a path to obtain
P(x). The evaluation algorithm of our circuit-private MKHE scheme computes a ciphertext
of Pv(h) (x) (for h = 1, . . . , �) depending on a ciphertext of xi for i = φV (v(h)), which
is encrypted under pki . Our simulator for the malicious circuit privacy also computes a
ciphertext of Pv(h) (x), but independent of pki . To show indistinguishability between the real
evaluation and simulation, we use private expandability of MKHE to make the ciphertext of
Pv(h) (x) in the real evaluation independent of the encryption key.
Building Blocks.We will use the following building blocks.

• Let MKHEPE = (dSetupPE, KGPE, EncPE, ExpandPE, EvalPE,DecPE) be a privately-
expandable MKFHE scheme with distributed setup, for which we also assume weak
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circular security. We also require that this scheme is additive homomorphic over fresh
(pre-expanded) ciphertexts such that for any i ∈ [N ], public parameterspp = (pp j ) j∈[N ]
generated by dSetupPE(1

λ, 1N , i), an honestly generated key pair (pkPE,i , skPE,i ) ∈
[KGPE(pp, i)], plaintexts x1, x2 ∈ {0, 1}, and randomness r1, r2 for EncPE, we have
EncPE(pkPE,i , x1; r1) + EncPE(pkPE,i , x2; r2) = EncPE(pkPE,i , x1 + x2; r1 + r2). (In
the following, we will just use “−” to denote the homomorphic subtraction between
ciphertexts.)

• Let SKHEmCP = (KGmCP, EncmCP, EvalmCP,DecmCP) be a maliciously circuit-private
single-key FHE scheme. (see Sect. 2.3 for the formal definitions of single-key HE and
malicious circuit privacy for single-key HE.)

Notation and convention Values with subscript PE (resp.mCP) will denote those related to
MKHEPE (resp. SKHEmCP). We will omit a subscript for pp.

To lighten the notation, we use the convention that EncPE takes as plaintext input a bit-
string x (rather than a single bit), and outputs the concatenation of the bit-wise encryption
of x . Also, to easily grasp what is encrypted, we will use the notation [[x]]i to mean bit-wise
encryption of a bit-string x under the i-th public key pkPE,i of MKHEPE. (For example, we

write [[x]]i
$←− EncPE(pkPE,i , x).) An expanded ciphertext of [[x]]i will be denoted [̃[x]].

We will use the same convention for EncmCP, and use the notation [x]i to denote an
encryption of x under the i-th public key pkmCP,i of SKHEmCP.
Validation circuit To achieve malicious circuit privacy, the evaluation algorithm EvalBP of
our scheme will homomorphically evaluate the following circuit Validate to check whether
public/secret keys and ciphertexts input to EvalBP are well-formed, in which case (and only
then) it outputs somehardwiredvalue.Validatehas the followingvalues hardwired: N , q ∈ N,
public parameters pp, an index i ∈ [N ], a public key pkPE, q ciphertexts {ctPE,k}k∈[q], and
some value out ∈ {0, 1}∗. As input, it takes a secret key skPE and randomness rKG and
{rEnc,k}k∈[q], and its output is defined as follows 9:

ValidateN ,q
pp,i,pkPE,{ctPE,k }k∈[q],out(skPE, rKG, {rEnc,k}k∈[q])

:=

⎧

⎪

⎨

⎪

⎩

out
if (pkPE, skPE) = KGPE(pp, i; rKG),

and ∀k ∈ [q], ∃xk ∈ {0, 1} : ctPE,k = EncPE(pkPE, xk; rEnc,k)

0|out| otherwise

Construction Using the building blocks MKHEPE and SKHEmCP, and the valida-
tion circuit Validate described above, we describe our maliciously circuit-private
MKHE scheme with distributed setup for length-� branching programs MKHEBP =
(dSetupBP, KGBP, EncBP, EvalBP,
DecBP) below. (For convenience, a one-page version of the description is given in Figure 1
in page 48.)

• dSetupBP(1
λ, 1N , i ∈ [N ]): Output ppi

$←− dSetupPE(1
λ, 1N , i).

• KGBP(pp, i): Pick randomness rKG,i for KGPE, and compute

(pkPE,i , skPE,i ) := KGPE(pp, i; rKG,i ), (pkmCP,i , skmCP,i )
$←− KGmCP(1

λ),

[[skPE,i ]]i
$←− EncPE(pkPE,i , skPE,i ), [skPE,i‖rKG,i ]i

$←− EncmCP(pkmCP,i , skPE,i‖rKG,i ).

9 We allow {ctPE,k }k∈[q] to be empty, in which case Validate is defined to not take {rEnc,k } as input, and the
check of {ctPE,k } is omitted.
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dSetupBP(1
λ, 1N , i ∈ [N ]) :

Return ppi
$←− dSetupPE(1

λ, 1N , i).
KGBP(pp, i ∈ [N ]) :

Pick a randomness rKG,i for KGPE.
(pkPE,i, skPE,i) := KGPE(pp, i; rKG,i)

(pkmCP,i, skmCP,i)
$←− KGmCP(1λ)

[[skPE,i]]i
$←− EncPE(pkPE,i, skPE,i)

[skPE,i rKG,i]i
$←− EncmCP(pkmCP,i, skPE,i rKG,i)

pki := (pkPE,i, pkmCP,i, [[skPE,i]]i, [skPE,i rKG,i]i)
ski := (skPE,i, skmCP,i)
Return (pki, ski).

EncBP(pki, x ∈ {0, 1}) :
Parse pki as

(pkPE,i, pkmCP,i, [[skPE,i]]i, [skPE,i rKG,i]i).
Pick a randomness rEnc,i for EncPE
[[x]]i := EncPE(pkPE,i, x; rEnc,i)

[rEnc,i]i
$←− EncmCP(pkmCP,i, rEnc,i)

Return cti := ([[x]]i, [rEnc,i]i).
DecBP(sk, ct) :

Parse each skj as (skPE,j , skmCP,j).
Parse ct as (c, (VmCP,j)j∈[N ]).
∀j ∈ [N ] : Sj := DecmCP(skmCP,j , VmCP,j)
ctPE := c ⊕ j∈[N ] Sj .
Return x := DecPE(skPE, ctPE).

EvalBP(P,pp,pk, (Ik, ctk)k∈[n]) :
If ∃j ∈ [N ] : ppi /∈ [dSetupPE(1

λ, 1N , j)] then return ⊥.
Parse P as (G = (V, E), v0, T, φV , φE) //P is a branching program for n-bit input.
Parse each pkj as (pkPE,j , pkmCP,j , [[skPE,j ]]j, [skPE,j rKG,j ]j)
Parse each ctk as ([[xk]]Ik

, [rEnc,k]Ik
)

For every j ∈ [N ]:

Sj
$←− {0, 1}s0 // s0 := |Label(v0)| is known at this point.

qj := |{k ∈ [n] : Ik = j}|
Validatej := Validate

N,qj
pp,j,pkPE,j ,{ctPE,k}Ik=j ,Sj

VmCP,j
$←− EvalmCP Validatej , pkmCP,j , ([skPE,j rKG,j ]j , {[rEnc,k]j}Ik=j)

[[skPE,j ]]
$←− ExpandPE(pp,pkPE, j, [[skPE,j ]]j)

∀v ∈ T : Label(v) := φV (v)
For each v ∈ V \ T for which Label(u) for both of u ∈ Γ(v) are already defined:

h := height(v); k := φV (v); ∀σ ∈ {0, 1} : Let uσ ∈ Γ(v) s.t. φE(v, uσ) = σ.
[[0]]Ik

:= EncPE(pkPE,Ik
, 0; 0); [[1]]Ik

:= EncPE(pkPE,Ik
, 1; 0)

For each t = 1, . . . , s = |Label(u0)|:
∀σ ∈ {0, 1}: Let Label(uσ)[t] be the t-th bit of Label(uσ).

aPE,t :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[[0]]Ik
if Label(u0)[t] = 0 ∧ Label(u1)[t] = 0

[[xk ]]Ik
if Label(u0)[t] = 0 ∧ Label(u1)[t] = 1

[[1]]Ik
− [[xk ]]Ik

if Label(u0)[t] = 1 ∧ Label(u1)[t] = 0
[[1]]Ik

if Label(u0)[t] = 1 ∧ Label(u1)[t] = 1

aPE,t
$←− ExpandPE(pp,pkPE, Ik , aPE,t)

aPE,v := (aPE,1, . . . , aPE,s)

Label(v) :=
aPE,v if h = 1,

EvalPE DecPE,pp,pkPE, (([[skPE,j ]])j∈[N ], aPE,v) otherwise
c := Label(v0) ⊕ j∈[N ] Sj

Return ct := (c, (VmCP,j)j∈[N ]).

Fig. 1 Maliciously circuit private MKHE with distributed setup for branching programs MKHEBP =
(dSetupBP, KGBP, EncBP, EvalBP,DecBP) based on privately expandable MKFHE with distributed setup
MKHEPE = (dSetupPE, KGPE, EncPE, ExpandPE, EvalPE,DecPE) and maliciously circuit private single-key
FHE SKHEmCP = (KGmCP, EncmCP, EvalmCP,DecmCP)

Output pki := (pkPE,i ,pkmCP,i , [[skPE,i ]]i , [skPE,i‖rKG,i ]i ) and ski := (skPE,i , skmCP,i ).
• EncBP(pki , x ∈ {0, 1}): Parse pki as (pkPE,i ,pkmCP,i , [[skPE,i ]]i , [skPE,i‖rKG,i ]). Pick

randomness rEnc,i for EncPE, and compute

[[x]]i := EncPE(pkPE,i , x; rEnc,i ), [rEnc,i ]i
$←− EncmCP(pkmCP,i , rEnc,i ).

Output cti := ([[x]]i , [rEnc,i ]i ).
• EvalBP(P,pp,pk, (Ik , ctk)k∈[n]): If there exists j ∈ [N ] such that pp j /∈

[dSetupPE(1λ, 1N , j)], then output ⊥ and terminate. Otherwise, parse P as a length-�
branching program (G = (V , E), v0, T , φV , φE ), and suppose its input length is n-bit.
Parse each pk j as (pkPE, j ,pkmCP, j , [[skPE, j ]] j , [skPE, j‖rKG, j ] j ) and each ctk as ([[xk]]Ik ,

[rEnc,k]Ik ). Let s0 be the length of Label(v0) determined below. (s0 itself is known a

priori.) For every j ∈ [N ], choose S j
$←− {0, 1}s0 , set q j := |{k ∈ [n] : Ik = j}|, and
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compute

̂VmCP, j
$←− EvalmCP

(

Validate
N ,q j

pp, j,pkPE, j ,{[[xk ]]Ik }Ik = j ,S j
,pkmCP, j ,

([skPE, j‖rKG, j ] j , {[rEnc,k] j }Ik= j )

)

,

˜[[skPE, j ]] $←− ExpandPE(pp,pkPE, j, [[skPE, j ]] j ).

For each v ∈ T , set Label(v) := φV (v). For each 10 v ∈ V \ T for which Label(u0) and
Label(u1) with 
(v) = {u0, u1} are already defined, do the following:

– Let h := height(v), k� := φV (v), and {u0, u1} = 
(v) such that φE (v, u0) = 0 and
φE (v, u1) = 1.

– Let [[0]]Ik� := EncPE(pkPE,Ik� , 0; 0) and [[1]]Ik� := EncPE(pkPE,Ik� , 1; 0).
– For t = 1, . . . , s = |Label(u0)|, do the following:

∗ For σ ∈ {0, 1}, let Label(uσ )[t] be the t-th bit of Label(uσ ).
∗ Set

aPE,t :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[[0]]Ik� if Label(u0)[t] = 0 ∧ Label(u1)[t] = 0

[[xk� ]]Ik� if Label(u0)[t] = 0 ∧ Label(u1)[t] = 1

[[1]]Ik� − [[xk� ]]Ik� if Label(u0)[t] = 1 ∧ Label(u1)[t] = 0

[[1]]Ik� if Label(u0)[t] = 1 ∧ Label(u1)[t] = 1

,

and compute ãPE,t
$←− ExpandPE(pp,pkPE, Ik� , aPE,t ). 11

– Set ãPE,v := (̃aPE,1, . . . , ãPE,s). 12

– Compute

Label(v) :=
{

ãPE,v if h = 1,

EvalPE
(

DecPE,pp,pkPE, (( ˜[[skPE, j ]]) j∈[N ], ãPE,v)
)

otherwise
.

where the inputs to DecPE in EvalPE are naturally arranged: the secret keys encrypted

in ( ˜[[skPE, j ]]) j∈[N ] are used as skPE, and what is encrypted in ãPE,v (which, for hon-
estly generated ciphertexts, is Label(uxk� )) is used as an expanded ciphertext to be
decrypted.

Finally, output ̂ct := (Label(v0) ⊕ ⊕

j∈[N ] S j , (̂VmCP, j ) j∈[N ]).
• DecBP(sk, ̂ct): Parse each sk j as (skPE, j , skmCP, j ) and ̂ct as (̂c, (̂VmCP, j ) j∈[N ]). For every

j ∈ [N ], compute S j := DecmCP(skmCP, j , ̂VmCP, j ). Let ̂ctPE := ĉ ⊕ ⊕

j∈[N ] S j . Output
x̂ := DecPE(skPE, ̂ctPE).

Correctness and securityWenow see the correctness, security, andmalicious circuit privacy
of MKHEBP.

Theorem 4.1 (Correctness) MKHEBP satisfies correctness.

10 This step will be performed from the nodes in the last layer to the initial node v0, so that Label(v) for every
v ∈ V \ T will be defined in the end.
11 The way we compute ãPE,t is different from [17]. In their construction, ãPE,t in the case Label(u0)[t] =
Label(u1)[t] = 1 is computed deterministically from the values that are generated outside the loop regarding
t . This seems to make ãPE,t distinguishable from what the simulator for the (malicious) circuit privacy in the
proof generates. Our design of EvalBP simplifies the design of the homomorphic evaluation algorithm in [17]
while also removing this bug.
12 One can check that each ãPE,t is an expanded ciphertext of Label(uxk� )[t]. Hence, ãPE,v is bit-wise
expanded ciphertexts of Label(uxk� ).
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Proof Let pp, pk, and sk be honestly generated public parameters, public keys, and secret
keys, respectively. Let I1, . . . , In ∈ [N ] be arbitrary indices, x = (x1, . . . , xn) ∈ {0, 1}n be

arbitrary plaintexts, and ctk = ([[xk]]Ik , [rEnc,Ik ]Ik )
$←− EncBP(pkIk

, xk) for every k ∈ [n].
Let P = (G = (V , E), v0, T , φV , φE ) be a length-� branching program. Now, consider

executing ̂ct = (̂c, (̂VmCP, j ) j∈[N ])
$←− EvalBP(P,pp,pk, (Ik ,pkk)k∈[n]) and DecBP(sk, ̂ct).

Since all public keyspk and ciphertexts (ctk)k∈[n] are honestly generated, the check regarding
pkPE, j and {[[xk]]Ik }Ik= j in the homomorphic evaluation of Validate done by EvalmCP never
fails, and every ̂VmCP, j decrypts to S j . This implies ̂ctPE = ĉ ⊕ ⊕

j∈[N ] S j = Label(v0).
Hence, to show the correctness, it is sufficient to show DecPE(skPE, Label(v0)) = P(x).

For each h ∈ {0} ∪ [�], let v(h) ∈ V be a node such that height(v(h)) = h and

(v(h)) = {v(h−1)

0 , v
(h−1)
1 }, and thus v0 = v(�). Intuitively, EvalBP homomorphically com-

putes the branching program P backwards from the terminal nodes to the initial node: Every
layer of the branching program computes Pv(h) (x) = P

v
(h−1)
x
k�(h)

(x) where k�(h) := φV (v(h)).

We now inductively show that for every h ∈ [�], every vertex v(h) at height h satis-
fies the property that Label(v(h)) is a bit-wise expanded ciphertexts of Pv(h) (x), and thus
DecPE(skPE, Label(v(h))) = Pv(h) (x) holds.
Base case h = 1 : by the construction of EvalBP, Label(v(1)) = ãPE,v(1) is bit-wise expanded

ciphertexts of Label(v(0)
xk�(1) ) = xk�(1) = Pv(1) (x) 13 .

This means that

DecPE(skPE, Label(v(1))) = Pv(1) (x).

Assumption for the induction (case h − 1) : suppose as the assumption for the induction that

the case h −1 is true, i.e. every v(h−1) at height h −1 satisfies the property that Label(v(h−1))

is bit-wise expanded ciphertexts of Pv(h−1) (x) and we have

DecPE(skPE, Label(v(h−1))) = Pv(h−1) (x).

Case h : let v(h) be an arbitrary vertex at height h, and let 
(v(h)) = {v(h−1)
0 , v

(h−1)
1 }

with φE (v(h), v
(h−1)
σ ) = σ for σ ∈ {0, 1}. Recall that by the construction of EvalBP,

ãPE,v(h) is bit-wise expanded ciphertexts of Label(v(h−1)
xk�(h)

), and Label(v(h)) is an out-

put of EvalPE(DecPE,pp,pkPE, (( ˜[[skPE, j ]] j ) j∈[N ], ãPE,v(h) )). Hence, Label(v(h)) is bit-wise
expanded ciphertexts of

DecPE(skPE, Label(v(h−1)
xk�(h)

)) = P
v

(h−1)
x
k�(h)

(x) = Pv(h) (x),

which means DecPE(skPE, Label(v(h))) = Pv(h) (x) holds.
This is true for every vertex at height h, and thus proves the inductive step. Hence, we have

DecPE(skPE, Label(v�)) = DecPE(skPE, Label(v0)) = P(x), and thus the scheme satisfies
correctness. ��

For the semantic security of MKHEBP, we need to assume MKHEPE is weakly circular
secure. Since the proof is straightforward, we only give a proof sketch.

Theorem 4.2 (Security) If MKHEPE is weakly circular secure and SKHEmCP is semantically
secure, then MKHEBP is semantically secure.

13 We here assume that for b ∈ {0, 1}, v(0)
b ∈ 
(v(1)) satisfies φV (v

(0)
b ) = b.
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Proof of Sketch By the semantic security of SKHEmCP, [skPE,i‖rKG,i ]i in the challenge public
key pki and [rEnc,i ] in the challenge ciphertext cti can be replaced by encryptions of unrelated
messages of appropriate lengthwithout being noticed by an adversary. Then, theweak circular
security ofMKHEPE guarantees that the information of the challenge message x does not leak
from [[x]]i in cti . ��

The following theorem guarantees the malicious circuit privacy ofMKHEBP. The intuition
and notation for the proof of this theorem are given at the beginning of this section (Sect.
4.2).

Theorem 4.3 (Malicious Circuit Privacy) If MKHEPE is privately expandable and SKHEmCP
is maliciously circuit-private, then MKHEBP is maliciously circuit private.

Proof Let ExtmCP and SimmCP be respectively the extractor and simulator that are guaranteed
to exist by the malicious circuit privacy of SKHEmCP. We construct an extractor ExtBP and a
simulator SimBP as follows:

• ExtBP(pp∗, i,pk∗
i , ct

∗): Parse pk∗
i as (pk∗

PE,i ,pk
∗
mCP,i , [[skPE,i ]]∗i , [skPE,i‖rKG,i ]∗i ) and ct∗

as ([[x]]∗i , [rEnc]∗i ).
Extract 14

sk∗
PE,i‖r∗

KG,i := ExtmCP(pk
∗
mCP,i , [skPE,i‖rKG,i ]∗i ),

r∗
Enc := ExtmCP(pk

∗
mCP,i , [rEnc]∗i ).

Check whether (pk∗
PE,i , sk

∗
PE,i ) = KGPE(pp∗, i; r∗

KG) and there exists x ′ ∈ {0, 1} such
that [[x]]∗i = EncPE(pp∗,pk∗

PE,i , x ′; r∗
Enc). If the check passes, then output x ′. Otherwise,

output 0.
• SimBP(pp∗,pk∗, (Ik, ct∗k)k∈[n], b∗ ∈ {0, 1}): If there exists j ∈ [N ] such that pp∗

j /∈
[dSetupPE(1λ, 1N , j)], then output ⊥ and terminate. Otherwise, parse each pk∗

j as
(pk∗

PE, j ,pk
∗
mCP, j , [[skPE, j ]]∗j , [skPE, j‖rKG, j ]∗j ) and each ct∗k as ([[xk]]∗Ik

, [rEnc,k]∗Ik
). For

every j ∈ [N ], do the following:
– Sample S j

$←− {0, 1}s0 .
– Do the same check on pk∗

PE, j and [[xk]]∗j as done in ExtBP(pp∗, j,pk∗
PE, j , ct

∗
k) for all

k such that Ik = j .
– Compute

̂V ∗
mCP, j :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

SimmCP

(

pk∗
mCP, j , ([skmCP, j‖rKG, j ]∗j , {[rEnc,k]∗j }Ik= j ), S j

)

if the above check passes

SimmCP

(

pk∗
mCP, j , ([skmCP, j‖rKG, j ]∗j , {[rEnc,k]∗j }Ik= j ), 0s0

)

otherwise

.

– Compute ˜[[skPE, j ]]
∗ $←− ExpandPE(pp

∗,pk∗, [[skPE, j ]]∗j ).

If one of the checks during the computation of ̂VmCP, j was not satisfied, then pick ĉ∗ $←−
{0, 1}s0 , and terminate with output ̂ct∗ := (̂c∗, (̂V ∗

mCP, j ) j∈[N ]). Otherwise (i.e. the checks
did not fail), set out0 := b∗, and for h = 1, . . . , �, do the following:

14 Each [skPE,i ‖rKG,i ]∗i is actually a vector of ciphertexts. Thus, ExtmCP(pk
∗
mCP,i , [skPE,i ]∗i ) here means

applying ExtmCP(pk
∗
mCP,i , ·) to each ciphertext in [skPE,i ]∗i and output the concatenation of the results. Same

for ExtmCP(pk
∗
mCP,i , [rKG,i ]∗i ) and ExtmCP(pk

∗
mCP,i , [rEnc]∗i ).
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– Let [[0]]1 := EncPE(pk
∗
PE,1, 0; 0) and [[1]]1 := EncPE(pk

∗
PE,1, 1; 0).

– For t = 1, . . . , s := |outh−1| (where |out0| := 1), set

a∗
PE,t :=

{

[[0]]1 if the t-th bit of outh−1 is 0

[[1]]1 if the t-th bit of outh−1 is 1
,

and compute ã∗
PE,t

$←− ExpandPE(pp
∗,pk∗

PE, 1, a∗
PE,t ).

– Set ã∗
PE,h := (̃a∗

PE,1, . . . , ã∗
PE,s).

– Compute

outh :=
⎧

⎨

⎩

ã∗
PE,1 if h = 1,

EvalPE
(

DecPE,pp∗,pk∗
PE, ((

˜[[skPE, j ]]
∗
) j∈[N ], ã∗

PE,h)
)

otherwise
.

Set ĉ∗ := out� ⊕ ⊕

j∈[N ] S j and output ̂ct∗ := (̂c∗, (̂V ∗
mCP, j ) j∈[N ]).

Consider an arbitrary branching program P = (G = (V , E), v0, T , φV , φE )

(with length �, input-length n), and public parameters pp∗, public keys pk∗ =
(pk∗

PE, j , [[skPE, j ]]∗j , [skPE, j‖rKG, j ]∗j ) j∈[N ], and index/ciphertext pairs (Ik, ct∗k)k∈[n] where
ct∗k = ([[xk]]∗Ik

, [rEnc,k]∗Ik
) for each k ∈ [n]. (Here, possibly malformed values are denoted

with an asterisk.) Let

̂ct = (̂c, (̂VmCP, j ) j∈[N ])
$←− EvalBP(P,pp∗,pk∗, (Ik, ct∗k)k∈[n]),

̂ct∗ = (̂c∗, (̂V ∗
mCP, j ) j∈[N ])

$←− SimBP(pp∗,pk∗, (Ik, ct∗k)k∈[n], b∗),

where b∗ := P(x∗
1 , . . . , x∗

n ) and x∗
k := ExtBP(pp∗, Ik,pk

∗
Ik

, ct∗k) for all k ∈ [n].
Let sk∗

PE, j‖r∗
KG, j := ExtmCP(pk

∗
mCP, j , [skPE, j‖rKG, j ]∗j ) for all j ∈ [N ], and r∗

Enc,k :=
ExtmCP(pk

∗
mCP,Ik

, [rEnc,k]∗Ik
) for all k ∈ [n]. What we need to show is ̂ct ≈s ̂ct∗.

Firstly, it immediately follows that (̂VmCP, j ) j∈[N ] ≈s (̂V ∗
mCP, j ) j∈[N ] holds by the mali-

cious circuit privacy of SKHEmCP. Hence, we have (̂c, (̂VmCP, j ) j∈[N ]) ≈s (̂c, (̂V ∗
mCP, j ) j∈[N ]),

where the right hand side is the “hybrid” distribution in which ĉ is generated as in EvalBP and
(̂V ∗

mCP, j ) j∈[N ] is generated as in SimBP. Furthermore, if there exists j ∈ [N ] under which

Validate
N ,q j

pp∗, j,pk∗
PE, j ,{[[xk ]]∗j }Ik = j ,S j

(sk∗
PE, j , r∗

KG, j , {r∗
Enc,k}Ik= j ) = 0s0

holds, then ̂V ∗
j is independent of S j , and makes ĉ in the hybrid distribution uniformly random

and independent of other values, which is exactly how ĉ∗ in this case is generated. This means
that ̂ct ≈s ̂ct∗ holds in this case.

We now consider the distributions of ĉ and ĉ∗ in the remaining case (i.e. the check in
Validate is satisfied and it outputs S j for all j ∈ [N ]). In this case, it is guaranteed that
every pk∗

PE, j is a possible output of KGPE(pp∗, j), and every [[xk]]∗Ik
is a possible output of

EncPE(pk
∗
PE,Ik

, x∗
k ). Hence, we write [[x∗

k ]]Ik instead of [[xk]]∗Ik
to reflect this.

Let v(h) ∈ V be the vertex at height h ∈ {0}∪[�] along the path indicated by (x∗
1 , . . . , x∗

n ) ∈
{0, 1}n . To show ĉ ≈s ĉ∗, we inductively show that Label(v(h)) in EvalBP and outh in SimBP
are statistically indistinguishable for every h ∈ {0} ∪ [�].
Base case h = 0 :We have out0 = b∗ = Label(v(0)) by the design of SimBP, and thus clearly
out0 ≈s Label(v(0)).
Assumption for the induction (case h − 1) :Now, suppose as an hypothesis for the induction
that outh−1 ≈s Label(v(h−1)) holds.
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Case h : For every t = 1, . . . , s := |Label(v(h))|, if the t-th bit of outh−1 is 0, then SimBP

computes ã∗
PE,t

$←− ExpandPE(pp
∗,pk∗

PE, 1, [[0]]1). On the other hand, if Label(v(h−1))[t] =
0, then letting k� = φV (v(h)), EvalBP computes ãPE,t

$←− ExpandPE(pp
∗,pk∗

PE, Ik� , aPE,t ),
where

aPE,t =
{

[[0]]Ik� or [[x∗
k� ]]Ik� if x∗

k� = φE (v(h), v(h−1)) = 0

[[1]]Ik� − [[x∗
k� ]]Ik� if x∗

k� = φE (v(h), v(h−1)) = 1
.

Since at this point [[x∗
k� ]]Ik� is guaranteed to be a valid encryption of x∗

k� , aPE,t is guaranteed to
be a valid encryption of 0 (under pk∗

PE,Ik�
). Hence, ãPE,t is an expanded ciphertext of 0. Thus,

if the t-th bit of outh−1 is equal to 0 = Label(v(h−1))[t], then by the private expandability
of MKHEPE, we have ã∗

PE,t ≈s ãPE,t .

Similarly, if the t-th bit of outh−1 is 1, then SimBP computes ã∗
PE,t

$←−
ExpandPE(pp

∗,pk∗
PE, 1, [[1]]1). On the other hand, if Label(v(h−1))[t] = 1, then EvalBP

computes ãPE,t
$←− ExpandPE(pp

∗,pk∗
PE, Ik� , aPE,t ), where

aPE,t =
{

[[1]]Ik� − [[x∗
k� ]]Ik� if x∗

k� = φE (v(h), v(h−1)) = 0

[[x∗
k� ]]Ik� or [[1]]Ik� if x∗

k� = φE (v(h), v(h−1)) = 1
.

Thus, if the t-th bit of outh−1 is equal to 1 = Label(v(h−1))[t], then aPE,t is a valid encryption
of 1 (under pk∗

Ik
). Again by the private expandability of MKHEPE, we have ã∗

PE,t ≈s ãPE,t .

Averaging over outh−1 ≈s Label(v(h−1)), we have ã∗
PE,h ≈s ãPE,v(h) .

By applying EvalPE(DecPE,pp∗,pk∗
PE, (

˜[[skPE, j ]]
∗
) j∈[N ], ·) to both sides of ã∗

PE,h ≈s

ãPE,v(h) , we have outh ≈s Label(v(h)), proving the inductive step. Hence, we have out� ≈s

Label(v(�)) = Label(v0) and thus ĉ∗ ≈s ĉ.
We have shown that in any case, (̂c, (̂VmCP, j ) j∈[N ]) ≈s (̂c∗, (̂V ∗

mCP, j ) j∈[N ]) holds. This
means that MKHEBP satisfies malicious circuit privacy. ��

Instantiation For the underlying privately expandable MKFHE scheme with distributed
setup, we can use MKHEpBHP shown in Sect. 3.3, whose weak circular security directly
follows from that of the original scheme MKHEBHP.

For the underlying maliciously circuit-private single-key FHE scheme, we can rely on the
existing results [9, 27, 36]. Specifically,Ostrovsky et al. [36] constructed amaliciously circuit-
private single-key FHE scheme from the combination of compact single-key FHE and single-
keyHEsatisfying aweak formofmalicious circuit privacy (called input privacy), and the latter
can be based on a statistically sender-private (2-message) OT protocol and an information-
theoretic randomized encoding [27]. Brakerski and Döttling [9] recently constructed such an
OT protocol based on LWE, and the MKFHE scheme MKHEBHP can be used as single-key
FHE, we can realize a maliciously circuit-private single-key FHE scheme based on LWE and
the weak circular security of MKHEBHP.

Using the above two schemes inMKHEBP, we obtain a maliciously circuit-private MKHE
with distributed setup for branching programs based on LWE and the weak circular security
of MKHEBHP, yielding a proof of Theorem 1.1.
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4.3 Achieving full homomorphism

We follow the framework of [17] that generically transforms anMKHE scheme for branching
programs to a fully homomorphic one by using a (non-circuit-private) MKFHE scheme with
distributed setup as an additional building block. As in our scheme for branching programs
in Sect. 4.2, the main difference from [17] is that in the homomorphic evaluation algorithm,
we have to make sure the public parameters belong to the support of the distributed setup
algorithm.
Intuition of our construction To construct a fully homomorphic scheme, we combine
the malicious circuit-private MKHE scheme MKHEBP for branching programs in Sect. 4.2
and a standard MKFHE scheme MKHEF. Inputs to a function are encrypted by MKHEF
and homomorphic evaluation is done by the evaluation algorithm of MKHEF. The result
of the homomorphic evaluation can be transformed into the ciphertext of MKHEBP in a
bootstrapping-like manner. Our homomorphic evaluation algorithm also uses MKHEBP to
check whether the inputs to the homomorphic evaluation are generated properly.

The homomorphic evaluation algorithm of our construction computes an output by homo-
morphically evaluating a composition of the decryption ofMKHEBP and function that checks
all the input validations success. The composite function is parametrized by the results of
the homomorphic evaluation and input validations, which are the ciphertexts of MKHEBP.
Since the simulator for our construction can generate simulated results of the homomorphic
computation by using the simulator for MKHEBP, the composite function computed by our
simulator is statistically indistinguishable from the one in the real evaluation.
Building blocks We will use the following building blocks.

• Let MKHEF = (dSetupF, KGF, EncF, EvalF,DecF) be a (non-circuit-private) MKFHE
scheme with distributed setup whose decryption circuit can be computed byNC1 circuits.

• LetMKHEBP = (dSetupBP, KGBP, EncBP, EvalBP,DecBP) be a maliciously circuit-private
MKHE scheme with distributed setup for length-� branching programs, where � is a
polynomial of λ large enough so that it can compute the validation circuits KValidate
and CValidate introduced below, and the decryption circuit of DecF. For notational con-
venience, we treat this scheme as an MKHE scheme for circuits that can be computed
by length �-branching programs. (Thus, EvalBP takes a circuit as input, rather than a
branching program).

Notation and conventionWe use similar notations and conventions as in Sect. 4.2, namely,
subscripts F and BP for parameters, and EncF and EncBP takes bit-strings as a plaintext
inputs. Similarly, we allow DecF and DecBP to take multiple ciphertexts as input, and let their
outputs be the concatenation of the decryption results. We will also use bracket notations
for ciphertexts: [[x]]i for a ciphertext generated as EncF(pkF,i , x), and [x]i for a ciphertext
generated as EncBP(pkBP,i , x).
Validation circuitsWe introduce three types of circuits that will be used in the construction
of our fully homomorphic scheme.

• KValidate checks whether a hardwired public key of MKHEF is well-formed. It has the
following values hardwired: N ∈ N, public parameters ppF, an index i ∈ [N ], a public
key pkF, and some value out ∈ {0, 1}∗. Then, it takes a pair of (candidate) secret key skF
and randomness rKG as input, and its output is defined as follows:

KValidateN
ppF,i,pkF,out

(skF, rKG) :=
{

out if (pkF, skF) = KGF(ppF, i; rKG)

0 otherwise
.
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• CValidate checks whether the hardwired ciphertext of MKHEF is well-formed. It has the
following values hardwired: a public key pkF, a ciphertext ctF, and some value out ∈
{0, 1}∗. Then, it takes randomness rEnc as input, and its output is defined as follows:

CValidatepkF,ctF,out(rEnc) :=
{

out if ∃x ∈ {0, 1} : ctF = EncF(pkF, x; rEnc)

0 otherwise
.

• CombineDec checks whether the given ciphertexts of MKHEBP are correctly decrypted
to a hardwired element. It has N , q ∈ N and some value out ∈ {0, 1}∗ hardwired, takes
N secret keys skBP = (skBP, j ) j∈[N ] and q evaluated ciphertexts {̂ctBP, j } j∈[q] as input,
and its output is defined as follows:

CombineDecN ,q
out

(

skBP, {̂ctBP, j } j∈[q]
)

:=

⎧

⎪

⎨

⎪

⎩

out
if DecBP(skBP, ̂ctBP, j ) = out

for all j ∈ [q]
0 otherwise

.

Construction Using the building blocks MKHEF and MKHEBP, and the validation cir-
cuits KValidate, CValidate, and CombineDec, we construct our maliciously circuit private
MKFHE schemewith distributed setupMKHEmCP = (dSetupmCP, KGmCP, EncmCP, EvalmCP,

DecmCP) as follows. (For convenience, a one-page version of the description is given in
Figure 2in page 49.)

• dSetupmCP(1
λ, 1N , i ∈ [N ]): Compute ppBP,i

$←− dSetupBP(1
λ, 1N , i) and ppF,i

$←−
dSetupF(1

λ, 1N , i). Output ppi := (ppBP,i ,ppF,i ).
• KGmCP(pp, i ∈ [N ]): Parse each pp j as (ppBP, j ,ppF, j ). Pick randomness rKG,i for KGF,

and compute

(pkF,i , skF,i ) := KGF(ppF, i; rKG,i ), (pkBP,i , skBP,i )
$←− KGBP(ppBP, i),

[[skBP,i ]]i
$←− EncF(pkF,i , skBP,i ), [skF,i ]i

$←− EncBP(pkBP,i , skF,i ),

[rKG,i ]i
$←− EncBP(pkBP,i , rKG,i ).

Output pki := (pkF,i ,pkBP,i , [[skBP,i ]]i , [skF,i ], [rKG,i ]i ) and ski := skF,i .
• EncmCP(pki , x ∈ {0, 1}): Parse pki as (pkF,i ,pkBP,i , [[skBP,i ]]i , [skF,i ]i , [rKG,i ]i ). Pick

randomness rEnc,i for EncF, and compute

[[x]]i := EncF(pkF,i , x; rEnc,i ), [rEnc,i ]i
$←− EncBP(pkBP,i , rEnc,i ).

Output cti := ([[x]]i , [rEnc,i ]i ).
• EvalmCP(C,pp,pk, (Ik, ctk)k∈[n]): If there exists j ∈ [N ] such that pp j /∈

[dSetupmCP(1
λ, 1N , j)], then output ⊥ and terminate. Otherwise, parse each pp j

as (ppBP, j ,ppF, j ), each pk j as (pkF, j ,pkBP, j , [[skBP, j ]] j , [skF, j ] j , [rKG, j ] j ), and each
ctk as ([[xk]]Ik , [rEnc,k]Ik ). Compute

̂ctF
$←− EvalF

(

C,ppF,pkF, (Ik, [[xk]]Ik )k∈[n]
)

,

̂ctBP
$←− EvalBP

(

DecF(·, ̂ctF),ppBP,pkBP, ( j, [skF, j ] j ) j∈[N ]
)

.

For every j ∈ [N ], compute

̂ctK
BP, j

$←− EvalBP

(

KValidateN
ppF, j,pkF, j ,̂ctBP

,

ppBP,pkBP, ( j, ([skF, j ] j , [rKG, j ] j ))

)

.

123



Maliciously circuit-private MKFHE and MPC 1675

dSetupmCP(1
λ, 1N , i ∈ [N ]) :

ppF,i
$←− dSetupF(1

λ, 1N , i)

ppBP,i
$←− dSetupBP(1

λ, 1N , i)
Return ppi := (ppF,i, ppBP,i).

KGmCP(pp, i ∈ [N ]) :
Parse each ppj as (ppF,j , ppBP,j).
Pick a randomness rKG,i for KGF.
(pkF,i, skF,i) := KGF(ppF, i; rKG,i)

(pkBP,i, skBP,i)
$←− KGBP(ppBP, i)

[skF,i]i
$←− EncBP(pkBP,i, skF,i)

[rKG,i]i
$←− EncBP(pkBP,i, rKG,i)

[[skBP,i]]i
$←− EncF(pkF,i, skBP,i)

pki := (pkF,i, pkBP,i, [[skBP,i]]i, [skF,i]i, [rKG,i]i)
ski := skF,i

Return (pki, ski).

EncmCP(pki, x ∈ {0, 1}) :
Parse pki as

(pkF,i, pkBP,i, [[skBP,i]]i, [skF,i]i, [rKG,i]i).
Pick a randomness rEnc,i for EncF.
[[x]]i := EncF(pkF,i, x; rEnc,i)

[rEnc,i]i
$←− EncBP(pkBP,i, rEnc,i)

Return cti := ([[x]]i, [rEnc,i]i).
Dec(sk, ct) :

Parse each skj as skF,j .
Return x := DecF(skF, ct).

EvalmCP(C,pp,pk, (Ik, ctk)k∈[n]) :
If ∃j ∈ [N ] : ppi /∈ [dSetupmCP(1

λ, 1N , j)] then return ⊥.
Parse each ppj as (ppF,j , ppBP,j).
Parse each pkj as (pkF,j , pkBP,j , [[skBP,j ]]j , [skF,j ]j , [rKG,j ]j).
Parse each ctk as ([[xk]]Ik

, [rEnc,k]Ik
).

ctF
$←− EvalF C, ppF,pkF, (Ik, [[xk]]Ik

)k∈[n]

ctBP
$←− EvalBP DecF(·, ctF),ppBP,pkBP, (j, [skF,j ]j)j∈[N ]

For every j ∈ [N ]:
KValidatej := KValidateN

ppF,j,pkF,j ,ctBP

ctKBP,j
$←− EvalBP KValidatej ,ppBP,pkBP, (j, ([skF,j ]j, [rKG,j ]j))

For every k ∈ [n]
CValidatek := CValidatepkF,Ik

,[[x]]Ik
,ctBP

ctCBP,k
$←− EvalBP CValidatek,ppBP,pkBP, [rEnc,k]Ik

)

Dec (·) := DecBP ·,CombineDecN,N+n

ctBP
(·, {ctKBP,j}j∈[N ] ∪ {ctCBP,k}k∈[n])

ct $←− EvalF Dec ,ppF,pkF, (j, [[skBP,j ]]j)j∈[N ]

Return ct.

Fig. 2 Maliciously Circuit Private MKFHEMKHEmCP = (dSetupmCP, KGmCP, EncmCP, EvalmCP,DecmCP)
based on maliciously circuit private MKHE for branching programs MKHEBP =
(dSetupBP, KGBP, EncBP, EvalBP,DecBP) and (non-circuit-private) MKFHE MKHEF =
(dSetupF, KGF, EncF.EvalF,DecF). The constructed scheme as well as the building blocks are MKHE
with distributed setup

For every k ∈ [n], compute

̂ctCBP,k
$←− EvalBP

(

CValidatepkF,Ik
,[[xk ]]Ik ,̂ctBP ,

ppBP,pkBP, (Ik, [rEnc,k]Ik )

)

.

Output

̂ct
$←− EvalF

(

DecBP(·,CombineDecN ,N+n
̂ctBP

(·, {̂ctK
BP, j } j∈[N ] ∪ {̂ctCBP,k}k∈[n])),

ppF,pkF, ( j, [[skBP, j ]] j ) j∈[N ]

)

.

• DecmCP(sk, ̂ct): Parse each sk j as skF, j . Output x̂ := DecF(skF, ̂ct).

Correctness and security The correctness of MKHEmCP is immediate from the correctness
of MKHEF and MKHEBP.

The semantic security of MKHEmCP is not straightforward. Like the construction in [17],
a public key pki of MKHEmCP contains an encryption of a secret key skBP,i under pkF,i ,
and encryptions of a secret key skF,i and the randomness rKG,i used to generate skF,i under
pkF,i . Hence, semantic security does not simply follow from a straightforward combina-
tion of the semantic security and/or (weak) circular security of the individual building
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blocks MKHEF and MKHEBP. In order to prove the semantic security of MKHEmCP, it seems
unavoidable to assume that the semantic security of MKHEF and MKHEBP continue to hold
even if in the semantic security games of each scheme, an adversary is additionally given
the values that constitute the public parameters ppi = (ppF,i ,ppBP,i ) and a public key
pki = (pkF,i ,pkBP,i , [[skBP,i ]]i , [skF,i ]i , [rKG,i ]i ) of MKHEmCP. 15

Once we admit this type of somewhat non-standard circular security assumptions on
MKHEF andMKHEBP, the semantic security ofMKHEmCP follows straightforwardly, and thus
we omit the proof.

Theorem 4.4 (Security) If MKHEF and MKHEBP satisfy the above “joint” circular security,
then MKHEmCP is semantically secure.

The following theoremguarantees themalicious circuit privacy ofMKHEmCP. The intuition
and notation for the proof of this theorem are given at the beginning of this section (Sect.
4.3).

Theorem 4.5 (Malicious Circuit Privacy) If MKHEBP is maliciously circuit-private, then so
is MKHEmCP.

The proof goes similarly to that of [16, Theorem 5.1].

Proof Let ExtBP and SimBP be the extractor and simulator, respectively, that are guaranteed
to exist by the malicious circuit privacy of MKHEBP. We construct an extractor ExtmCP and a
simulator SimmCP as follows.

• ExtmCP(pp∗, i,pk∗
i , ct

∗
i ): Parse each pp∗

j as (pp∗
F, j ,pp

∗
BP, j ), pk∗

i as (pk∗
F,i ,pk

∗
BP,i ,

[skF,i ]∗i , [rKG,i ]∗i , [[skBP,i ]]∗i ), and ct∗i as ([[x]]∗i , [rEnc,i ]∗i ). Extract
sk∗

F,i := ExtBP(pp∗
BP, i,pk∗

BP,i , [skF,i ]∗i ),
r∗
KG,i := ExtBP(pp∗

BP, i,pk∗
BP,i , [rKG,i ]∗i ),

r∗
Enc,i := ExtBP(pp∗

BP, i,pk∗
BP,i , [rEnc,i ]∗i ).

Check whether (pk∗
F,i , sk

∗
F,i ) = KGF(pp∗

F, i; r∗
KG,i ) and there exists x ′ ∈ {0, 1} such that

[[x]]∗i = EncF(pk
∗
F,i , x ′; r∗

Enc,i ). If the check passes, then output x ′. Otherwise, output 0.
• SimmCP(pp∗,pk∗, (Ik , ct∗k)k∈[n], b∗): If there exists j ∈ [N ] such that pp∗

j /∈
[dSetupmCP(1

λ, 1N , j)] holds, then output ⊥ and terminate. Otherwise, parse each pp∗
j

as (pp∗
F, j ,pp

∗
BP, j ), each pk∗

j as (pk∗
F, j ,pk

∗
BP, j , [[sk∗

BP, j ]] j , [skF, j ]∗j , [rKG, j ]∗j ), and each

ct∗k as ([[xk]]∗Ik
, [rEnc,k]∗Ik

). Compute ̂ct∗BP
$←− SimBP(pp∗

BP,pk
∗
BP, ( j, [skF, j ]∗j )) j∈[N ], b∗).

For every j ∈ [N ], compute

sk∗
F, j := ExtBP(pp∗

BP, j,pk∗
BP, j , [skF, j ]∗j ),

r∗
KG, j := ExtBP(pp∗

BP, j,pk∗
BP, j , [rKG, j ]∗j ),

out∗K
j :=

{

̂ct∗BP if (pk∗
F, j , sk

∗
F, j ) = KGF(ppF, j; r∗

KG, j )

0 otherwise
,

15 For proving the semantic security of the maliciously circuit-private MKFHE scheme by Chongchitmate
and Ostrovsky [17], a similar “joint” circular security assumption on the building blocks seems necessary. In
the corresponding proof of [16, Theorem 5.1] (the full version of [17]), it is written that the semantic security
of their maliciously circuit-private scheme follows from the building blocks, but no explanation on how the
proof is obtained is given.
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̂ct∗K
BP, j

$←− SimBP

(

pp∗
BP,pk

∗
BP, ( j, ([skBHP, j ]∗j , [rKG, j ]∗j )), out∗K

j

)

.

For every k ∈ [n], compute

r∗
Enc,k := ExtBP(pp∗

BP, Ik,pk
∗
BP,Ik

, [rEnc,k]∗Ik
),

out∗C
k :=

{

̂ct∗BP if ∃x ′ ∈ {0, 1} : [[xk]]∗Ik
= EncF(pk

∗
F,Ik

, x ′; r∗
Enc,k)

0 otherwise
,

̂ct∗C
BP,k

$←− SimBP

(

pp∗
BP,pk

∗
BP, (Ik, [rEnc,k]∗k), out∗C

k

)

.

Output

̂ct∗ $←− EvalF

(

DecBP(·,CombineDecN ,N+n
̂ct∗BP

(·, {̂ct∗K
BP, j } j∈[N ] ∪ {̂ct∗C

BP,k}k∈[n])),
pp∗

F,pk
∗
F, ( j, [[skBP, j ]]∗j ) j∈[N ]

)

.

Since ̂ct∗BP, (̂ct
∗K
BP, j ) j∈[N ], and (̂ct∗C

BP,k)k∈[n] computed in SimmCP are respectively statisti-

cally indistinguishable from ̂ctBP, (̂ctK
BP, j ) j∈[N ], and (̂ctCBP,k)k∈[n] computed in EvalmCP by

the malicious circuit privacy of MKHEBP, the distribution of ̂ct∗ output from SimmCP is also
statistically indistinguishable from the evaluated ciphertext ̂ct output from EvalmCP. ��

Theorems 4.4 and 4.5 yield Theorem 1.2.
Instantiation For the underlying maliciously circuit-privateMKHE for branching programs,
we can just use the scheme explained in Sect. 4.2. For the underlying (non-circuit-private)
MKFHE, we can use the MKFHE scheme MKHEBHP.

As explained above, for the resulting scheme to be semantically secure, we need joint
circular security for the above two schemes. This assumption seems reasonable since the
former building block scheme is also based on MKHEBHP (albeit an additional LWE-based
OT protocol from [9]).

5 Maliciously circuit-private MPC based on LWE

In this section, we describe our MPC protocol from any maliciously circuit-private MKHE
scheme with distributed setup, a maliciously (statistically) sender-private OT protocol, and
a projective circuit garbling scheme.

5.1 Definitions for MPC

We here give the definition of maliciously circuit-private MPC protocols. We consider a 1-
server and N -client protocol. In this protocol, inputs to participating parties are asymmetric
(i.e., the server has a function to be computed, and the clients have inputs for the function), so
the secureMPC protocol needs to have two types of security requirements: server privacy and
client privacy. The server privacy has almost the same requirement with the circuit privacy
in MKHE, and the client privacy means the semantic security of the client’s input. We do
not allow adversaries to corrupt the server, but we want to consider stronger security against
clients. The client privacy should be considered for a semi-honest server andmalicious clients.

In the following, we first define a client-server MPC protocol, then we define the client
privacy and server privacy for the protocol, where we refer to the server privacy as circuit
privacy. These definitions follow from those in [17].
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Definition 5.1 (Client-Server MPC protocol) Let C be a class of functions with at most N
inputs. A multi-party protocol  for C is a protocol between parties P1, . . . , PN , and the
server S where Pi (i = 1, . . . , N ) is given xi as input, and S is given a function F on N
inputs. Denote x = (x1, . . . , xN ). At the end of the protocol, each party Pi outputs F(x)
while S outputs ⊥.

Definition 5.2 (Client Privacy) An adversary A corrupting {Pi }i∈T for some T ⊆ [N ]
receives all messages directed to Pi for every i ∈ T and controls the messages that they
send. Let View,S(F, x) denote the joint collection of messages that S receives in an execu-
tion of the protocol  on an N -input function F ∈ C and an input set x = (x1, . . . , xN ). Let
View,A(F, x) denote the joint collection of messagesA receives through corrupted parties
in an execution of protocol  on F and x. A multi-party protocol  for C is secure against
a semi-honest server and malicious clients if the protocol satisfies the following two privacy
notions:

• Privacy against clients For every adversary A corrupting parties {Pi }i∈T with |T | =
t < N , for all N -input functions F ∈ C and for all input sets x = (x1, . . . , xN ) and
x′ = (x ′

1, . . . , x ′
N ) such that xi = x ′

i for any i ∈ T , for all y the range of F ,

[View,A(F, x) : y = F(x)] ≈c [View,A(F, x′) : y = F(x′)].
• Privacy against a server For every server S, for all N -input functions F ∈ C and for all

input sets x = (x1, . . . , xN ) and x′ = (x ′
1, . . . , x ′

N ) such that xi = x ′
i for any i ∈ T , for

all y the range of F ,

[View,S(F, x) : y = F(x)] ≈c [View,S(F, x′) : y = F((x′)].
Definition 5.3 (Malicious Circuit Privacy (Server Privacy)) Let be a multi-party protocol
for a function class C. In the ideal-world execution of , the computation of F ∈ C is
performed through a trusted functionality F . Each party Pi sends their input xi to F , the
server sends F to F , which performs the computation and sends the output F(x) to each Pi

(i ∈ [N ]). Let IdealF,S(F, x) denote the joint output of the ideal-world adversary (called
simulator) S, parties P1, . . . , PN and the server S. Moreover, let Real,A(F, x) denote the
joint output of the real-world adversaryA, parties P1, . . . , PN and the server S. The protocol
 is maliciously circuit-private if for every malicious (and possibly unbounded) adversary
A corrupting any number of parties, there exists an unbounded simulator S with black-box
access toA such that for all N -input functions F ∈ C and for all input sets x = (x1, . . . , xN ),
IdealF,S(F, x) ≈s Real,A(F, x).

5.2 Construction

Our MPC protocol consists of four rounds, and is maliciously circuit-private in the plain
model. We follow the approach of [17] but require an additional round (the first round) that
computes the distributed setup.
Intuition of our construction The server evaluates the function over encrypted inputs sent
from the clients. The server then constructs a special decryption circuit that given as input a
secret key for the circuit-private MKFHE scheme and randomness used to generate the secret
key, decrypts the result of the homomorphic evaluation if the input secret keys are valid. Also,
the server sends a garbled circuit of the special decryption circuit to the clients. The difference
between real-world and ideal-world executions of the protocol is how to construct a garbled
circuit of the special decryption circuit. The simulator of the malicious circuit privacy for
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our MPC protocol generates a simulated result of the homomorphic evaluation by using the
simulator for the circuit-private homomorphic scheme, and compute a garbled circuit for the
special decryption circuit hardwired with the simulated result. Since the simulated result is
statistically indistinguishable from the result of the real evaluation, the garbled circuit is also
statistically indistinguishable from the one in the real-world execution of the protocol.
Building blocks We will use the following building blocks.

• Let MKHEmCP = (dSetupmCP, KGmCP, EncmCP, EvalmCP,DecmCP) be a maliciously
circuit-private MKFHE scheme with distributed setup.

• Let OT = (Q,A,D) be a maliciously sender-private OT protocol.
• Let GC = (GCircuit,GEval) be a projective circuit garbling scheme.

The description of our protocol  is as follows.

• Inputs and outputs: The clients Pi (i = 1, ., N ) is given xi as input, and the server S is
given a function F on N inputs. Each Pi outputs F(x1, ., xN ) while S outputs ⊥.

• Round 1: For i ∈ [N ], the client Pi computes ppi
$←− dSetupmCP(1

λ, 1N , i ∈ [N ]), and
broadcasts ppi to other parties and the server S. Each of the parties Pi and the server S
checks if pp j ∈ [dSetupmCP(1

λ, 1N , j) for all j ∈ [N ]. If the check fails, the parties
abort the protocol. Let pp := (pp j ) j∈[N ].

• Round 2: For i ∈ [N ], the client Pi runs (pki , ski )
$←− KGmCP(pp, i; rKG,i ). Let s and r be

the bit-size of ski and rKG,i , respectively. The client Pi computes (qk
i , stki )

$←− Q(1λ, ski,k)

for k ∈ [s] (where ski,k is the k-th bit of ski ), and (qs+k
i , sts+k

i )
$←− Q(1λ, rKG,i,k) for

k ∈ [r ] (where rKG,i,k is the k-th bit of rKG,i ). Also Pi computes a ciphertext cti
$←−

EncmCP(pki , xi ), and sends (pki , cti , (q
k
i )k∈[s+r ]) to the server S.

• Round 3: The input of the server S is a function F that takes on inputs x = (x1, . . . , xN ).

The server S selects a circuit C representing the function F . It then computes ̂ct
$←−

EvalmCP(C,pp,pk, (ct j ) j∈[N ]), where we denote pk := (pk j ) j∈[N ]. Let g
̂ct,pp,pk be the

following circuit:

g
̂ct,pp,pk((sk j , r j ) j∈[N ])

:=
{

Dec(sk, ̂ct) if (pk j , sk j ) = KGmCP(pp, j; r j ) for all j ∈ [N ];
⊥ otherwise

,

wherewedenote sk := (sk j ) j∈[N ]. The server S then generates a garbled circuit (G, e)
$←−

GCircuit(1λ, g
̂ct,pp,pk), where e = (X0

j , X1
j ) j∈[N (r+s)]. For each i ∈ [N ] and k ∈ [r +

s], the server S computes ak
i

$←− A(qk
i , X0

(i−1)(r+s)+k , X1
(i−1)(r+s)+k). It finally sends

(G, (ak
i )k∈[r+s]) to the client Pi for each i ∈ [N ].

• Round 4: For i ∈ [N ], Pi computes the garbled input X(i−1)(r+s)+k = D(ak
i , stki ) for

k ∈ [s + r ]. The client Pi broadcasts these to all the other clients, Pj for j ∈ [N ]\{i}.
Each client computes y := GEval(G, (X j ) j∈[N (r+s)]).

The security of our protocol is guaranteed by the following theorem.

Theorem 5.1 If MKHEmCP is semantically secure and maliciously circuit-private, OT is sta-
tistically sender private against malicious receivers, and GC is secure, then  is a secure
MPC protocol with malicious circuit privacy.
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The proof of Theorem 5.1 is divided into the following three lemmas: the first two lemmas
state that the protocol  has privacy against malicious clients and a semi-honest server, and
the third one is for saying the malicious circuit privacy of .

Lemma 5.1 (Privacy against Malicious Clients) Assume MKHEmCP is semantically secure,
OT is statistically sender-private against malicious receivers and GC is secure. Then, for any
y ∈ {0, 1}, x, x′ ∈ {0, 1}N , F : {0, 1}N → {0, 1} and T ⊂ [N ] such that xi = x ′

i for any
i ∈ T ,

[View,A(F, x) : y = F(x)] ≈c [View,A(F, x′) : y = F(x′)].
Proof The ciphertexts {ct j } j∈[N ]\T obtained for x in the second round of the protocol are
computationally indistinguishable from {ct′j } j∈[N ]\T obtained for x′ by the semantic security
of MKHEmCP. Let g and g′ be circuits obtained in the third round of  for input x and
x′, respectively, where both circuits evaluate to y if a secret key and randomness for the

key generation are valid, and 0 otherwise. Let (G, e)
$←− GCircuit(1λ, g) and (G ′, e′) $←−

GCircuit(1λ, g′). By the sender-privacy of OT against malicious receivers, A can obtain
at most one garbled input (token) for the corrupted clients. Let X and X ′ be garbled inputs
obtained by e and e′ for the secret key and its randomness. Since both circuits evaluate to y on
garbled inputs corresponding to valid secret keys and0otherwisewehave (G, X) ≈c (G ′, X ′)
by the security of GC. Also, ai ’s and garbled inputs do not depend on the protocol inputs.
Therefore, the views of an adversary A in the executions of  for input x and that for x′ are
computationally indistinguishable. This concludes the proof of lemma. ��
Lemma 5.2 (Privacy against a Semi-honest Server) If MKHEmCP is semantically secure and
OT is receiver private against semi-honest senders, then for any y ∈ {0, 1}, x, x′ ∈ {0, 1}N ,
and F : {0, 1}N → {0, 1}, we have

[View,S(F, x) : y = F(x)] ≈c [View,S(F, x′) : y = F(x′)].
Proof In the second round of , each client Pi (i = 1, . . . , N ) sends OT-queries (qk

i )k∈[r+s]
to the server, and the queries do not depend on the protocol input. Thus, by the receiver privacy
of OT, they are computationally indistinguishable from OT-queries generated by using some
fixed string independent of the secret key and randomness. This in turn enables us to invoke
the semantic security ofMKHEmCP, and say that the server’s view in the case that the ciphertext
cti in the second round message encrypts x, is computationally indistinguishable from the
case that cti encrypts x′. This concludes the proof of the lemma. ��

Intuition for the proof of the following theorem is given in the beginning of this section
(Sect. 5.2).

Lemma 5.3 (Malicious Circuit Privacy) If MKHEmCP is maliciously circuit-private, then the
protocol  is maliciously circuit-private.

Proof Let ExtmCP and SimmCP be the extractor and simulator that are guaranteed to exist by
the malicious circuit privacy of MKHEmCP. Here we show the construction of a simulator S
for , where we can assume w.l.o.g. that the real-world adversary A corrupts all the clients,
because we are not considering the privacy of the clients here.

• Step 1: The simulator S receives pp∗
j for j ∈ T = [N ] from A. Denote pp∗ :=

(pp∗
j ) j∈[N ].
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• Step2:Given (pk∗
i , ct

∗
i , (q

∗
i,k)k∈[r+s])i∈T fromA,S runsExtmCP to compute the corrupted

input x̃i := ExtmCP(pp∗, i,pk∗
i , ct

∗
i ). It then submits them to the ideal functionality F

and obtains b∗ := F(x̃1, . . . , x̃N ).
• Step 3: Denote pk∗ = (pk∗

j ) j∈[N ]. The simulator S runs SimmCP to compute

̂ct∗ $←− SimmCP(pp∗,pk∗, ( j, ct∗j ) j∈[N ], b∗),

then defines a circuit

g
̂ct∗,pp∗,pk∗((sk j , r j ) j∈[N ])

:=
⎧

⎨

⎩

DecmCP(sk1, . . . , skN , ̂ct∗) if (pk∗
j , sk j ) = KGmCP(pp∗, j; r j )

for all j ∈ [N ]
0 otherwise

.

The simulator generates a garbled circuit (G∗, e∗) $←− GCircuit(1λ, g
̂ct∗,pp∗,pk∗) where

e∗ = (X∗0
j , X∗1

j ) j∈[N (r+s)]. For all i ∈ [N ] and k ∈ [r + s], the simulator S computes

a∗
i,k

$←− A(q∗k
i , X∗0

(i−1)(r+s)+k , X∗1
(i−1)(r+s)+k), and sends (G∗, (a∗

i,k)k∈[r+s]) for i ∈ T to
A.

• Output: In Round 4 of the protocol, no interaction between the server S and the clients
Pi occurs. Since we are assuming that all clients are corrupted and controlled by A, the
simulator S need not do any action until A returns the outputs of the corrupted parties.
Finally, when A terminates with the outputs of the corrupted parties in the real-world
execution of , S just forwards the received outputs and terminates.

By the malicious circuit privacy of MKHEmCP, ̂ct∗ is statistically indistinguishable from
the real computation of EvalmCP for F , and thus the garbled circuit G∗ is also statis-
tically indistinguishable from the one in the real-world execution of . Hence we have
Real,A(F, x) ≈s Ideal,S(F, x). ��
Instantiations from LWE When instantiated MKHEmCP with our proposed schemes in
Sects. 4.2 and 4.3, we obtain Theorems 1.3 and 1.4, respectively.

6 Conclusion

In this paper, we constructed a maliciously circuit-private MKHE scheme for branching pro-
grams based on LWE as well as weak circular security of the (plain) MKFHE scheme by
Brakerski et al. [15]. We also showed how the obtained scheme can be combined with a plain
MKFHE scheme (such as [15]), to obtain a fully homomorphic maliciously circuit-private
scheme. To obtain this result, we relied on a somewhat non-standard circular security assump-
tion, but a similar assumption is required to show the security of the previous maliciously
circuit-private MKFHE scheme in [17]. Based on either of our MK(F)HE schemes, we built
a four-round MPC protocol with circuit privacy against semi-honest server and malicious
clients in the plain model, where the additional building blocks required for our protocol can
be instantiated assuming only LWE.
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