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Abstract
Functional encryption (FE) is a new paradigm of public key encryption that can control the
exposed information of plaintexts by supporting computation on encrypted data. In this paper,
we propose efficient multi-client FE (MCFE) schemes that compute the set intersection of
ciphertexts generated by two clients. First, we propose an MCFE scheme that calculates the
set intersection cardinality (MCFE-SIC) and prove its static security under dynamic assump-
tions. Next, we extend our MCFE-SIC scheme to an MCFE scheme for set intersection
(MCFE-SI) and prove its static security under dynamic assumptions. The decryption algo-
rithm of our MCFE-SI scheme is more efficient than the existing MCFE-SI scheme because
it requires fewer pairing operations to calculate the intersection of two clients. Finally, we
propose a decentralized MCFE scheme for set intersection (DMCFE-SI) that decentralizes
the generation of function keys. Our MCFE schemes can be effectively applied to a privacy-
preserving contact tracing system to prevent the spread of recent infectious diseases.

Keywords Functional encryption · Multi-client setting · Private set intersection · Contact
tracing · Bilinear maps

Mathematics Subject Classification 94A60

1 Introduction

Functional encryption (FE) is a cryptographic technique that supports a controlled functional
evaluation on encrypted data and has an interesting feature that the result of the function
evaluation is directly revealed in the decryption [14]. In FE, a user creates a ciphertext CT
for a plaintext x using a public key, and an entity who possesses a function key DK f for
a function f issued by a trusted center can obtain f (x) by decrypting the ciphertext. As
interesting extensions of FE, multi-input FE (MIFE) that handles multiple ciphertexts during
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decryption and multi-client FE (MCFE) that provides independent encryption keys for each
client were proposed [21]. FE schemes that support arbitrary functions can be constructed by
using indistinguishability obfuscation, but indistinguishability obfuscation is still inefficient
to implement. In order to construct efficient FE schemes, research on FE that supports only
special functions instead of general functions has been actively conducted [2, 3, 6].

Recently, FE schemes that support the set intersection operation were proposed [32, 37].
An interesting application of the FE schemes for set intersection is privacy-preserving contact
tracing [1], which allows a user to check the possibility of contact with a confirmed patient
while preserving the location privacy of the user. A specific example is as follows. First,
a hospital cloud server encrypts and stores the visited places of a confirmed patient by
associating with time periods. If a user wants to know whether he or she has been in contact
with the confirmed patient, the user encrypts visited places associated with time periods and
uploads them to the cloud server. Then, the cloud server receives a function key that computes
the set intersection cardinality between the confirmed patient and the user, and calculates the
cardinality of an intersection set between them. If the cardinality has a positive value, then
the cloud server notifies the user that the probability of contact is high. In the later, if the
user wants to determine the exact intersection place, the user can calculate the intersection
by requesting a function key for set intersection.

The first FE schemes for set intersection were proposed by Kamp et al. [37], but their
schemes have some problems such that the result of set intersection is publicly revealed to
anybody since there is no function key and the setup algorithm should be independently
performed among all pairs of clients. To solve these problems, Lee and Seo proposed MCFE
for set intersection (MCFE-SI) schemes that support the generation of function keys between
multiple clients after running the setup algorithm just once initially [32]. They designed their
MCFE-SI schemes in bilinear groups by inventing the equal-then-derive technique. That is,
a client with an index i who has a set X = {xk} of items creates a ciphertext element H(xk)αi

for each item, and it additionally sets a temporal key K = e(H(xk), ĝ)βi as a symmetric key
to encrypt an item xk . If both i and j clients encrypt the equal item x , then the temporal key
K = e(H(x)αi H(x)α j , ĝβi /(αi+α j )) can be derived if a function key ĝβi /(αi+α j ) is provided.

In this paper, we intend to improve the performance and functionality of the MCFE-SI
schemes of Lee and Seo [32]. The first problemwith theMCFE-SI schemes of Lee and Seo is
that their decryption algorithm is inefficient. In other words, the decryption algorithm of their
MCFE-SI schemes require the process of decrypting all combinations of ciphertext elements
of two clients i and j and checking that a correct value is derived. Thus, this decryption
algorithm requires approximately �2 pairing operations where � is the number of items in a
set, and it causes a serious problem in performance when the number of items increases. The
second problem is that their MCFE-SI schemes require a trusted center to generate function
keys. The existence of a trusted center can hinder the deployment of this system to the real
environment since there are issues such that a central authority can monitor the activities of
users. Therefore, in this paper, we ask whether it is possible to design an MCFE-SI scheme
that supports efficient decryption and decentralized function key generation.

1.1 Our contributions

In this paper, we devise efficient MCFE-SI schemes and give positive answers to the
preceding questions. The detailed results of our contributions are summarized as follows.

MCFE for set intersection cardinality We first propose an MCFE for set intersection
cardinality scheme (MCFE-SIC) that calculates the cardinality of the intersection of two
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client’s sets. To support the set intersection cardinality, we use the ciphertext structure of
the MCFE-SI scheme proposed by Lee and Seo [32] and modify their scheme to provide
a new function key to check whether the ciphertext elements generated by different clients
contain equal items. At this time, in order to test the equality of the ciphertext elements
generated by different clients, we notice that the ciphertext structure of Lee and Seo uses
an algebraic pseudo-random function (PRF) which is defined as H(x)αi where x is an item
and αi is the secret key of an i-index client and H is a hash function. If a function key is
provided as (ĝαi r , ĝα j r ) where r is a random exponent, it is possible to check whether the
ciphertext elements of two clients i and j are encryption of the same item through the equation
e(H(x)αi , ĝα j r ) = e(H(x)α j , ĝα j r ) by using a pairing operation. The decryption algorithm
of this scheme additionally exposes the equality pattern between ciphertext elements in
addition to the set intersection cardinality. The ciphertext of our MCFE-SIC scheme consists
of � ciphertext elements, the function key consists of two group elements, and the decryption
algorithm requires 2� pairing operations and O(� log �) comparison operations for sorting
where � is the number of items in a set.

MCFE for set intersection Next, we propose an MCFE for Set Intersection (MCFE-SI)
scheme with improved decryption performance compared to the previous MCFE-SI scheme.
The idea of improving the decryption performance is to efficiently find a matching pair
of ciphertext elements that contain the same item from two client ciphertexts by using the
function key of our MCFE-SIC scheme. To decrypt the ciphertext elements of the actual
set item in the ciphertext, we use the same equal-then-derive method proposed by Lee and
Seo [32]. That is, when two matching ciphertext elements of two clients are H(x)αi and
H(x)α j , we can derive a temporal key K = e(H(x)αi H(x)α j , ĝβi /(αi+α j )) = e(H(x), ĝ)βi

for symmetric-key decryption if a function key ĝβi /(αi+α j ) is provided. To analyze the security
of our MCFE-SI scheme, we prove the security of our scheme by using newly introduced
complexity assumptions in the static-IND security model in which function key queries,
corrupted clients, and challenge messages are initially submitted by an attacker. Compared
to theMCFE-SI scheme of Lee and Seo that requires �2 pairing operations in decryption, Our
MCFE-SI scheme is more efficient since the decryption algorithm requires only 2� pairing
operations and O(� log �) comparison operations where � is the number of items in a set.
The comparison of our MCFE schemes with other similar schemes is given in Table 1.

Decentralized MCFE for set intersection Finally, we propose a decentralized MCFE
scheme for set intersection (DMCFE-SI) that removes the trusted center that generates func-
tion keys in our MCFE-SI scheme. The function key of our MCFE-SI scheme is composed
of two key elements ĝαi r and ĝα j r for calculating the set intersection cardinality and one key

Table 1 Comparison of functional encryption schemes for set intersection

Scheme PP size DK size CT size GenKey Encrypt Decrypt

LS [32] O(λ) 1|Ĝ| �|G| + 2�λ 1E �H + �E + �P �2P

MCFE-SIC O(λ) 2|Ĝ| �|G| 2E �H + �E 2�P

MCFE-SI O(λ) 3|Ĝ| �|G| + 2�λ 3E �H + �E + �P 3�P

DMCFE-SI O(λ) 3|Ĝ| �|G| + 2�λ 6E �H + �E + �P 3�P

Let λ be a security parameter, n be the number of users, and � be the number of items in a set.We use |G| for the
bit size of a group element inG. We use symbols H for a map-to-point hash operation, E for an exponentiation
operation, and P for a pairing operation
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element ĝβi /(αi+α j ) for deriving a temporal key. The difficulty of decentralizing the genera-
tion of function keys is that two clients i and j should select the same random exponent r
and the exponent inverse operation (αi + α j )

−1 which includes client secret keys should be
decentralized. To select the same random exponent, each client exposes a public key and runs
the Diffie–Hellman non-interactive key exchange scheme between two clients. Decentraliz-
ing the exponent inverse operation cannot be solved in a simple way. To solve this problem,
each client creates an encoded secret key by encrypting a secret keywith one-time pad, and an
entity that combines the partial function keys to perform the exponent inversion operation by
itself after combining the encoded secret keys of two clients. We can prove the security of our
DMCFE-SI scheme because the additionally exposed encoded secret keys are information
theoretically secure.

1.2 Related work

Functional encryption Boneh et al. [14] introduced the concept of functional encryption
(FE) as a newparadigm for public key encryption. They showed that identity-based encryption
[11], attribute-based encryption [23, 34], and predicate encryption [12, 28] are all special
forms of FE. The first FE scheme that supports arbitrary functions was designed by Garg et
al. [19] by using indistinguishability obfuscation, public-key encryption, and non-interactive
zero-knowledgeproof. In addition, there havebeenvarious attempts to designFE schemes that
support arbitrary functions with bounded collusion by using weaker cryptographic primitives
instead of using indistinguishability obfuscation [20, 22]. In order to improve the practicality
of FE schemes, an FE scheme for inner-products (FE-IP) that support the inner product
operation between attributes in a ciphertext and a function key was proposed by Abdalla et
al. [2]. Since then, the research on FE-IP has been expanded to support function hiding, full
security, and quadratic functions [6, 9, 10].

Multi-input and multi-client functional encryption Goldwasser et al. [21] extended the
concept of FE that handles only one ciphertext in decryption to the concept of multi-input
functional encryption (MIFE) andmulti-client functional encryption (MCFE) that support the
evaluation of a function onmultiple ciphertexts. They also showed that theseMIFEandMCFE
schemes can be constructed by using indistinguishability obfuscation. MIFE and MCFE are
the same in terms of processing multiple ciphertexts, but MCFE has an important difference
in that ciphertexts are additionally associated time periods and only ciphertexts associated
with the same time period are processed during decryption. The research on FE-IP has been
expanded to support multiple inputs, multiple clients, and decentralized key generation [3–5,
15, 31]. In addition, FE for quadratic function also can be extended to support multiple inputs
[7]. As another efficient MCFE schemes, MCFE schemes that support the set intersection
operation and MCFE scheme that support conjunctive equality and range query operations
between multiple clients have been proposed [30, 32, 37].

Private set intersection Private set intersection (PSI) is a cryptographic technique that allows
two parties compute the intersection of their private sets without revealing any other infor-
mation of the sets. Compared to an FE scheme that supports the set intersection operation,
a PSI protocol requires additional interactions between two parties when calculating the set
intersection. A simple way to implement a PSI protocol is to use the Diffie–Hellman key
exchange protocol, which is efficient in the terms of communication, but it requires public
key operations [26]. A PSI protocol by using oblivious polynomial evaluation that expresses
sets as polynomials was proposed by Freedman et al. [17]. After that, oblivious PRF based
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PSI protocols, garbled circuit based PSI protocols, and oblivious transfer based PSI protocols
have been proposed [24, 25, 29, 33]. In order to reduce the communication overhead of PSI
protocols, delegated PSI protocols in which a cloud server performs most of the computa-
tion of clients were proposed [27]. Recently, private set intersection cardinality (PSI-CA)
protocols for contact tracing have been proposed [16, 36].

2 Preliminaries

In this section, we define functional encryption, symmetric-key encryption, and pseudo-
random function. We also introduce complexity assumptions to prove the security of our
functional encryption schemes.

2.1 Multi-client functional encryption

Multi-client functional encryption (MCFE) is an extension of functional encryption (FE) that
supports computation on encrypted data, and it requires a client secret key for encryption
and handles multiple ciphertexts during decryption [21]. In MCFE, the client of an index
i encrypts a plaintext xi with a time label T using the client secret key SKi to generate a
ciphertext CTi,T . Subsequently, an entity who has a function key DK f for a function f
decrypts ciphertexts CT1,T , . . . ,CTn,T with the same time label T and obtains a decrypted
result f (x1, . . . , xn). The IND security model of MCFE is defined by Goldwasser et al. [21].
A more detailed syntax of MCFE is given as follows.

Definition 1 (Multi-Client Functional Encryption) A multi-client functional encryption
(MCFE) scheme consists of four algorithms Setup,GenKey, Encrypt, and Decrypt, which
are defined as follows:

– Setup(1λ, n) The setup algorithm takes as input the security parameter λ in unary and
the number of clients n. It outputs a master key MK , client secret keys (SK1, . . . , SKn),
and public parameters PP .

– GenKey( f , MK , PP) The key generation algorithm takes as input a function f , the
master key MK , and public parameters PP . It outputs a function key DK f .

– Encrypt(x, T , SKi , PP) The encryption algorithm takes as input a message x , a time
period T , a client secret key SKi , and public parameters PP . It outputs a ciphertext
CTi,T .

– Decrypt((CT1,T , . . . ,CTn,T ), DK f , PP) The decryption algorithm takes as input
ciphertexts (CT1,T , . . . ,CTn,T ) in which each CTi,T is an encryption of a message
xi on the same time period T , a function key DK f corresponding to a function f , and
public parameters PP . It outputs a value f (x1, . . . , xn).

The correctness of the MCFE scheme is defined as follows: For all (MK , (SK1, . . . , SKn),

PP) ← Setup(1λ, n), DK f ← GenKey( f , MK , PP) for any function f ∈ F , and
CTi,T ← Encrypt(xi , T , SKi , PP) for i ∈ [n] and any xi ∈ X , it is required that
Decrypt((CT1,T , . . . ,CTn,T ), DK f , PP) = f (x1, . . . , xn).

2.2 Symmetric key encryption

Symmetric key encryption (SKE) is an encryption method that uses the same key for encryp-
tion and decryption. The general security model of SKE is the IND security model that allows
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multiple challenge ciphertext queries. For this paper, we use a one-message IND security
model that only allows only one challenge ciphertext query. The detailed syntax of SKE is
given as follows.

Definition 2 (Symmetric Key Encryption) A symmetric key encryption (SKE) scheme con-
sists of three algorithms GenKey, Encrypt, and Decrypt, which are defined as follows:

– GenKey(1λ) The key generation algorithm takes as input the security parameter λ. It
outputs a symmetric key K .

– Encrypt(M, K ) The encryption algorithm takes as input a message M ∈ M and the
symmetric key K . It outputs a ciphertext C .

– Decrypt(C, K ) The decryption algorithm takes as input a ciphertext CT and the sym-
metric key K . It outputs a message M or a symbol ⊥.

The correctness of the SKE scheme is defined as follows: For all K generated by GenKey
and any message M ∈ M, it is required that Decrypt(Encrypt(M, K ), K ) = M .

2.3 Pseudo-random function

A pseudo-random function (PRF) is a function F : K × X → Y where K is a key space, X
is a domain, and Y is a codomain. Let F(k, ·) be an oracle for a uniformly chosen k ∈ K and
f (·) be an oracle for a uniformly chosen function f : X → Y . We say that a PRF F is secure
if for all efficient adversariesA, the advantage ofA defined asAdvPRF

A (λ) = ∣
∣Pr[AF(k,·) =

1] − Pr[A f (·) = 1]∣∣ is negligible in the security parameter λ.

2.4 Bilinear groups

A bilinear group generator G takes as input a security parameter λ and outputs a tuple
(p,G, Ĝ,GT , e) where p is a random prime and G, Ĝ, and GT are three cyclic groups
of prime order p. Let g and ĝ be generators of G and Ĝ, respectively. The bilinear map
e : G × Ĝ → GT has the following properties:

1. Bilinearity: ∀u ∈ G,∀v̂ ∈ Ĝ and ∀a, b ∈ Zp , e(ua, v̂b) = e(u, v̂)ab.
2. Non-degeneracy: ∃g ∈ G, ĝ ∈ Ĝ such that e(g, ĝ) has order p in GT .

We say that G, Ĝ,GT are asymmetric bilinear groups with no efficiently computable iso-
morphisms if the group operations in G, Ĝ, and GT as well as the bilinear map e are all
efficiently computable, but there are no efficiently computable isomorphisms betweenG and
Ĝ.

2.5 Complexity assumptions

We introduce complexity assumptions necessary to prove the security of ourMCFE schemes.
These complexity assumptions are dynamic assumptions that are defined depending on the
key queries of an attacker. Note that these assumptions are slightmodifications of the assump-
tions introduced by Lee and Seo [32]. We analyze that these complexity assumptions hold in
the generic group model in Sect. 7.

Let n be a positive integer, ρ be a target index such that ρ ∈ [n], and Q = {(i, j)} be
a set of index pairs that i, j ∈ [n] and i < j . From n, ρ, and Q, we define an index set
J = {k : 1 ≤ k 	= ρ ≤ n such that (k, ρ) /∈ Q if k < ρ and (ρ, k) /∈ Q if k > ρ}. This
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ComputeJ (n, ρ, Q) where Q = {(i, j)}
1. Initialize a set J = ∅.
2. For each k ∈ {1, . . . , n} \ {ρ}:

If k < ρ and (k, ρ) /∈ Q, then add k to J .
If k > ρ and (ρ, k) /∈ Q, then add k to J .

3. Output the set J .

set can be computed by using the function ComputeJ which is described as follows: For
example, if we let n = 4, ρ = 2, and Q = {(1, 4), (2, 3), (2, 4)}, then we obtain J = {1}
since (1, 2) /∈ Q, (2, 3) ∈ Q, and (2, 4) ∈ Q.

Assumption 1 Let (p,G, Ĝ,GT , e) be a bilinear group randomly generated by G(1λ). Let
g, ĝ be random generators of G, Ĝ respectively. Let n, ρ, Q, J be defined above. The
Assumption 1 for (n, ρ, Q, J ) is that if the challenge tuple

D = (

(p,G, Ĝ,GT , e), g, ga, {gbi }ni=1, {gabk }k∈J , ĝ, {(ĝbi ci, j , ĝb j ci, j )}(i, j)∈Q
)

and Z

are given, no probabilistic polynomial-time (PPT) algorithm A can distinguish Z = Z0 =
gabρ from Z = Z1 = gd with more than a negligible advantage. The advantage of A is
defined as AdvA1-(n,ρ,Q,J )

A (λ) = ∣
∣Pr[A(D, Z0) = 0] − Pr[A(D, Z1) = 0]∣∣ where the

probability is taken over random choices of parameters to A and over the coin tosses of A.

Assumption 2 Let (p,G, Ĝ,GT , e) be a bilinear group randomly generated by G(1λ). Let
g, ĝ be random generators of G, Ĝ respectively. Let n, ρ, Q, J be defined above. The
Assumption 2 for (n, ρ, Q, J ) is that if the challenge tuple

D = (

(p,G, Ĝ,GT , e), g, ga, {gbi }ni=1, {gabk }k∈J ,

ĝ, {(ĝbi ci, j , ĝb j ci, j , ĝ1/(bi+b j ))}(i, j)∈Q
)

and Z

are given, no probabilistic polynomial-time (PPT) algorithm A can distinguish Z = Z0 =
gabρ from Z = Z1 = gd with more than a negligible advantage. The advantage of A is
defined as AdvA2-(n,ρ,Q,J )

A (λ) = ∣
∣Pr[A(D, Z0) = 0] − Pr[A(D, Z1) = 0]∣∣ where the

probability is taken over random choices of parameters to A and over the coin tosses of A.

Assumption 3 Let (p,G, Ĝ,GT , e) be a bilinear group randomly generated by G(1λ). Let
g, ĝ be random generators ofG, Ĝ respectively. Let n, ρ, Q be defined above. The Assump-
tion 3 for (n, ρ, Q) is that if the challenge tuple

D = (

(p,G, Ĝ,GT , e), g, ga, {gbi }ni=1, {gabk }1≤k 	=ρ≤n,

ĝ, {(ĝbi ci, j , ĝb j ci, j , ĝdi /(bi+b j ))}(i, j)∈Q, {ĝdi }1≤i 	=ρ≤n, e(g, ĝ)dρ
)

and Z

are given, no probabilistic polynomial-time (PPT) algorithm A can distinguish Z = Z0 =
e(g, ĝ)adρ from Z = Z1 = e(g, ĝ) f with more than a negligible advantage. The advantage
of A is defined as AdvA3-(n,ρ,Q)

A (λ) = ∣
∣Pr[A(D, Z0) = 0] − Pr[A(D, Z1) = 0]∣∣ where the

probability is taken over random choices of parameters to A and over the coin tosses of A.
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3 MCFE for set intersection cardinality

In this section, we define the syntax and security model of MCFE that calculates the set
intersection cardinality. And then we propose an efficient MCFE-SIC scheme by using a
bilinear map and analyze the security of our scheme.

3.1 Definition

We define the syntax of MCFE for set intersection cardinality (MCFE-SIC). MCFE-SIC is a
special form of FE and supports a function key for calculating the set intersection cardinality
in which a ciphertext is associated with a time label T and each client has its own secret
key SKi for encryption. In MCFE-SIC, a trusted center creates client secret keys and public
parameters. After that, an individual client associates an item set Xi with a time label T and
generate a ciphertextCTi,T by using its secret key SKi . A third entity who wants to calculate
the set intersection cardinality receives a function key DK for client indexes (i, j) from the
trusted center. After that, the third entity decrypts the ciphertexts of the i-index client and
the j-index client by using the function key, and obtains the value |Xi ∩ X j |. The detailed
syntax of MCFE-SIC is described as follows.

Definition 3 (MCFE for Set Intersection Cardinality) A multi-client functional encryption
for set intersection cardinality (MCFE-SIC) scheme for an item space D and a time space
T consists of four algorithms Setup, GenKey, Encrypt, and Decrypt, which are defined as
follows:

– Setup(1λ, n) The setup algorithm takes as input the security parameter λ and the number
of clients n. It outputs a master key MK , client secret keys (SK1, . . . , SKn), and public
parameters PP .

– GenKey( f , MK , PP) The function key generation algorithm takes as input a function
f = (i, j), the master key MK , and public parameters PP . It outputs a function key
DK f .

– Encrypt(Xi , T , SKi , PP) The encryption algorithm takes as input a set Xi =
{xi,1, . . . , xi,�i } of items where xi,k ∈ D, a time period T ∈ T , a client secret key
SKi , and public parameters PP . It outputs a ciphertext CTi,T .

– Decrypt(CTi,T ,CTj,T , DK f , PP) The decryption algorithm takes as input two cipher-
textsCTi,T andCTj,T for the same time T , a function key DK f for a function f = (i, j),
and public parameters PP . It outputs |Xi ∩ X j | where Xi and X j are associated with
CTi,T and CTj,T respectively.

The correctness of theMCFE-SICscheme is defined as follows:For allMK , (SKi )
n
i=1, PP ←

Setup(1λ, n), any DK f ← GenKey( f , MK , PP) of a function f = (i, j), and all
CTi,T ← Encrypt(Xi , T , SKi , PP) and CTj,T ← Encrypt(X j , T , SK j , PP) for any
Xi , X j and the same time period T , it is required that

– Decrypt(CTi,T ,CTj,T , DK f , PP) = |Xi ∩ X j | except with negligible probability.

We define the IND security model of MCFE-SIC. The security model of MCFE was first
defined by Goldwasser et al. [21]. For the security model of MCFE-SIC, we use the static
IND security model of MCFE-SI defined by Lee and Seo with slight modification [32]. The
static IND security model defined by Lee and Seo is a security model in which an attacker
fixes function key queries and a list of corrupted clients in advance and submits the target
challenge sets X∗

0 and X∗
1 in advance. At this time, we set a constraint that the cardinality
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of set intersection exposed in the challenge sets is the same even if many function keys are
provided to an attacker. We consider a limited security model in which the cardinality of
set intersections and the equality patterns of the challenge ciphertexts are exposed when an
attacker decrypts the challenge ciphertexts using function keys.

We first define a functionCSIC((Xk)k∈I , Q) for a tuple (Xk)k∈I of item sets Xk and a set
Q = {(i, j)} that computes the set intersection cardinality of Xi and X j for each (i, j) ∈ Q
as follows: Additionally, we define a functionCSI P((Xk)k∈I , Q) for a tuple (Xk)k∈I of item

CSIC((Xk )k∈I , Q) where Q = {(i, j)}
1. Initialize a set C = ∅.
2. For each (i, j) ∈ Q:

Calculate c = |Xi ∩ X j | and add ((i, j), c) to C .
3. Output the set C .

sets Xk and a set Q = {(i, j)} that computes the set intersection pattern of Xi and X j for each
(i, j) ∈ Q as follows: For example, if we let n = 3, (X1 = {a, b, c}, X2 = {b, c}, X3 =

CSI P A(i∗, (Xk )k∈I , Q)

1. For each x ∈ Xi∗ , initialize a set Sx = ∅.
2. For each (i, j) ∈ Q such that i = i∗ or j = i∗:

Calculate Y = Xi ∩ X j .
For each x ∈ Y :
If i = i∗, add j to Sx .
If j = i∗, add i to Sx .

3. Output a pattern multiset Pi∗ = {Sx }x∈Xi∗ .
CSI P((Xk )k∈I , Q) where Q = {(i, j)}
1. For each i ∈ I :

Calculate Pi by calling CSI P A(i, (Xk )k∈I , Q).
2. Output a tuple (Pi )i∈I of pattern multisets.

{c, a}), and Q = {(1, 2), (2, 3)}, then we have CSIC((Xk), Q) = {((1, 2), 2), ((2, 3), 1)}
and CSI P((Xk), Q) = (P1 = {∅, {2}, {2}}, P2 = {{1}, {1, 3}}, P3 = {{2},∅}).

Definition 4 (Static-IND Security) The static-IND security of MCFE-SIC with corruptions
is defined in the following experiment EXPST -I N D

MCFE-SIC,A(1λ) between a challenger C and a
PPT adversary A:

1. Init: A initially submits an index set I ⊂ [n] of corrupted clients. Let I = {1, . . . , n} \ I
be an index set of uncorrupted clients.A also submits two challenge tuples (X∗

0,k)k∈I and
(X∗

1,k)k∈I of item sets X∗
b,k = {xb,k, j }, a challenge time period T ∗, and a set Q = {(i, j)}

of function key queries with the three restrictions such that (a) i, j ∈ I for each (i, j) ∈
Q, (b) CSIC((X∗

0,k)k∈I , Q) = CSIC((X∗
1,k)k∈I , Q), and (c) CSI P((X∗

0,k)k∈I , Q) =
CSI P((X∗

1,k)k∈I , Q).
2. Setup: C generates a master key MK , client secret keys (SKi )

n
i=1, and public parameters

PP by running Setup(1λ, n). It keeps MK and (SKi )i∈I to itself and gives (SKi )i∈I and
PP to A.
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3. Challenge: C flips a random bit μ ∈ {0, 1} and obtains a ciphertext CTi,T ∗ by run-
ning Encrypt(X∗

μ,i , T
∗, SKi , PP) for each i ∈ I . C gives the challenge ciphertexts

(CTi,T ∗)i∈I to A
4. Query: A requests function keys and ciphertexts. C handles these queries as follows:

– If this is a function key query for a function f = (i, j) ∈ Q, then C gives a function
key DK f to A by running GenKey( f , MK , PP).

– If this is a ciphertext query for a client index k ∈ I , an item set Xk , and a time period
T 	= T ∗, then C gives a ciphertextCTk,T toA by runningEncrypt(Xk, T , SKk, PP).

5. Guess: A outputs a guess μ′ ∈ {0, 1} of μ. C outputs 1 if μ = μ′ or 0 otherwise.

An MCFE-SIC scheme is static-IND secure with corruptions if for all PPT adversary A, the
advantage of A defined as AdvST -I N D

MCFE-SIC,A(λ) = ∣
∣Pr[EXPST -I N D

MCFE-SIC,A(1λ) = 1] − 1
2

∣
∣ is

negligible in the security parameter λ.

3.2 Construction

The basic idea of designing anMCFE scheme that computes the set intersection cardinality of
two clients is to provide a function key that can check whether ciphertext elements generated
by two clients are related to the same item. For this, we can consider to provide a function key
(ĝαi , ĝα j ) because ciphertext elements are in the form of H(T ‖x)αi and H(T ‖x)α j . In this
case, by deriving the same e(H(T ‖x), ĝ)αi ,α j through the pairing operation, it is possible
to compare whether the ciphertext elements are associated to the same item x . However,
providing a function key in this simple form has the risk of a collusion attack, so we provide
a function key (ĝαi r , ĝα j r ) with additional randomization to prevent the collusion attack.
In this case, only the set intersection of two clients i and j can be compared due to the
additionally included random exponent, and comparison with the ciphertexts of other clients
is impossible. An MCFE-SIC scheme is described as follows:

Setup(1λ, n) Let n be the maximum number of clients. It first generates a bilinear group
(p,G, Ĝ,GT , e) of prime order p with random generators g ∈ G and ĝ ∈ Ĝ. It chooses
a hash function H : {0, 1}∗ → G. Next, it selects random exponents α1, . . . , αn ∈ Zp . It
outputs a master key MK = (α1, . . . , αn), client secret keys (SKi = αi )

n
i=1, and public

parameters PP = (

(p,G, Ĝ,GT , e), g, ĝ, H , n
)

.
GenKey( f , MK , PP) Let f = (i, j) such that i < j and MK = (α1, . . . , αn). It selects a

random exponent r ∈ Zp and outputs a function key DK f = (

K1 = ĝαi r , K2 = ĝα j r
)

.
Encrypt(Xi , T , SKi , PP) Let Xi = {xi,1, . . . , xi,�i } be a set of items where |Xi | = �i

and SKi = αi . For each k ∈ [�i ], it computes Ci,k = H(T ‖xi,k)αi . It chooses a random
permutation π and outputs a ciphertext CTi,T = (

Ci,π(k)
)�i
k=1 by implicitly including

i, T .
Decrypt(CTi,T ,CTj,T , DK f , PP) Let CTi,T = (Ci,k)

�i
k=1 and CTj,T = (C j,k)

� j
k=1 be

ciphertexts such that i < j . Let DK f = (K1, K2) for a function f = (i, j).

1. For each k ∈ [�i ], it computes Ei,k = e(Ci,k, K2). For each k ∈ [� j ], it computes
E j,k = e(C j,k, K1).

2. It prepares two sets Ei = {Ei,k}�ik=1 and E j = {E j,k}� j
k=1 and computes the intersec-

tion S = Ei ∩ E j by comparing group elements.
3. It outputs the cardinality of S by counting the number of elements.
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3.3 Correctness

We show the correctness of the MCFE-SIC scheme. For this, it is sufficient to show that the
same group element is derived by combining a ciphertext element and a function key when
the items of two clients are the same. We can derive the following equation when the item x
of the client i and the item x ′ of the client j are the same.

e(Ci,k , K2) = e(H(T ‖x)αi , ĝα j r ) = e(H(T ‖x), ĝ)αiα j r = e(H(T ‖x ′)α j , ĝαi r ) = e(C j,k′ , K1).

3.4 Security analysis

We define a function C I Q((Xk), Q) for a tuple (Xk) of item sets and a set Q = {(i, j)}
of index pairs that computes the collected intersection of Xi and X j for each (i, j) ∈ Q as
follows:

C I Q((Xk )k∈I , Q) where Q = {(i, j)}
1. For each i ∈ I , initialize a set Ei = ∅.
2. For each (i, j) ∈ Q:

Calculate Y = Xi ∩ X j .
For each x ∈ Y : Add x to Ei and E j respectively.

3. Output a tuple (Ei )i∈I of common sets.

Theorem 4 The above MCFE-SIC scheme is static-IND secure with no corruptions in the
random oracle model if the Assumption 1 holds.

Proof Suppose there exists an adversary that breaks the static-IND security of the MCFE-
SIC scheme with no corruptions. We can assume that I = {1, . . . , n} and I = ∅. Let
(X∗

0,1, . . . , X
∗
0,n) and (X∗

1,1, . . . , X
∗
1,n) be the challenge tuples of item sets where X∗

b,i =
{x∗

b,i,1, . . . , x
∗
b,i,�i

} and |X∗
b,i | = �i . Let Q = {(i, j)} be the set of function key queries.

We derive a tuple (E∗
1 , . . . , E

∗
n ) by calling C I Q((X∗

μ,k)k∈[n], Q) where μ is the challenge
random bit of the security game. To argue that the adversary cannot win this game, we define
a sequence of hybrid games G0, and G1. The game Gi is defined as follows:

– Game G0. The first game G0 is the original security game defined in Definition 4.
– Game G1. This game G1 is similar to the game G0 except that the challenge ciphertext

components {Ci,k} are generated as random for all x∗
μ,i,k /∈ E∗

i .

Let SGi
A be the event that an adversary wins in a game Gi . From the following Lemmas 1

and 2, we obtain the following result

AdvST -I N D
MCFE-SIC,A(λ) ≤|Pr[SG0

A ] − Pr[SG1
A ]| + Pr[SG1

A ] ≤ n�AdvA1-(n,ρ,Q,J )
B (λ)

where n is the number of clients, � is the maximum size of the challenge item set. This
completes our proof. ��
Lemma 1 If the Assumption 1 for (n, ρ, Q, J ) holds, then no polynomial-time adversary can
distinguish between G0 and G1 with a non-negligible advantage.

Proof Toprove this lemma,we additionally define hybrid gamesH1,0,H1,1, . . . ,H1,�1 ,H2,1,

. . . ,Hi,k, . . . ,Hn,�n whereH1,0 = G0 andHn,�n = G1. The gameHρ,δ is defined as follows:
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– Game Hρ,δ . This gameHρ,δ is almost identical to the gameG1 except the generation of
the components {Ci,k} in the challenge ciphertexts.

– Case (i < ρ) or (i = ρ ∧ k ≤ δ): If x∗
μ,i,k ∈ E∗

i , then the component Ci,k is
generated as normal. Otherwise (x∗

μ,i,k /∈ E∗
i ), the component Ci,k is generated as

random.
– Case (i = ρ ∧ k > δ) or (i > ρ): The component Ci,k is generated as normal.

Suppose there exists an adversary A that distinguishes between Hρ,δ−1 and Hρ,δ with
a non-negligible advantage. Without loss of generality, we assume that x∗

μ,ρ,δ /∈ E∗
ρ since

Hρ,δ−1 and Hρ,δ are equal if x∗
μ,ρ,δ ∈ E∗

ρ . A simulator B that solves the Assumption 1 for
(n, ρ, Q, J ) is described as follows:

Init: A submits challenge tuples (X∗
0,1, . . . , X

∗
0,n) and (X∗

1,1, . . . , X
∗
1,n), a challenge time

period T ∗, and a set Q = {(i, j)} of function key queries. B proceeds as follows:

1. From n, ρ, Q, it derives an index set J by calling ComputeJ (n, ρ, Q).
2. It receives a challenge tuple D = (g, ga, {gbi }ni=1, {gabk }k∈J , ĝ, {(ĝbi ci, j , ĝb j ci, j )}(i, j)∈Q)

and Z of the Assumption 1 for (n, ρ, Q, J ) where Z = gabρ or Z = R ∈ G.
3. It flips a random bit μ ∈ {0, 1} internally and derives a tuple (E∗

1 , . . . , E
∗
n ) by calling

C I Q((X∗
μ,k), Q).

Setup: B sets PP = ((p,G, Ĝ,GT , e), g, ĝ, H , n). It prepares a hash table H -list for the
H hash function as the empty set. For each i ∈ [n] and k ∈ [�i ], it updates the H -list as
follows:

– Case i 	= ρ or k 	= δ: If T ∗‖x∗
μ,i,k does not exist in the H -list, then it adds

(T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) to the H -list by selecting a random exponent u′

i,k ∈ Zp .
– Case i = ρ and k = δ: It adds (T ∗‖x∗

μ,ρ,δ,−, ga) to the H -list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i ∈ [n] and k ∈ [�i ], it generates ciphertext elements Ci,k depending on the
following cases:

– Case i < ρ:
– If (x∗

μ,i,k ∈ E∗
i ) ∧ (x∗

μ,i,k = x∗
μ,ρ,δ), it retrieves (T ∗‖x∗

μ,i,k,−, ga) from the

H -list and sets Ci,k = gabi . For this case, we show that gabi is given in the
assumption. If a function key for (i, ρ) was queried, we have x∗

μ,ρ,δ ∈ E∗
ρ by the

definition of C I Q. However, we assumed that x∗
μ,ρ,δ /∈ E∗

ρ for this game. Thus a
function key for (i, ρ) was not queried and it means that i ∈ J by the definition
of J .

– If (x∗
μ,i,k ∈ E∗

i ) ∧ (x∗
μ,i,k 	= x∗

μ,ρ,δ), it retrieves (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) from the

H -list and creates Ci,k = (gbi )u
′
i,k .

– If (x∗
μ,i,k /∈ E∗

i ), it retrieves (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) from the H -list and chooses

a random Ci,k ∈ G.
– Case i = ρ:

– If (k < δ) ∧ (x∗
μ,ρ,k ∈ E∗

ρ), it retrieves (T ∗‖x∗
μ,ρ,k, u

′
ρ,k, g

u′
ρ,k ) from the H -list

and creates Cρ,k = (gbρ )
u′

ρ,k since x∗
μ,ρ,k 	= x∗

μ,ρ,δ .

– If (k < δ) ∧ (x∗
μ,ρ,k /∈ E∗

ρ), it retrieves (T ∗‖x∗
μ,ρ,k, u

′
ρ,k, g

u′
ρ,k ) from the H -list

and chooses a random Cρ,k ∈ G.
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– If (k = δ), it sets Cρ,δ = Z since we assumed that x∗
μ,ρ,δ /∈ E∗

ρ .

– If (k > δ), it retrieves (T ∗‖x∗
μ,ρ,k, u

′
ρ,k, g

u′
ρ,k ) from the H -list and createsCρ,k =

(gbρ )
u′

ρ,k since x∗
μ,ρ,k 	= x∗

μ,ρ,δ .
– Case i > ρ:

– If (x∗
μ,i,k = x∗

μ,ρ,δ), it retrieves (T ∗‖x∗
μ,i,k,−, ga) from the H -list and sets

Ci,k = gabi . For this case, we show that gabi is given in the assumption. If a
function key for f = (ρ, i) was queried, we have x∗

μ,ρ,δ ∈ E∗
ρ by the definition

of C I Q. However, we assumed that x∗
μ,ρ,δ /∈ E∗

ρ for this game. Thus a function
key for f = (ρ, i) was not queried and it means that i ∈ J by the definition of
J .

– If (x∗
μ,i,k 	= x∗

μ,ρ,δ), it retrieves (T
∗‖x∗

μ,i,k, u
′
i,k, g

u′
i,k ) from the H -list and creates

Ci,k = (gbi )u
′
i,k .

2. For each client i ∈ [n], it chooses a random permutation πi and sets CTi,T ∗ =
(Ci,πi (k))

�i
k=1.

Query: B handles hash, function key, and ciphertext queries of A as follows:

– If this is a hash query for a time period T and an item x , then it proceeds as follows: If
T ‖x exists in the H -list, then it retrieves (T ‖x,−, h) from the H -list and gives h to A.
Otherwise, it adds (T ‖x, u′, gu′

) to the H -list by selecting a random exponent u′ ∈ Zp

and gives gu
′
to A.

– If this is a function key query for a function f = (i, j) ∈ Q, then it generates a function
key DK f = (ĝbi ci, j , ĝb j ci, j ) since these elements are given in the assumption.

– If this is a ciphertext query for a client index i , a set Xi = {xi,1, . . . , xi,�}, and a time
period T 	= T ∗, then it generates a ciphertext as follows: For each k ∈ [�i ], it retrieves
(T ‖xi,k, u′

k, g
u′
k ) from the H -list and sets Ci,k = (gbi )u

′
k . It chooses a random permuta-

tion π and sets CTi,T = (Ci,π(k))
�i
k=1.

Guess: A outputs a guess μ′. If μ = μ′, it outputs 1. Otherwise, it outputs 0. ��
Lemma 2 No adversary can win the gameG1 with a non-negligible advantage in the random
oracle model.

Proof Let A be a statistical adversary. A simulator B is described as follows:

Init: A submits challenge tuples (X∗
0,1, . . . , X

∗
0,n) and (X∗

1,1, . . . , X
∗
1,n), a challenge time

period T ∗, and a set Q = {(i, j)} of function key queries. B proceeds as follows:

1. It flips a random bit μ ∈ {0, 1} internally and derives a tuple (E∗
1 , . . . , E

∗
n ) by calling

C I Q((X∗
μ,k)k∈[n], Q).

Setup: B first chooses random exponents α1, . . . , αn ∈ Zp . Next, it sets (SKi = αi )
n
i=1 and

PP = ((p,G, Ĝ,GT , e), g, ĝ, H , n). It prepares a hash table H -list for the H hash function
as the empty set.

1. For each i ∈ [n] and k ∈ [�i ], it updates the H -list as follows: If T ∗‖x∗
μ,i,k does not

exist in the H -list, then it adds (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) to the H -list by selecting a random

exponent u′
i,k ∈ Zp .

2. It sets μ = 1 − μ. For each i ∈ [n] and k ∈ [�i ], it also updates the H -list as follows: If
T ∗‖x∗

μ,i,k does not exist in the H -list, then it adds (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) to the H -list by

selecting a random exponent u′
i,k ∈ Zp .
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Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i ∈ [n] and k ∈ [�i ], it proceeds as follows: If x∗
μ,i,k ∈ E∗

i , it retrieves (T ∗‖x∗
μ,i,k,

u′
i,k, g

u′
i,k ) from the H -list and sets Ci,k = gu

′
i,kαi . If x∗

μ,i,k /∈ E∗
i , it chooses a random

element Ci,k ∈ G.
2. For each i ∈ [n], it chooses a random permutation πi and sets CTi,T ∗ = (Ci,πi (k))

�i
k=1.

Query: B handles hash, function key, and ciphertext queries of A as follows:

– If this is a hash query for a time period T and an item x , then it proceeds as follows: If
T ‖x exists in the H -list, then it retrieves (T ‖x, u′, gu′

) from the H -list. Otherwise, it
selects a random exponent u′ ∈ Zp and adds (T ‖x, u′, gu′

) to the H -list. It gives gu
′
to

A.
– If this is a function key query for f = (i, j) ∈ Q, then B generates DK f by running

GenKey since it knows SKi and SK j .
– If this is a ciphertext query for a client index i , a set Xi = {xi,1, . . . , xi,�}, and a time

period T 	= T ∗, thenB generates a ciphertextCTi,T by runningEncrypt algorithm since
it knows SKi .

Guess: A outputs a guess μ′. If μ = μ′, it outputs 1. Otherwise, it outputs 0.
We first show that the simulation described above is correct. Since the simulator knows

all the secret key SKi of individual clients, it is possible to correctly generate function keys
and all ciphertexts. When the simulator creates the challenge ciphertext, it creates the correct
ciphertext element if x∗

μ,i,k ∈ E∗
i is established as in the definition of the game G1, and

generates a random element if x∗
μ,i,k /∈ E∗

i is established.
Now we show that the advantage of the statistical adversary is zero in the game G1. To

do this, we show that it is possible to change the challenge ciphertext for the challenge bit μ
to the challenge ciphertext for the complement bit 1 − μ by modifying the mapping of the
random oracle table. Such a change only modifies the mapping of the simulator’s random
oracle table without modifying the challenge ciphertexts. A detailed description of how to
change the random oracle table is given as follows.

1. For each i ∈ [n], it proceeds as follows:
(a) It obtains Pμ,i = {Sx } by running CSI P A(i, (X∗

μ,k), Q). It also obtains Pμ,i = {Sx }
by running CSI P A(i, (X∗

μ,k), Q).
(b) It derives a list XL∗

μ,i = (x∗
μ,i,1, . . . , x

∗
μ,i,�i

) from the challenge item set X∗
μ,i =

{x∗
μ,i,k} in which each challenge ciphertext element C∗

i,k is associated with the item
x∗
μ,i,k .

(c) It builds XL∗
μ,i = (xμ,i,1, . . . , x∗

μ,i,�i
) from the challenge item set X∗

μ,i = {x∗
μ,i,k}

by changing the order of items with the condition that the pattern set Sx∗
μ,i,k

of x∗
μ,i,k

is equal to the pattern set Sx∗
μ,i,k

of x∗
μ,i,k .

2. It initializes a set R = ∅. For each i ∈ [n] and k ∈ [�i ], it takes x∗
μ,i,k and x∗

μ,i,k from
XL∗

μ,i and XL∗
μ,i respectively, and modifies the H -list as follows:

(a) If (x∗
μ,i,k /∈ E∗

i ) ∨ (x∗
μ,i,k = x∗

μ,i,k) ∨ (x∗
μ,i,k ∈ R) ∨ (x∗

μ,i,k ∈ R), then it skips to the
next iteration.

(b) It deletes (T ∗‖x∗
μ,i,k, u

′
1, g

u′
1) and (T ∗‖x∗

μ,i,k, u
′
2, g

u′
2) from the H -list, and then adds

(T ∗‖x∗
μ,i,k, u

′
1, g

u′
1) and (T ∗‖x∗

μ,i,k, u
′
2, g

u′
2) to the H -list.

(c) It adds x∗
μ,i,k and x∗

μ,i,k to R.
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If the random oracle table is changed in the same way as above, the actual elements of the
challenge ciphertext is maintained as it is, so the equality pattern of the challenge ciphertext is
not changed. Thus, if the challenge tuples of item setswith the same equality pattern are given,
it is possible to change the challenge bit without changing the ciphertext through the above
process. Therefore, the statistical adversary cannot distinguish the challenge ciphertext. ��

Theorem 5 The above MCFE-SIC scheme is static-IND secure with corruptions in the ran-
dom oracle model if the MCFE-SIC scheme is static-IND secure with no corruptions.

Proof To prove this theorem, we use the fact that in the static-IND security model, the two
indexes i and j of a function f = (i, j) in a function key query requested by an attacker
must be uncorrupted clients. In other words, the simulator of this proof generates the secret
keys of corrupted clients I , and it can handle all other challenge ciphertext, ciphertext, and
function key queries requested by the attacker by using the queries of theMCFE-SIC scheme
with no corruptions. We omit the detailed description of this simulator. ��

3.5 Discussions

Efficiency analysis We analyze the efficiency of our MCFE-SIC scheme described above.
First, the function key generation algorithm requires two exponentiation operations, and a
function key consists of two group elements. The encryption algorithm requires � map-to-
point hash operations and � exponentiation operations, and a ciphertext consists of � group
elements where � is the number of items in a set. Finally, the decryption algorithm requires 2�
pairing operations and 2� log � comparison operations for sorting to perform the intersection
of pairing elements since it requires a pairing operation for each individual ciphertext element.
The detailed comparison of MCFE schemes is given in Table 1.

Decentralized function key generation The function key generation algorithm of our
MCFE-SIC scheme should be performed by a trusted center that knows the secret keys
of all clients. To reduce trust in the trusted center, it is necessary to decentralize the function
key generation so that individual clients are involved to generate function keys without the
trusted center. One method is that when creating a function key for a function f = (i, j), two
clients with indexes i, j generate partial function keys independently of each other, and the
requestor of the function key later combines these partial function keys to derive a complete
function key. At this time, in order for the two clients to generate the same random exponent
r , a non-interactive key exchange (NIKE) scheme can be used. For more detailed description
of this method, refer to the DMCFE-SI scheme in Sect. 5.

Multi-party set intersection cardinality The MCFE-SIC scheme can only process the
set intersection cardinality between two clients. To process the set intersection cardinality
between three clients, we may consider to provide a function key (ĝα jαkr , ĝαiαkr , ĝαiα j r ) for
the client indexes (i, j, k). However, this method has a problem of exposing information on
the set intersection cardinality of clients (i, j), ( j, k), and (i, k) as well as the set intersection
cardinality of clients (i, j, k). Another way is to select random exponents ri , r j , rk to satisfy
ri+r j+rk = 0 and provide a function key (ĝri /αi , ĝr j /α j , ĝrk/αk ). At this time, the decryption
algorithm calculates e(H(T ‖x)αi , ĝri /αi ) = e(H(T ‖x), ĝ)ri for each ciphertext elements of
each client. And then it multiplies all combinations to check that e(H(T ‖x), ĝ)ri+r j+rk = 1
holds. Thismethod can prevent the leakage of additional information, but it requires 3�pairing
operations and O(�3) multiplication operations since all combinations must be considered
to calculate the set intersection cardinality.
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4 MCFE for set intersection

In this section, we define the syntax and security model of MCFE for set intersection. Then,
we propose an MCFE-SI scheme with efficient decryption using a bilinear map and analyze
the security of our scheme.

4.1 Definition

We define the syntax of MCFE for set intersection (MCFE-SI). The definition of MCFE-SI
was introduced by Lee and Seo [32], and it was modified to issue a function key for the set
intersection instead of the function key for the set intersection cardinality in MCFE-SIC we
introduced in the previous section. Thus, the decryption algorithm of MCFE-SI outputs the
set intersection Xi ∩ X j of two item sets Xi and X j associated with two client ciphertexts
CTi,T and CTj,T . The detailed syntax of MCFE-SI is described as follows.

Definition 5 (MCFE for set intersection) A multi-client functional encryption for set inter-
section (MCFE-SI) scheme for an item spaceD and a time space T consists of four algorithms
Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

– Setup(1λ, n) The setup algorithm takes as input the security parameter λ and the num-
ber of clients n. It outputs a master key MK , client secret keys (SKi )

n
i=1, and public

parameters PP .
– GenKey( f , MK , PP) The keygeneration algorithm takes as input a function f = (i, j),

the master key MK , and public parameters PP . It outputs a function key DK f .
– Encrypt(Xi , T , SKi , PP) The encryption algorithm takes as input a set Xi =

{xi,1, . . . , xi,�i } of items where xi,k ∈ D, a time period T ∈ T , the client secret key
SKi , and public parameters PP . It outputs a ciphertext CTi,T .

– Decrypt(CTi,T ,CTj,T , DK f , PP) The decryption algorithm takes as input two cipher-
textsCTi,T andCTj,T for the same time T , a function key DK f for a function f = (i, j),
and public parameters PP . It outputs a set Xi ∩ X j where Xi and X j are associated with
CTi,T and CTj,T respectively.

The correctness of theMCFE-SI scheme is defined as follows: For allMK , (SKi )
n
i=1, PP ←

Setup(1λ, n), any DK f ← GenKey( f , MK , PP) for a function f = (i, j), and all
CTi,T ← Encrypt(Xi , T , SKi , PP) and CTj,T ← Encrypt(X j , T , SK j , PP) for any
Xi , X j and the same time T , it is required that

– Decrypt(CTi,T ,CTj,T , DK f , PP) = Xi ∩ X j except with negligible probability.

We define the IND security model of MCFE-SI. The IND security model of MCFE was
defined by Goldwasser et al. [21], and Lee and Seo modified this model to define a static
IND security model of MCFE-SI [32]. We adopt the same static IND security model defined
by Lee and Seo. In the static IND security model, an attacker first submits challenge sets
X∗
0, X

∗
1 , a challenge time period T ∗, and all function key queries, and corrupted client indexes

with additional constraints. After that, the attacker receives the challenge ciphertext, and
can request additional function key and ciphertext queries. Finally, if the attacker correctly
guesses the challenge set of the challenge ciphertext, it wins the security game. A more
detailed definition of the static IND security model is given as follows.

We first define a function CSI ((Xk)k∈I , Q) for a tuple (Xk)k∈I of item sets Xk and a
set Q = {(i, j)} that computes the set intersection of Xi and X j for each (i, j) ∈ Q as
follows: For example, if we let n = 3, (X1 = {a, b, c}, X2 = {b, c}, X3 = {c, a}), and
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Decentralized MCFE for set intersection with improved efficiency 1069

CSI ((Xk )k∈I , Q) where Q = {(i, j)}
1. Initialize a set S = ∅.
2. For each (i, j) ∈ Q:

Calculate A = Xi ∩ X j and add ((i, j), A) to S.
3. Output the set S.

Q = {(1, 2), (2, 3)}, then we have CSI ((Xk), Q) = {((1, 2), {b, c}), ((2, 3), {c})}.
Definition 6 (Static-IND Security) The static-IND security of MCFE-SI with corruptions is
defined in the following experiment EXPST -I N D

MCFE-SI ,A(1λ) between a challenger C and a PPT
adversary A:

1. Init: A initially submits an index set I ⊂ [n] of corrupted clients. Let I = {1, . . . , n} \ I
be the index set of uncorrupted clients. A also submits two challenge tuples (X∗

0,k)k∈I
and (X∗

1,k)k∈I of item sets, a challenge time period T ∗, and a set Q = {(i, j)} of function
key queries with the two restrictions that (1) i, j ∈ I for each (i, j) ∈ Q and (2)
CSI ((X∗

0,k)k∈I , Q) = CSI ((X∗
1,k)k∈I , Q).

2. Setup: C generates a master key MK , secret keys (SKi )
n
i=1, and public parameters PP

by running Setup(1λ, n). It keeps MK and (SKi )i∈I to itself and gives (SKi )i∈I and PP
to A.

3. Challenge: C flips a random bit μ ∈ {0, 1} and obtains a ciphertext CTi,T ∗ by run-
ning Encrypt(X∗

μ,i , T
∗, SKi , PP) for each i ∈ I . C gives the challenge ciphertexts

(CTi,T ∗)i∈I to A
4. Query: A requests function keys and ciphertexts. C handles these queries as follows:

– If this is a function key query for a function f = (i, j) ∈ Q, then C gives a function
key DK f to A by running GenKey( f , MK , PP).

– If this is a ciphertext query for a client index k ∈ I , an item set Xk , and a time period
T 	= T ∗, then C gives a ciphertextCTk,T toA by runningEncrypt(Xk, T , SKk, PP).

5. Guess: A outputs a guess μ′ ∈ {0, 1} of μ. C outputs 1 if μ = μ′ or 0 otherwise.

An MCFE-SI scheme is static-IND secure with corruptions if for all PPT adversary A, the
advantage of A defined as AdvST -I N D

MCFE-SI ,A(λ) = ∣
∣Pr[EXPST -I N D

MCFE-SI ,A(1λ) = 1] − 1
2

∣
∣ is

negligible in the security parameter λ.

4.2 Construction

We combine ourMCFE-SIC scheme of the previous section and theMCFE-SI scheme of Lee
and Seo [32] in order to design an efficient MCFE-SI scheme with improved decryption. The
MCFE-SI scheme of Lee and Seo uses an equal-then-derive technique in which if the items of
two client ciphertext elements are equal, then a temporal key is derived by combining these
ciphertexts and a function key. However, their MCFE-SI scheme has a disadvantage that
the decryption algorithm requires approximately �2 pairing operations because the pairing
operation must be performed for all possible combinations of two client ciphertext elements
to calculate the set intersection. To improve the decryption performance, we first use our
MCFE-SIC scheme to find matching pairs of ciphertext elements corresponding to the set
intersection. And then we apply the equal-then-derive method to derive a temporal key to
obtain an encrypted item. In this case, the total number of pairing operations can be reduced
to 3�.
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Let SKE = (GenKey, Encrypt, Decrypt) be an SKE scheme. An MCFE-SI scheme is
described as follows.

Setup(1λ, n) Let n be the maximum number of clients. It first generates a bilinear group
(p,G, Ĝ,GT , e) of prime order p with random generators g ∈ G and ĝ ∈ Ĝ. It
chooses two hash functions H : {0, 1}∗ → G and F : GT → {0, 1}λ. Next,
it selects random exponents α1, . . . , αn, β1, . . . , βn ∈ Zp . It outputs a master key
MK = ((αi , βi ))

n
i=1, secret keys (SKi = (αi , βi ))

n
i=1 for clients, and public param-

eters PP = (

(p,G, Ĝ,GT , e), g, ĝ, H , F, n
)

.
GenKey( f , MK , PP) Let f = (i, j) such that i < j and MK = ((αi , βi ))

n
i=1. It selects

a random exponent r ∈ Zp and outputs a function key DK f = (

K1 = ĝαi r , K2 =
ĝα j r , K3 = ĝβi /(αi+α j )

)

.
Encrypt(Xi , T , SKi , PP) Let Xi = {xi,1, . . . , xi,�i } be a set of items where |Xi | = �i and

SKi = (αi , βi ).

1. For each k ∈ [�i ], it proceed as follows: It computes Ci,k = H(T ‖xi,k)αi and
derives a temporal key T Ki,k = e(H(T ‖xi,k), ĝ)βi . It obtains Di,k by running
SKE.Encrypt(T ‖xi,k, F(T Ki,k)).

2. It chooses a random permutation π and outputs a ciphertext CTi,T = (

(Ci,π(k),

Di,π(k))
)�i
k=1 by implicitly including i, T .

Decrypt(CTi,T ,CTj,T , DK f , PP) Let CTi,T = ((Ci,k, Di,k))
�i
k=1 and CTj,T

= ((C j,k, Dj,k))
� j
k=1 be ciphertexts such that i < j for the same T . Let DK f =

(K1, K2, K3) for a function f = (i, j). It first initializes a set Y = ∅.
1. For each k ∈ [�i ], it computes Ei,k = e(Ci,k, K2). For each k ∈ [� j ], it computes

E j,k = e(C j,k, K1).

2. It prepares two sets Ei = {Ei,k}�ik=1 and E j = {E j,k}� j
k=1 and computes the intersec-

tion S = Ei ∩ E j by comparing the group elements.
3. For each Ek ∈ S, it proceeds as follows:

1. It finds (Ci,ki , Di,ki ) from CTi,T and (C j,k j , Dj,k j ) from CTj,T such that Ci,ki
and C j,k j are used to derive Ek .

2. It computes T Kk = e(Ci,ki · C j,k j , K3) and obtains T ‖x by running
SKE.Decrypt(Di,ki , F(T Kk)).

3. It adds an item x into Y .
4. It outputs the set Y .

4.3 Correctness

We show the correctness of the above MCFE-SI scheme. To this end, we need to show that
when the ciphertext elements of two clients are the encryption of the same item, the matching
ciphertext elements of the set intersection can be found, and when these matching ciphertext
elements are decrypted with a function key, the set intersection item can be obtained. First,
we already showed that if client ciphertext elements are the encryption of the same item, then
matching ciphertext elements can be found by using a function key through the correctness
of the MCFE-SIC scheme. Now, we can confirm that the correct item is decrypted from
the matching ciphertext elements since a correct temporal key is derived by the following
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Decentralized MCFE for set intersection with improved efficiency 1071

equation

e(Ci,kC j,k′ , K3) = e(H(T ‖x)αi H(T ‖x)α j , ĝβi /(αi+α j )) = e(H(T ‖x), ĝ)βi .

4.4 Security analysis

Theorem 6 The above MCFE-SI scheme is static-IND secure with no corruptions in the
random oracle model if the Assumptions 2 and 3 hold.

Proof Suppose there exists an adversary that breaks the static-IND security of the
MCFE-SI scheme with no corruptions. We can assume that I = {1, . . . , n} and I =
∅. Let (X∗

0,1, . . . , X
∗
0,n) and (X∗

1,1, . . . , X
∗
1,n) be the challenge tuples where X∗

b,i =
{x∗

b,i,1, . . . , x
∗
b,i,�i

} and |X∗
b,i | = �i . Let Q = {(i, j)} be the set of index pairs related to

function key queries. We can derive a tuple (E∗
1 , . . . , E

∗
n ) by callingC I Q((X∗

μ,k), Q)where
μ is the challenge random bit of the security game. To argue that the adversary cannot win this
game, we define a sequence of hybrid games G0,G1,G2, and G3. The game Gi is defined
as follows:

– Game G0. The first game G0 is the original security game defined in Definition 6.
– Game G1. This game G1 is similar to the game G0 except that the challenge ciphertext

components {Ci,k} are generated as random for all x∗
μ,i,k /∈ E∗

i .
– Game G2. This game G2 is slightly changed from the game G1. That is, the challenge

temporal keys {T Ki,k} are generated as random for all x∗
μ,i,k /∈ E∗

i .
– Game G3. In the final game G3, we change the generation of challenge ciphertext com-

ponents {Di,k}. That is, the challenge ciphertext components {Di,k} are the encryption
of random values for all x∗

μ,i,k /∈ E∗
i . Note that the advantage of the adversary in this

game is zero since challenge ciphertext components {Ci,k} are random and {Di,k} are the
encryption of random values for all x∗

μ,i,k /∈ E∗
i .

Let SGi
A be the event that an adversary wins in a game Gi . From the following lemmas 3, 4,

and 5, we obtain the following result

AdvST -I N D
MCFE-SI ,A(λ) ≤

∣
∣
∣Pr[SG0

A ] − Pr[SG3
A ]

∣
∣
∣ + Pr[SG3

A ] ≤
3

∑

i=1

∣
∣
∣Pr[SGi−1

A ] − Pr[SGi
A ]

∣
∣
∣ + Pr[SG3

A ]

≤n�AdvA2-(n,ρ,Q,J )

B (λ) + n�AdvA3-(n,ρ,Q)

B (λ) + n�AdvSK E
B (λ)

where n is the number of clients, � is the maximum size of the challenge item set. This
completes our proof. ��
Lemma 3 If the Assumption 2 for (n, ρ, Q, J ) holds, then no polynomial-time adversary can
distinguish between G0 and G1 with a non-negligible advantage.

Proof Toprove this lemma,we additionally define hybrid gamesH1,0,H1,1, . . . ,H1,�1 ,H2,1,

. . . ,Hi,k, . . . ,Hn,�n whereH1,0 = G0 andHn,�n = G1. The gameHρ,δ is defined as follows:

– Game Hρ,δ . This gameHρ,δ is almost identical to the gameG0 except the generation of
the components {Ci,k} in the challenge ciphertexts.

– Case (i < ρ) or (i = ρ ∧ k ≤ δ): If x∗
μ,i,k ∈ E∗

i , then the component Ci,k is
generated as normal. Otherwise (x∗

μ,i,k /∈ E∗
i ), the component Ci,k is generated as

random.
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– Case (i = ρ ∧ k > δ) or (i > ρ): The component Ci,k is generated as normal.

Suppose there exists an adversary A that distinguishes between Hρ,δ−1 and Hρ,δ with
a non-negligible advantage. Without loss of generality, we assume that x∗

μ,ρ,δ /∈ E∗
ρ since

Hρ,δ−1 and Hρ,δ are equal if x∗
μ,ρ,δ ∈ E∗

ρ . A simulator B that solves the Assumption 2 for
(n, ρ, Q, J ) which will be defined later is described as follows:

Init: A submits challenge tuples (X∗
0,1, . . . , X

∗
0,n) and (X∗

1,1, . . . , X
∗
1,n), a challenge time

period T ∗, and a set Q = {(i, j)} of function key queries. B proceeds as follows:

1. From n, ρ, Q, it derives an index set J by calling ComputeJ (n, ρ, Q).
2. It receives a challenge tuple D = (g, ga, {gbi }ni=1, {gabk }k∈J , ĝ, {(ĝbi ci, j , ĝb j ci, j ,

ĝ1/(bi+b j ))}(i, j)∈Q) and Z of the Assumption 2 for (n, ρ, Q, J ) where Z = gabρ or
Z = R ∈ G.

3. It flips a random bit μ ∈ {0, 1} internally and derives a tuple (E∗
1 , . . . , E

∗
n ) by calling

C I Q((X∗
μ,k), Q).

Setup: B first chooses random exponents β1, . . . , βn ∈ Zp . Next, it sets PP =
((p,G, Ĝ,GT , e), g, ĝ, H , F, n). It prepares a hash table H -list for the H hash function
as follows:

1. For each i ∈ [n] and k ∈ [�i ], it proceeds as follows: If i 	= ρ or k 	= δ, then it selects
a random exponent u′

i,k ∈ Zp and adds (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) to the H -list. Otherwise

(i = ρ ∧ k = δ), it adds (T ∗‖x∗
μ,ρ,δ,−, ga) to the H -list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i ∈ [n] and k ∈ [�i ], it generates ciphertext elements Ci,k and T Ki,k depending
on the following cases:

– Case i < ρ:
– If (x∗

μ,i,k ∈ E∗
i ) ∧ (x∗

μ,i,k = x∗
μ,ρ,δ), it retrieves (T ∗‖x∗

μ,i,k,−, ga) from the

H -list, and sets Ci,k = gabi and creates T Ki,k = e(ga, ĝ)βi . For this case, we
show that gabi is given in the assumption. If a function key for f = (i, ρ) was
queried, we have x∗

μ,ρ,δ ∈ E∗
ρ by the definition of C I Q. However, we assumed

that x∗
μ,ρ,δ /∈ E∗

ρ for this game. Thus a function key for f = (i, ρ) was not
queried and it means that i ∈ J by the definition of J .

– If (x∗
μ,i,k ∈ E∗

i ) ∧ (x∗
μ,i,k 	= x∗

μ,ρ,δ), it retrieves (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) from the

H -list, and creates Ci,k = (gbi )u
′
i,k and T Ki,k = e(gu

′
i,k , ĝ)βi .

– If (x∗
μ,i,k /∈ E∗

i ), it retrieves (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) from the H -list, and chooses

a random Ci,k ∈ G and creates T Ki,k = e(gu
′
i,k , ĝ)βi .

– Case i = ρ:
– If (k < δ) ∧ (x∗

μ,ρ,k ∈ E∗
ρ), it retrieves (T ∗‖x∗

μ,ρ,k, u
′
ρ,k, g

u′
ρ,k ) from the H -list,

and creates Cρ,k = (gbρ )
u′

ρ,k and T Kρ,k = e(gu
′
ρ,k , ĝ)βρ since x∗

μ,ρ,k 	= x∗
μ,ρ,δ .

– If (k < δ) ∧ (x∗
μ,ρ,k /∈ E∗

ρ), it retrieves (T ∗‖x∗
μ,ρ,k, u

′
ρ,k, g

u′
ρ,k ) from the H -list,

and chooses a random Cρ,k ∈ G and creates T Kρ,k = e(gu
′
ρ,k , ĝ)βρ .

– If (k = δ), it sets Cρ,δ = Z and creates T Kρ,δ = e(ga, ĝ)βρ since we assumed
that x∗

μ,ρ,δ /∈ E∗
ρ .

– If (k > δ), it retrieves (T ∗‖x∗
μ,ρ,k, u

′
ρ,k, g

u′
ρ,k ) from the H -list, and creates

Cρ,k = (gbρ )
u′

ρ,k and T Kρ,k = e(gu
′
ρ,k , ĝ)βρ since x∗

μ,ρ,k 	= x∗
μ,ρ,δ .
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– Case i > ρ:
– If (x∗

μ,i,k = x∗
μ,ρ,δ), it retrieves (T ∗‖x∗

μ,i,k,−, ga) from the H -list, and sets

Ci,k = gabi and creates T Ki,k = e(ga, ĝ)βi . For this case, we show that gabi is
given in the assumption. If a function key for f = (ρ, i) was queried, we have
x∗
μ,ρ,δ ∈ E∗

ρ by the definition of C I Q. However, we assumed that x∗
μ,ρ,δ /∈ E∗

ρ

for this game. Thus a function key for f = (ρ, i) was not queried and it means
that i ∈ J by the definition of J .

– If (x∗
μ,i,k 	= x∗

μ,ρ,δ), it retrieves (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) from the H -list, and

creates Ci,k = (gbi )u
′
i,k and T Ki,k = e(gu

′
i,k , ĝ)βi .

Next, it generates a ciphertext element Di,k by running SKE.Encrypt(T ∗‖x∗
μ,i,k, T Ki,k)

2. For each i ∈ [n], it chooses a random permutation πi and sets CTi,T ∗ = ((Ci,πi (k),

Di,πi (k)))
�i
k=1.

Query: B handles hash, function key, and ciphertext queries of A as follows:

– If this is a hash query for a time period T and an item x , then B proceeds as follows:
If T ‖x exists in the H -list, then it retrieves (T ‖x,−, u) from H -list and gives u to A.
Otherwise, it selects a random exponent u′ ∈ Zp and adds (T ‖x, u′, gu′

) to the H -list,
and then it gives the hash value gu

′
to A.

– If this is a function key query for a function f = (i, j) ∈ Q, then B generates DK f =
(

ĝbi ci, j , ĝb j ci, j , (ĝ1/(bi+b j ))βi
)

since these elements are given in the assumption.
– If this is a ciphertext query for a client index i , a set Xi = {xi,1, . . . , xi,�}, and a time

period T 	= T ∗, then B generates a ciphertext as follows:

1. For each k ∈ [�i ], it proceeds as follows: It retrieves (T ‖xi,k, u′
k, g

u′
k ) from the

H -list, and sets Ci,k = (gbi )u
′
k and T Ki,k = e(gu

′
k , ĝ)βi . Next, it obtains Di,k by

running SKE.Encrypt(T ‖xi,k, T Ki,k).
2. It chooses a random permutation π and sets CTi,T = ((Ci,π(k), Di,π(k)))

�i
k=1.

Guess: A outputs a guess μ′. If μ = μ′, it outputs 1. Otherwise, it outputs 0. ��
Lemma 4 If the Assumption 3 for (n, ρ, Q) holds, then no polynomial-time adversary can
distinguish between G1 and G2 with a non-negligible advantage.

Proof To prove this lemma, we additionally define hybrid gamesH′
1,0,H

′
1,1, . . . ,H

′
1,�1

, . . . ,

H′
i,k, . . . ,H

′
n,�n

where H′
1,0 = G1 and H′

n,�n
= G2. The game H′

ρ,δ is defined as follows:

– Game H′
ρ,δ . This gameH′

ρ,δ is almost identical to the gameG1 except the generation of
temporal keys {T Ki,k} in the challenge ciphertexts.

– Case (i < ρ) or (i = ρ ∧ k ≤ δ): If x∗
μ,i,k ∈ E∗

i , then the temporal key T Ki,k is
generated as normal. Otherwise (x∗

μ,i,k /∈ E∗
i ), the temporal key T Ki,k is generated

as random.
– Case (i = ρ ∧ k > δ) or (i > ρ): The temporal key T Ki,k is generated as normal.

Suppose there exists an adversary A that distinguishes between H′
ρ,δ−1 and H′

ρ,δ with
a non-negligible advantage. Without loss of generality, we assume that x∗

μ,ρ,δ /∈ E∗
ρ since

H′
ρ,δ−1 and H′

ρ,δ are equal if x∗
μ,ρ,δ ∈ E∗

ρ . A simulator B that solves the Assumption 3 for
(n, ρ, Q) which will be defined later is described as follows:

Init: A submits challenge tuples (X∗
0,1, . . . , X

∗
0,n) and (X∗

1,1, . . . , X
∗
1,n), a challenge time

period T ∗, and a set Q = {(i, j)} of function key queries. B proceeds as follows:
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1. It receives a challenge tuple D = (g, ga, {gbi }ni=1, {gabk }1≤k 	=ρ≤n, ĝ, {(ĝbi ci, j ,
ĝb j ci, j , ĝdi /(bi+b j ))}(i, j)∈Q, {ĝdi }1≤i 	=ρ≤n, e(g, ĝ)dρ ) and Z of the Assumption 3 for
(n, ρ, Q) where Z = e(g, ĝ)adρ or Z = R ∈ GT .

2. It flips a random bit μ ∈ {0, 1} internally and derives a tuple (E∗
1 , . . . , E

∗
n ) by calling

C I Q((X∗
μ,k), Q).

Setup: B sets PP = ((p,G, Ĝ,GT , e), g, ĝ, H , F, n). It prepares a hash table H -list for
the H hash function as follows:

1. For each i ∈ [n] and k ∈ [�i ], it proceeds as follows: If i 	= ρ or k 	= δ, then it selects
a random exponent u′

i,k ∈ Zp and adds (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) to the H -list. Otherwise

(i = ρ ∧ k = δ), it adds (T ∗‖x∗
μ,ρ,δ,−, ga) to the H -list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i ∈ [n] and k ∈ [�i ], it generates ciphertext elements Ci,k and T Ki,k depending
on the following cases:

– Case i < ρ:
– If (x∗

μ,i,k ∈ E∗
i ) ∧ (x∗

μ,i,k = x∗
μ,ρ,δ), it retrieves (T ∗‖x∗

μ,i,k,−, ga) from the

H -list, and sets Ci,k = gabi and T Ki,k = e(ga, ĝdi ). In this case, gabi is given
in the assumption since i 	= ρ.

– If (x∗
μ,i,k ∈ E∗

i ) ∧ (x∗
μ,i,k 	= x∗

μ,ρ,δ), it retrieves (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) from the

H -list, and sets Ci,k = (gbi )u
′
i,k and T Ki,k = e(gu

′
i,k , ĝdi ).

– If (x∗
μ,i,k /∈ E∗

i ), it retrieves (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) from the H -list, and selects

random Ci,k ∈ G and T Ki,k ∈ GT .
– Case i = ρ:

– If (k < δ) ∧ (x∗
μ,ρ,k ∈ E∗

ρ), it retrieves (T ∗‖x∗
μ,ρ,k, u

′
ρ,k, g

u′
ρ,k ) from the H -list,

and sets Cρ,k = (gbρ )
u′

ρ,k and T Kρ,k = (e(g, ĝ)dρ )
u′

ρ,k since x∗
μ,ρ,k 	= x∗

μ,ρ,δ .

– If (k < δ) ∧ (x∗
μ,ρ,k /∈ E∗

ρ), it retrieves (T ∗‖x∗
μ,ρ,k, u

′
ρ,k, g

u′
ρ,k ) from the H -list,

and selects random Cρ,k ∈ G and random T Kρ,k ∈ GT .
– If (k = δ), it chooses a random Cρ,δ ∈ G and sets T Kρ,δ = Z since we assumed

that x∗
μ,ρ,δ /∈ E∗

ρ .

– If (k > δ) ∧ (x∗
μ,ρ,k ∈ E∗

ρ), it retrieves (T ∗‖x∗
μ,ρ,k, u

′
ρ,k, g

u′
ρ,k ) from the H -list,

and sets Cρ,k = (gbρ )
u′

ρ,k and T Kρ,k = (e(g, ĝ)dρ )
u′

ρ,k since x∗
μ,ρ,k 	= x∗

μ,ρ,δ .

– If (k > δ) ∧ (x∗
μ,ρ,k /∈ E∗

ρ), it retrieves (T ∗‖x∗
μ,ρ,k, u

′
ρ,k, g

u′
ρ,k ) from the H -list,

and selects a random Cρ,k ∈ G and creates T Kρ,k = (e(g, ĝ)dρ )
u′

ρ,k .
– Case i > ρ:

– If (x∗
μ,i,k ∈ E∗

i ) ∧ (x∗
μ,i,k = x∗

μ,ρ,δ), it retrieves (T ∗‖x∗
μ,i,k,−, ga) from the

H -list, and sets Ci,k = gabi and T Ki,k = e(ga, ĝdi ). In this case, gabi is given
in the assumption since i 	= ρ.

– If (x∗
μ,i,k ∈ E∗

i ) ∧ (x∗
μ,i,k 	= x∗

μ,ρ,δ), it retrieves (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) from the

H -list, and sets Ci,k = (gbi )u
′
i,k and T Ki,k = e(gu

′
i,k , ĝdi ).

– If (x∗
μ,i,k /∈ E∗

i ), it retrieves (T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) from the H -list, and selects

a random Ci,k ∈ G and creates T Ki,k = e(gu
′
i,k , ĝdi ).

Next, it generates a ciphertext element Di,k by running SKE.Encrypt(T ∗‖x∗
μ,i,k, T Ki,k)
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Decentralized MCFE for set intersection with improved efficiency 1075

2. For each i ∈ [n], it chooses a random permutation πi and sets CTi,T ∗ = ((Ci,πi (k),

Di,πi (k)))
�i
k=1.

Query: B handles hash, function key, and ciphertext queries of A as follows:

– If this is a hash query for a time period T and an item x , then B proceeds as follows:
If T ‖x exists in the H -list, then it retrieves (T ‖x,−, u) from H -list and gives u to A.
Otherwise, it selects a random exponent u′ ∈ Zp and adds (T ‖x, u′, gu′

) to the H -list,
and then it gives the hash value gu

′
to A.

– If this is a function key query for a function f = (i, j) ∈ Q, then B generates DK f =
(

ĝbi ci, j , ĝb j ci, j , ĝdi /(bi+b j )
)

since these elements are given in the assumption.
– If this is a ciphertext query for a client index i , a set Xi = {xi,1, . . . , xi,�}, and a time

period T 	= T ∗, then B generates a ciphertext as follows:

1. For each k ∈ [�i ], it proceeds as follows: It retrieves (T ‖xi,k, u′
k, g

u′
k ) from

the H -list and sets Ci,k = (gbi )u
′
k . Next, it sets T Ki,k = (e(g, ĝ)dρ )u

′
k if

i = ρ, and it sets T Ki,k = e(gu
′
k , ĝdi ) if i 	= ρ. It obtains Di,k by running

SKE.Encrypt(T ‖xi,k, T Ki,k).
2. It chooses a random permutation π and creates CTi,T = ((Ci,π(k), Di,π(k)))

�i
k=1.

Guess: A outputs a guess μ′. If μ = μ′, it outputs 1. Otherwise, it outputs 0. ��
Lemma 5 If the SKE scheme is one-message secure, then no polynomial-time adversary can
distinguish between G2 and G3 with a non-negligible advantage.

Proof Toprove this lemma,we additionally define hybrid gamesH′′
1,0,H

′′
1,1, . . . ,H

′′
1,�1

,H′′
2,1,

. . . ,H′′
i,k, . . . ,H

′′
n,�n

whereH′′
1,0 = G2 andH′′

n,�n
= G3. The gameH′′

ρ,δ is defined as follows:

– Game H′′
ρ,δ . This gameH′′

ρ,δ is almost identical to the gameG2 except the generation of
components {Di,k} in the challenge ciphertexts.

– Case (i < ρ) or (i = ρ ∧ k ≤ δ): If x∗
μ,i,k ∈ E∗

i , then the component Di,k is
generated as normal. Otherwise (x∗

μ,i,k /∈ E∗
i ), the component Di,k is generated as

the encryption of a random value.
– Case (i = ρ ∧ k > δ) or (i > ρ): The component Di,k is generated as normal.

Suppose there exists an adversary A that distinguishes between H′′
ρ,δ−1 and H′′

ρ,δ with
a non-negligible advantage. Without loss of generality, we assume that x∗

μ,ρ,δ /∈ E∗
ρ since

H′′
ρ,δ−1 and H′′

ρ,δ are equal if x∗
μ,ρ,δ ∈ E∗

ρ . Then B that interacts with A is described as
follows:

Init:A submits challenge tuples (X∗
0,1, . . . , X

∗
0,n) and (X∗

1,1, . . . , X
∗
1,n) of item sets, a chal-

lenge time period T ∗, and a set Q = {(i, j)} of function key queries. B then flips a random
bit μ ∈ {0, 1} internally and derives a tuple (E∗

1 , . . . , E
∗
n ) by calling C I Q((X∗

μ,k), Q).

Setup: B first chooses random exponents α1, . . . , αn , β1, . . . , βn ∈ Zp . Next, it sets PP =
((p,G, Ĝ,GT , e), g, ĝ, H , F, n). It prepares a hash table H -list for the H hash function as
follows:

1. For each i ∈ [n] and k ∈ [�i ], it selects a random exponent u′
i,k ∈ Zp and adds

(T ∗‖x∗
μ,i,k, u

′
i,k, g

u′
i,k ) to the H -list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:
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1. For each i ∈ [n] and k ∈ [�i ], it generates ciphertext elements Ci,k and T Ki,k depending
on the following cases:

– Case x∗
μ,i,k ∈ Ei : It retrieves (T ∗‖x∗

μ,i,k, u
′
i,k, g

u′
i,k ) from the H -list, and creates

Ci,k = gu
′
i,kαi and T Ki,k = e(gu

′
i,k , ĝ)βi .

– Case x∗
μ,i,k /∈ Ei : It selects random Ci,k ∈ G and random T Ki,k ∈ GT .

Next, it also generates a ciphertext element Di,k depending on the following cases:

– Case (i < ρ) or (i = ρ ∧ k < δ): If x∗
μ,i,k ∈ E∗

i , it creates Di,k by running
SKE.Encrypt(T ∗‖x∗

μ,i,k, T Ki,k). Otherwise (x∗
μ,i,k /∈ E∗

i ), it selects a random y ∈ D
and creates Di,k by running SKE.Encrypt(T ∗‖y, T Ki,k).

– Case (i = ρ ∧ k = δ): It selects a random y ∈ D and submits challenge message
x∗
μ,ρ,δ and y to the encryption oracle of SKE. Next, it receives a challenge ciphertext

CT ∗
SK E from SKE and sets Dρ,δ = CT ∗

SK E . Recall that we assumed x∗
μ,ρ,δ /∈ E∗

ρ .
– Case (i = ρ∧k > δ) or (i > ρ): It creates Di,k by running SKE.Encrypt(T ∗‖x∗

μ,i,k,

T Ki,k).

2. For each i ∈ [n], it chooses a random permutation πi and sets CTi,T ∗ = ((Ci,πi (k),

Di,πi (k)))
�i
k=1.

Query: B handles hash, function key, and ciphertext queries of A as follows:

– If this is a hash query for a time period T and an item x , then B proceeds as follows:
If T ‖x exists in the H -list, then it retrieves (T ‖x,−, u) from H -list and gives u to A.
Otherwise, it selects a random exponent u′ ∈ Zp and adds (T ‖x, u′, gu′

) to the H -list,
and then it gives the hash value gu

′
to A.

– If this is a function key query for a function f = (i, j), then B simply generates DK f

by using αi , α j , βi .
– If this is a ciphertext query for a client index i , a set Xi , and a time period T 	= T ∗, then

B simply generates a ciphertext CTi,T by using αi , βi .

Guess: A outputs a guess μ′. If μ = μ′, it outputs 1. Otherwise, it outputs 0. ��
Theorem 7 The aboveMCFE-SI scheme is static-IND secure with corruptions in the random
oracle model if the MCFE-SI scheme is static-IND secure with no corruptions.

Proof The proof of this theorem is similar to that of Theorem 5. In other words, the simulator
of this proof generates the secret keys of corrupted clients by itself, and processes all other
queries of an attacker using the queries of the MCFE-SI scheme with no corruptions. We
omit the description of more detailed proofs. ��

4.5 Discussions

Efficiency analysis We analyze the efficiency of the proposed MCFE-SI scheme. First,
the function key is composed of two group elements for the set intersection cardinality
and one group element for deriving a temporal key. The encryption algorithm requires �

map-to-point hash operations, � exponentiation operations, and � pairing operations since it
requires operations in proportion to the size of a set. The decryption algorithm requires 2�
pairing operations, � log � comparison operations for sorting of group elements, and � pairing
operations for deriving temporal keys to decrypt intersection items. The detailed comparison
ofMCFE schemes is given in Table 1. Compared to the decryption algorithm of theMCFE-SI

123



Decentralized MCFE for set intersection with improved efficiency 1077

scheme of Lee and Seo [32] that requires approximately �2 pairing operations, the decryption
algorithm of our scheme is more efficient since it only requires 2� pairing operations.

Outsourcing the decryption ofMCFE If the ciphertexts generated by clients are stored on a
cloud server, we can consider outsourcing part of the decryption operation to the cloud server.
At this time, since the cloud server is not a trusted entity, we must be careful not to expose
the set intersection information of the ciphertext to the cloud server. To this end, a client
owning a function key DK = (K1, K2, K3) for indexes (i, j) selects a random exponent z
and provides an outsourcing function key oDK = (K1, K2, K

z
3) to the cloud server. Then,

the cloud server finds ciphertext elements that satisfy the set intersection by using K1 and
K2, derives outsourced temporal keys oT K = e(Ci,kC j,k′ , K z

3) = e(H(T ‖x), ĝβi )z , and
then it passes these keys back to the client. Then, the client raises all outsourced temporal
keys to z−1 and decrypts corresponding ciphertexts with the temporal keys. At this time, the
cloud server obtains information on the set intersection cardinality and information on the
equality patterns but does not obtain the set intersection items.

Multi-party set intersection In the previous section, we presented amethod of extending the
MCFE-SIC scheme to support the set intersection cardinality for multiple parties. Using this
method, our MCFE-SI scheme can also be extended to support multi-party set intersection.
That is, for calculating the set intersection cardinality, random exponents ri , r j , and rk that
satisfy ri + r j + rk = 0 are selected and key elements ĝri /αi , ĝr j /α j , ĝrk/αk are created.
After that, an additional key element ĝβi /(αi+α j+αk ) is provided to derive temporal keys. This
method has the disadvantage that it requires O(�3)multiplication operations to findmatching
ciphertext elements, but it only requires O(�) pairing operations.

5 DecentralizedMCFE for set intersection

In this section, we define the syntax and security model of DMCFE-SI that generates function
keys in a distributed way. And we propose an efficient DMCFE-SI scheme and analyze the
security of the proposed scheme.

5.1 Definition

We define the syntax of decentralizedMCFE-SI (DMCFE-SI). DMCFE-SI is a decentralized
version ofMCFE-SI in the previous section so that individual clients generate partial function
keys instead of a trusted center generating a function key. In DMCFE-SI, individual clients
set their own private key SKi and public key PKi using the ClientSetup algorithm. And
then individual clients generate partial function keys using theGenPartKey algorithm, and a
third entity combines the partial function keys using theCombPartKey algorithm to derive a
correct function key. That is, if the third entity wants to obtain a function key for client indexes
(i, j), it receives a partial function key pDKi from the i-index client and a partial function
key pDK j from the j-index client. And then, it combines the two partial function keys to
derive the correct function key DK to decrypt a ciphertext. At this point, the encryption and
decryption algorithms of DMCFE-SI are the same as those of MCFE-SI. The detailed syntax
of DMCFE-SI is described as follows.

Definition 7 (Decentralized MCFE for Set Intersection) A decentralized multi-client func-
tional encryption for set intersection (DMCFE-SI) scheme for an item space D and a time
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space T consists of six algorithms Setup, ClientSetup, GenPartKey, CombPartKey,
Encrypt, and Decrypt, which are defined as follows:

– Setup(1λ, n) The global setup algorithm takes as input the security parameter λ and the
number of clients n. It outputs public parameters PP .

– ClientSetup(i, PP) The client setup algorithm takes as input an index i of a client and
public parameters PP . It outputs a secret key SKi and a public key PKi .

– GenPartKey( f , SKi , PK , PP) The partial key generation algorithm takes as input a
function f , a secret key SKi , and a tuple PK of public keys, and public parameters PP .
It outputs a partial function key pDKi, f .

– CombPartKey(pDKi, f , pDK j, f , PP) The partial key combining algorithm takes as
input two partial decryption keys pDKi, f and pDK j, f for a function f = (i, j) and
public parameters PP . It outputs a function key DK f .

– Encrypt(Xi , T , SKi , PP) The encryption algorithm takes as input a set Xi =
{xi,1, . . . , xi,�i } of items where xi, j ∈ D, a time period T ∈ T , a secret key SKi ,
and public parameters PP . It outputs a ciphertext CTi,T .

– Decrypt(CTi,T ,CTj,T , DK f , PP) The decryption algorithm takes as input two cipher-
texts CTi,T and CTj,T for the same time T , a function key DK f , and public parameters
PP . It outputs a set Xi ∩ X j where Xi and X j are associated with CTi,T and CTj,T

respectively.

The correctness of the DMCFE-SI scheme is defined as follows: For any PP ←
Setup(1λ, n), all SKi , PKi ← ClientSetup(i, PP), and allCTi,T ← Encrypt(Xi , T , SKi ,

PP) and CTj,T ← Encrypt(X j , T , SK j , PP) for any Xi , X j and the same time T , it is
required that

– CombPartKey(GenPartKey( f , SKi , PK , PP),GenPartKey( f , SK j , PK , PP),

PP) = DK f .
– Decrypt(CTi,T ,CTj,T , DK f , PP) = Xi ∩ X j except with negligible probability.

We define the security model of DMCFE-SI. We define the static IND security model of
DMCFE-SI by modifying the static IND security model of MCFE-SI defined in the previous
section. This security model of DMCFE-SI is the same as that of MCFE-SI in Sect. 4.1,
except that it allows partial function key queries instead of function key queries. In this
security model of DMCFE-SI, partial function key queries requested by an attacker have
two limitations. If a partial function key for a function f = (i, j) requested by the attacker
belongs to the predefined function key query set, then the attacker can request both a partial
function key for a client i and a partial function key for a client j . However, if a partial
function key for f = (i, j) does not belong to the predefined function key query set, then
the attacker can request only one partial function key for a client i or j . Thus, the attacker
of DMCFE-SI allows not only predefined function key queries, but also additional partial
function key queries. The more detailed security model of DMCFE-SI is defined as follows.

Definition 8 (Static-IND Security) The static-IND security of DMCFE-SI with corruptions
is defined in the following experiment EXPST -I N D

DMCFE-SI ,A(1λ) between a challenger C and a
PPT adversary A:

1. Init: A initially submits an index set I ⊂ [n] of corrupted clients. Let I = {1, . . . , n} \ I
be the index set of uncorrupted clients. A also submits two challenge tuples (X∗

0,k)k∈I
and (X∗

1,k)k∈I of item sets, a challenge time period T ∗, and a set Q = {(i, j)} of function
key queries with the two restrictions that (1) i, j ∈ I for each (i, j) ∈ Q and (2)
CSI ((X∗

0,k)k∈I , Q) = CSI ((X∗
1,k)k∈I , Q).
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Decentralized MCFE for set intersection with improved efficiency 1079

2. Setup: C generates public parameters PP by running Setup(1λ, n). It also generates
secret keys and public keys (SKi , PKi ) of clients by running ClientSetup(i, PP) for
each i ∈ [n]. It keeps (SKi )i∈I to itself and gives (SKi )i∈I , PK = (PKi )

n
i=1, and PP

to A.
3. Challenge: C flips a random bit μ ∈ {0, 1} and obtains a ciphertext CTi,T ∗ by run-

ning Encrypt(X∗
μ,i , T

∗, SKi , PP) for each i ∈ I . C gives the challenge ciphertexts
(CTi,T ∗)i∈I to A

4. Query: A requests function keys and ciphertexts. C handles these queries as follows:

– If this is a partial function key query for a tuple f = (i, j) and a client index k such
that k = i or k = j , then C gives a partial function key pDKk, f to A by running
GenPartKey( f , SKk, PK , PP) with the restrictions that (1) if f ∈ Q, then two
partial function keys of i and j can be queried and (2) if f /∈ Q, then only one partial
function key of i or j can be queried.

– If this is a ciphertext query for a client index k ∈ I , an item set Xk , and a time period
T 	= T ∗, then C gives a ciphertextCTk,T toA by runningEncrypt(Xk, T , SKk, PP).

5. Guess: A outputs a guess μ′ ∈ {0, 1} of μ. C outputs 1 if μ = μ′ or 0 otherwise.

A DMCFE-SI scheme is static-IND secure with corruptions if for all PPT adversary A, the
advantage of A defined as AdvST -I N D

DMCFE-SI ,A(λ) = ∣
∣Pr[EXPST -I N D

DMCFE-SI ,A(1λ) = 1] − 1
2

∣
∣ is

negligible in the security parameter λ.

5.2 Construction

The function key of the MCFE-SI scheme proposed in the previous section consist of K1 and
K2 for set intersection cardinality and K3 for deriving a temporal key for set intersection.
We first devise a method to decentralize the generation of K1 and K2. In order for individual
clients to generate these two group elements in an independent way, it is necessary to generate
a common random exponent r . To this end, we derive the same shared key K by using a
non-interactive key exchange NIKE scheme and we use PRF to derive the exponent r from
the shared key K . That is, if an individual client additionally selects a private key γi and
exposes a public key hi = gγi , then it can derive a shared key K = gγiγ j by using a NIKE
scheme. Thus, individual clients can generate partial function keys of ĝαi r and ĝα j r where
r = PRF(K , 1).

Now we devise a method to decentralize the generation of K3 for derivation of a temporal
key. However, it cannot be decentralized by a simple method since it requires the inverse
operation of an exponent. In order to decentralize the calculation of the inverse operation
while hiding the secret keys of two clients, we introduce a method in which the secret key
is encrypted with a one-time pad scheme and a client requesting the partial function key
combines the encrypted keys to calculate the inverse operation. That is, individual clients
first derive the same shared key Ki, j using the NIKE scheme, and derives the same random
exponents s and t . Then, each client encrypts its secret key as Ei = sαi + t and E j = sα j − t ,
respectively. At this time, if the i index client additionally provides ĝβi s , the client that
received Ei and E j can compute a key (ĝβi s)1/(Ei+E j ). Note that, since Ei and E j have a
one-to-one correspondence with random exponents s and t , the information of the secret keys
is not exposed.

Let SKE = (GenKey, Encrypt, Decrypt) be an SKE scheme. A DMCFE-SI scheme is
described as follows.
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Setup(1λ, n) Let n be the maximum number of clients. It first generates a bilinear group
(p,G, Ĝ,GT , e) of prime order p with random generators g ∈ G and ĝ ∈ Ĝ. It chooses
two hash functions H : {0, 1}∗ → G and F : GT → {0, 1}λ. It outputs public parameters
PP = (

(p,G, Ĝ,GT , e), g, ĝ, H , F, n
)

.
ClientSetup(i, PP) Let i be the index of a client. It selects random exponents αi , βi , γi ∈

Zp , and then it outputs a secret key SKi = (αi , βi , γi ) and a public key PKi = (

hi =
gγi

)

.
GenPartKey( f , SKk, PK , PP) Let f = (i, j) such that i < j . Let SKk = (αk, βk, γk)

such that k = i or k = j and PK = (PK1, . . . , PKn).

1. If k = i , it retrieves PK j = h j from PK and computes a shared key Ki, j = hγi
j .

Otherwise (k = j), it retrieves PKi = hi from PK and computes a sharedkey Ki, j =
h

γ j
i . Next, it derives random exponents r , s, t ∈ Zp by running PRF(Ki, j , 1),
PRF(Ki, j , 2), PRF(Ki, j , 3) respectively.

2. If k = i , it sets A2 = ĝβi ·s and E = s · αi + t mod p. Otherwise, it sets A2 = 1
Ĝ

and E = s · α j − t mod p. It outputs a partial function key pDKk, f = (

A1 =
ĝαk ·r , A2, E

)

.

CombPartKey(pDKi, f , pDK j, f , PP) Let f = (i, j) such that i < j . Let pDKi, f =
(A1, A2, E) and pDK j, f = (A′

1, A
′
2, E

′). It selects a random exponent r ∈ Zp and

outputs a function key DK f = (

K1 = (A1)
r , K2 = (A′

1)
r , K3 = A1/(E+E ′)

2

)

.
Encrypt(Xi , T , SKi , PP) Let Xi = {xi,1, . . . , xi,�i } be a set of items where |Xi | = �i and

SKi = (αi , βi , γi ).

1. For each k ∈ [�i ], it proceed as follows: It computesCi,k = H(T ‖xi,k)αi and derives
a temporal key T Ki,k = e(H(T ‖xi,k), ĝ)βi . It obtains Di,k by runningSKE.Encrypt
(T ‖xi,k, F(T Ki,k)).

2. It chooses a random permutation π and outputs a ciphertext CTi,T = (

(Ci,π(k),

Di,π(k))
)�i
k=1 by implicitly including i, T .

Decrypt(CTi,T ,CTj,T , DK f , PP)LetCTi,T = ((Ci,k, Di,k))
�i
k=1 andCTj,T = ((C j,k, Dj,k))

� j
k=1

be ciphertexts such that i < j for the same T . Let DK f = (K1, K2, K3) where
f = (i, j). It first initializes a set Y = ∅.
1. For each k ∈ [�i ], it computes Ei,k = e(Ci,k, K2). For each k ∈ [� j ], it computes

E j,k = e(C j,k, K1).

2. It prepares two sets Ei = {Ei,k}�ik=1 and E j = {E j,k}� j
k=1 and computes the intersec-

tion S = Ei ∩ E j by comparing the group elements.
3. For each Ek ∈ S, it proceeds as follows:

1. It finds (Ci,ki , Di,ki ) from CTi,T and (C j,k j , Dj,k j ) from CTj,T such that Ci,ki
and C j,k j are used to derive Ek .

2. It computes T Kk = e(Ci,ki · C j,k j , K3) and obtains T ‖x by running
SKE.Decrypt(Di,ki , F(T Kk)).

3. It adds an item x into Y .
4. It outputs the set Y .
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5.3 Correctness

We show the correctness of the DMCFE-SI scheme. First, two clients i and j can obtain
the same shared key Ki, j from the correctness of the Diffie–Hellman non-interactive key
exchange scheme. And two clients i and j can derive the same random exponents r , s, and
t since PRF is a deterministic function. Now, when a combing client combines the partial
function key elements generated by using the same random exponents r , s, and t , it can derive
a function key by the following equation

A1 = ĝαi r , A′
1 = ĝα j r , A1/(E+E ′)

2 = (

ĝβi ·s)1/(sαi+t+sα j−t) = (

ĝβi ·s)1/(sαi+sα j )

= ĝβi /(αi+α j ).

Since the correct function key is derived from the partial function key, it is guaranteed that the
set intersection is correctly calculated from the ciphertexts of two clients from the correctness
of the MCFE-SI scheme.

5.4 Security analysis

Theorem 8 The above DMCFE-SI scheme is static-IND secure with no corruptions in the
random oracle model if the PRF scheme is secure and the Assumptions 2 and 3 hold.

Proof Suppose there exists an adversary that breaks the static-IND security of the
DMCFE-SI scheme with no corruptions. We can assume that I = {1, . . . , n} and I =
∅. Let (X∗

0,1, . . . , X
∗
0,n) and (X∗

1,1, . . . , X
∗
1,n) be the challenge tuples where X∗

b,i =
{x∗

b,i,1, . . . , x
∗
b,i,�i

} and |X∗
b,i | = �i . Let Q = {(i, j)} be the set of index pairs related to

function key queries. We can derive a tuple (E∗
1 , . . . , E

∗
n ) by callingC I Q((X∗

μ,k), Q)where
μ is the challenge random bit of the security game. To argue that the adversary cannot win this
game, we define a sequence of hybrid games G0,G1,G2, and G3. The game Gi is defined
as follows:

– Game G0. The first game G0 is the original security game defined in Definition 8.
– Game G1. In this gameG1, when processing partial function key queries, we change all

shared keys {Ki, j } derived by non-interactive key agreement to random elements.
– Game G2. In this game, we modify the previous gameG1 to generate random exponents
r , s, t by using the a truly random function instead of using a pseudo-random function
when processing partial function key queries.

– Game G3. This game G3 is similar to the game G2 except that the challenge ciphertext
components {Ci,k} are generated as random for all x∗

μ,i,k /∈ E∗
i .

– Game G4. This game G4 is slightly changed from the game G3. That is, the challenge
temporal keys {T Ki,k} are generated as random for all x∗

μ,i,k /∈ E∗
i .

– Game G5. In the final game G5, we change the generation of challenge ciphertext com-
ponents {Di,k}. That is, the challenge ciphertext components {Di,k} are the encryption
of random values for all x∗

μ,i,k /∈ E∗
i . Recall that the advantage of the adversary in this

game is zero since challenge ciphertext components {Ci,k} are random and {Di,k} are the
encryption of random values for all x∗

μ,i,k /∈ E∗
i .
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Let SGi
A be the event that an adversary wins in a gameGi . From the following Lemmas 6,

7, 8, 9, and 10, we obtain the following result

AdvST -I N D
DMCFE-SI ,A(λ)

≤
∣
∣
∣Pr[SG0

A ] − Pr[SG5
A ]

∣
∣
∣ + Pr[SG5

A ] ≤
5

∑

i=1

|Pr[SGi−1
A ] − Pr[SGi

A ]| + Pr[SG5
A ]

≤ AdvXDH
B (λ) + n2AdvPRF

B (λ) + n�AdvA2-(n,ρ,Q,J )
B (λ) + n�AdvA3-(n,ρ,Q)

B (λ)

+ n�AdvSK E
B (λ)

where n is the number of clients, � is the maximum size of the challenge item set. This
completes our proof. ��
Lemma 6 If the XDH assumption holds, then no polynomial-time adversary can distinguish
between G0 and G1 with a non-negligible advantage.

Proof To prove this lemma, we introduce a multi-XDH assumption that is modified from
the XDH assumption. Let (p,G, Ĝ,GT , e) be a bilinear group and g, ĝ be random gen-
erators of G, Ĝ respectively. The multi-XDH assumption is that if the challenge tuple
D = (

(p,G, Ĝ,GT , e), g, ga1 , . . . , gan , ĝ
)

and Z are given, no PPT algorithm A can
distinguish Z = Z0 = (ga1a2 , . . . , ga1an , . . . , gai a j , . . . , gan−1an )1≤i< j≤n from Z = Z1 =
(gc1,2 , . . . , gci, j . . . , gcn−1,n )1≤i< j≤n with more than a negligible advantage where the prob-
ability is taken over random choices of a1, . . . , an, {ci, j } ∈ Zp .

The multi-XDH assumption is actually the same as the XDH assumption by using the
random self-reducibility of the XDH assumption. We omit the detailed proof of this lemma
since the proof of randomly changing all shared keys is simply processed by using the multi-
XDH assumption. ��
Lemma 7 If the PRF is secure, then no polynomial-time adversary can distinguish between
G1 and G2 with a non-negligible advantage.

Proof To prove this lemma, we play additional hybrid games that convert pseudo-random
functions into truly random functions one by one. When the number of clients is n, the
maximum number of shared keys is n(n − 1)/2, so the hybrid games consist of a maximum
of n2/2. Note that the exponents r , s, and t derived by a truly random function are distributed
as random values. We omit the detailed proof of this lemma. ��
Lemma 8 If the Assumption 2 for (n, ρ, Q, J ) holds, then no polynomial-time adversary can
distinguish between G2 and G3 with a non-negligible advantage.

Proof The proof of this lemma is almost the same as Lemma 3 except for client public key
generation and partial function key query processing. To perform the proof, we define a num-
ber of additional hybrid games as in Lemma 3 and show the indistinguishability of individual
hybrid games. The simulator of this lemma generates public parameters, challenge cipher-
texts, and challenge ciphertexts in the same manner as in Lemma 3. Note that function key
query processing in Lemma 3 is unnecessary for this lemma. In the proof of individual hybrid
games, the simulator handles additional client public key generation and partial function key
queries.

In the setup phase, the simulator selects a random exponent γi ∈ Zp for each client and
sets hi = gγi as the corresponding client public key. The public key generated in this way
has the same distribution as that of the original game.
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In the query phase, the simulator handles a partial function key query for a function
f = (i, j) and a client index k as follows:

– Case f = (i, j) ∈ Q: It first sets a function key DK f = (

K1 = ĝbi ci, j , K2 =
ĝb j ci, j , K3 = (ĝ1/(bi+b j ))βi

)

since these elements are given in the assumption. Next,
it selects random exponents r ′, s′, t ′ ∈ Zp . If k = i , then it creates pDKi, f = (

A1 =
Kr ′
1 , A2 = Ks′

3 , E = s′ + t ′ mod p
)

. Otherwise (k = j), it creates pDK j, f = (

A′
1 =

Kr ′
2 , A′

2 = 1
Ĝ
, E ′ = −t ′ mod p

)

.
Now we show that the distribution of the generated partial function keys has the same
distribution as that of the original game. We implicitly define the random exponents of
the partial function key as follows:

r = ci, j r
′, s = 1

(bi + b j )
s′, t = b j

(bi + b j )
s′ + t ′.

Then, we can show that the elements of the partial function key are correctly distributed
by the following equations:

A1 = ĝbi r = ĝbi ci, j r
′ = Kr ′

1 , A′
1 = ĝb j r = ĝb j ci, j r ′ = Kr ′

2 ,

A2 = ĝβi s = ĝβi ·s′/(bi+b j ) = Ks′
3 ,

E = sbi + t = s′

(bi + b j )
bi + b j

(bi + b j )
s′ + t ′ = s′ + t ′,

E ′ = sb j − t = s′

(bi + b j )
b j − b j

(bi + b j )
s′ − t ′ = −t ′.

– Case f = (i, j) /∈ Q: It first selects random exponents r ′, s′, t ′ ∈ Zp . If k = i , then it
creates pDKi, f = (

A1 = ĝr
′
, A2 = ĝs

′
, E = t ′ mod p

)

. Otherwise (k = j), it creates

pDK j, f = (

A′
1 = ĝr

′
, A′

2 = 1
Ĝ
, E ′ = t ′ mod p

)

.
Now we should show that the distribution of the partial function keys generated in this
way has the same distribution as that of the original game. Note that in the case of
f /∈ Q, an attacker can obtain only one of pDKi, f or pDK j, f due to the constraints
of the security model. First, in the case of k = i , if we define the random exponents
as follows, then we can see that the elements of the partial function key are correctly
distributed by the following equations:

r = 1

bi
r ′, s = 1

βi
s′, t = − bi

βi
s′ + t ′,

A1 = ĝbi r = ĝbi ·r ′/bi = ĝr
′
, A2 = ĝβi s = ĝβi ·s′/βi = ĝs

′
,

E = sbi + t = 1

βi
s′bi − bi

βi
s′ + t ′ = t ′.

Next, in the case of k = j , if we define the random exponents as follows, then we can
see that the elements of the partial function key are correctly distributed by the following
equations:

r = 1

b j
r ′, s = 1

βi
s′, t = b j

βi
s′ − t ′,

A′
1 = ĝb j r = ĝb j ·r ′/b j = ĝr

′
, E ′ = sb j − t = s′

βi
b j − b j

βi
s′ + t ′ = t ′.
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This completes our proof. ��
Lemma 9 If the Assumption 3 for (n, ρ, Q, J ) holds, then no polynomial-time adversary can
distinguish between G3 and G4 with a non-negligible advantage.

Proof The proof of this lemma is the same as that of Lemma 4 by removing the function
key query and adding additional client public key generation and partial function key query.
In order to perform the proof, we define additional hybrid games, identical to Lemma 4,
and perform indistinguishability proof of individual hybrid games. In the proof of individual
hybrid games, a simulator proceeds client public key generation and partial function key
query processing as the similar manner as in Lemma 8. We omit the detailed proof. ��
Lemma 10 If the SKE scheme is one-message secure, then no polynomial-time adversary
can distinguish between G4 and G5 with a non-negligible advantage.

Proof The proof of this lemma is almost the same by removing the function key generation
from the proof of Lemma 5, and adding client public key generation and partial function
key query processing. A simulator can easily handle client public key generation and partial
function key query by using αi , βi , and γi selected by the simulator. We omit the detailed
description of this proof. ��
Theorem 9 The above DMCFE-SIC scheme is static-IND secure with corruptions in the
random oracle model if the DMCFE-SIC scheme is static-IND secure with no corruptions.

Proof The proof of this theorem is almost the same as Theorem 7 by replacing the function
key query with a partial function key query. In other words, the simulator of this theorem
generates the secret keys of corrupted clients by itself, and partial function key queries
requested by an attacker are also processed by using the queries of the DMCFE-SI scheme
with no corruption. Since all other parts of this proof are the same as Theorem 7, we will
omit the detailed proof. ��

5.5 Discussions

Efficiency analysisThe encryption and decryption algorithms of our DMCFE-SI scheme has
the same performance as those of our MCFE-SI scheme in the previous section. The partial
function key generation algorithm requires three exponentiations and three PRF operations
to generate random exponents. And the partial function key combining algorithm requires
one inverse and one exponentiation operations. Thus, the partial function key generation and
partial function key combining algorithms are very efficient. The detailed comparison of
MCFE schemes is given in Table 1.

Public verification of function keys A client that performs the partial function key com-
bination algorithm needs to check whether the derived function key is correct or not. In
order to publicly verify the function key, it is necessary to additionally expose public keys
for private keys of individual clients. In other words, individual clients publish a public key
(gαi , e(g, ĝ)βi , gγi ) for their private key (αi , βi , γi ). Since the function key is composed of
(ĝαi r , ĝα j r , ĝβi /(αi+α j )), it is possible to verify the function key by checking the following
equations. e(gα j , ĝαi r ) = e(gαi , ĝα j r ) ∧ e(gαi gα j , ĝβi /(αi+α j )) = e(g, ĝ)βi . Note that it is
secure for a client to expose gαi , e(g, ĝ)βi in the public key since these elements are already
included in the two assumptions used to prove the security of the DMCFE-SI scheme.
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Decentralized three-party set intersection Previously, we could extend theMCFE-SIC and
MCFE-SI schemes to support the set intersection between multiple parties. Here, we extend
our DMCFE-SI scheme to support multi-party set intersection. In the case of the DMCFE-SI
scheme, the function key generation is divided into partial function key generation and partial
function key combination algorithms. Thus, it is necessary to modify the partial function key
generation algorithm to support the multi-party set intersection. The partial function key
generation algorithm needs to derive a shared key through non-interactive key exchange
between entities involved in the set intersection. Fortunately, three-party non-interactive key
exchange is possible by using the pairing operation. In other words, we first derive a shared
key Ki, j,k = e(gγi , ĝγ j )γk for three clients (i, j, k). We then select random exponents
r1, r2, s, t1, t2 and set r3 = −r1 − r2, t3 = −t1 − t2. Then the partial key of the client i is
(gαi r1 , gβi s, Ei = sαi + t1), and the partial key of the client j is (gα j r2 , 1, E j = sα j + t2),
and the partial key of the client k is (gαkr3 , 1, Ek = sαk +t3). In this case, the correct function
key (ĝβi s)1/(Ei+E j+Ek ) = ĝβi /(αi+α j+αk ) is derived from the partial function keys.

6 Efficiency comparison

In this section, we estimate the performance of our MCFE schemes for set intersection when
our schemes are instantiated in asymmetric bilinear groups. To do this, we first measure the
speed of basic group operations in asymmetric pairing groups by using the Charm library
[8], which is a framework for quickly implementing public-key cryptographic schemes in
the Python language. To measure the performance of these basic operations, we used a
desktop computer with Intel Core i9-11900 2.5GHz CPU and 16GB RAM. The Charm
library supports theMNT159, MNT201, andMNT224 pairing curves as asymmetric bilinear
groups that provide 80-bit, 100-bit, and 112-bit security, respectively. The performance of
basic operators in these curves is given in Table 2.

We compare the performance of our MCFE schemes with the MCFE scheme of Lee and
Seo [32]. For this comparison, we estimate the performance of these MCFE schemes by
using the number of basic operations in Table 1 and the speed of basic operations in Table2
instead of actually implementing these MCFE schemes. We select the MNT224 curve that
provides 112-bit security as an asymmetric bilinear group, and analyze the performance of
individual algorithms while changing the number of items in a set differently. The perfor-
mance comparison between MCFE schemes is given in Table 3. In this table, we did not
describe the performance of our DMCFE-SI scheme because the encryption and decryption
algorithms of our DMCFE-SI scheme are the same as those of our MCFE-SI scheme. The
estimated performance is based on a single-threaded environment, and this performance can
be improved as much as the number of physical cores if multiple-threads are used.

First, the function key generation algorithms of three schemes are very efficient regardless
of the size of a set because all of them only require constant number of exponentiations. Next,
the encryption algorithms of three schemes require basic group operations in proportion to
the size of a set. The encryption algorithm of our MCFE-SIC scheme is the most efficient
because there is no pairing operation, and the encryption algorithms of the MCFE scheme of
Lee and Seo and our MCFE-SI scheme have the same performance. Lastly, the decryption
algorithms have the biggest difference in three schemes. The decryption algorithm of the
MCFE scheme of Lee and Seo is efficient only for small-sized sets because it requires �2

pairing operations. In contrast, the decryption algorithm of ourMCFE-SI scheme takes about
38 seconds for the � = 2048 size set because it only requires 3� pairing operations. Thus,
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Table 2 Comparison of basic group operations in asymmetric bilinear groups

Curve Security Hash G Exp G Exp Ĝ Exp GT Pairing

MNT159 80 0.030 0.581 5.283 1.097 3.664

MNT201 100 0.136 0.762 7.826 2.255 5.045

MNT224 112 0.089 1.111 8.973 1.881 6.289

All results are measured in milliseconds. We use symbols Hash for a map-to-point hash operation, Exp for an
exponentiation operation, and Pairing for a pairing operation

Table 3 Efficiency comparison of MCFE schemes for set intersection in MNT224

Scheme Algorithm � = 64 � = 128 � = 256 � = 512 � = 1024 � = 2048

LS [32] GenKey 0.01 0.01 0.01 0.01 0.01 0.01

Encrypt 0.48 0.96 1.92 3.83 7.67 15.34

Decrypt 25.76 103.04 412.16 1.6 × 103 6.6 × 103 26.4 × 103

MCFE-SIC GenKey 0.02 0.02 0.02 0.02 0.02 0.02

Encrypt 0.08 0.15 0.31 0.61 1.23 2.46

Decrypt 0.81 1.61 3.22 6.44 12.88 25.76

MCFE-SI GenKey 0.03 0.03 0.03 0.03 0.03 0.03

Encrypt 0.48 0.96 1.92 3.83 7.67 15.34

Decrypt 1.21 2.42 4.83 9.66 19.32 38.64

All results are estimated in seconds. We let � to be the number of items in a set

our decryption algorithm is about 700 times faster than that of the MCFE scheme of Lee and
Seo when � = 2048.

7 Generic groupmodel

In this section, we describe the master theorem of Freeman [18] and analyze our three
complexity assumptions in the generic group model of Shoup [35].

7.1 Master theorem

Weuse themaster theoremof Freeman [18] to analyze the complexity assumptions introduced
in the previous section. This master theorem is the generalization of the master theorem of
Boneh et al. [13] so that the target challenge element is eitherG orGT in asymmetric bilinear
groups of prime order.

Let G, Ĝ, and GT be asymmetric bilinear groups of prime order p equipped with the
bilinear map e : G× Ĝ → GT . A group element u ∈ G can be represented as a multi-variate
polynomial, which indicates the exponent of u relative to some fixed generator g. We can
also represent group elements in Ĝ and GT as similar way. For instance, the general Diffie–
Hellman tuple is represented as the expression (1, X , Y , XY ) where X and Y are random
variables.

The generalized dependence and independence of variables is defined by Freeman [18]
as follows:
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Definition 9 [18, Definition D.1] Let P = (p1, . . . , pu), R = (r1, . . . , rw), T =
(t1, . . . , tv), S = (s1, . . . , st ) be tuples of multi-variate polynomials in Fp[X1, . . . , Xn].
Let f be a multi-variate polynomial in Fp[X1, . . . , Xn]. We say that f · S is dependent on
(P, R, T ) if there exist integers {αi, j }, {βk}, {γ�} such that

u
∑

i=1

w
∑

j=1

αi, j · pir j +
v

∑

k=1

βk · tk +
t

∑

�=1

γ� · s�Y

is nonzero in Fp[X1, . . . , Xn, Y ] but becomes zero when we set Y = f . We say that f · S is
independent of (P, R, T ) if f ·S is not dependent on (P, R, T ). We say that f is independent
of (P, R, T ) if f · {1} is not dependent on (P, R, T ).

In this definition, the multi-variate polynomials pi , r j , tk represent the exponents of group
elements in G, Ĝ,GT respectively, and the polynomial f represents the exponent of the
challenge element in complexity assumptions. Additionally, the polynomials s� represent the
exponents of group elements in which the challenge element can be paired.

Freeman defined the (P, R, T , f )-DDH problem in G and GT by extending the
(P, R, T , f )-DDH problem of Boneh et al. [13] as follows:

Definition 10 [18, Definition D.2] Let (p,G, Ĝ,GT , e) be a bilinear group randomly gen-
erated by G(1λ). Let g, ĝ be random generators of G, Ĝ respectively. Let P, R, T , f be as

in Definition 9. We select x
R← F

n
p and define the following distribution:

D = (

(p,G, Ĝ,GT , e), gp1(x), . . . , gpu(x), ĝr1(x), . . . , ĝrw(x),

e(g, ĝ)t1(x), . . . , e(g, ĝ)tv(x)), Z0 ← g f (x), Z1
R← G

Wedefine the advantage of an algorithmA that outputs b ∈ {0, 1} in solving the (P, R, T , f )-
decision Diffie–Hellman problem in G to be

Adv(P,R,T , f )-DDH
A (λ) = |Pr[A(D, Z0) = 1] − Pr[A(D, Z1) = 1]|

We define the analogous problem in GT by taking Z0 ← e(g, ĝ) f (x), Z1
R← GT .

The master theorem of Boneh et al. [13] gives the complexity lower bound of the
(P, R, T , f )-DDH problem in GT , but the same argument also works for the (P, R, T , f )-
DDH problem in G as indicated by Freeman [18] using the generalized definition of
independence in Definition 9.

Theorem 10 [13, 18] Let P = (p1, . . . , pu), R = (r1, . . . , rw), T = (t1, . . . , tv) be tuples
of polynomials in Fp[X1, . . . , Xn]. Let f be a polynomial in Fp[X1, . . . , Xn]. Let d =
2 · max(dP , dR, dT , d f ) where d f is the total degree of f and dX = max{d f | f ∈ X} for a
set X. If f is independent of (P, R, T ), then any algorithm A that solves the (P, R, T , f )-
DDH problem in GT with advantage 1/2 must take at least 
(

√
p/d − n). If f · R is

independent of (P, R, T ), then the same statement holds for the (P, R, T , f )-DDH problem
in G.
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7.2 Analysis of Assumption 1 for (n,�,Q, J)

We analyze the Assumption 1 for (n, ρ, Q, J ) in the generic group model by using Theorem
10. The Assumption 1 is described as follows:

D = (

g, ga, {gbk }nk=1, {gabk }k∈J , ĝ, {(ĝbi ci, j , ĝb j ci, j )}(i, j)∈Q
)

, Z0 = gabρ , Z1 = gd .

The Assumption 1 is described again as the following set of multi-variate polynomials:

P = {1, A} ∪ {Bk}nk=1 ∪ {ABk}k∈J , R = {1} ∪ {BiCi, j , BjCi, j }(i, j)∈Q, T = {},
f0 = ABρ, f1 = D.

To apply the master theorem, we must show that f0 and f1 are independent of (P, R, T )

by following Definition 9. We can easily show that f1 · R is independent of (P, R, T ) by
using the fact that the random variable D in f1 does not exist in P, R, T . To show that f0 · R
is independent of (P, R, T ), we derive two sets f0 · R and P · R as follows:

f0 · R ={ABρ} ∪ {ABρBiCi, j , ABρBjCi, j }(i, j)∈Q,

P · R ={1, A} ∪ {Bk}1≤k≤n ∪ {ABk}k∈J∪
{BiCi, j , BjCi, j }(i, j)∈Q ∪ {ABiCi, j , ABjCi, j }(i, j)∈Q∪
{Bk BiCi, j , Bk B jCi, j }(i, j)∈Q,1≤k≤n ∪ {ABk BiCi, j , ABk B jCi, j }(i, j)∈Q,k∈J .

The set f0 ·R consists of three component types: ABρ , ABρBiCi, j , and ABρBjCi, j . Since
these component types are independent of each other, we can analyze these types separately.

– First, we show that ABρ is independent of P ·R. At this time, since ABρ includes random
variables A and Bρ , only {ABk} can have a dependency. However, ABρ is independent
because of ρ /∈ J .

– Next, we show that ABρBiCi, j is independent of P · R. The subsets of P · R that contain
the random variables A, Bρ, Bi ,Ci, j are {ABk BiCi, j }. However, the index k cannot be
the index ρ because of ρ /∈ J . Thus ABρBiCi, j is independent.

– We can also show that ABρBjCi, j is independent similarly.

Therefore, we have that f0 · R is independent of (P, R, T ).

7.3 Analysis of Assumption 2 for (n,�,Q, J)

We analyze the Assumption 2 for (n, ρ, Q, J ) in the generic group model by using The-
orem 10. However, we cannot directly apply the theorem to the assumption because the
assumption contains negative exponents. To solve this negative exponent problem, we set
ĥ = ĝ

∏

(i, j)∈Q (bi+b j ) and use ĥ instead of ĝ. In this case, the Assumption 2 is described again
as follows:

D = (

g, ga, {gbk }nk=1, {gabk }k∈J , ĥ, {ĥbi ci, j , ĥb j ci, j , ĥ1/(bi+b j )}(i, j)∈Q
)

, Z0 = gabρ , Z1 = gd .

Let η = ∏

(i, j)∈Q(Bi + Bj ) be a random variable where the maximum degree of η

is n(n − 1)/2. The Assumption 2 is described again as the following set of multi-variate
polynomials:

P = {1, A} ∪ {Bk}nk=1 ∪ {ABk}k∈J ,

R = {η} ∪ {ηBiCi, j , ηBjCi, j , η/(Bi + Bj )}(i, j)∈Q, T = {},
f0 = ABρ, f1 = D.
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To apply the master theorem, we must show that f0 and f1 are independent of (P, R, T )

by following Definition 9. We can easily show that f1 · R is also independent of (P, R, T )

by using the fact that the random variable D in f1 does not exist in P, R, T . To show that
f0 · R is independent of (P, R, T ), we derive two sets f0 · R and P · R as follows:

f0 · R ={ηABρ} ∪ {ηABρBiCi, j , ηABρBjCi, j , ηABρ/(Bi + Bj )}(i, j)∈Q,

P · R ={η, ηA} ∪ {ηBk}1≤k≤n ∪ {ηABk}k∈J∪
{ηBiCi, j , ηBjCi, j }(i, j)∈Q ∪ {ηABiCi, j , ηABjCi, j }(i, j)∈Q∪
{ηBk BiCi, j , ηBk B jCi, j }(i, j)∈Q,1≤k≤n ∪ {ηABk BiCi, j , ηABk B jCi, j }(i, j)∈Q,k∈J∪
{η/(Bi + Bj )}(i, j)∈Q ∪ {ηA/(Bi + Bj )}(i, j)∈Q∪
{ηBk/(Bi + Bj )}(i, j)∈Q,1≤k≤n ∪ {ηABk/(Bi + Bj )}(i, j)∈Q,k∈J .

The set f0 · R consists of four component types: ηABρ , ηABρBiCi, j , ηABρBjCi, j , and
ηABρ/(Bi +Bj ). Since these component types are independent of each other, we can analyze
these types separately.

– First, we show that ηABρ is independent of P · R. At this time, since ηABρ includes
random variables η, A, and Bρ , only {ηABk} can have a dependency. However, ηABρ is
independent because of ρ /∈ J .

– We show that ηABρBiCi, j is independent of P · R. The subsets of P · R that con-
tain the random variables A, Bρ, Bi ,Ci, j are {ηABk BiCi, j }. However, ηABρBiCi, j is
independent because of ρ /∈ J = {k}.

– We can also show that ηABρBjCi, j is independent similarly.
– Next, we show that ηABρ/(Bi + Bj ) is independent of P · R. The subsets of P · R that

contain the random variables η, A are {ηA}, {ηABk}, {ηA/(Bi +Bj )}, and {ηABk/(Bi +
Bj )}. Here, the subset {ηABk} need not be considered because of ρ /∈ J . The subset
{ηA/(Bi + Bj )} does not need to be considered because it does not contain Bρ . Now
using the remaining subsets {ηA = ηA(Bi + Bj )/(Bi + Bj )} and {ηABk/(Bi + Bj )}, we
may try to compose a linear equation with ηABρ/(Bi + Bj ). Here, the index k cannot be
the index ρ because of ρ /∈ J . Thus the only way to create a linear equation is to derive

ηABρ

(Bρ + Bk)
= ηA(Bρ + Bk)

(Bρ + Bk)
− ηABk

(Bρ + Bk)

when (ρ, k) ∈ Q. To satisfy the above equation, it is required that k ∈ J when (ρ, k) ∈
Q. However, if (ρ, k) ∈ Q, we have k /∈ J according to the definition of J . Thus
ηABρ/(Bi + Bj ) is independent because ABk /∈ P when (ρ, k) ∈ Q.

Therefore, we have that f0 · R is independent of (P, R, T ).

7.4 Analysis of Assumption 3 for (n,�,Q)

We analyze the Assumption 3 for (n, ρ, Q) in the generic group model by using Theorem 10.
However,we cannot directly apply the theorem to the assumptionbecause the assumption con-
tains negative exponents. To solve this negative exponent problem,we set ĥ = ĝ

∏

(i, j)∈Q (bi+b j )

and use ĥ instead of ĝ. In this case, the Assumption 3 is described as follows:

D = (

g, ga, {gbi }ni=1, {gabk }1≤k 	=ρ≤n, ĥ, {ĥbi ci, j , ĥb j ci, j , ĥdi /(bi+b j )}(i, j)∈Q,

{ĥdi }1≤i 	=ρ≤n, e(g, ĥ)dρ
)

,

Z0 = e(g, ĥ)adρ , Z1 = e(g, ĥ) f .
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Let η = ∏

(i, j)∈Q(Bi + Bj ) be a random variable where the maximum degree of η

is n(n − 1)/2. The Assumption 3 is described again as the following set of multi-variate
polynomials:

P = {1, A} ∪ {Bk}nk=1 ∪ {ABk}1≤k 	=ρ≤n,

R = {η} ∪ {ηBiCi, j , ηBjCi, j , ηDi/(Bi + Bj )}(i, j)∈Q ∪ {ηDi }1≤i 	=ρ≤n, T = {ηDρ},
f0 = ηADρ, f1 = ηF .

To apply the master theorem, we must show that f0 and f1 are independent of (P, R, T )

by following Definition 9. We can easily show that f1 is independent of (P, R, T ) by using
the fact that the random variable F in f1 does not exist in P, R, T . To show that f0 is
independent of (P, R, T ), we derive the set P · R as follows:

P · R ={η, ηA} ∪ {ηBk}ni=k ∪ {ηABk}1≤k 	=ρ≤n ∪ {ηDi , ηADi }1≤i 	=ρ≤n∪
{ηBkDi }1≤i 	=ρ≤n,1≤k≤n ∪ {ηABkDi }1≤i 	=ρ≤n,1≤k≤n∪
{ηBiCi, j , ηBjCi, j }(i, j)∈Q ∪ {ηABiCi, j , ηABjCi, j }(i, j)∈Q∪
{ηBk BiCi, j , ηBj BkCi, j }(i, j)∈Q,1≤k 	=ρ≤n ∪ {ηABk BiCi, j , ηABk B jCi, j }(i, j)∈Q,1≤k 	=ρ≤n∪
{ηDi/(Bi + Bj )}(i, j)∈Q ∪ {ηADi/(Bi + Bj )}(i, j)∈Q∪
{ηBkDi/(Bi + Bj )}(i, j)∈Q,1≤k 	=ρ≤n ∪ {ηABkDi/(Bi + Bj )}(i, j)∈Q,1≤k 	=ρ≤n .

We show that f0 = ηADρ is independent of P · R and T . The subsets of P · R that contain
the random variables A, Dρ are {ηADi/(Bi + Bj )} and {ηABkDi/(Bi + Bj )}. Here, the
subset {ηADi/(Bi + Bj )} does not need to be considered because it lacks (Bi + Bj ). By
using the remaining subset {ηABkDi/(Bi + Bj )}, we may try to compose a linear equation
with ηADρ . The only way to create a linear equation is to derive

ηADρ = ηABk1Dρ

(Bρ + Bj )
+ ηABk2Dρ

(Bρ + Bj )

when (ρ, j) ∈ Q, k1 = ρ, and k2 = j . To satisfy the above equation, it is required that
k1 = ρ where k1 is an index for {ABk}. However, we have k1 	= ρ from the restriction of the
Assumption 3. Therefore, f0 is independent of (P, R, T ).

8 Conclusion

In this paper, we proposed variousMCFE schemes that support set intersection operations and
proved the security of our schemes by using the newly introduced complexity assumptions.
Our first MCFE-SIC scheme supports the computation of set intersection cardinality and can
efficiently findmatching ciphertext elements by using a pairing operation.Our secondMCFE-
SI scheme supports the set intersection operation, and it requires 2� pairing operations in
the decryption. Our third DMCFE-SI scheme decentralizes the generation of function keys
by removing a trusted center. Using our MCFE-SI schemes, it is possible to construct an
effective contact tracing system that preserves privacy of people.

We leave two interesting problems related to this study. The first problem is to devise an
MCFE-SI scheme that is secure under standard assumptions. Since all ourMCFE-SI schemes
have disadvantages that they are secure under complex and dynamic assumptions, it is an
important problem to prove the security under weaker assumptions. The second problem
is to devise an MCFE-SI scheme that can efficiently compute the set intersection between
n patients and m users. If our MCFE-SI scheme is directly used, the computation requires
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2nm� pairing operations with additional comparison operations. Thus, if we can improve the
performance, it can be used for more efficient contact tracing.
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