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Abstract
A perfect matroid design (PMD) is a matroid whose flats of the same rank all have the same
size. In this paper we introduce the q-analogue of a PMD and its properties. In order to
do so, we first establish a new cryptomorphic definition for q-matroids. We show that q-
Steiner systems are examples of q-PMD’s and we use this q-matroid structure to construct
subspace designs from q-Steiner systems. We apply this construction to the only known
q-Steiner system, which has parameters S(2,3,13;2), and hence establish the existence of a
new subspace design with parameters 2-(13, 4, 5115; 2).
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1 Introduction

In combinatorics, we often describe a q-analogue of a concept or theory to be any gener-
alization that replaces finite sets by finite dimensional vector spaces. Two classical topics
in combinatorics that have recently been studied as q-analogues are matroids and designs.
These objects and some of the connections between them are the main focus of this paper.

A subspace design (also called a q-design, or a design over Fq ) is a q-analogue of a
design. A t-(n, k, λ; q) subspace design is a collection B of k-dimensional subspaces of an
n-dimensionalFq -vector space V with the property that every t-dimensional subspace of V is
contained in exactly λ of the members of B. Explicit constructions of subspace designs have
proved so far to be more elusive than their classical counterparts. Early papers by Thomas,
Suzuki, and Itoh have provided some examples of infinite families of subspace designs [17,
28, 29], while in [6] an approach to the problem using large sets is given. A q-analogue
of the Assmus–Mattson theorem gives a general construction of subspace designs from
coding theory [12]. Further sporadic examples have been found by assuming a prescribed
automorphism group of the subspace design [8]. For the special case λ = 1 we call such
a design a q-Steiner system and write S(t, k, n; q). The actual existence of an S(t, k, n; q)

Steiner system for t > 1, was established for the first time when S(2, 3, 13; 2) designs were
discovered by Braun et al. [4]. No other examples have been found to date. The smallest open
case is that of the S(2, 3, 7; q) Steiner system, also known as the q-analogue of the Fano
plane.

While subspace designs have been intensively studied over the last decade [8], q-analogues
of matroids have more recently appeared in the literature [16, 18]. In fact, the q-matroid
defined in [18] was a re-discovery of a combinatorial object already studied by Crapo [13].
Classical matroids are a generalisation of several ideas in combinatorics, such as indepen-
dence in vector spaces and trees in graph theory. One of the important properties of matroids
is that there are equivalent, yet seemingly different ways to define them: in terms of their
independent sets, flats, circuits, bases, closure operator and rank function.We call these equiv-
alent definitions cryptomorphisms. Cryptomorphisms for q-matroids between independent
subspaces, the rank function, and bases were established in [18]. In [2] the cryptomorphism
via bi-colouring of the subspace lattice is discussed. In [11] several cryptomorphisms were
shown to hold, namely those with respect to dependent spaces, circuits, the closure function,
hyperplanes, open spaces etc. In this paper we also give a cryptomorphic description of a q-
matroid in terms of its flats. In the classical case, there is a link between designs andmatroids,
given by the so-called perfect matroid designs (PMDs). PMDs are matroids for which flats of
the same rank have the same cardinality. They were studied by Murty and others in [23] and
[22], who showed in particular that Steiner systems are among the few examples of PMDs
and, more importantly, that they could be applied to construct new designs. In this paper we
obtain q-analogues of some of these results.

First, we extend the theory of q-matroids to include a new cryptomorphism, namely
that between flats and the rank function. We apply this cryptomorphism to obtain the first
examples of q-PMDs; in particular we show that q-Steiner systems are q-PMDs. Secondly,
using the q-matroid structure of the q-Steiner system, we derive new subspace designs. This
leads in some cases to designs with parameters not previously known. Interestingly, some of
the parameters of the designs we obtain from the putative q-Fano plane coincide with those
obtained by Braun et al. [5]. By characterising the group of automorphisms of the designs
that we obtained from our q-PMD construction, we show that the subspace designs of [5]
cannot be derived from the q-Fano plane via our construction.
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This paper is organised as follows. After some preliminary notions in Sect. 2, we prove
in Sect. 3 the above-mentioned new cryptomorphism for q-matroids. An overview of the
different (but equivalent) ways to define q-matroids is found at the end of this section. In
Sect. 4 we prove that q-Steiner systems are examples of the q-analogue of a PMD. We use
this to derive new designs from the q-Steiner system, using its q-matroid structure and its
flats, independent spaces, and circuits. Finally, we characterize the automorphism groups of
these new q-designs in terms of the automorphisms of q-Steiner systems from which they
are constructed.

2 Preliminaries

In this section, we bring together certain fundamental definitions on lattices, q-matroids and
subspace designs, respectively. Throughout the paper, Fq will denote the finite field of q
elements, n will be a fixed positive integer and E will denote the n-dimensional vector space
F
n
q .

2.1 Lattices

Let us first recall preliminaries on lattices. The reader is referred to Stanley [25] or Aigner
[1] for further details.

Definition 2.1 Let (L,≤) be a partially ordered set. Let a, b, v ∈ L. We say that v is an
upper bound of a and b if a ≤ v and b ≤ v and furthermore, we say that v is a least upper
bound if v ≤ u for any u ∈ L that is also an upper bound of a and b. If a least upper bound
of a and b exists, then it is unique, is denoted by a ∨ b and called the join of a and b. We
analogously define a lower bound and the greatest lower bound of a and b and denote the
unique greatest lower bound of a and b by a ∧ b, which is called the meet of a and b. The
poset L is called a lattice if each pair of elements has a least upper bound and greatest lower
bound and denoted by (L,≤,∨,∧).

Of particular relevance to this paper is the subspace lattice (L(E),≤,∨,∧), which is the
lattice of Fq -subspaces of E , ordered with respect to inclusion and for which the join of a pair
of subspaces is their vector space sum and the meet of a pair of subspaces is their intersection.
That is, for all subspaces A, B ⊆ E we have:

A ≤ B ⇔ A ⊆ B, A ∨ B = A + B, A ∧ B = A ∩ B.

Definition 2.2 Let (L,≤,∨,∧) be a lattice and let a, b ∈ L with a ≤ b but a 	= b, we say
that b covers a if for all c ∈ L we have that a ≤ c ≤ b implies that c = a or c = b. A chain
of length r between two elements a, b ∈ L is a sequence of distinct elements a0, a1, . . . , ar
inL such that a = a0 ≤ a1 ≤ · · · ≤ ar = b. If ai+1 covers ai for all i , we call this amaximal
chain.

Definition 2.3 Let (L,≤,∨,∧) be a finite lattice. We say that L is a semimodular lattice if
it has the property that if a covers a ∧ b then a ∨ b covers b.

Definition 2.4 A lattice L is called geometric if it is

(1) atomic (every element is a supremum of the elements covering the unique minimal),
(2) semimodular,
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(3) without infinite chains.

Definition 2.5 A bijection φ : L → L on a lattice (L,≤,∨,∧) is called an automorphism
of L if one of the following equivalent conditions holds for all a, b ∈ L:

(1) a ≤ b iff φ(a) ≤ φ(b),
(2) φ(a ∨ b) = φ(a) ∨ φ(b),
(3) φ(a ∧ b) = φ(a) ∧ φ(b).

2.2 q-Matroids

The general framework of defining matroid-like structures over modular complemented lat-
tices is treated in [13]. Important examples of complementedmodular lattices are the Boolean
lattice, resulting in classical matroids, and the subspace lattice, leading to q-matroids.

For background on the theory of matroids we refer the reader to [15] or [24]. For the
q-analogue of a matroid we follow the treatment of Jurrius and Pellikaan [18]. The definition
of a q-matroid is a straightforward generalisation of the definition of a classical matroid in
terms of its rank function. We remark that this definition in fact does not require E to be over
a finite field. However, as we are focussed on vector spaces over finite fields, we will assume
in our definition that a q-matroid is an object defined with respect to an Fq -vector space.

Definition 2.6 A q-matroid M is a pair (E, r) where r is an integer-valued function defined
on the subspaces of E with the following properties:

(R1) For every subspace A ⊆ E , 0 ≤ r(A) ≤ dim A.
(R2) For all subspaces A ⊆ B ⊆ E , r(A) ≤ r(B).
(R3) For all A, B, r(A + B) + r(A ∩ B) ≤ r(A) + r(B).

The function r is called the rank function of the q-matroid.

We list some examples of q-matroids [18].

Example 2.7 [The uniform q-matroid] Let M = (E, r), where

r(A) =
{
dim A, if dim A ≤ k,

k, if dim A > k,

for 0 ≤ k ≤ n and a subspace A of E . Then M satisfies axioms (R1)–(R3) and is called the
uniform q-matroid. We denote it by Uk,n(Fq).

Example 2.8 [Representable q-matroid] Let G be a full-rank k × n matrix over an extension
field Fqm of Fq . For any subspace A ⊆ E define the rank of A to be r(A) = rankFqm (GY )

for any Fq -matrix Y whose columns span A. It can be shown that (E, r) satisfies (R1)–(R3)
and hence is a q-matroid.

In classical matroid theory, there are several definitions of a matroid in terms of the
axioms of its independent spaces, bases, flats, circuits, etc. These equivalences, which are
not immediately apparent, are referred to in the literature as cryptomorphisms. In this paper
we will establish a new cryptomorphism for q-matroids. First, we define independent spaces,
flats, and the closure function in terms of the rank function of a q-matroid.
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Definition 2.9 Let (E, r) be a q-matroid. A subspace A of E is called independent if

r(A) = dim A.

We write Ir to denote the set of independent spaces of the q-matroid (E, r). A subspace that
is not independent is called dependent. We call C a circuit if it is itself a dependent space
and every proper subspace of C is independent.

Definition 2.10 Given a q-matroid (E, r), a subspace F ⊆ E is called a flat if for all
one-dimensional subspaces x such that x � F we have that

r(F + x) > r(F).

We write Fr to denote the set of flats of the q-matroid (E, r).

We define the notion of a flat via axioms, without reference to a rank function.

Definition 2.11 Let F ⊆ L(E). We define the following flat axioms:

(F1) E ∈ F .
(F2) If F1 ∈ F and F2 ∈ F , then F1 ∩ F2 ∈ F .
(F3) For all F ∈ F and x ⊆ E a one-dimensional subspace not contained in F , there is a

unique F ′ ∈ F covering F such that x ⊆ F ′.
If F satisfies (F1)–(F3) then we call its members flats. We write (E,F) to denote a vector
space E together with a family of flats satisfying the flat axioms.

We will see in Sect. 3 that a space of flats (E,F) completely determines a q-matroid. The
following theorem summarizes important results from [18].

Theorem 2.12 Let (E, r) be a q-matroid and let A, B ⊆ E and let x, y ⊆ E each have
dimension one. The following hold.

1. r(A + x) ≤ r(A) + 1.
2. If r(A+z) = r(A) for each one-dimensional space z ⊆ B, z � A then r(A+B) = r(A).
3. If r(A + x) = r(A + y) = r(A) then r(A + x + y) = r(A).

An interesting family of matroids, the PMDs were introduced in [22, 23]. For more details
in the classical case, we refer the reader to the work of Deza [14]. We consider here a
q-analogue of a PMD.

Definition 2.13 A q-perfect matroid design (q-PMD) is a q-matroid with the property that
any two of its flats of the same rank have the same dimension.

2.3 Subspace designs

Given a pair of nonnegative integers N and M , M ≤ N , the q-binomial or Gaussian
coefficient counts the number of M-dimensional subspaces of an N -dimensional subspace
over Fq and is given by:

[
N
M

]
q
:=

M−1∏
i=0

qN − qi

qM − qi
.

We write

[
E
k

]
q
to denote the set of all k-subspaces of E (the k-Grassmannian of E).

Recall the following well-known result.
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Lemma 2.14 Let s, t be positive integers satisfying 0 ≤ t ≤ s ≤ n. The number of s-spaces

of E that contain a fixed t-space is given by

[
n − t
s − t

]
q
.

We recall briefly the definition of a subspace design and well known examples of these
combinatorial objects. The interested reader is referred to the survey [8] and the references
therein for a comprehensive treatment of designs over finite fields. For more recent results,
see also [9, 10].

Definition 2.15 Let 1 ≤ t ≤ k ≤ n be integers and let λ ≥ 0 be an integer. A t-(n, k, λ; q)

subspace design is a pair (E,B), where B is a collection of subspaces of E of dimension
k, called blocks, with the property that every subspace of E of dimension t is contained in
exactly λ blocks.

Subspace designs are also known as designs over finite fields. A q-Steiner system is
a t-(n, k, 1; q) subspace design and is said to have parameters S(t, k, n; q). The q-Steiner
triple systems are those with parameters S(2, 3, n; q) and are denoted by ST S(n; q). The
t-(n, k, λ; q) subspace designs with t = 1 and λ = 1 are examples of spreads.

Example 2.16 A q-analogue of the Fano plane would be given by an ST S(7; q), whose
existence is an open question for any q .

For a subspace U of E we define U⊥:={v ∈ E : 〈u, v〉 = 0} to be the orthogonal space
of U with respect to the scalar product 〈u, v〉 = ∑n

i=1 uivi . We will use the notions of the
supplementary and dual subspace designs [20, 27].

Definition 2.17 Let k, t, λ be positive integers and let D = (E,B) be a t-(n, k, λ; q) design.

(1) The supplementary design of D is the subspace design

(
E,

[
E
k

]
q

− B
)
.

It has parameters t-

(
n, k,

[
n − t
k − t

]
q

− λ; q
)
.

(2) The dual design ofD is given by (E,B⊥), whereB⊥:={U⊥ : U ∈ B}. It has parameters

t −
(
n, n − k, λ

[
n − t
k

]
q

[
n − t
k − t

]
q

−1

; q
)

.

The intersection numbers λi, j defined in Lemma 2.18 were given in [20] and [27]. These
design invariants play an important role in establishing non-existence of a design for a given
set of parameters.

Lemma 2.18 Let k, t, λ be positive integers and let D be a t-(n, k, λ; q) design. Let I , J be
i, j dimensional subspaces of F

n
q satisfying i + j ≤ t and I ∩ J = {0}. Then the number

λi, j :=|{U ∈ B : I ⊆ U , J ∩U = {0}}|,
where B is the set of blocks of D, depends only on i and j, and is given by the formula

λi, j = q j(k−i)λ

[
n − i − j
k − i

]
q

[
n − t
k − t

]
q

−1

.

By Lemma 2.18, the existence of a t-(n, k, λ; q) design implies the integrality conditions,
namely that λi = λi,0 are positive integers for 0 ≤ i ≤ t .
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Definition 2.19 Aparameter set t-(n, k, λ; q) is called admissible if it satisfies the integrality
conditions and is called realisable if a t-(n, k, λ; q) design exists.

It is well-known and follows directly from the integrality conditions that an ST S(n; q) is
admissible if and only if n ≡ 1 or 3 mod 6. More generally, it was observed in [10] that a
S(2, k, n; q) Steiner system exists only if n ≡ 1, k mod k(k − 1).

Finally, for a given subspace design (E,B), an automorphism φ of L(E) is called an
automorphism of the design if φ(B) = B. We will denote the automorphism group of the
design D = (E,B) by Aut(D) or by Aut(E,B). The automorphism group of a subspace
design is equal to the automorphism group of its supplementary design and is in 1 − 1
correspondence with that of the dual design. Automorphism groups have been leveraged
to construct new subspace designs using the Kramer–Mesner method [21]. If the number
of orbits of the automorphism group is small enough, then the corresponding diophantine
system of equations can be solved in a feasible amount of time on a personal computer [3,
5]. It is known that the binary q-Fano plane has automorphism group of order at most 2 [7,
19], so this method cannot be applied in this case.

3 A cryptomorphism of q-matroids

In this section we provide a new cryptomorphic definition of a q-matroid, in terms of its flats.
The proofs of this cryptomorphism largely follow the classical case. We include the details
for expository purposes. Recall that a flat of a q-matroid (E, r) is a subspace F such that
for all one-dimensional spaces x � F we have that r(F + x) > r(F). We remark that the
results of this section hold for q-matroids defined with respect to finite dimensional vector
spaces over arbitrary fields.

Definition 3.1 Let F1 and F2 be flats of a q-matroid. We say that F1 covers F2 if F2 ⊆ F1
and there is no other flat F ′ such that F2 ⊆ F ′ ⊆ F1.

Before establishing a cryptomorphism between the q-matroids (E, r) and (E,F), we
prove some preliminary results.

Lemma 3.2 Let (E, r) be a q-matroid with rank function r. Let A ⊆ B be subspaces of E and
let x be a one-dimensional subspace of E. If r(B+ x) = r(B)+1 then r(A+ x) = r(A)+1.

Proof Suppose that r(B + x) = r(B) + 1. Since A ⊆ B, we have (A + x) + B = B + x
and A ⊆ (A + x) ∩ B. Therefore, by (R2) and applying (R3) to A + x and B we get:

r(A + x) + r(B) ≥ r((A + x) + B) + r((A + x) ∩ B)

≥ r(B + x) + r(A) = r(B) + 1 + r(A),

and so r(A + x) ≥ r(A) + 1. By Theorem 2.12, r(A + x) ≤ r(A) + 1 and so we get the
equality r(A + x) = r(A) + 1. ��
Lemma 3.3 If F1, F2 are two flats of a q-matroid (E, r), then F1 ∩ F2 is also a flat.

Proof Let F :=F1 ∩ F2 and take a one-dimensional space x � F ; therefore x is not a
subspace of F1 or F2; say, without loss of generality, that x � F1. By Theorem 2.12,
r(F1 + x) = r(F1) + 1 and by Lemma 3.2, r(F + x) = r(F) + 1 > r(F), which implies
that F is flat of (E, r). ��
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Definition 3.4 Let F be a collection of subspaces of E and let A ⊆ E be a subspace. We
define the subspace

CF (A):=
⋂

{F ∈ F : A ⊆ F}.
Lemma 3.5 Let F be a collection of subspaces of E satisfying the axioms (F1)–(F3). Let
A ⊆ E be a subspace. Then CF (A) is the unique flat in F such that the following hold.

(1) A ⊆ CF (A).
(2) If A ⊆ F ∈ F, then CF (A) ⊆ F.

Moreover, if A ⊆ B ⊆ E, then CF (A) ⊆ CF (B).

Proof (1) and (2) follow immediately from the definition ofCF (A), which is clearly uniquely
determined because if therewere two flats satisfying these properties, their intersectionwould
violate (2). If B ⊆ F for some flat F then A ⊆ F and so clearly, CF (A) ⊆ CF (B). ��

In the instance that F is the set of flats of a q-matroid (E, r), then from Lemma 3.3,
CF (A) is itself a flat, which we denote by FA. In particular, FA is the unique minimal flat of
Fr that contains A.

Lemma 3.6 Let (E, r)be aq-matroid, let G bea subspace of E and let x be a one-dimensional
subspace such that r(G) = r(G + x). Then x ⊆ FG.

Proof Suppose, towards a contradiction, that x � FG . We apply (R3) to FG and G + x :

r(FG + G + x) + r(FG ∩ (G + x)) ≤ r(FG) + r(G + x).

Now since G ⊆ FG but x � FG , the above inequality can be stated as

r(FG + x) + r(G) ≤ r(FG) + r(G).

However, as FG is a flat, r(FG + x) = r(FG) + 1, which gives the required contradiction. ��
Lemma 3.7 Let (E, r) be a q-matroid and let G ⊆ E. Then r(G) = r(FG).

Proof Consider the collection of subspaces

H:={y ⊆ E : dim(y) = 1, r(G + y) = r(G)}.
Let U be the vector space sum of the elements of H. By applying Theorem 2.12 Part 2, we
have that r(U ) = r(G). Moreover, U ⊆ FG by Lemma 3.6.

Suppose r(G) < r(FG). If U = FG then we would arrive at the contradiction r(U ) =
r(FG) > r(G), so assume otherwise. Then there exists a one-dimensional subspace x ⊆ FG ,
x � U . Since x /∈ H and G ⊆ U , by (R2) we have

r(U ) = r(G) < r(G + x) ≤ r(U + x).

On the other hand, Lemma 3.6 tells us that for a one-dimensional subspace x ′ ⊆ E , x ′
� FG

we have

r(U ) = r(G) < r(G + x ′) ≤ r(U + x ′).

ThereforeU is itself a flat andG ⊆ U � FG , contradicting the minimality of FG . We deduce
that r(G) = r(FG). ��
Proposition 3.8 The flats of a q-matroid satisfy the flat axioms (F1)–(F3) of Definition 2.11.
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Proof Let (E, r) be a q-matroid with rank function r . By definition, the set of flats Fr of
(E, r) is characterised by:

Fr :={F ⊆ E : r(F + x) > r(F), ∀x � F, dim(x) = 1}.
The condition (F1) holds vacuously, while (F2) comes from Lemma 3.3.

To prove (F3), let F ⊆ E and x ⊆ E with dim(x) = 1 and x � F . We will show that
there is a unique F ′ covering F and containing x . Suppose, towards a contradiction, that x
is not contained in any flat covering F . Let G = F + x and consider FG , the minimal flat
containing G. By our assumption, there must be a flat F ′ such that F � F ′

� FG . Without
loss of generality, we may assume that F ′ is a cover of F . Clearly x � F ′. Let y be a one-
dimensional space y ⊆ F ′, y � F . Now, x, y � F and y ⊆ FG . Let H = F + y. We claim
that x ⊆ FH , in which case we would arrive at the contradiction x ⊆ FH ⊆ F ′ and x � F ′.
Since G = F + x , H = F + y, x, y � F and F is a flat, we have r(G) = r(H) = r(F)+ 1.
By Lemma 3.7, r(G) = r(FG) and since y ⊆ FG we also have r(G) = r(G + y) = r(FG).
Now,

r(H + x) = r(F + x + y) = r(G + y) = r(G) = r(F) + 1 = r(H).

Hence by Lemma 3.6, x ⊆ FH . We deduce that x is contained in a cover of F . As regards
uniqueness, suppose we have two different covers F1 	= F2 of F containing x and let
L:=F1 ∩ F2. By the flat axiom (F2), L is a flat and since x, F ⊆ F1, F2 then x, F ⊆ L . On
the other hand, F 	= L since x � F , so F � L . Since F1 	= F2, L cannot be equal to both
of them; say L 	= F2, so F � L � F2, which contradicts the fact that F2 covers L . ��

Our aim is to prove the converse of Proposition 3.8: that is, if we have a collection of flats
F that satisfies the axioms (F1)–(F3), it is the collection of flats of a q-matroid. The next
lemma will be used frequently in our proofs.

Lemma 3.9 Let F be a collection of flats. Let F ∈ F and let x ⊆ E be a one-dimensional
subspace. Then the minimal member of F containing F + x is either equal to F or it covers
F.

Proof If x ⊆ F , then F+ x = F so the minimal member ofF containing F+ x is F itself. If
x � F , then by (F3) there is a unique F ′ ∈ F that covers F and contains x . Since F ′ covers
F and contains both F and x , it is clearly the minimal member of F containing F + x . ��

Next we show that the members ofF form a semimodular lattice. (The flats of a q-matroid
form in fact a geometric lattice, as was noted in Theorem 1 of [2].)

Theorem 3.10 Let F be a collection of flats. Then its members form a semimodular lattice
under inclusion, where for any two F1, F2 ∈ F the meet is defined to be F1 ∧ F2:=F1 ∩ F2
and the join F1 ∨ F2 is CF (F1 + F2).

Proof The members of F clearly form a poset with respect to inclusion. We prove that the
definitions of meet and join as F1 ∧ F2:=F1 ∩ F2 and F1 ∨ F2:=CF (F1 + F2) are well
defined.

Let us consider the meet. From (F2) F1 ∧ F2 is in F and the fact that it is the greatest
lower bound of F1 and F2 follows from the definition of intersection. As regards the join,
CF (F1 + F2) is in F by Lemma 3.5 and, more precisely, is the unique minimal member of
F containing F1 + F2. We remark that, since we have a lattice, there is a maximal member
of F , which is E , and a minimal one, that is ∩{F ∈ F}, which is also the minimal member
of F containing the zero space.
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In order to prove that the lattice is semimodular, we have to prove that if F1 ∧ F2 is
covered by F1, then F2 is covered by F1 ∨ F2. So let F1 ∩ F2 ∈ F be covered by F1. Then
for all one-dimensional subspaces x ⊆ F1 but x � F2 we have that the minimal member of
F containing (F1 ∩ F2) + x is F1 by Lemma 3.9. Since F2 + x ⊆ F2 + F1, we have that
the minimal H ∈ F containing F2 + x satisfies H ≤ F2 ∨ F1. On the other hand, because
(F1 ∩ F2) + x ⊆ F2 + x , we have that F1 ≤ H . Now we have that both F1, F2 ≤ H so
H must contain the least upper bound of the two, that is, H ≥ F1 ∨ F2. We conclude that
H = F1 ∨ F2, which means F1 ∨ F2 covers F2 by Lemma 3.9. This proves that the lattice
of a collection of flats F is semimodular. ��

Since the lattice of a collection of flats is semimodular, we can deduce the following
corollary (see [25, Prop. 3.3.2], [26, Prop. 3.7] or [1, Prop. 2.1].)

Corollary 3.11 The lattice of a collection of flats F satisfies the Jordan–Dedekind property,
that is: all maximal chains between two fixed elements of the lattice have the same finite
length.

In what follows, we will need the following lemma.

Lemma 3.12 Let A be a subspace of E and let F be a collection of subspaces of E. Let
x ⊆ A have dimension one and let F ⊆ A be an element ofF . Let F ′ be the minimal element
of F containing x + F. If A ⊆ F ′ then F ′ = CF (A).

Proof If A ⊆ F ′ ∈ F , we have CF (A) ⊆ F ′ by definition. Then since F + x ⊆ A we have
F + x ⊆ CF (A) ⊆ F ′. Since F ′ is the the minimal flat containing F and x , F ′ ⊆ CF (A),
implying their equality. ��

For each A ⊆ E , let rF (A) denote the length of a maximal chain of flats from CF ({0})
to CF (A). By Corollary 3.11, all such maximal chains have the same length, so rF is well
defined as a function on L(E). We are now ready to prove our main theorem.

Theorem 3.13 Let E be a finite dimensional space. If F is a family of subspaces of E that
satisfies the flat axioms (F1)–(F3) and for each A ⊆ E, then (E, rF ) is a q-matroid and
its family of flats is F . Conversely, for a given q-matroid (E, r), Fr satisfies the conditions
(F1)–(F3) and r = rFr .

Proof Let (E, r) be a q-matroid. We have seen in Proposition 3.8 thatFr satisfies (F1)–(F3).
Let now (E,F) be a family of flats. Write F0 to denote CF ({0}). We will show that rF

satisfies (R1)–(R3), that is, that (E, rF ) is a q-matroid.
(R1): For a subspace A, rF (A) ≥ 0 since CF (A) is contained in any chain from F0 to

CF (A). If A ⊆ F0 then F0 = CF (A) and rF (A) = 0 ≤ dim(A), so the result clearly
holds. If F0 does not contain A, then there is a one-dimensional space x0 ⊆ A, x0 � F0.
Let G0 = F0 + x0 and define F1 to be the minimal flat containing F0 and x0. F1 clearly has
dimension at least 1 and is a cover of F0. Indeed if there is a flat H such that F0 � H � F1,
H contains F0 properly (otherwise H = F0) and x0 � H (otherwise H = F1). If it contains
any element of F0 + x0 that is not in F0 it would contain x0 itself as a subspace. If A ⊆ F1,
then by Lemma 3.12 we have F1 = CF (A) and the required maximal chain is F0 � CF (A).
If A � F1 then choose x1 ⊆ A but x1 � F1 and define F2 to be the unique cover of
G1 = F1 + x1; clearly dim(F2) ≥ 2. We continue in this way, choosing at each step a
one-dimensional subspace xi ⊆ A, xi � Fi and construct the unique flat Fi+1 covering
Gi = Fi + xi , until we arrive at a flat Fk that contains A. By Lemma 3.12, we have Fk = FA,
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yielding the maximal chain of flats F0 ⊆ F1 ⊆ · · · ⊆ Fk = CF (A). Since dim(Fi ) ≥ i for
each i , it follows that rF (A) = k ≤ dim(A).

(R2): Let A ⊆ B; we prove rF (A) ≤ rF (B). By Lemma 3.5 Part 2, CF (A) ⊆ CF (B),
therefore a maximal chain of flats F0 ⊆ F1 ⊆ · · · ⊆ CF (A) is contained in CF (B).

(R3): Let A, B ⊆ E be subspaces and consider a maximal chain of flats F0 ⊆ · · · ⊆
CF (A ∩ B). If CF (A ∩ B) 	= CF (A) then choose a one-dimensional space x1 ⊆ A, x1 �

CF (A ∩ B) and continue extending the chain, by setting G1 = CF (A ∩ B) + x1 and taking
F1 = CF (G1) and then repeating this procedure, each time choosing xi ⊆ A, xi � Fi−1,
where Fi is the cover of Gi = Fi−1 + xi for each i . This sequence is clearly finite (in fact has
length at most dim(A) − dim(CF (A ∩ B)), and by Lemma 3.12, there exists some k such
that Fk = CF (A). Once we have a maximal chain terminating at CF (A), if B � CF (A),
we repeat the same procedure, constructing a maximal chain terminating at CF (A + B). In
the same way, from F0 ⊆ · · · ⊆ CF (A ∩ B), we construct a maximal chain terminating
at CF (B), which can be extended to a maximal chain terminating at CF (A + B). For any
y ⊆ CF (B), by (F2), the minimal flat containingCF (A∩ B)+ y is contained in the minimal
flat containing CF (A) + y. Repeating this procedure gives us that every flat in the chain
from CF (A ∩ B) to CF (B) is contained in exactly one flat in the chain from CF (A) to
CF (A + B), and any flat in the latter chain contains at least one flat of the former chain. In
other words, there is a surjection between flats in the chain from CF (A ∩ B) to CF (B) and
the flats in the chain from CF (A) to CF (A + B). Therefore, the length of a maximal chain
from CF (A ∩ B) to CF (B) is longer than or equal to the length of a maximal chain from
CF (A) to CF (A + B). This yields

rF (A + B) − rF (A) ≤ rF (B) − rF (A ∩ B),

and this proves (R3).
The only thing that remains to be proved is that rank and flats defined as above compose

correctly, namely F → r → F ′ implies F = F ′, and r → F → r ′ implies r = r ′. Given a
family F of flats satisfying (F1)-(F3), define r(A) to be the length of a maximal chain F0 ⊆
· · · ⊆ CF (A). Then let F ′ = Fr = {F ⊆ E : r(F + x) > r(F),∀x � F, dim(x) = 1}. We
want to show that F = F ′. Let F ∈ F , which means that F = CF (F) is the endpoint of
a maximal chain. Equivalently, for any one-dimensional subspace x ⊆ E, x � F , we have
that a maximal chain for F + x has to terminate at a flat that properly contains F and so
r(F + x) > r(F). Thus F ∈ F ′.

Conversely, if r is a rank function satisfying (R1)–(R3), let F = Fr . Then let rF (A) be
the length of a maximal chain F0 ⊆ · · · ⊆ CF (A). We want to show that r = rF . This
follows from the same reasoning as above: each element F ∈ F is the endpoint of a maximal
chain and hence is strictly contained in the unique cover of x + F for any x � F . ��

4 q-PMD’s and subspace designs

As an application of the cryptomorphism between the rank and flat axioms proved in Sect. 3,
we obtain the first example of q-PMD that has a classical analogue, namely the q-Steiner
systems. Furthermore, we generalize a result of Murty et al. [22] and show that from the
flats, independent subspaces and circuits of our q-PMD we derive subspace designs. While
only the ST S(13, 2) parameters are known to be realisable to date, we have used it in our
construction to obtain subspace designs for parameters that were not previously known to be
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realisable. Finally, we focus on the automorphism groups of the subspace designs that are
considered in this section.

4.1 q-Steiner systems are q-PMDs

We start by showing that a q-Steiner system gives a q-matroid, and we classify its family
of flats. The construction given here uses the flat axioms, whereas in [22] the hyperplane
axioms are used.

Proposition 4.1 Let S be a q-Steiner system and let B denote its blocks. We define the family

F :=
{⋂
B∈S

B : S ⊆ B
}

.

Let F be a subspace of E. Then F ∈ F if and only if one of the following holds:

(1) F = E,

(2) F ∈ B,

(3) dim(F) ≤ t − 1.

Proof By definition, F is the collection of all intersections of the blocks in B, so clearly
E ∈ F (taking the empty intersection) and every block is contained in F . Let us consider
the case for which that F is the intersection of at least two blocks. Clearly, dim(F) ≤ t − 1,
because every t-space is in precisely one block by the Steiner subspace design property.

Let dim(F) = i . By Lemma 2.18, there are exactly λi =
[
n − i
k − i

]
q

[
n − t
k − t

]
q

−1

blocks that

contain F , so that F is contained in the intersection I of these blocks.We claim that F = I . If
not, then there exists a 1-dimensional space x ⊆ I , x � F such that the (i + 1)-dimensional
space x + F is contained in I and so, in particular, x + F is contained in some λi blocks.

However, again by Lemma 2.18 there are exactly λi+1 =
[
n − i − 1
k − i − 1

]
q

[
n − t
k − t

]
q

−1

blocks

that contain x + F , which leads to a contradiction since λi+1 < λi . We conclude that every
space of dimension at most t − 1 is contained in F . ��
Theorem 4.2 Let S be a q-Steiner system and let B denote its blocks. Let F be defined as in
Proposition 4.1. Then (E,F) defines a q-matroid given by its flats.

Proof By the cryptomorphic definition of a q-matroid in Theorem 3.13, it would be enough
to show that F satisfies the axioms (F1), (F2) and (F3). We have that (F1) holds by Propo-
sition 4.1. By the definition of F , we see that (F2) also holds. To prove (F3), let F ∈ F
and let x ⊆ E be a one-dimensional subspace such that x � F . If dim(F) = k then the
unique cover of F in F that contains x is the whole space E ∈ F , since no block contains
a (k + 1)-dimensional space. Now suppose that dim(F) = t − 1. Then dim(x + F) = t
so that there exists a unique block, which is contained in F , that covers F and contains x .
Finally, suppose that dim(F) ≤ t − 2. Then dim(F + x) ≤ t − 1, so that by Proposition 4.1
x + F ∈ F , which is clearly the unique cover of F that contains x . ��

The q-matroid (E,F) determined by a q-Steiner system as described in Theorem 4.2 is
referred to as the q-matroid induced by the q-Steiner system.

In Theorem 3.13 it was shown that a collection of subspaces F of E satisfying (F1)–(F3)
determines a q-matroid (E, r) for which r(A) + 1 is the length of a maximal chain of flats
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contained in FA,A ⊆ E . We will now determine explicit values of the rank function of the
q-matroid induced by a q-Steiner system as described in Theorem 4.2.

Proposition 4.3 Let M = (E,F) be the q-matroid for which F is the set of intersections of
the blocks of an S(t, k, n; q) Steiner system (E,B). Then M is a q-PMD with rank function
defined by

r(A) =
⎧⎨
⎩
dim(A) if dim(A) ≤ t,
t if dim(A) > t and A is contained in a block of B,

t + 1 if dim(A) > t and A is not contained in a block of B.

Proof Let A ⊆ E be a subspace. Then r(A) + 1 is the length of a maximal chain of flats
contained in FA = CF (A). If dim A ≤ t − 1 then A is a flat, as are all its subspaces. So a
maximal chain of flats contained in FA = A has length dim A + 1, hence r(A) = dim A. If
dim A = t then A is contained in a unique block, and this block is equal to FA. A maximal
chain of flats has the form F0 ⊆ F1 ⊆ · · · ⊆ Ft−1 ⊆ FA, where dim Fi = i . This chain has
length t + 1 hence r(A) = t = dim A.

If dim A > t and A is contained in a block, then FA is a block and we apply the same
reasoning as before to find r(A) = t . If dim A > t and A is not contained in a block, then
FA = E and a maximal chain of flats is F0 ⊆ F1 ⊆ · · · ⊆ Ft−1 ⊆ B ⊆ E where B is a
block. This gives r(A) = t + 1.

To establish the q-PMD property, we show that flats of the same rank have the same
dimension. Clearly this property is satisfied by flats of dimension at most t . Let F be a flat of
dimension at least t + 1 and rank t . Then F is contained in a unique block and hence, being
an intersection of blocks by definition, is itself a block and has dimension k. If F has rank
t + 1, then it is not contained in a block, and hence must be E . ��

4.2 Subspace designs from q-PMD’s

Let M be a q-matroid induced by a q-Steiner system. We will now give a classification of
its flats, independent subspaces and circuits and show that these yield new subspace designs
by the idea given in [22] for the classical case. However, while the constructions are a
direct generalisation to the q-analogue, the counting arguments for the parameters in these
constructions are considerably more involved than in the classical case.

Flats

We have classified the flats of a q-matroid induced by a q-Steiner system in Proposition 4.1.
By considering all flats of a given rank, we thus get the following designs:

(1) For rank t + 1 we have only one block, Fn
q . This is an n-(n, n, 1) design.

(2) For rank t , we get the original q-Steiner system.
(3) For rank less than t we get a trivial design.

Independent spaces

Proposition 4.4 Let M be the q-PMD induced by a q-Steiner system with blocks B. Let I be
a subspace of E. Then I is independent if:

(1) dim I ≤ t,
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(2) dim I = t + 1 and I is not contained in a block of B.

Proof This follows directly from the fact that I is independent if and only if r(I ) = dim I
and the definition of the rank function of M in Proposition 4.3. ��

We want to know if all independent spaces of a fixed dimension � of a given q-PMD form
the blocks of a q-design. There are two trivial cases:

(1) If � ≤ t then the blocks are all spaces of dimension �. This is a trivial design.
(2) If � > t + 1 then there are no independent spaces. This is the empty design.

So, the only interesting case to study is that of the independent spaces of dimension t + 1.
These comprise the (t + 1)-spaces none of which is contained in a block of B.

Theorem 4.5 Let M be the q-PMD induced by a q-Steiner system with parameters
S(t, k, n; q) and blocks B. The independent spaces of dimension t + 1 of M form a t-
(n, t + 1, λI) design with λI = (qn−t − qk−t )/(q − 1).

Proof Let I be the set of independent spaces of dimension t + 1 of M . We claim that, for a
given t-space A, the number of blocks I ∈ I containing it is independent of the choice of A,
and thus equal to λI .

Let A be a t-space and let λ(A) denote the number of (t+1)-spaces of I that contain A. A
is contained in a unique block B ∈ B of the q-Steiner system. We extend A to a (t +1)-space
I that is not contained in any block of B, that is, we extend A to I ∈ I. We do this by taking
a 1-dimensional vector space x not in B and letting I = A + x . The number of 1-spaces not
in B is equal to the total number of 1-spaces minus the number of one-dimensional spaces
in B: [

n
1

]
q

−
[
k
1

]
q

= qn − 1

q − 1
− qk − 1

q − 1
= qk

[
n − k
1

]
q
.

However, another one-dimensional space y that is in I but not in A gives that A+ x = A+ y.
The number of one-dimensional spaces in I but not in A is equal to[

t + 1
1

]
q

−
[
t
1

]
q

= qt+1 − 1

q − 1
− qt − 1

q − 1
= qt .

This means that the number of ways we can extend A to I ∈ I is the quotient of the two
values calculated above:

λ(A) = qk−t
[
n − k
1

]
q

= qn−t − qk−t

q − 1
= λI ,

which is independent of the choice of A of dimension t . ��

Example 4.6 For the q-PMD arising from the S(2, 3, 13; 2) Steiner system we have bI =
3267963270 and λI = 2046. For the q-PMD arising from the putative q-Fano plane
ST S(7; 2), we have bI = 11430 and λI = 30.

Remark 4.7 For k = t+1 the construction from Theorem 4.5 gives the supplementary design
of the q-Steiner system.
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Circuits

Proposition 4.8 Let M be a q-PMD induced by a q-Steiner system S(t, k, n; q) with blocks
B. Let C be a subspace of M. Then C is a circuit if and only if:

(1) dimC = t + 1 and C is contained in a block of B,

(2) dimC = t + 2 and all (t + 1)-subspaces of C are contained in none of the blocks of B.

Proof A circuit is a space such that all its codimension 1 subspaces are independent. All
spaces of dimension at most t are independent, so a circuit will have dimension at least t +1.
Also, since the rank ofM is t+1, a circuit has dimension at most t+2. The result now follows
from the definition of a circuit and the above Proposition 4.4 that classifies the independent
spaces of M . ��

We now show that all the (t + 1)-circuits form a design and that all the (t + 2)-circuits
form a design.

Theorem 4.9 Let M be a q-PMD induced by a q-Steiner system S(t, k, n; q) with blocks B.
Let Ct+1 be the collection of all circuits of M of dimension (t + 1). Then Ct+1 are the blocks
of a t-(n, t + 1, λCt+1) design where

λCt+1 =
[
k − t
1

]
q
.

Proof Let A be a t-space contained in a unique block BA in the q-Steiner system. There

are

[
k − t

t + 1 − t

]
q

=
[
k − t
1

]
q

(t + 1)-dimensional subspaces of BA that contain A, from

Lemma 2.14. Every such (t+1)-space is a circuit by definition. IfC is a circuit not contained
in BA, then by Proposition 4.8 C is contained in another block B ∈ B. Therefore, if A ⊆ C ,
then A is contained in two distinct blocks BA and B, contradicting the Steiner systemproperty.

Hence the number of blocks that contain A is λ(A) =
[
k − t
1

]
q
, which is independent of

our choice of A of dimension t . ��
Remark 4.10 In fact by Proposition 4.8, Theorems 4.9 and 4.5 are equivalent. The circuits
of dimension t + 1 are precisely the set (t + 1)-spaces each of which is contained in some
block of the q-Steiner system. Therefore this set of circuits is the complement of the set of
(t +1)-spaces for which none of its members is contained in a block of the Steiner system. It
follows that the q-designs of Theorems 4.5 and 4.9 are supplementary designs with respect
to each other.

Theorem 4.11 Let M be a q-PMD induced by a q-Steiner system S(t, k, n; q) with blocks B.
Let Ct+2 be the collection of all circuits of M of dimension (t + 2). Then Ct+2 are the blocks
of a t-(n, t + 2, λCt+2) design where

λCt+2 = qk−t
[
n − k
1

]
q

([
n − t − 1

1

]
q

−
[
k − t
1

]
q

[
t + 1
1

]
q

)
1

q + 1
.

Proof Let Ct+2 be the set of circuits of dimension t + 2 of M . We argue that every t-space
is contained in the same number λCt+2 of members of Ct+2. We do this by calculating for a
given t-space A the number of blocks C ∈ Ct+2 it is contained in. It turns out this number is
independent of the choice of A, and thus equal to λCt+2 .
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Define

N (A):=|{(I ,C) : A ⊆ I ⊆ C, I ∈ I, dim I = t + 1,C ∈ Ct+2}|.
The number of (t +1)-dimensional independent spaces I containing A is exactly the number
λI calculated in Theorem 4.5, which is (qn−t − qk−t )/(q − 1). Now let I be an independent
space of dimension t + 1 that contains the t-space A. Then I is a (t + 1)-space that is
not contained in a block of B. We will count the number of (t + 2)-dimensional spaces C
such that I ⊆ C ∈ Ct+2. Such a subspace C contains I as a subspace of codimension 1
and meets any block of B in a space of dimension at most t , by Proposition 4.8. Define
BI :={B ∈ B : dim(B ∩ I ) = t}. Clearly, the complement of Ct+2 in the set of all (t + 2)-
dimensional spaces containing I is the set of (t+2)-dimensional subspaces of E that contain
I and meet some block of BI in a (t + 1)-dimensional space.

Now fix some B ∈ BI . Let

S(B, I ):={D ⊆ E : dim(D) = t + 2, I ⊆ D, dim(B ∩ D) = t + 1}
and let

T (B, I ):={X ⊆ B : dim(X) = t + 1, I ∩ B ⊆ X}.
We now claim that the following are well defined mutually inverse bijections:

ϕ : S(B, I ) −→ T (B, I ) : D �→ D ∩ B, φ : T (B, I ) −→ S(B, I ) : X �→ X + I .

Let D ∈ S(B, I ) and let X = D∩B. Then I ∩B ⊆ X as I ⊆ D and clearly dim(X) = t+1.
Therefore X ∈ T (B, I ) and ϕ is well-defined. Conversely, let X ∈ T (B, I ) and define
D = X+ I . Note first that as dim(I∩B) = t , I∩X = I∩B has codimension 1 in X .We have
dim(D) = dim(X+ I ) = dim(X)+dim(I )−dim(X∩ I ) = t+1+t+1−t = t+2. Clearly,
I ⊆ D and dim(D ∩ B) = dim(D) + dim(B) − dim(D + B) = t + 2+ k − dim(I + B) =
t+2+k−k−1 = t+1. Therefore, φ is well-defined. Let X ∈ T (B, I ) and let D ∈ S(B, I ).
Then, as I ∩ B ⊆ X ⊆ B,

ϕ ◦ φ(X) = ϕ(X + I ) = (X + I ) ∩ B = (X ∩ B) + (I ∩ B) = X ,

φ ◦ ϕ(D) = φ(D ∩ B) = (D ∩ B) + I = D,

where the last equality follows from the fact that I has codimension 1 in D and I � B. It
follows that there is a 1-1 correspondence between the members of S(B, I ) and T (B, I ).

Therefore, |S(B, I )| = |T (B, I )| =
[
k − t
1

]
q
, since this counts the number of (t + 1)-

dimensional subspaces of B that contain I ∩ B. We claim now that the S(B, I ) are disjoint.
Let B1, B2 ∈ BI and let D ∈ S(B1, I ) ∩ S(B2, I ). Then B1 and B2 both each meet D in
spaces of dimension t+1, say A1 = B1∩D and A2 = B2∩D. Then A1∩ A2 = B1∩B2∩D
has dimension t , being an intersection of two spaces of codimension 1 in D. This contradicts
the fact that every t-dimensional subspace of E is contained in a unique block. Therefore,∣∣∣∣∣∣

⋃
B∈BI

S(I , B)

∣∣∣∣∣∣ =
∑
B∈BI

|S(I , B)| = |BI |
[
k − t
1

]
q

=
[
t + 1
1

]
q

[
k − t
1

]
q
.

The number of (t + 2)-dimensional subspaces C that contain I and do not meet any block
B ∈ BI in a space of dimension t + 1 is thus[

n − t − 1
1

]
q

−
[
t + 1
1

]
q

[
k − t
1

]
q
.
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By Theorem 4.5, there are exactly qk−t
[
n − k
1

]
q
different (t + 1)-dimensional independent

spaces that contain A. It follows that

N (A) = qk−t
[
n − k
1

]
q

([
n − t − 1

1

]
q

−
[
t + 1
1

]
q

[
k − t
1

]
q

)
,

which is independent of our choice of A of dimension t . Now for a fixed circuit C ∈ Ct+2

containing A there are [
(t + 2) − t
(t + 1) − t

]
q

=
[
2
1

]
q

= q2 − 1

q − 1
= q + 1

independent (t + 1)-spaces containing A and contained in C . So we have

N (A) = (q + 1)|{C ∈ Ct+2 : A ⊆ C}| = (q + 1)λ(A).

We conclude that

λCt+2 = λ(A) = qk−t
[
n − k
1

]
q

([
n − t − 1

1

]
q

−
[
t + 1
1

]
q

[
k − t
1

]
q

)
1

q + 1
.

��
Remark 4.12 For the putative q-analogue of the Fano plane, the dual of the construction in
Theorem 4.11 was described in [20, Theorem 4.1]. This Theorem states that the existence
of a 2-(7, 3, 1; q) design [i.e., a S(2, 3, 7; q) Steiner system] implies the existence of a
2-(7, 3, q4; q) design and is proved by showing that the dual spaces of some subspaces
described by the authors as ‘of type 40’ form a 2-(7, 3, q4; q) design. Spaces of type 40
are 4-spaces that do not contain any block of the original design. Indeed, taking k = 3 and
t = 2 in Proposition 4.8 shows that the spaces of type 40 are exactly the 4-circuits of the
q-PMD induced by the S(2, 3, 7; q) Steiner system. They form a 2-(7, 4, q6 + q4; q) design
by Theorem 4.11 and the corresponding dual design would have parameters 2-(7, 3, q4; q)

by Definition 2.17.

The admissibility of design parameters (see Lemma 2.18) plays an important role on the
question of existence of subspace designs. In the following corollary we give admissibil-
ity conditions on the parameters of the design presented in Theorem 4.11 arising from an
ST S(n, q). In order to arrive at normalised parameters in all cases [i.e. those forwhich 2k ≤ n
and 2λ ≤ λmax, where λmax is the maximum possible value corresponding to an admissible
parameter set t-(n, k, λmax)], we also calculate the parameters of the supplementary and dual
subspace designs.

Corollary 4.13 If a q-Steiner triple system ST S(n; q) exists, then there exist 2-(n, k, λ; q)

designs with the following parameters.

(1) k = 4, λ = q4
(qn−3 − 1)(qn−6 − 1)

(q2 − 1)(q − 1)
,

(2) k = 4, λ = (qn−3 − 1)(q4 − 1)

(q2 − 1)(q − 1)
,

(3) k = n − 4, λ =
[
n − 3
3

]
q
,
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(4) k = n − 4, λ = q4
[
n − 3
4

]
q
.

In this case, the design with the parameters of (2) is the supplementary design of the design
with parameters (1), the design of (3) is the dual design of the design with parameters (2),
and the design of (4) is the dual of the design with parameters (1). Moreover, the parameters
of the designs listed above are admissible if and only if n ≡ 0, 1, 3, 4 mod 6.

Proof As a special case of Theorem 4.11, if an STS(n; q) exists then a 2-(n, 4, λ; q) design
D exists for

λ = q

[
n − 3
1

]
q

([
n − 3
1

]
q

−
[
3
1

]
q

)
1

q + 1

= q4
(qn−3 − 1)(qn−6 − 1)

(q2 − 1)(q − 1)
.

It is straightforward to verify that the supplementary designD′ ofD has parameters as given in
(2), that the dual design ofD′ has parameters as given in (3), and that the dual design ofD has
parameters as given in (4). Clearly, the parameters of (1)–(3) are admissible or not admissible
simultaneously. Therefore we need only check for admissibility of one parameter set. To this
end we only consider the parameters in (3). Note that these parameters are admissible if
and only if λ2 = λ, λ1 and λ0 (the number of blocks of the design) are all non negative
integers. From Lemma the 2.18, the intersection number λ1 corresponding to the parameters

2-

(
n, n − 4, λ =

[
n − 3
3

]
q
; q

)
of (3) is

λ1 =
[
n − 3
3

]
q

[
n − 1
4

]
q

[
n − 2
4

]
q

−1

= qn−1 − 1

q3 − 1

qn−3 − 1

q2 − 1

qn−4 − 1

q − 1
.

If n ≡ 0, 1, 3, 4 mod 6 such that n > 6, we see that λ, λ1 are positive integers and hence the
parameters of (3) are admissible.Conversely, assume that the parameters of (3) are admissible.
Then in particular λ1 is an integer, which holds if and only if either⎧⎪⎨
⎪⎩

∑2r−2

i=0
qi

∑2r−4

j=0
q j

∑r−3

t=0
q2t ≡ 0 mod q2 + q + 1 and n = 2r for some r ∈ Z,∑2r−1

i=0
qi

∑r−1

j=0
q2 j

∑2r−4

t=0
qt ≡ 0 mod q2 + q + 1 and n = 2r + 1 for some r ∈ Z.

For n = 2r , if
∑2r−2

i=0
qi is divisible by q2 + q + 1, then 2r − 1 ≡ 0 mod 3, which

implies n ≡ 1 mod 3. Then since n ≡ 1 mod 3 and n ≡ 0 mod 2 we obtain n ≡ 4

mod 6. If
∑2r−4

j=0
q j is divisible by q2 + q + 1, then 2r − 3 ≡ 0 mod 3, which implies

n = 2r ≡ 0 mod 3. Both n ≡ 0 mod 3 and n ≡ 0 mod 2 implies n ≡ 0 mod 6. For

n = 2r + 1, if
∑2r−1

i=0
qi is divisible by q2 + q + 1 then 2r − 2 ≡ 0 mod 3, which implies

n = 2r + 1 ≡ 0 mod 3. Both n ≡ 1 mod 2 and n ≡ 0 mod 3 implies n ≡ 3 mod 6.

And finally, if
∑2r−4

t=0
qt is divisible by q2 + 2+ 1 then 2r − 3 ≡ 0 mod 3, which implies

n = 2r + 1 ≡ 1 mod 3. Both n ≡ 1 mod 2 and n ≡ 1 mod 3 implies n ≡ 1 mod 6. On
the other hand, when n ≡ 2 mod 6, that is n = 6m + 2 for some m ∈ Z, then

λ1 = q6m+1 − 1

q3 − 1

q6m−1 − 1

q2 − 1

q6m−2 − 1

q − 1
.
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Table 1 Parameters of the new
designs in Corollary 4.13 from an
ST S(13; 2)

q = 2 2-(13, 4, 692912; 2)
2-(13, 4, 5115; 2)
2-(13, 9, 6347715; 2)
2-(13, 9, 859903792; 2)

Hence, λ1 ∈ Z if and only if
∑6m

i=0
qi

∑6m−2

j=0
q j

∑3m−2

t=0
q2t is divisible by q2 + q + 1.

Since
∑6m

i=0
qi

∑6m−2

j=0
q j ≡ q + 1 mod q2 + q + 1 and gcd(q + 1, q2 + q + 1) = 1,

λ1 ∈ Z if and only if
∑3m−2

t=0
q2t is divisible by q2 + q + 1, which yields a contradiction.

Similarly, when n ≡ 5 mod 6, i.e. n = 6m + 5 for some m ∈ Z we have

λ1 = q6m+4 − 1

q3 − 1

q6m+2 − 1

q2 − 1

q6m+1 − 1

q − 1
.

Note that λ1 ∈ Z if and only if
∑3m+1

t=0
q2t

∑6m+1

i=0
qi

∑6m

j=0
q j ≡ 0 mod q2 + q + 1.

Since
∑6m+1

i=0
qi

∑6m

j=0
q j ≡ q + 1 mod q2 + q + 1, and gcd(q + 1, q2 + q + 1) = 1,

λ1 ∈ Z if and only if
∑3m+1

t=0
q2t is divisible by q2 + q + 1, which yields a contradiction. ��

Table 1 shows the parameters that we obtain from the Steiner system ST S(13; q) and
Corollary 4.13. In particular, the normalized formof these parameters is 2-(13, 4, 5115; 2). Of
course the other two parameter sets are immediately implied by this one. Table 2 summarizes
the parameters of subspace designs whose existence would be implied by the existence of
the q-Fano plane.

Remark 4.14 In the literature, the only known Steiner triple systems found are those with
parameters ST S(13; 2). The existence of such ST S(13; 2) Steiner triple systems implies,
via Corollary 4.13, the existence of new subspace designs with parameters as shown in
Table 1.

Moreover, for q = 2, 3 and n = 7, Corollary 4.13 shows that the existence of the q-Fano
plane implies the existence of 2-(7, 3, 15; 2) and 2-(7, 3, 40; 3) designs (see also Table 2).
Designs with these parameters have actually been found [3]. However, for q ≥ 4, there is

no information on the existence of designs with parameters 2-
(
7, 3, q4−1

q−1 ; q
)
, which would

arise from the q-Fano plano over Fq .

Remark 4.15 Let n, k, t be positive integers satisfying n ≥ k ≥ t + 1 and suppose that the
parameters S(t, k, n; q) are admissible. One may ask the question as to whether this implies
that the parameters

(1) t-

(
n, t + 1,

[
k − t
1

]
q

)
(Theorem 4.9),

(2) t-

(
n, t + 2, qk−t

[
n − k
1

]
q

([
n − t − 1

1

]
q

−
[
k − t
1

]
q

[
t + 1
1

]
q

)
1

q + 1

)
(Theorem 4.11),
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Table 2 Parameters of the
designs of Corollary 4.13 from a
putative ST S(7; q)

q = 2 2-(7, 4, 80; 2)
2-(7, 4, 75; 2)
2-(7, 3, 15; 2) [3], [8, Table 1]

2-(7, 3, 16; 2)
q = 3 2-(7, 4, 810; 3)

2-(7, 4, 400; 3)
2-(7, 3, 40; 3) [3], [8, Table 2]

2-(7, 3, 81; 3)
q = 4 2-(7, 4, 4352; 4)

2-(7, 4, 1445; 4)
2-(7, 3, 85; 4)
2-(7, 3, 256; 4)

q = 5 2-(7, 4, 16250; 5)
2-(7, 4, 4056; 5)
2-(7, 3, 156; 5)
2-(7, 3, 625; 5)

are admissible. In the case that t = 2, from [10] we have that a S(2, k, n; q) Steiner system
exists only if n ≡ 1, k mod k(k − 1).

We have found by a computer check that for the case t = 2, if q ≤ 11, for 3 ≤ k ≤ 20,
and n ∈ {1+ ik(k−1), k+ ik(k−1) : 1 ≤ i ≤ 40} then the parameters of (2) are admissible.
Similarly, for the cases t = 3, 4, q ∈ {2, 3, 4, 5, 7, 8, 9, 11, 13}; k ∈ {t + 2, . . . , 15}, n ∈
{k + 3, . . . , 300}, we have found that the parameters of (2) are admissible whenever the
S(2, k, n; q) parameters are admissible, while the converse does not hold.

While the experimental evidence appears to suggest that the admissibility of the parameters
of an S(2, k, n; q) Steiner system implies the admissibility of the circuit designs constructed
in this paper, calculations to prove this are rather formidable. We give a proof for the case
t = 2 regarding the (t + 1)-dimensional circuit designs.

Proposition 4.16 Let n, k be positive integers satisfying n ≥ k ≥ 3. If the parameters

S(2, k, n; q) are admissible then the parameters 2-

(
n, 3,

[
k − 2
1

]
q

)
are admissible.

Proof Suppose that the parameters S(t, k, n; q) are admissible, so that n ≡ 1, k mod k(k −
1). The parameters 2-

(
n, 3,

[
k − 2
1

]
q

)
are admissible if and only if, for i = 0, 1 we have:

Bi :=:=
[
k − 2
1

]
q

[
n − i
3 − i

]
q

[
n − 2
1

]
q

−1

= qk−2 − 1

q − 1

1∏
j=i

qn− j − 1

q3− j − 1
∈ Z.

If n − 1 is even then q2 − 1 divides qn−1 − 1. On the other hand, since k − 1 divides n − 1,
if n − 1 is odd then k − 2 is even and so q2 − 1 divides qk−2 − 1. Clearly, in either case B1

is a positive integer. Now consider

B0 = qk−2 − 1

q − 1

qn − 1

q3 − 1

qn−1 − 1

q2 − 1
= qn − 1

q3 − 1
B1.
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If k ≡ 0 mod 3 and k ≡ 1 mod 2 then (q3 −1)(q2 −1)|(qk −1)(qk−1 −1), which divides
(qn −1)(qn−1 −1) by the admissibility of S(t, k, n; q). Therefore, B0 ∈ Z. If k ≡ 0 mod 3
and k ≡ 0 mod 2 then (q3−1)(q2−1)|(qn−1)(qk−2−1) and so again B0 must be an integer.
If k ≡ 2 mod 3 then (q3 − 1)|(qk−2 − 1) and clearly (q − 1)(q2 − 1)|(qn − 1)(qn−1 − 1),
so that B0 ∈ Z. Finally, suppose now that k ≡ 1 mod 3, so that n ≡ 1 mod 3. If k ≡ 0
mod 2 then (q3 − 1)(q2 − 1)|(qn−1 − 1)(qk−2 − 1) and so B0 ∈ Z. If k ≡ 1 mod 2 we can
consider the parameters of the supplementary design (i.e. the design of Theorem 4.5), which
are admissible if and only if

C0 = qn−k − 1

q − 1

qn − 1

q3 − 1

qn−1 − 1

q2 − 1
and C1 = qn−k − 1

q − 1

qn−1 − 1

q2 − 1

are both positive integers. We have n−k ≡ 0 mod 3, so thatC0 ∈ Z and n−k ≡ 0 mod 2,
so that C1 ∈ Z. It follows that the parameters of the supplementary design are admissible in
the final case k ≡ 1 mod 3 and k ≡ 1 mod 2. ��

4.3 The automorphism group of designs from q-PMDs

For the subspace designs constructed in Theorems 4.5, 4.9, and 4.11, we show that their
automorphism groups are isomorphic to the automorphism group of the original Steiner
system. Since the designs in Theorems 4.5 and 4.9 are supplementary to each other and
moreover the constructions of the circuits in Theorem 4.11 are obtained by the independent
spaces inTheorem4.5,we only consider the automorphismgroups of the designs inTheorems
4.5 and 4.11, respectively.

Theorem 4.17 Let S be an S(t, k, n; q) q-Steiner system. Then

(1) The automorphism group of the subspace design obtained in Theorem 4.5 from S is
isomorphic to the automorphism group of S.

(2) The automorphism group of the subspace design obtained in Theorem 4.11 from S is
isomorphic to the automorphism group of S.

Proof Let B denote the blocks of S. Let It+1 be the set of independent spaces of dimension
t + 1 and let Ct+2 be the set of circuits of dimension t + 2 of the q-PMD arising from S.

(1) No member of It+1 is contained in a block of B. Let φ be an automorphism of S.
Given an independent space I ∈ It+1, we claim that the image φ(I ) is also an independent
space. Since φ ∈ Aut(L(E)), then dim φ(I ) = t + 1. Moreover, φ(I ) cannot be contained
in a block B of B, because otherwise I ⊆ φ−1(B) ∈ B, which is a contradiction. Therefore,
φ(It+1) = It+1 and so φ ∈ Aut(E, It+1).

Conversely, let φ be an automorphism of the subspace design with blocks It+1. We will
show that φ(B) ∈ B for all B ∈ B. Let B ∈ B and let A be a t-dimensional subspace of B
such that φ(A) 	= A. Note that if no such space exists, then φ(B) = B, hence φ(B) is a block.
We will denote by BA = B the unique block containing A and by Bφ(A) the unique block
in B containing φ(A). Now assume that φ(BA) is not a block, which in particular implies
that there exists a one-dimensional subspace x ⊆ φ(BA), x � Bφ(A). By considering the
independent space construction in Theorem 4.5, we claim that the set IA = φ(A) + x is
independent, since it has dimension t + 1 and is not contained in a block. Indeed, if it were
contained in a block B ′ 	= Bφ(A), then φ(A) would be contained in two different blocks
and this would contradict the fact that S is a Steiner system. Finally, note that since It+1 is
the set of blocks of a subspace design, there are λI independent spaces I1, . . . , IλI each of
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which contains A. It follows that for each i , φ(A) ⊆ φ(Ii ) and since each Ii � BA, we have
φ(Ii ) � φ(BA). Since IA ⊆ φ(BA), it follows that IA is different from each of the subspaces
Ii . However, in that case φ(A) is contained in λI +1 independent subspaces in It+1, yielding
a contradiction. It follows that φ(B) ∈ B for each B ∈ B and so the result follows.
(2) Let φ be an automorphism of S. Let C ∈ Ct+2. If φ(C) is not a circuit of dimension t +2,
there exists a (t + 1)-dimensional subspace I ′ ⊆ φ(C) that is contained in a block B of B.
Then φ−1(I ′) is a (t + 1)-subspace of C such that φ−1(I ′) ⊆ φ−1(B). This contradicts the
fact that C is a circuit of dimension t + 2. It follows that φ is an automorphism of (E, Ct+2).

Conversely, let φ ∈ Aut(E, Ct+2). We claim that φ is also an automorphism of (E, It+1).
Let I ∈ It+1 and let C ∈ Ct+2 such that I ⊆ C . Then φ(C) ∈ Ct+2 and so is a circuit of
dimension t + 2 that contains the (t + 1)-dimensional space φ(I ). It follows that φ(I ) is
independent and so φ(I ) ∈ It+1. It now follows from 1 that φ is an automorphism of S. ��

Remark 4.18 Subspace designswith parameters 2-(7, 3, 15; 2) and 2-(7, 3, 40; 3)were found
by computer search in [5], applying the Kramer–Mesner method and under the assumption
that their automorphism groups contain a Singer cycle. In Table 1, we see that subspace
designs with the same parameters appear, with such designs arising from an ST S(7; 2) q-
Steiner triple system. However, the designs of [5] could not be constructed by the methods
of this paper, as then their automorphism groups would be isomorphic to that of the q-Fano
plane, which has automorphism group of order at most 2 [7, 19].
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