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This special issue of Designs, Codes and Cryptography is dedicated to Vera Stepen Pless,
our beloved collaborator, advisor, and friend. Accounts of her biography and bibliography
have appeared in several places [4, 20, 28, 29, 67]. The topics of the articles that comprise
the issue reflect the themes and trends of Vera’s long and fertile research career. We consider
her career by examining her impact on the following areas of coding theory:

1. self-orthogonal and self-dual codes,
2. formally self-dual codes,
3. identities on the weight distribution,
4. covering radius,
5. families of linear codes,
6. additive codes,
7. codes and block designs,
8. codes over rings,
9. decoding, and
10. cryptography

Also within each of Sects. 1 through 10 (except Sect. 4) we include brief synopses of the
articles in this issue that pertain to the topic of the section; additional papers in this issue are
then listed in Sect. 11. We conclude with a description of Vera’s books and then present a
concluding summary and tribute to Vera Pless.
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2518 W. Cary Huffman

1 Self-orthogonal and self-dual codes

One of the most extensive areas of Vera’s work was in the classification and construction of
self-orthogonal and self-dual codes. Her first publication in this area, while she was at the
Air Force Cambridge Research Laboratories, was the initial 1972 paper [44] that eventually
attracted a number of researchers to classify self-dual codes in general. In this paper, she
enumerated all [n, n

2 ] binary self-dual codes of even length 2 ≤ n ≤ 20 and all maximal
[n, n−1

2 ] binary self-orthogonal codes of odd length 3 ≤ n ≤ 19. The binary self-dual codes
of lengths n = 22 and 24 were classified by Vera and N. J. A. Sloane three years later [56].
The classification at length n = 24 relied on Vera’s proof of the uniqueness of the binary
[24, 12, 8] Golay code [42]. Vera and her co-authors developed techniques called gluing and
finding children, hinted at in her previous work, to classify binary self-dual codes of lengths
n = 26, 28, 30 and binary self-dual doubly-even codes of length n = 32; see [14, 17, 46].
The classification and enumeration of all binary self-dual codes has now been completed
through length n = 40; see [5] for a summary.

There is a long-standing open question [65] regarding the existence or non-existence of a
binary self-dual [72, 36, 16] code. One approach to attempting to construct such a code is to
assume the code has a particular automorphism of prime order. In [15] Vera and J. H. Conway
proved that the only possible prime automorphism orders for which the code could exist are
2, 3, 5, 7, 11, 17, and 23; Vera eliminated 23 in [47] and with J. G. Thompson eliminated 17
in [57]. If such a code exists, from the work of many authors, its automorphism group has
order at most 5; see, e.g., [5, Theorem 4.3.12].

In addition to binary self-dual codes, Vera was involved in the classification of self-dual
codes over F3. These codes must have length a multiple of 4. In [39], Vera, Mallows, and
Sloane classified these codes for lengths n = 4, 8, 12; the length n = 12 relied on the
uniqueness of the ternary [12, 6, 6] Golay code as proved by Vera in [42]. The ternary self-
dual codes in the case n = 16 were handled by Vera, Conway, and Sloane in [16]; the
classification for n = 20 appeared in [59] by Vera, Sloane, and Ward. In [35], Vera, Leon,
and Sloane found that there are exactly two extremal ternary [24, 12, 9] codes; these codes are
an extended quadratic residue code and a Pless symmetry code. The ternary Pless symmetry
codes, discovered by Vera in [43], are self-dual codes that, at least for relatively small length,
have good distance properties.

Vera examined self-dual codes over F4. In joint work with Conway and Sloane in [16],
she classified such codes that are Hermitian self-dual over F4 at length 16. While not a
classification question, Vera, along with Gaborit, Solé, and Atkin in [25] define Type II
Euclidean self-dual codes over F4 and an appropriate Gray map from F

n
4 onto F

n
2 × F

n
2.

Under this map, a Euclidean self-dual code over F4 is Type II precisely if its Gray image
is a binary doubly-even self-dual code. Among these Type II codes over F4 are a subset of
extended Q-codes; Q-codes are codes over F4 of odd length that generalize quadratic residue
codes and were constructed by Vera in [49].

Vera was also involved in the classification of self-dual codes over larger fields. Interest
in self-dual codes over such fields is enhanced by the fact that they contain families of codes
that satisfy a modified Varshamov–Gilbert Bound that is asymptotically the same as the usual
Varshamov–Gilbert Bound; this was proved by Vera and Pierce in [53]. Over F5, with Leon
and Sloane, Vera enumerated the self-dual codes of even length n with 2 ≤ n ≤ 12 and the
maximal self-orthogonal codes of odd length n with 1 ≤ n ≤ 11 in [36]. Over F7, with.
Tonchev as co-author, Vera classified all self-dual and maximal self-orthogonal codes of
length n with 3 ≤ n ≤ 9 in [58].
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One of the requirements to give a full classification of self-dual codes is to produce a count
of the number of such codes. Such a count is called a mass formula. Vera computed mass
formulas for self-orthogonal codes in [41] from which mass formulas for self-dual codes
can be determined. The classification efforts required extensive computer computations.
Vera developed a computer algebra package called CAMAC (Combinatorial and Algebraic
Machine Aided Computation) [45] that she used inmany of the classifications she performed.

For this special issue, motivated by Vera’s construction of the ternary self-dual Pless
symmetry codes, Choi and Kim, in An improved upper bound on self-dual codes over
finite fields GF(11), GF(19), and GF(23), construct so-called symmetric self-dual codes
over GF(q) for q ∈ {11, 19, 23} with minimum weights that exceed those of previously
known self-dual codes.

InGalois self-orthogonal constacyclic codes over finite fields by Fu and Liu, necessary
and sufficient conditions for constacyclic codes to be �-Galois self-orthogonal and �-Galois
self-dual are presented; mass formulas for both �-Galois self-orthogonal and �-Galois self-
dual codes are given.

2 Formally self-dual codes

A binary linear code C is called formally self-dual provided C and its Euclidean dual C have
the same weight distribution. Clearly formally self-dual codes have even length and include
self-dual codes; if all codewords have even weight (a requirement if the code is actually
self-dual), then the code is even. The largest possible minimum distance d of an [n, n

2 ] even
formally self-dual code satisfies d = 2

⌊ n
8

⌋+2. Formally self-dual codes meeting this bound
are called extremal. Vera and Kennedy classified all extremal even formally self-dual codes
with 2 ≤ n ≤ 10 in [31]. Bachoc [2] found all extremal even formally self-dual codes of
length n = 12, and Vera, Fields, Gaborit, and Huffman found all extremal even formally
self-dual codes of length n = 14 in [22]. No [16, 8, 6] binary code exists by [27]. There is
a unique [18, 9, 6] code [64] and that code is not formally self-dual. Vera, Fields, Gaborit,
and Huffman continued the classification finding all extremal even formally self-dual codes
of length n = 20 in [23], and found over 1000 such codes at length n = 22.

Vera and Kim [34] examined the relationship, in an even formally self-dual code, between
the number of codewords whose weights are divisible by 4 and the number that are not. If the
code has length n, they also examined when the code has minimum distance d = ⌊ n

8

⌋ + 2
(the code is extremal) and when the code has minimum distance d = ⌊ n

8

⌋
(the code is

near-extremal).
In Vera’s paper on even formally self-dual codes [22], part of the construction relied on an

examination of the hull of a code, the intersection of a code and its dual. Self-dual codes have
hulls as large as possible. Codes with minimal size hulls are at the opposite end; this special
issue contains two papers dealing with small hulls. If the hull is trivial, the code in called
LCD; LCD codes are used in protection against side channel attacks in cryptography. In A
new method for constructing linear codes with small hulls, the authors Qian, Cao, Lu,
and Solé develop construction methods for LCD codes and codes with hulls of dimension 1.
Sok, in A new construction of linear codes with one-dimensional hull, constructs codes
with one-dimensional hulls and gives applications to quantum error-correction.
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2520 W. Cary Huffman

3 Identities on the weight distribution

In her 1962 Ph.D. thesis [38], MacWilliams gave a sequence of equations involving binomial
coefficients relating theweight distribution of a linear codeC and that of its Euclidean dualC⊥.
From these equations, the number of codewords in C⊥ of a given weight can be determined
from the total weight distribution of C viaKrawtchouck polynomials. The relationship is often
given as a single polynomial equation relating the weight enumerators of the two codes. A
year later Vera Pless in [40] gave sequences of equations involving binomial coefficients
and Stirling numbers relating the weight distributions of C and C⊥. This formulation has
become known as the Pless Power Moments. The equivalence of the Pless Power Moments
and the MacWilliams Equations is proved in [30, Theorem 2.3]. For a given situation, one
formulation may be preferred over the other.

When the code is self-dual, these equations can be used to give specificweight distributions
of the code and information about itsminimumweight. They are important in the classification
and enumeration of self-dual and formally self-dual codes. They also give information about
the possibility of codewords of a given weight supporting designs.

Throughout coding theory literature there are generalizations of these identities in a variety
of contexts. In Variants of Jacobi polynomials in coding theory, Chakraborty and Miezaki
introduce the complete joint Jacobi polynomial of two linear codes over Fq and Zk ; among
other results on these and related polynomials, they give a MacWilliams type identity for the
complete joint Jacobi polynomials of codes.

4 Covering radius

Vera wrote a series of papers on the covering radius of a code. In fact, the chapter on covering
radius for the Handbook of Coding Theory [13] was co-authored by Vera, Brualdi, and
Litsyn. Her first result [1], joint with Assmus, Jr., presented bounds on the covering radius
of all extremal doubly-even binary self-dual codes of length 8 ≤ n ≤ 96; e.g., every doubly-
even [32, 16, 8] code has covering radius 6. In a paper by Vera, Brualdi and Wilson [11],
the function l(m, r) is defined as the smallest length of a binary code of codimension m
and covering radius r ; the authors give exact values or a range of values for l(m, r) with
1 ≤ m ≤ 12 and 1 ≤ r ≤ 12. Some of the results of this paper were improved in [6]
co-authored by Vera and Brualdi. In a pair of papers published in 1990, also written with
Brualdi, Vera examined the relationship between a binary code and a subcode of the code
[9]; they considered [7] a chain of subcodes of a binary Hamming code and examined the
covering radii of the codes in the chain.

An orphan is a maximal coset of a code (under a certain partial ordering); each coset
whose weight equals the covering radius is an orphan but an orphan can have weight smaller
than the covering radius. In two papers, the first with Brualdi [8] and the second with Brualdi
and Cai [12], Vera examine the orphan structure of first order Reed–Muller codes.

5 Families of linear codes

As already alluded to, Vera discovered many families of codes; some were generalizations
of other known families.
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• Symmetry Codes [43]: These codes are defined over F3 and are constructed using
quadratic residues and non-residues, reminiscent of quadratic residue codes. From the
generator matrices, one can construct Hadamard matrices. If q is a prime power with
q ≡ 2 (mod 3), the symmetry code Sq is a [2q + 2, q + 1] self-dual code. S5 is the
[12, 6, 6] extended ternary Golay code; S11 is a [24, 12, 9] extremal self-dual code not
equivalent to the only other extremal self-dual code of length 24 (an extended quadratic
residue code); and S17, S23, and S29 are all extremal self-dual codes with parameters
[36, 18, 12], [48, 24, 15], and [60, 30, 18], respectively. The automorphism group of Sq
is large, containing an appropriate projective linear group.

• Duadic Codes [37]: The original paper, by Vera, Leon, and Masley [37], defined binary
duadic codes. They were later generalized to codes over other fields. In [49], Vera
extended the notion of binary duadic codes to codes over F4, where she called them
Q-codes. Properties and further generalizations by Vera and others can be found in [19,
50, 60, 63, 66]. Duadic codes are generalizations of quadratic residue codes and share
many of the same properties; see, e.g., [30, Chapter 6]. They are cyclic codes defined in
two pairs by related idempotents, a pair of even-like codes and a pair of odd-like codes.

• Triadic Codes [55]: Triadic codes are cyclic codes defined in two triples by related
idempotents, a triple of even-like codes and a triple of odd-like codes.

• Greedy Codes [10]: These binary linear codes, discovered by Vera and Brualdi, are
generalizations of lexicodes. To construct a greedy code, fix an ordering of Fn

2 and a
positive integer d . Apply a specified greedy algorithm to construct the code. The result
is a binary linear code of length n and minimum distance at least d .

For this special issue, in On Pless symmetry codes, ternary QR codes, and related
Hadamardmatrices and designs, Tonchev proves that a specific code which is monomially
equivalent to the Pless symmetry code of length 2q + 2 contains the (0, 1)-incidence matrix
of a Hadamard 3-(2q + 2, q + 1, (q − 1)/2) design associated with a Paley–Hadamard
matrix of type II; a similar connection exists between an extended quadratic residue code
and a Hadamard 3-design associated with a Paley-Hadamard matrix of type I. All Hadamard
matrices of order 36 formed by codewords of the Pless symmetry code of length 36 are
enumerated and classified up to equivalence.

6 Additive codes

Vera’s work generally examined linear codes over fields. But she did venture into the study
of additive codes over F4. In [24], with Gaborit, Huffman, and Kim, she examined the
classification of Type I and Type II Hermitian trace self-dual additive codes over F4 of length
n with 8 ≤ n ≤ 16. Such codes of length 1 ≤ n ≤ 7 and those of Type II at length n = 8 were
previously classified. They completely classified the Type I codes of length 8, all the codes
of lengths 9 and 11, and the Type II codes of length 12. They found lower bounds on the
number of codes for the remaining lengths. (Since this paper was published, the classification
has been extended completely through length 12; see [18].)

Additive codes have assumed an important place in coding literature. In this issue there
is one article on additive codes over the mixed alphabet ZpZp2 . Wu and Shi, in On Z2Z4-
additive polycyclic codes and their Gray images, construct generator polynomials and
minimal generating sets for polycyclic codes over Z2Z4. In particular, under a specific inner
product, the authors study the dual of Z2Z4-additive polycyclic codes.
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7 Codes and block designs

The Assmus–Mattson Theorem gives conditions on the parameters of a linear code over
a field that guarantees when codewords of a fixed weight hold a t-design. Some of the
papers mentioned above, written by Vera and her coauthors, presented codes with codewords
holding designs. Additionally, in [33], Vera andKimproved a version of theAssmus–Mattson
Theorem that applied to additive codes over F4.

In Quadratic residue codes, rank three groups and PBIBDs by Shi, Wang, Helleseth,
and Solé, the authors study the Zetterberg code and related codes which have rank three
automorphism groups; the presence of these rank three groups shows that the codes have
codewords of certain weights that support partial balanced incomplete block designs.

In Symmetric functions and spherical t-designs in R
2, Martínez constructs spherical

t-designs on the unit sphere in R
2; the author defines the concept of k elements being in

t-good position on the unit sphere and then shows that 2t unit sphere points can be added to
k of these t-good elements to form a spherical t-design with 2t + k points.

In Moderate-density parity-check codes from projective bundles, Bariffi, Mattheus,
Neri, and Rosenthal propose new constructions for moderate-density parity-check codes
using finite geometry. In particular, they construct a parity-check matrix for a family of these
binary codes as the concatenation of two matrices: the incidence matrix between points and
lines of the Desarguesian projective plane and the incidence matrix between points and ovals
of a projective bundle.

8 Codes over rings

While certainly the bulk of Vera’s work dealt with codes over fields, she did publish a few
papers on codes over the ring Z4. In [54], with her student Qian, she presented a pair of
generators of a Z4-linear cyclic code C of odd length n in terms of three polynomials whose
product is xn − 1. From this the generators of the dual cyclic code can be determined. They
also presented analogues of quadratic residue codes over Z4. In [62], Vera, Qian, and Solé,
determined whenZ4-linear cyclic codes are self-dual. Returning to her roots in classification,
Vera along with Fields, Gaborit, and Leon, classified and enumerated [21] all Z4-linear self-
dual codes of length n with 10 ≤ n ≤ 15 (the cases 1 ≤ n ≤ 9 were already known). Vera,
Fields, and Leon extended the classification to length 16, but only the codes of Type II, in
[61].

Not only was Vera interested in cyclic codes over Z4, but her interests extended to cyclic
codes over fields andfinding idempotent generators (e.g., in duadic and triadic codes). Finding
idempotent generators of skew-cyclic codes is one of the topics of (θ, δθ )-cyclic codes over
Fq [u, v]/〈u2 −u, v2 −v, uv−vu〉 by S. Patel and O. Prakash published in this special issue.

Alahmadi, Alkathiry, Altassan, Bonnecaze, Shoaib, and Solé in The build-up construc-
tion over a commutative non-unital ring study construction methods for quasi self-dual
codes over a commutative ring of order 4 without identity; the authors classify these codes
for certain lengths and connect them to additive codes over F4.

Codes over Galois rings play a significant role in the study of codes over rings. InWeight
distribution of double cyclic codes over Galois rings by Gao, Meng, and Fu, the authors
determine the weight distribution of several classes of double cyclic codes over Galois rings
by using Gauss sums.
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When examining codes over rings, one problem is to consider when two codes are equiva-
lent.Oneproperty thatmapsdefining equivalence should possess is that theypreserveweights.
MacWilliams [38] proved essentially that a Hamming weight preserving linear transforma-
tion between two linear codes over a field extends to a monomial map on the ambient space.
This so-called MacWilliams Extension Theorem is the subject of MacWilliams extension
property for arbitrary weights on linear codes over module alphabets by Dyshko and
Woods in the case where the alphabet is a finite pseudo-injective module with a cyclic socle
equipped with an arbitrary weight.

9 Decoding

Vera did limited work on decoding algorithms with her papers dedicated to decoding certain
codes by hand. In [48], she described decoding the [24, 12, 8] extended binary Golay code
and the [12, 6, 6] extended ternary Golay code. The process was to project received vectors
onto the hexacode, a [6, 3, 4] Hermitian self-dual code over F4, or onto the tetracode, a self-
dual [4, 2, 3] ternary code, respectively. With knowledge of the structure of these projected
codes, one can decode received vectors by hand by following a prescribed algorithm that
she developed. Several years later, first with Kim [32] and then with Gaborit and Kim [26],
using analogous projection techniques, she was able to decode the [32, 16, 8] self-dual Reed–
Muller code and other [32, 16, 8] self-dual codes also by hand.

There are several classes of codeswhose developmentwas designed tomake decoding effi-
cient for the given setting. Three papers appear in this special issue that investigate decoding
properties and algorithms for various families of codes.

The article Decoding algorithms of monotone codes and azinv codes and their uni-
fied view, by Takahashi and Hagiwara, investigates linear-time decoding algorithms for two
classes of error-correcting codes: monotone codes and azinv codes. Also, the authors propose
generalizations of Levenshtein’s decoding algorithm for single deletion or single substitution
error-correcting codes.

Subspace codes can be used for error control in random linear network coding. In Parallel
sub-code construction for constant-dimension codes, He, Chen, Zhang, and Zhou show
how to improve the construction of subspace codes from two parallel versions of the sub-code
construction, allowing them to find larger constant-dimension code sizes.

Layered codes are used for distributed storage systems. In Johnsongraph codes, Duursma
and Li show that the concatenation of layered codes with suitable outer codes achieves the
performance of other known codes that are conjectured to be optimal for general regenerating
codes. The outer codes used are in a new class of codes called Johnson graph codes, which
have properties similar to those of Reed–Muller codes.

10 Cryptography

With Beissinger, Vera wrote a book [3] explaining the basics of cryptography and how
cryptography relates to coding theory. This book, The Cryptoclub: Using Mathematics to
Make and Break Secret Codes, introduces elementary and middle school students to the
world of secret codes and how mathematics plays a role in the making and breaking of secret
messages.
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In this special issue there are two articles applying coding theory to cryptography. In A
gapless code-based hash proof system based on RQC and its applications by Bettaieb,
Bidoux, Blazy, Connan, and Gaborit, the authors show how to build a hash proof system from
code-based cryptography and present a way, based on a proof of knowledge, to fully negate a
problematic gap to protect against an undetectable attack. The authors Ayebie and Souidi of
New code-based cryptographic accumulator and fully dynamic group signature propose
a code-based cryptographic accumulator that is quantum computer resistant. This scheme
is based on the hardness of the Syndrome Decoding Problem; it also uses double circulant
codes allowing for small key sizes.

11 Other articles in this issue

Vera always encouraged her students and colleagues to continue to pursue their research
interests in a variety of areas of coding theory. A few articles appear in this issue on topics
that have not been listed above.

Character sums appear in several places in coding literature. In Further improvement on
index bounds byWu, Lee, andWang, the authors obtain examples which show improvement
of both the index bound ofWan andWang and theWeil bound for character sums; using their
results, they give an estimation of the number of solutions of some algebraic curves. A new
application of the Weil bound for character sums is used to give some direct constructions
of pairwise 2-compatible balanced difference families in Compatible difference packing
set systems and their applications to multilength variable-weight OOCs by Qin, Zhao,
and Yu. Additionally, some series of compatible difference packing set systems are produced
yielding several infinite classes of optimal multilength variable-weight optical orthogonal
codes.

Steganography is the science of communicating a secret message by hiding it in a cover
object. In Steganography from perfect codes on Cayley graphs over Gaussian integers,
Eisenstein-Jacobi integers and Lipschitz integers, Kim and Park construct steganographic
schemes explicitly from r -perfect codes on Cayley graphs over Gaussian, Eisenstein-Jacobi,
and Lipschitz integers.

In The concatenated structure of quasi-abelian codes, Borello, Güneri, Saçıkara, and
Solé give a concatenated decomposition of quasi-abelian codes allowing them to present
a general minimum distance bound for quasi-abelian codes and to construct some optimal
codes; they conclude that strictly quasi-abelian linear complementary dual codes over any
finite field are asymptotically good.

The authors Jafari, Abdollahi, Bagherian, Khatami, and Sobhani of Equidistant permu-
tation group codes study subgroups of the symmetric group on {1, 2, . . . , n} all of whose
non-trivial permutations have a constant number of fixed points; in particular they present a
type of classification theorem for such codes.

In Classification of weighted posets and digraphs admitting the extended Hamming
code to be a perfect code by Kim and Kwon, the authors consider metrics arising from
digraphs and from weighted posets. For certain parameters, they classify all structure vectors
of digraphs and of weighted posets which admit the extendedHamming code to be a 2-perfect
code.

In Construction of asymmetric Chudnovsky-type algorithms for multiplication in
finite fields by Ballet, Baudru, Bonnecaze, and Tukumuli, the authors study an algorithm by
Chudnovsky and Chudnovsky for the multiplication in extensions of finite fields generalized
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by Randriambololona. They propose a generic strategy to construct these algorithms using
concepts from algebraic geometry.

12 Vera’s books

In addition to the cryptography book [3], Vera Pless wrote or edited three books on error-
correcting codes. Her first coding theory book, Introduction to the Theory of Error-Correcting
Codes, appeared in 1982. The current edition, the 3rd, was published in 1998 [51]. Vera and
Huffman edited the 25 chapter two volume Handbook of Coding Theory [52] written by 33
authors, which also appeared in 1998; this work led the reader to the frontiers of research.
In 2003, they co-authored Fundamentals of Error-Correcting Codes that was intended to be
a bridge to the Handbook.

13 Summary

As editors of this special issue dedicated to Vera Pless, we trust that the articles reflect
her research interests. Her contribution to the study of error-correcting codes is certainly
very long-lasting. One of us (Jon-Lark Kim) was a Ph.D. student of Vera and a co-author
over several years. Cary Huffman and Patrick Solé were colleagues and co-authors greatly
influenced by her work. We would like to end with a quote from the final paragraph in
Huffman’s memorial tribute to Vera [28]:

On a personal note, I had the privilege of working with Vera for over 30 years as
our universities were only a subway ride (with one transfer) apart. Vera was always
inspirationalwith herwealth of knowledge and intuitive insight into codingproblems. In
a very informal way, she taught memuch coding theory as we sat in her office, probably
not realizing how influential these conversations were. Vera loved classical music and
reading; she loved her children and grandchildren. And she loved her students. On my
visits, we would often go to lunch, usually at Vera’s favorite Thai restaurant, inviting
one or two students; you could nevermove fast enough as shewould quickly pick up the
check. I served on the Ph.D. committees of a number of her students. When members
would ask the student a question, Vera could barely restrain herself (and often did not)
from answering for them—she so much wanted her students to succeed. In the days
following her passing, I received emails from coding theorists whose research careers
were nudged, and even re-directed, along new paths based on interactions with Vera.
Her presence will be greatly missed.
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