
Designs, Codes and Cryptography (2023) 91:1183–1191
https://doi.org/10.1007/s10623-022-01144-x

Complete traceability multimedia fingerprinting codes
resistant to averaging attack and adversarial noise with
optimal rate

Ilya Vorobyev1

Received: 12 January 2022 / Revised: 22 August 2022 / Accepted: 19 October 2022 /
Published online: 13 November 2022
© The Author(s) 2022

Abstract
In this paper we consider complete traceability multimedia fingerprinting codes resistant to
averaging attacks and adversarial noise. Recently it was shown that there are no such codes
for the case of an arbitrary linear attack. However, for the case of averaging attacks complete
traceability multimedia fingerprinting codes of exponential cardinality resistant to constant
adversarial noise were constructed in Egorova et al. (Probl Inf Transm 56(4):388–398, 2020).
We continue this work and provide an improved lower bound on the rate of these codes.
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1 Introduction

Multimedia fingerprinting codes are used to protect digital content from illegal copying and
redistribution.

The key idea of this technique is to embed a unique signal, called watermark, into every
copy, so that it can be tracked to its buyer [10, 11]. Watermarks should be able to protect the
dealer from collusion attack, when a coalition of dishonest users (pirates) construct a new
file, for example, by averaging their copies of the same content. By gathering a big enough
coalition it is possible to sufficiently decrease the impact of each individual fingerprint, which
makes it hard for the dealer to identify the pirates. In papers [2, 3] the authors propose to use
separable (or signature) codes to track all members of the coalition.
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A model of multimedia fingerprinting with an adversarial noise was proposed in [6], i.e.
the coalition of dishonest users can add some noise to the content in order to hide their
fingerprints. In [8] it was shown that there are no multimedia codes resistant to a general
linear attack and an adversarial noise. However, in [7] the authors proved that for the most
common case of averaging attack one can construct multimedia codes with a non-vanishing
rate. We continue their research and prove a new lower bound on the rate, which has the same
order as an upper bound. A detailed survey of state-of-the-art results can be found in [5].

The rest of the paper is structured as follows. In Sect. 2 we introduce the required notation
and definitions and formally describe the problem. Our main result is proved in Sect. 3.
Sect. 4 concludes the paper and discusses some open problems.

2 Problem statement

Vectors are denoted by bold letters, such as x, and the i th entry is referred to as xi . The
set of integers {1, 2, . . . , M} is abbreviated by [M]. The sign ‖·‖ stands for the Euclidean
norm. A support supp(x) of a vector x is a set of such coordinates i that xi �= 0. Scalar (dot)
product of vectors x and y is denoted as 〈x, y〉, greatest common divisor of integers a and
b is referred to as (a, b). For a given binary n × M matrix H with columns h1, . . . , hM and
set I ⊂ [M] introduce notation for a result of averaging attack

σ(H | I ) = |I |−1
∑

i∈I
hi .

A binary entropy function h(x) is defined as follows

h(x) = −x log2 x − (1 − x) log2(1 − x).

Suppose that multimedia content is represented by a vector x ∈ R
N , which is being sold toM

users. Vector x is often called a host signal. To protect the content from unauthorized copying
the dealer constructs a set ofwatermarksw1, . . . , wM , which are also called fingerprints. The
dealer fixes n orthonormal vectors f 1, . . . , f n of length N , f i ∈ R

N and formswatermarks
wi as linear combinations of f j with binary coefficients hi j ∈ {0, 1}

wi =
n∑

j=1

hi j f j for i ∈ [M]. (1)

Then watermarks are added to the host signal to obtain a final copy yi for the i th user

yi = x + wi .

We assume that ‖wi‖ � ‖x‖, so the added watermark doesn’t change the content much.
A coalition of dishonest users I ⊂ [M] may come together to forge a new copy and

redistribute it among other users. They can apply a linear attack, i.e., create a new copy y as
a linear combination of their copies. In addition, they may add a noise vector ε, ‖ε‖ � ‖x‖,
to make it harder for the dealer to identify them.

y =
∑

i∈I
λi yi + ε,

where λi > 0 for each dishonest user in I exactly participates in the attack, λi ∈ R and∑
i∈I λi = 1 to ensure the multimedia content x not be changed. Especially in averaging
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attack, the last condition is λi = 1/|I | for every i ∈ I and it implies that

y =
∑

i∈I
λi yi + ε = x +

∑

i∈I
λi wi + ε.

Note that

‖ y − x‖ =
∥∥∥∥∥
∑

i∈I
λi wi + ε

∥∥∥∥∥ ≤ max ‖wi‖ + ‖ε‖ � ‖x‖ ,

therefore, y is close enough to the original signal x.
In order to find the coalition of dishonest users based on the forged copy y, the dealer

evaluates

sk = 〈 y − x, f k〉

=
〈
∑

i∈I
λi

n∑

j=1

hi j f j + ε, f k

〉
=

∑

i∈I
λi hik + ek,

where ek = 〈ε, f k〉, and forms a syndrome vector S = (s1, . . . , sn). The syndrome vector
S can be equivalently defined through the matrix equation

S = H�T + e,

where � = (λ1, . . . , λM ), λi = 0 for i /∈ I , and e = (e1, . . . , en), ‖e‖ ≤ ‖ε‖.
The dealer wants to design a matrix H in such a way, that by observing S he always can

find the support supp(�) if the size of the coalition I is at most t . The following definition
for a noiseless scenario was introduced in [6].

Definition 1 A binary n × M matrix H is called a t-multimedia digital fingerprinting code
with complete traceability (t-MDF code for short) if for any two distinct coalitions I , I ′,
|I |, |I ′| ≤ t , we have

H�T �= H�′T

for any real vectors � = (λ1, . . . , λM ) and �′ = (λ′
1, . . . , λ′

M ), such that λi ≥ 0, λ′
i ≥ 0,

M∑
i=1

λi =
M∑
i=1

λ′
i = 1, supp(�) = I , supp(�′) = I ′.

Denote themaximal cardinality and themaximal rate of t-MDFcode of length n asM(n, t)
and R(n, t) = n−1 log2 M(n, t). Denote by R∗(t) and R∗(t) an upper and a lower limits of
R(n, t) as n → ∞. It is known that

�

(
log2 t

t

)
≤ R∗(t) ≤ R∗(t) ≤ log2 t

2t
(1 + o(1)). (2)

The upper bound of (2) can be derived from an upper bound for a binary adder channel from
[4]. The lower bound is based on the following observation from [6]. If any 2t columns of
a binary matrix H are independent over the field of real numbers R, then H is a t-MDF
code. Since parity check matrices of binary codes with a distance d > 2t poses this property,
application of Goppa or BCH codes gives an explicit construction with a rate R∗(t) ≥ 1/t

[6]. An improved lower bound �
(
log2 t
t

)
can be derived from the results of the paper [1],

where the authors proved the existence of binary n×M matrices, n−1 log2 M = �(log2 t/t),
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such that any 2t columns are independent over the field Zp , p > 2t . We note that the latter
result was proved with a probabilistic method, i.e. it’s not explicit.

Now we discuss a noisy scenario. In [8] the authors defined (t, δ)-light complete trace-
ability multimedia digital fingerprinting codes and proved that they don’t exist. Informally,
if some coefficient λi is sufficiently small, then it is possible to compensate the signal of i th
user by the noise so that it would be impossible to identify this user. However, for the case of
averaging attacks, when all non-zero coefficients λi are equal, the situation is different. Let
us give the corresponding definition from [7].

Definition 2 Abinaryn×Mmatrix H is called a (Euclidean) (t, δ)-light complete traceability
code if for any two distinct coalitions I1, I2, |I1|, |I2| ≤ t , we have

σ(H | I1) + e1 �= σ(H | I2) + e2,

for any real vectors e1, e2 ∈ R
n , ‖e1‖ , ‖e2‖ ≤ δ.

In other words, Euclidean distance between vectors σ(H | I1) and σ(H | I2), generated by
different coalitions I1 and I2, |I1|, |I2| ≤ t , should be big, i.e.

‖σ(H | I1) − σ(H | I2)‖ > 2δ.

Remark 1 Although an averaging attack is very restrictive for the coalition, in many papers
authors consider only them instead of general linear attacks. One of the arguments is that
averaging attack is the most fair choice since all the members of a coalition contribute the
same proportion of data into a forged copy [2, 11]. However, in future research it may be
reasonable to study a model with different coefficients λi , which are lower bounded by some
constant.

Define codes for the case of noise vectors with a bounded cardinality of their support.

Definition 3 Abinary n×M matrix H is called aHamming (t, T )-light complete traceability
code if for any two distinct coalitions I1, I2, |I1|, |I2| ≤ t , we have

σ(H | I1) + e1 �= σ(H | I2) + e2,

for any real vectors e1, e2 ∈ R
n , |supp(e1)|, |supp(e2)| ≤ T .

Equivalently, the number of different coordinates of vectors σ(H | I1) and σ(H | I2),
generated by distinct coalitions I1 and I2, |I1|, |I2| ≤ t , should be big, i.e.

|supp(σ (H | I1) − σ(H | I2))| > 2T .

Denote the maximal cardinality of Euclidean and Hamming light complete traceability
codes of length n by ME (n, t, δ) and MH (n, t, T ) respectively. Define the rates of these
codes as follows

RE (n, t, δ) = log2 ME (n, t, δ)

n
,

RH (n, t, T ) = log2 MH (n, t, T )

n
.

In the following proposition we show an obvious connection between these two families
of codes.

Proposition 1 1. A Hamming (t, T )-light complete traceability code H is a Euclidean
(t, δ)-light complete traceability code for δ = √

2T /(2t(t − 1)).
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2. AEuclidean (t, δ)-light complete traceability code H is aHamming (t, T )-light complete
traceability code for T = �2δ2�.

3. The rates of these codes are connected as follows

RE (n, t,
√
2T /(2t(t − 1))) ≥ RH (n, t, T ),

RH (n, t, �2δ2�) ≥ RE (n, t, δ).

Proof 1. Assume that aHamming (t, T )-light complete traceability code H is not a Euclidean
(t,

√
2T /(2t(t − 1)))-light complete traceability code, i.e. there exist two coalitions I1 and

I2, such that

‖�‖ ≤ 2δ, where � = σ(H | I1) − σ(H | I2), δ = √
2T /(2t(t − 1)).

Since the minimal positive value of coordinate �i is at least 1/(t(t − 1)), we conclude that
there are at most

4δ2t2(t − 1)2 = 2T

coordinates, in which σ(H | I1) and σ(H | I2) are different. Hence, there are two vectors
u1, u2, |supp(u1)|, |supp(u2)| ≤ T , such that

σ(H | I1) + u1 = σ(H | I2) + u2.

Therefore, H is not a Hamming (t, T )-light complete traceability code. This contradiction
proves the first claim.

2. Assume that a Euclidean (t, δ)-light complete traceability code H is not a Hamming
(t, �2δ2�)-light complete traceability code, i.e. there exist two coalitions I1 and I2, such that

|supp(�)| ≤ 2T , where � = σ(H | I1) − σ(H | I2), T = �2δ2�.
Since the absolute value of every coordinate of the vector � is at most 1, we have

‖�‖ ≤ √
2T ≤ 2δ,

which contradicts the definition of Euclidean (t, δ)-light complete traceability codes.
3. Claim 3 is an obvious corollary of claims 1 and 2. ��

In [7] it was proved that lim infn→∞ RE (n, t, δ) ≥ �(1/t) for constant δ. An upper bound
is the same as in the noiseless case, lim supn→∞ RE (n, t, δ) ≤ log2 t

2t (1 + o(1)), since the
proof works for an averaging attack. Therefore, there is a �(log2 t) gap between the lower
and upper bound. We eliminate this gap in the next section.

3 Lower bound on the rate of light complete traceability codes

In this section we prove

Theorem 1 For τ < 1/4

lim inf
n→∞ RH (n, t, �τn�) ≥ (1 − 2τ) log2 t

6t
(1 + o(1)), t → ∞. (3)

Combining Theorem 1 and Proposition 1 we obtain the following
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Corollary 1 For δ2 = αn, α < 1/8t2(t − 1)2), we have

lim inf
n→∞ RE (n, t,

√
αn) ≥ (1 − 2τ) log2 t

6t
(1 + o(1)), t → ∞,

where τ = 2αt2(t − 1)2.

For the case of small noise δ = o(
√
n) and n → ∞ a new lower bound has the following

form

lim inf
n→∞ RE (n, t, δ) ≥ lim

α→0
lim inf
n→∞ RE (n, t,

√
αn) ≥ log2 t

6t
(1 + o(1)).

It improves the previous lower bound�(1/t) and has the same order�(log2 t/t) as the upper
bound. However, the new bound is not explicit, i.e. there is no effective encoding or decoding
algorithm for a new code.

Proof of Theorem1 Consider a random n × M matrix H , M = 2Rn , in which every entry is
chosen independently and equals 1 with a probability 1/2. The value of R will be specified
later. Fix two coalitions I1 and I2, |I1|, |I2| ≤ t . Call a row r good, if

∑
i1∈I1

hr ,i1

|I1| �=

∑
i2∈I2

hr ,i2

|I2| .

Otherwise, we call a row bad. Call a pair of coalitions good, if there are at least 2T + 1 good
rows for them. Otherwise, call such a pair bad. Then the condition that H is a Hamming
(t, T )-light complete traceability code is equivalent to the absence of bad pairs of coalitions.

We say that a bad pair of coalitions I1 and I2 is minimal, if there is no another bad pair
of coalitions I ′

1 and I ′
2, I

′
1 ∪ I ′

2 ⊂ I1 ∪ I2. For example, a bad pair of intersecting coalitions
I1 and I2 with |I1| = |I2| can’t be minimal, since it contains another bad pair I1 \ I2 and
I2 \ I1. Obviously, to prove that H is a Hamming (t, T )-light complete traceability code it
is enough to check that there are no minimal bad pairs of coalitions.

We are going to prove that a mathematical expectation of the number of minimal bad pairs
of coalitions is tending to zero as n → ∞. By Markov’s inequality this would imply that for
big enough n there exists (t, T )-light complete traceability Hamming code with the rate R
and T = �τn�.

Now we estimate the probability that a row i is bad for coalitions I1 and I2. ��

Lemma 2 The probability that a row is bad for coalitions I1 and I2, |I1| = q, |I2| = r , q > r ,
is upper bounded by p(q) = q−1/3+o(1), q → ∞. For non-intersecting coalitions I1 and I2,
|I1| = |I2| = q, the probability that a row is bad is upper bounded by p(q) = q−1/2+o(1).
Moreover, p(q) ≤ 1/2 for all q.

Proof of Lemma 2 For the case q = r , I1 ∩ I2 = ∅, probability of a bad row is equal to

2−2q
q∑

i=0

(
q

i

)(
q

i

)
= 2−2q

(
2q

q

)
= O(q−0.5),

which is not greater than 1/2 for all q .
Now assume that q > r . Denote the cardinality of the intersection of I1 and I2 as k.

Consider two cases q − k > s and q − k ≤ s, s = q2/3.
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The first case q − k > s. Note that for any distribution of zeroes and ones in columns
from I2 there exists at most one fraction of ones in I1 \ I2 which makes the row bad. Hence
the probability of obtaining a bad string is upper bounded by

max
l

(q−k
l

)

2q−k
≤ 1/2.

For q → ∞ this bound looks as follows

max
l

(q−k
l

)

2q−k
<

1 + o(1)√
π(q − k)/2

<
1 + o(1)√

πs/2
= O(q−1/3),

where in the first inequality a Stirling’s approximation
( q−k
(q−k)/2

) ∼ 2q−k√
π(q−k)/2

for a maximal
binomial coefficient was used.

The second case q − k ≤ s. Observe that the greatest common divisor d = (q, r) is at
most s, since d ≤ q − r ≤ q − k ≤ s. Since s1/q = s2/r implies (q/d) | s1 and (r/d) | s2,
it is readily seen that for a bad row i the i th coordinate in sums

∑
j∈I1

h j and
∑
j∈I2

h j should

be divided by q/d and r/d respectively. Therefore, probability of a bad row can be upper
bounded by the probability P that a binomial random variable ξ ∼ Bin(q, 1/2) is divided
by q/d ≥ q1/3. One can see that P ≤ 1/2 for q/d > 1. Now we prove that for q → ∞ the
probability P is at most q−1/3+o(1).

By Hoeffding’s inequality [9]

Pr
(
|ξ − q/2| >

√
q ln q

)
≤ 2e−2 ln q = O

(
q−2) .

Define S = [� q/2−√
q ln q

q/d �, � q/2+√
q ln q

q/d �]. Then we can estimate P as follows

P =
d∑

l=0

Pr(ξ = l · q/d)

≤
∑

l∈S
Pr(ξ = l · q/d) + Pr

(
|ξ − q/2| >

√
q ln q

)

≤ max
x

Pr(ξ = x) ·
⌈
2
√
q ln q + 1

q/d

⌉
+ O

(
q−2)

≤ 1√
q

·
⌈
2
√
q ln q + 1

q/d

⌉
+ O

(
q−2)

≤ O(q−1/3
√
ln q) = q−1/3+o(1).

��
To estimate amathematical expectation E of the number ofminimal bad pairs of coalitions

we iterate over all < Mq+r pairs of coalitions having sizes q and r , q > r , all pairs of non-
intersecting coalitions of size q , and over all possible amounts L < 2T + 1 of good rows.
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E <
∑

0<r≤q≤t

Mq+r
2T∑

L=0

(
n

L

)
(1 − p(q))L p(q)n−L

a)
<

t∑

q=1

qM2q(2T + 1)

(
n

2T

)
(1 − p(q))2T p(q)n−2T

=
t∑

q=1

22qRn p(q)n2(h(2τ)+o(1))n
(
1 − p(q)

p(q)

)2τn

=
t∑

q=1

2A(q)n,

where

A(q) = 2qR + log2 p(q) + h(2τ) + 2τ log2

(
1 − p(q)

p(q)

)
.

In inequality a) we used the fact that
(
n

L

)
(1 − p(q))L p(q)n−L ≤

(
n

2T

)
(1 − p(q))2T p(q)n−2T ,

since 2τ < 1/2 ≤ 1 − p(q) and 2T ≤ (1 − p(q))n.

Let R̂ = min
q∈[1,t] −

log2 p(q)+h(2τ)+2τ log2
(
1−p(q)
p(q)

)

2q . Note that since 2τ < 1 − p(q) for all q

then R̂ > 0. For R < R̂ the condition A(q) < 0 holds, hence, E → 0 as q → ∞, which
implies that the rate R̂ is achievable. For t → ∞ the minimum would be attained at q , which
tends to ∞, so

R̂ = (1 − 2τ) log2 t

6t
(1 + o(1)), t → ∞.

Theorem 1 is proved. ��

4 Conclusion

In this paper we proved a new lower bound on the rate of Euclidean (t, δ)-light complete
traceability codes, which shows that the optimal rate has order �(log2 t/t). However, the
proof uses probabilistic arguments and does not provide an explicit constructionwith efficient
encoding and decoding algorithms.Anatural open problem is to design a codewith an optimal
rate and efficient decoding algorithm.

Coefficient λi shows what proportion of the original content was contributed by user i into
an illegal copy. It is natural that if the contribution of user i was very small then it will be hard
for a dealer to identify such user. So, another open task is to design a code capable of finding
all members of a coalition for an adversarial noise and linear attack, whose coefficients λi
are lower bounded by some constant, i.e. all users, whose contribution was big enough.
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