
Designs, Codes and Cryptography (2022) 90:2271–2299
https://doi.org/10.1007/s10623-022-01069-5

Blind key-generation attribute-based encryption for general
predicates

Masayuki Abe1 ·Miguel Ambrona1

Received: 19 January 2021 / Revised: 24 May 2022 / Accepted: 27 May 2022 /
Published online: 13 August 2022
© The Author(s) 2022

Abstract
Attribute-based encryption (ABE) is a form of public-key encryption that allows fine-grained
access control on encrypted data. Blind key-generation (BKG) attribute-based encryption
(Rial,Designs, Codes and Cryptography 2016) is a variant in which themaster author-
ity issues secret keyswithout learning any information about the attributes associated to them.
This extra functionality makes it an appealing building block for several applications. In this
work, we extend the generic framework of ABE based on pair encodings (Attrapadung,
Eurocrypt 2014) to support blind key-generation. In particular, we define two new notions
of pair encodings that we coin BKG-compatible and algebraic pair encoding. We show that
every encoding satisfies the former without loss of generality, whereas the latter is satisfied by
all existing pair encodings from the literature. We then show how to enhance any ABE based
on a BKG-compatible pair encoding to achieve honest-but-curious blind key-generation. In
the case of algebraic encodings, our protocol admits a very efficient version, secure against
malicious parties. The main advantage of our work is generality. Our protocol is designed
over the recent andmost advancedmodular frameworks of ABE that can handle a rich variety
of predicates.

Keywords ABE · Predicate encryption · Pair encodings · Blind key-generation

Mathematics Subject Classification 94A60

1 Introduction

Attribute-based encryption (ABE), first conceived by Sahai and Waters [46] and later intro-
duced by Goyal et al. [33], is a form of public-key encryption in which ciphertexts and keys

Communicated by C. Padro.

B Miguel Ambrona
mac.ambrona@gmail.com

Masayuki Abe
masayuki.abe.cp@hco.ntt.co.jp

1 NTT Social Informatics Laboratories, Tokyo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-022-01069-5&domain=pdf
http://orcid.org/0000-0001-5927-9235

2272 M. Abe, M. Ambrona

have attributes attached and the decryption ability of a key on a ciphertext is determined
by a potentially complex access control policy involving these attributes. In particular, it is
guaranteed that the decryption of a ciphertext ctx associated to attribute x with a secret key
sky associated to attribute y succeeds if and only if these values satisfy the predicate, that is,
P(x, y) = 1. Note that this definition generalizes the original definition of ABE [33], intro-
duced as key-policy ABE (KP-ABE), where values x correspond to Boolean vectors, while
values y correspond to Boolean functions and the predicate P(x, y) is defined as y(x) = 1
(in its dual version, i.e., ciphertext-policy ABE, x represents a Boolean function, while y rep-
resents a Boolean vector). Efficient ABE schemes exist for different predicates. For example,
identity-based encryption (IBE) [45] can be obtained with the predicate P(x, y):=(x = y),
zero-inner product encryption (ZIPE) [34] can be obtained by setting P(x, y):=(x�y = 0),
where x, y belong to some vector space; other examples are span programs [35], hierar-
chical IBE [39], large universe ABE [44], non-monotonic access structures [41], or regular
languages [7, 48].

Predicate encryption (PE) [17, 34] is a generalization of ABE where the main syntactical
difference is that ciphertexts do not explicitly include x and, therefore, it gives cause to
considering the property of attribute-hiding where ciphertexts leak no information about the
value x they were associated to. On the other hand, blind key-generation attribute encryption
(BKG-ABE) [43] allows one to hide the attributes associated to the secret keys from the
master authority.
Motivation.BKG-ABE is a powerful tool that achieves both fine tuning of access control and
privacy protection. It can be of use inABE scenarios where the user’s value y associated to the
requested key needs to remain private because, for example, it may leak sensitive information
about the user. (It may, however, require zero-knowledge proofs for the authority to verify
that the user is eligible for the key.) For example, several works evaluate the suitability of
ABE for applications such as enforcing privacy of Electronic Medical Records (EMR) [6] in
a system where healthcare organizations export EMRs to external storage locations. Other
examples are Sieve [50] or Streamforce [25], systems that provide enforced access control
for user data and stream data in untrusted clouds. These scenarios are a clear example where
the privacy of parties requesting secret keys can be a concern. They would benefit from a
BKG implementation of the underlying ABE.

Another application of BKG-ABE, proposed by Rial [43], is oblivious transfer with fine-
grained access control (OT-AC) [18, 19]. It is a generalization of OT and k-out-of-n OT,
where a sender associates an access policy fi to every message mi , for i ∈ [n], so that a
receiver who owns a certificate on some Boolean vector y produced by a credential issuer
obtains messages mi if and only if fi (y) = 1. Furthermore, the sender gains no information
about y.

We further propose to use BKG-ABE on the framework of secure computation to achieve
more security guarantees. The strongest notions of security for secure computation capture
no leakage of information against malicious parties arbitrarily deviating from the protocol.
However, it may be the case that the correctness of the input is defined according to some
context and this is out of the scope of the secure computation defined to be modular for
generality. Accordingly, an extra mechanism for defining and guaranteeing the correctness
of inputs will be performed to prevent malicious parties from lying on their input to the
computation. Now, consider a scenario of secure computation between two parties, where
Alice (with input x) owns a commitment σ to Bob’s input y and wants to make sure that Bob
uses such input in the execution of the secure computation of f (x, y). This could be achieved
by using an extra zero-knowledge proof. Other less modular solution would be to modify the
circuit to be computed in such a way that it takes σ as an extra input from Alice; it takes the

123

Blind key-generation attribute-based encryption 2273

opening information δ as an extra input from Bob; and returns f (x, y) if δ is a valid opening
of σ or ⊥ otherwise. These approaches however can introduce a prohibitive overhead in the
performance of the original protocol. BKG-ABE would provide a solution with reasonable
efficiency. Especially if the commitment scheme used is a Pedersen-like commitment as in
the first round of our BKG protocol (Sect. 3). For example, consider an ABE scheme for the
predicate P((i, γ), y):=(yi = γ), for X :=[n] × {0, 1} and Y = {0, 1}n (an encoding for
this predicate can be found in [2]). Alice could create a garbled circuit for f , use ABE to
encrypt every input label �

(i)
b (corresponding to Bob’s input) under value x :=(i, b) for all

i ∈ [n], b ∈ {0, 1}. Then, she could send everything to Bob; together with the answer of the
second round of our BKG protocol, having interpreted the commitment σ that she owns as
the message from the first round. This way Bob will only be able to recover labels �

(i)
yi , for

i ∈ [n] (and use them to evaluate the garbled circuit), as desired.
We note that this application is not specific to BKG-ABE and could be achieved via

OT-AC. However, our particular protocol for BKG-ABE is especially suitable for it.
Modular frameworks for ABE. In 2014, Wee [49] and Attrapadung [7] independently pro-
posed two generic and unifying frameworks for designing attribute-based encryption schemes
for different predicates. Both works define a simple primitive called encoding and follow the
dual system methodology by Lewko and Waters [38, 47] to construct a compiler that on
input an encoding (for certain predicate P), produces a fully secure attribute-based encryp-
tion scheme for P . Wee defines the so-called predicate encodings, an information-theoretic
primitive inspired by linear secret sharing, while Attrapadung introduces the notion of pair
encodings, a similar primitive that admits both information-theoretic and computational secu-
rity definitions. These frameworks remarkably simplify the design and studyofABEschemes:
the designer can focus on the construction of the simpler encodings (for the desired predicate),
which require weaker security properties that are more easily verifiable. In fact, the potential
of this new frameworks is evidenced by the invention of new constructions and performance
improvements on existing primitives. Although these frameworks were designed over com-
posite over groups, they were both extended in [20] and [8] respectively to the prime-order
setting (under the Matrix-DH assumption).

Pair encodings are the building block inwhichAttrapadung’s framework relies. Informally,
a pair encoding is a function from attributes to polynomials, which will be evaluated in the
exponent of an algebraic group by the key-generation and encryption ABE algorithms. Such
polynomials are restricted in their form (Sect. 2.2, Definition 2), which is crucial for the key-
generation and encryption algorithms to be efficiently computable. In particular, they contain
two types of variables: lone and non-lone variables. Lone variables always appear “alone” in
degree-1monomials (suchmonomials correspond to secret randomness generatedduringkey-
generation and encryption), whereas non-lone variables always appear multiplied by another
non-lone variable in a degree-2 monomial (such monomials represent the combination of
secret randomness with the randomness contained in public parameters).

1.1 Our contribution

We pursue the study of attribute-based encryption in the framework of pair-encodings and
provide new results to broaden its scope.
New definitions about pair encodings.We define two new notions related to pair encodings:
BKG-compatible encodings and algebraic encodings. The former notion establishes certain
conditions on a pair encoding scheme that are sufficient for constructing very efficient blind
key-generation protocols. Namely, we require that (i) the key-encoding polynomials that

123

2274 M. Abe, M. Ambrona

depend on the master secret α be independent of the value y associated to the key and (ii)
the so-called lone variables can be linearly removed from all the key-encoding polynomials
that depend on y. The first condition ensures that the computation of the key-generation that
depends on the master secret key is independent of the value y and thus, can be performed by
the authority without obtaining any information about y. The second condition guarantees
that the user who requested the key will be able to remove the blinding factor (introduced
by himself) after the communication with the authority. We show that any pair encoding can
be transformed with minimal overhead1 into an equivalent BKG-compatible pair encoding.
In fact, we provide a stronger result: every pair encoding can be modified into an equivalent
one that does not contain lone variables apart from α (Sect. 3.2, Lemma 1). This result is of
independent interest, as it could lead to improvements on our understanding of pair-encodings
and their expressivity.
Generic framework for blind key-generation ABE. We equip the generic framework of
attribute-based encryption from pair encodings with a protocol for blind key-generation
(Sect. 3.3). Our protocol is two-round: (1) the user sends a key request that information-
theoretically hides its value y; (2) the authority replies back with a piece of information from
which the user can derive a secret key sky . The protocol is secure against honest-but-curious
adversaries and it is defined for any attribute-based encryption scheme that is based on a
BKG compatible pair encoding.

We then show that if the underlying encoding is algebraic, the zero-knowledge proof of
knowledge sufficient for achieving active security can be implemented very efficiently with
the �-protocol that we provide in Appendix C.
Implementation. We implement our protocol and compare its performance with the normal
key-generation algorithm (of the ABE framework based on pair encodings). Our experiments
show that both rounds of our protocol require a computational cost comparable to the one of
the normal key-generation, making it suitable for real applications.

1.2 Overview of our protocol for blind key-generation

Normal key-generation for an ABE based on pair encodings requires several computations
of the form

˜sk�:=hφ(�)

msk · ∏

i∈[m̂] ĥ
φ

(�)
i{i,0} · ∏

i∈[m]
j∈[n]

h
φ

(�)
{i, j}

{i, j} ,

where ˜sk� is the �-th element of the secret key being generated; the exponents φ are the
coefficients of the polynomials associated to the encoding of y, and the bases h are elements
of a dual system group (DSG) [23, 24]. ADSG is an abstraction that contains a bilinear group,
i.e., a triple of abelian groups (G, H ,Gt) and a non-degenerate bilinearmap e : G×H → Gt ,
these groups are usually implemented through prime-order groups, typically as vectors of
prime-order group elements as in the DSG instantiation from k-lin, see Online Appendix.
DSG are equipped with additional algorithms that can be used to simulate properties of
composite-order groups that are they core of security proofs in the standard model, e.g., the
existence of cyclic subgroups of unknown order.

Observe that hmsk is only known to the authority and that the other group elements
from the above formula are freshly sampled on every key-generation. On the other hand,
the exponents are only known to the user requesting the key. In order to perform blind

1 The number of variables would be increased by a constant factor, independent of the predicate.

123

Blind key-generation attribute-based encryption 2275

key-generation, it would be sufficient to have a two-party protocol for the functionality
FA,U ((h1, . . . , hn); (x1, . . . , xn)) → (⊥; ∏

i h
xi
i).

Below, we propose a simple protocol that implements such functionality over a group of
prime-order p, based on the Diffie-Hellman assumption. (This is not the main construction
proposed in this work, but serves as a warm-up example and could be adopted for simple
ABE constructions.) Let g be a generator of the group:

1. Party A (Authority) masks every hi by sampling a random ri ←$
Zp , setting ai :=(hrii , gri)

and sending every ai to party U .
2. PartyU (User) now samples ti ←$

Zp and computesbi :=(hrii)xi ·(gri)ti for every i , sending
them back to A.

3. Finally, A computes c:= ∏

i b
1/ri
i and sends it to U , who computes the desired value as

c · ∏

i g
−ti .

The above protocol can be directly used on ABE constructions implemented over a prime-
order group. Such constructions are only known to be secure in the generic group model [1].
For ABE schemes proven secure in the standardmodel, all existing constructions to date use a
dual system group as underlying group. Known instantiations of DSGs [8, 20, 36] are based
on the k-Lin assumption (or the Matrix-DH assumption [26, 40]) and lead to groups that
have prime exponent, but not prime order. (Such groups are typically implemented as vectors
of prime-order groups.) In fact, such DS groups are not cyclic and thus, the multiplicative
masking hrii does not information-theoretically hide hi . Consequently, the above generic
protocol may not be directly applicable to constructions based on DSG. One could, however,
apply the technique from the above protocol coordinate-wise on the DSG elements, that way
maskings would perfectly hide the corresponding value. (This approach would also require
both parties to provide additional zero-knowledge proofs that they are acting consistently in
each coordinate, e.g., that the user U has used the same exponent xi in all coordinates of
the corresponding DSG element.) Our main construction is a blink-key generation protocol
with better communication complexity (it does not need to operate coordinate-wise and it
will not require the additional ZK proofs) and with only two rounds of interaction (note that
the above protocol requires three rounds).

Themain blind-key generation scheme proposed in thiswork exploits the specific structure
of the dual system groups built from k-Lin, at the cost of not being generic for any DSG. In a
nutshell, in the k-Lin implementation of dual system groups, the elements h{i,0} are sampled
by taking r i ←$

Z
k
p and computing h{i,0}:=�B�2ri ,2 whereas h{i, j} is computed as �Wj B�2r i ,

for all i ∈ [m] and all j ∈ [n]. Here, �B�2 and �Wj B�2 are part of the public key, where B
and Wj are matrices with coefficients over Zp .

For simplicity, we assume here that the encoding does not contain lone variables (i.e., the
coefficients of the formφ

(�)
i are all zero). The idea of our protocol is that the user will compute

�
∑

j φ
(�)
{i,j}Wj B�2, for every i and �, from the public key and will mask them with �Zi

(�)B�2,

for uniformly sampled matrices Z (�)
i . The authority will instead sample the random vectors

r i and use the previous values to compute

∑

i

�
∑

j φ
(�)
{i,j}Wj B + Z (�)

i B
�

2
r i .

Vectors r i will also need to be used by the authority in the computation of the rest of
polynomials that are independent of y. Our requirements on BKG-compatible pair encodings

2 Here, �B�2 denotes a matrix of group elements of a prime-order bilinear group (actually, of the second
subgroup, given the subindex 2). The group elements correspond to the exponentiation of a selected generator
to the coefficients ofmatrix B, defined overZp . Such group elements are typically part of the public parameters.

123

2276 M. Abe, M. Ambrona

guarantee that the extra terms �Z (�)
i B�r i , can be removed by the user, recovering a genuine

secret key for y.

1.3 Related work

Blind key-generation. The notion of blind key-generation was first introduced by Green and
Hohenberger [28] in the framework of identity-based encryption. The authors provide a
protocol for blind key-generation of the Boneh-Boyen IBE [11] and show how to construct
very efficient oblivious transfer (OT) [42] protocols from blind key-generation IBE schemes
that satisfy some extra conditions. A subsequent work to [28] by Rial [43] extends the notion
of blind key-generation to the framework of attribute-based encryption, and shows how to
use it for building OT with fine-grained access control. The construction by Rial defines a
blind key-generation algorithm for the CP-ABE of [16]. This ABE scheme has the property
that secret keys are formed as a concatenation of pieces, each corresponding to one of the
attributes included in the key. In a nutshell, Rial’s idea for blind key-generation is that the
authority will create a key for all attributes and the user will get only the parts corresponding
to the attributes of their choice via a k-out-of-n adaptive OT. Note that Rial’s technique
allows to upgrade an adaptive k-out-of-n OT protocol to OT-AC. Observe that this approach
is limited to CP-ABE schemes with the above property of separation between attributes in
the key.
Blind functional encryption. In a very recent work, Canard et al. [21] considered the notion
of blind key-generation in the context of functional encryption. They argue that blind-key
generation can be achieved generically (but somewhat inefficiently) by using homomorphic
encryption and zero-knowledge proofs and give a specific efficient construction for the inner-
product functionality.

The main advantage of our work with respect to these related works is generality. Our
protocol is designed over the recent and most advanced modular frameworks of ABE that
provide a rich variety of predicates. In particular, it can be applied to all the encodings from
the literature [3, 4, 7–9, 20].

2 Background

We consider a bilinear group generator G that, on input the security parameter λ, outputs an
asymmetric bilinear group (p,G1,G2,Gt , g1, g2, e : G1×G2 → Gt), where gt :=e(g1, g2)
is a generator of Gt . For a ∈ Zp , we use �a�i to denote the implicit representation gai of
a in Gi , for i ∈ {1, 2, t}, following [26]. For a matrix A ∈ Z

m×n
p and a group element g,

we abuse notation and write gA or �A� to represent the matrix formed by powering g to the
elements of A. We use Ai, j to denote the element of A that appears in the i-th row and the
j-th column of A; the i-th element of a vector v is denoted as vi . Given a matrix of group
elements A ∈ Gm×n and a vector v ∈ Z

n
p , we denote by Av the vector of group elements

obtained bymultiplying each row of A by the scalar vector v as a scalar multi-exponentiation,
that is the k-th element of Av is defined as

∏n
i=1 A

vi
k,i We denote by 0n the zero vector of

length n. We use the ‖ symbol for concatenation of lists or vectors. For a vector v we denote
its length by |v|. Given a matrix A ∈ Z

m×n
p and a set of indices
 ⊆ [m], we define A
 as

the matrix formed by the rows of A whose index is in
.
Given a predicate P : X×Y→{0, 1}, wewrite (x, y)∈ P to denote P(x, y)= 1. For a pair

of integers m, n ∈ N we define [m, n] as the range {m, . . . , n} and we write [n] to represent

123

Blind key-generation attribute-based encryption 2277

[1, n]. In case m > n, [m, n] is defined as the empty set. For a finite set S, x ←$ S denotes
that x is uniformly sampled from S. Given a multi-variate polynomial f (X) ∈ Zp[X], we
denote by f (x) the evaluation of polynomial f on values x. This notation is extended to
vectors of polynomials f if every polynomial in the vector is defined with respect to the
same variables. We sometimes group variables in classes as f (X,Y) ∈ Zp[X,Y]. When the
variables associated to a polynomial are clear from the context we simply write f instead of
f (X,Y).

2.1 Attribute-based encryption

Attribute-based encryption (ABE) [46] is a form of of public-key encryption that supports
fine-grained access control for encrypted data. An attribute-based encryption scheme for a
predicate P guarantees that decryption of a ciphertext ctx with a secret key sky is allowed
if, and only if, the value x associated to the ciphertext ct and the value y associated to the
secret key sk verify the predicate P , i.e., (x, y) ∈ P .

Definition 1 (Attribute-based encryption) Given a predicate P : X × Y → {0, 1}, an
attribute-based encryption scheme is tuple of polynomial-time algorithms {Setup, Enc,
KeyGen, Dec} where:
• Setup(1λ,X ,Y) → (mpk,msk), on input the security parameter λ and value universes

X ,Y , outputs a master public key and a master secret key.
• Enc(mpk,m, x) → ctx , on inputmpk, a message and x ∈ X , outputs ctx .
• KeyGen(msk, y) → sky , on inputmsk and y ∈ Y , outputs a secret key sky .
• Dec(mpk, sky, ctx , x) → m/⊥, on input sky and ctx , outputs a messagem if P(x, y) =

1 or ⊥ otherwise.

Without loss of generality and even if we do not make it explicit, we assume msk always
containsmpk. In blind key-generationABE there exists an extra two-party protocol executed
between a user U and the master authority A:

• Blind-KGU,A((mpk, y);msk) → (sky; ⊥), on input the master public key and a value
y from the user and on input the master secret key from the authority, the user gets a
secret key for y, whereas the authority learns nothing.

2.2 Pair encodings

Pair encodings are the building block for constructing ABE on which Attrapadung [7–9] and
Agrawal and Chase [3, 4] rely. Note that, in this work, we adopt the most modern definition of
pair encodings, introduced in [4], where some of the structural constraints on the polynomials
are explicit thanks to the separation between lone and non-lone variables.

Definition 2 (Pair encoding) Let P : X × Y → {0, 1} be a binary predicate over finite sets
X and Y . For a prime p ∈ N and ϒ = (w̄, w, ŵ, m̄,m, m̂, n) ∈ N

7, let

b = (b1, . . . , bn) s = (s1, . . . , sw) r = (r1, . . . , rm)

ŝ = (ŝ1, . . . , ŝŵ) r̂ = (α, r̂1, . . . , r̂m̂)

be formal variables. A ϒ-pair encoding scheme (PES) for P consists of three deterministic
and efficiently computable algorithms:

123

2278 M. Abe, M. Ambrona

• EncCt(p, x): maps x ∈ X into a vector of w̄ polynomials, cx , in Zp[s, ŝ, b].
• EncKey(p, y): maps y ∈ Y into a vector of m̄ polynomials, ky , in Zp[r, r̂, b].
• Pair(p, x, y): maps x ∈ X and y ∈ Y into a pair of matrices Ex,y, Fx,y with coefficients

in Zp of dimensions w × m̄ and w̄ × m respectively.

We require that the following properties be satisfied (for all p prime):

reconstructability: For every (x, y) ∈ P , s�Ek + c�F r = αs1 holds sym-
bolically,where c ← EncCt(p, x), k ← EncKey(p, y),
(E, F) ← Pair(p, x, y).

polynomial constraints: For every x ∈ X , the polynomials in EncCt(p, x) only
contain monomials of the form ŝi ′ , or si b j , for i ′ ∈
[ŵ], i ∈ [w], j ∈ [n]. Furthermore, for every y ∈ Y ,
the polynomials in EncKey(p, y) only contain mono-
mials of the form α, r̂i ′ or ri b j for i ′ ∈ [m̂], i ∈ [m],
j ∈ [n]. Thus, ŝ, r̂ are called lone variables, whereas
s, r are called non-lone variables.

security (non-reconstructability): For every (x, y) /∈ P , and for every pair of matrices E
and F with coefficients in Zp , s�Ek + c�F r
= αs1,
where c ← EncCt(p, x) and k ← EncKey(p, y).

When it is clear from the context, wemay omit p from the input to the encoding algorithms.

Remark 1 There exist several security notions for pair encodings (information-theoretic and
also computational) [7]. The one we adopted in Definition 2 was introduced by Agrawal and
Chase [4]. Our blind KG protocol works for all pair encodings, independently of the security
notion.

Remark 2 Other works [3, 4, 9] define pair encodings for a family of predicates Pκ : Xκ ×
Yκ → {0, 1}, indexed by κ = (p, par), where par specifies some parameters (including
the security parameter λ) and consider one extra algorithm, Param, that on input par ,
outputs n ∈ N specifying the number of common variables. In our definition, for the sake
of simplicity, we omit such algorithm. However, one could think of the elements in ϒ as
polynomials3 (over Z) in the security parameter λ. And one could define Param as the
algorithm that evaluates the polynomial n(λ) on the given security parameter and outputs the
corresponding integer.

2.3 Attribute-based encryption from pair encodings

The compiler frompair encodings to attribute-based encryption is definedover bilinear groups
(implemented as dual system groups) and, roughly, works as follows. To encrypt a message
M ∈ Gt , this is multiplied by a blinding factor gαs

t , where s is fresh randomness and gα
t is

part of the public key, being gt :=e(g1, g2). Ciphertexts contain additional group elements
that can be combined with the elements of a valid secret key in order to recover the blinding
factor and, consequently, the message. In short, and following the notation fromDefinition 2,
the compiler could be summarized as:

mpk = {

gα
t , gb1 , g

b
2

}

ctx =
{

gs1, g
cx (s,ŝ,b)
1 , M · gαs1

t

}

3 Actually, we should consider w, ŵ and w̄ as functions that map x into polynomials in λ; and m, m̂ and m̄
as functions that map y into polynomials in λ.

123

Blind key-generation attribute-based encryption 2279

msk = {gα
2 } sky =

{

gr2 , g
ky(r,(α,r̂),b)
2

}

For the purpose of this paper, a formal definition of the setup and the key-generation algo-
rithm is sufficient. For the sake of simplicity, we omit the description of the other algorithms
and include a complete definition of the compiler in Online Appendix. (We refer to [4, Sect.
5.4] for further details.) Observe that in the following definition we have already adopted the
DSG implementation based on k-Lin (see Online Appendix and also [20]), because our blind
key-generation protocol is defined for this instantiation.

Definition 3 (Attribute-based encryption from pair encodings) Given a ϒ-pair encoding
(EncCt, EncKey, Pair), with ϒ = (w̄, w, ŵ, m̄,m, m̂, n), for predicate P : X × Y →
{0, 1},we can construct an attribute-based encryption schemewhose setup andkey-generation
algorithms are as follows:

• Setup(1λ,X ,Y): sample a bilinear group (p,G1,G2,Gt , g1, g2, ê) ← G(1λ) and sam-
ple matrices from the k-Lin distribution4 (A, a⊥) ← Dk , (B, b⊥) ← Dk . Sample
matricesW1, . . . ,Wn uniformlyoverZp of dimension (k+1)×(k+1). Sampleα ←$

Z
k+1
p ,

let hmsk:=�α�2 and set

mpk:=
(

(p,G1,G2,Gt , g1, g2, ê)
�A�1, �B�2, �A�α�t

�W�
1 A�1, . . . , �W�

n A�1
�W1B�2, . . . , �WnB�2

)

msk:=hmsk .

Output (mpk,msk).
• KeyGen(msk, y): run EncKey(p, y) to obtain polynomials ky(r, r̂, b). For every � ∈

[k], let the �-th polynomial in ky be

φ(�)α +
∑

i∈[m̂]
φ

(�)
i r̂i +

∑

i∈[m]

∑

j∈[n]
φ

(�)
{i, j}ri b j

for some coefficients φ(�), φ(�)
i and φ

(�)
{i, j} in Zp . Now do:

∀i ∈ [m̂], r̂i ←$
Z
k
p set ĥ{i,0}:=�B r̂i �2 and ∀ j ∈ [n], ĥ{i, j}:=�Wj B r̂i �2

∀i ∈ [m], ri ←$
Z
k
p set h{i,0}:=�Bri �2 and ∀ j ∈ [n], h{i, j}:=�Wj Bri �2.

Let the secret key sky be sky :=
(

sk1, . . . , skm, ˜sk1, . . . , ˜skk
)

where for every i ∈ [m],
ski :=h{i,0}; and for every � ∈ [k], ˜sk� is computed as

˜sk�:=hφ(�)

msk ·
∏

i∈[m̂]
ĥ

φ
(�)
i{i,0} ·

∏

i∈[m]

∏

j∈[n]
h

φ
(�)
{i, j}

{i, j} .

Output sky .

3 Blind key-generation ABE

In this section we first introduce a formal security definition for blind key-generation ABE
(Sect. 3.1), we then present our BKG scheme (Sect. 3.2), which is compatible with the
compiler of ABE based on pair encodings [4, 8].

4 See Definition 1 in Online Appendix for more details about the k-lin distribution Dk , which produces a
matrix A of dimensions (k+1) × k and a vector a⊥ of length k+1, which is orthogonal to every column of A.

123

2280 M. Abe, M. Ambrona

3.1 Security definition

The security notion of blind key-generation ABE is formally captured by the following ideal
functionality.

Definition 4 (Ideal functionality for blind key-generation) The ideal functionality F for
blind key-generation is defined as follows.

1. On input a pair (mpk, y) from the user,F sends themaster public keympk to the authority
and waits for a response.

2. If the authority allows the computation, it replies back to F with a secret key msk and
some randomness r .

3. Now, F checks if (mpk,msk) ∈ K, i.e., if the secret key is valid with respect to the
receivedmpk from the user. If so, it executes sky ← KeyGen(msk, y; r) and sends sky
to the user; otherwise it sends ⊥ to the user.

Here, we denote by (mpk,msk) ∈ K the fact that there exists some randomness s such that
(mpk,msk) ← Setup(1λ,X ,Y; s).
Remark 3 Observe that deciding whether (mpk,msk) ∈ K can be done efficiently for the
ABE scheme from Definition 3. We will assume, without loss of generality, that the master
secret key includes the master public key. That way, for every validmsk there exists exactly
one mpk such that (mpk,msk) ∈ K.

Security of blind key-generationABE, definedwith respect to the above ideal functionality,
is schematized in Fig. 1. In words, let A and U be two arbitrary stateful algorithms. Let
RealU,A(mpk, y,msk) be the following distribution. Algorithm U takes as input (mpk, y),
whereasA takes as inputmsk; bothU andA execute the Blind-KG protocol on their inputs,
but may deviate arbitrarily from the protocol; let viewU and viewA be their respective final
view.Return (viewU, viewA). Let IdealU,A(mpk, y,msk)be the distributionwhere algorithm
U takes as input (mpk, y) and produces a (possiblymodified) pair (mpk′, y′) that is sent to the
ideal functionality F (Definition 4); analogously, A takes as inputmsk, and when it receives
mpk from F , if it decides to allow the computation, it produces a (possibly modified) key
msk′ and randomness r , which sends to F ; otherwise, it sends ⊥ to F . Let viewU and viewA

be their respective final views. Return (viewU, viewA).

Definition 5 (Security frommalicious users) Protocol Blind-KG is said to be secure against
malicious users if and only if, for every PPT algorithm U there exists a PPT simulator S such
that for all (mpk, y,msk),

RealU,A1(mpk, y,msk) ≈c IdealS,A2(mpk, y,msk)

where A1 is an algorithm that honestly follows the Blind-KG protocol (as the authority)
and A2 is an algorithm that passes its input to F without modification.

Remark 4 The above definition expresses the standard simulation-based security which guar-
antees that all existing attacks in the real world are in fact inherent: they can also be mounted
in the ideal world, where parties (authority and user) interact through an incorruptible and
trusted third party.

Definition 6 (Security from malicious authorities) Protocol Blind-KG is said to be secure
against malicious authorities if and only if, for every PPT algorithm A there exists a PPT
simulator S such that for all (mpk, y,msk),

RealU1,A(mpk, y,msk) ≈c IdealU2,S(mpk, y,msk)

123

Blind key-generation attribute-based encryption 2281

Real world Ideal world

User Authority

D

Ureal Areal

Blind-KG

Uideal Aideal

F

sky

(mpk,y)

(msk,r)

msk

(mpk,y) mpk

viewAviewU

Fig. 1 Protocol Blind-KG is secure if algorithm D, who can control mpk, y and msk, cannot distinguish
between the real world and the ideal world based on the views (viewU, viewA). For security againstmalicious
users (Definition 5), algorithmUreal is arbitrary, Uideal is a simulator, andAreal,Aideal are honest algorithms.
For security against malicious authorities (Definition 6), Areal is arbitrary, Aideal is a simulator, and Ureal,
Uideal are honest

where U1 is an algorithm that honestly follows the Blind-KG protocol (as a user) and U2 is
an algorithm that does not modify its input and passes it to F .

3.2 Blind-KG compatible pair encodings

Weconsider a restricted class of pair encodings, that we coin blind key-generation compatible
(or BKG-compatible, for short) pair encodings. This class is necessary for our blind key-
generation algorithm described in the next section.

Definition 7 (BKG-compatible pair encoding) We say aϒ-pair encoding, (EncCt, EncKey,
Pair), is BKG-compatible if and only if there exist two deterministic and efficiently com-
putable algorithms,

• EncKey1(p, y): maps (p, y) ∈ N × Y into a vector of polynomials, in Zp[r, r̂, b].
• EncKey2(p): maps p ∈ N into a vector of polynomials, in Zp[r, r̂, b].

satisfying the following conditions, for every p ∈ N:

(i) EncKey can be expressed as EncKey(p, y):=EncKey1(p, y) ‖ EncKey2(p).
(ii) For every y ∈ Y , variable α does not appear in EncKey1(p, y).
(iii) For every i ′ ∈ [m̂], either

• one of the polynomials in EncKey2(p) is exactly r̂i ′ , or
• for every y ∈ Y , variable r̂i ′ does not appear in EncKey1(p, y).

We now show that we can assume, without loss of generality, that a pair encoding is BKG-
compatible. More precisely, that any pair encoding can be transformed into an equivalent BK
G-compatible pair encoding with minimal impact on its size and number of variables. In fact,
in Lemma 2, we prove a stronger result: any pair encoding admits an equivalent encoding
that does not have lone variables and such that variable α appears only in one polynomial
(which is independent of y).

Our first lemma shows that, without loss of generality, we can consider pair encodings
that do not contain lone variables (except α).

123

2282 M. Abe, M. Ambrona

Lemma 1 Let ϒ = (w̄, w, ŵ, m̄,m, m̂, n) and let (EncCt, EncKey, Pair) be a ϒ-
pair encoding for P. There exists a ϒ ′-pair encoding for the same P, where ϒ ′ =
(w̄, max (w, ŵ), 0, m̄, max (m, m̂), 0, n+2).

We prove the lemma in Appendix A.

Remark 5 Our Lemma 1 suggests that w.l.o.g. we can consider pair encodings that do not
contain lone variables. However, in the most recent definitions of pair encodings, all non-
lone variables are given “in the clear” as part of the key. What our lemma really implies
is that, after our transformation, giving out all variables in the clear does not compromise
security. Nonetheless, not all variables are used for correctness and so, not all need to be
always given. Actually, existing encodings for large universe ABE or regular languages
involve an exponential number of lone variables and giving all of them in the clear after
our transformation would be impractical (and unnecessary). When such encodings are used
for blind key-generation, the authority must select a subset of variables to be given in the
clear. This imposes a bound on the size of the value y that users can request, leaking some
information on size of y. Observe that this leakage seems inherent and it is usually admitted
in cryptography (e.g. encryption schemes hide the content of messages, but not necessarily
their length).

We are ready to establish the result on which our blind key-generation protocol from the
next section relies.

Lemma 2 (BKG-compatibility) Let ϒ = (w̄, w, ŵ, m̄,m, m̂, n) and let (EncCt, EncKey,
Pair) be aϒ-pair encoding for predicate P. There exists aϒ ′-BKG-compatible pair encoding
for P, where

ϒ ′ = (w̄+1, max (w+1, ŵ), 0, m̄+1,max (m+1, m̂), 0, n+4).

See Appendix A for a proof.

3.3 Blind key-generation ABE from pair encodings

Figure 2 summarizes our blind key-generation protocol, compatible with the ABE compiler
from pair encodings [3, 4, 8] (see Definition 2), where for ϒ = (w̄, w, ŵ, m̄,m, m̂, n),
(EncCt, EncKey1, EncKey2, Pair) is a BKG-compatible ϒ-pair encoding scheme.

Theorem 1 (Correctness) If both parties honestly execute the Blind-KG protocol described
in Fig. 2, on inputs (mpk, y) for the user andmsk for the authority, such that (mpk,msk) ∈ K,
then the final output of the user is identically distributed to the output of KeyGen(msk, y)
(see Definition 3), over the coins of the protocol and the KeyGen algorithm.

Our following theorems establish that the protocol is secure against honest-but-curious
adversaries. In the following, let U1 be an algorithm that honestly follows the Blind-KG
protocol (as a user) and let U2 be an algorithm that does not modify its input and passes
it to the ideal functionality (as the user). Analogously, let A1 be an algorithm that honestly
follows the Blind-KG protocol (as the authority) and let A2 be an algorithm that does not
modify its input and passes it (together with true randomness) to the ideal functionality (as
the authority).

Theorem 2 (Security against honest-but-curious authorities) There exists a simulatorS such
that for all (mpk, y,msk) and every PPT distinguisher,

RealU1,A1(mpk, y,msk) ≡ IdealU2,S(mpk, y,msk).

123

Blind key-generation attribute-based encryption 2283

Fig. 2 Description of our Blind-KG for ABE for any BKG-compatible pair encoding in the framework of
dual system groups instantiated from the k-Lin assumption

123

2284 M. Abe, M. Ambrona

Intuitively, the factor Z (�)
i B, added by the user, information-theoretically hides the coef-

ficients φ
(�)
i , φ

(�)
{i, j}, which contain the information about y. That is why the authority cannot

learn any information about y from the first round of the protocol and it can be easily
simulated. (Note that Z (�)

i B does not distribute uniformly over Zk+1
p , but it does distribute

uniformly over the subspace of Zk+1
p on which the information about y has been encoded.)

Theorem 3 (Security against honest-but-curious users) There exists a simulator S such that
for all (mpk, y,msk) and every PPT distinguisher,

RealU1,A1(mpk, y,msk) ≡ IdealS,A2(mpk, y,msk).

We refer to Appendix A for a proof of all three theorems.

4 Achieving active security

The standard way of achieving active security on a passively secure protocol is to add zero-
knowledge proofs of honest behavior (see the SupplementaryMaterial). Thatway, only honest
users will be able to produce valid proofs and honest-but-curious security applies.

For security against malicious users, we could add the following zero-knowledge proof
of knowledge

PoK

⎧

⎨

⎩

(y, Z�
i)∀i ∈ [m]

� ∈ [m̄]
:
EncKey1(y) → {∑

i∈[m̂] φ
(�)
i r̂i + ∑

i∈[m]
j∈[n]

φ
(�)
{i, j}ri b j

}

�∈[m̄1] ∧
∀ � ∈ [m̄1], M (�)

i = �φ
(�)
i,1W1B + · · · + φ

(�)
i,nWnB + Z (�)

i B�2

⎫

⎬

⎭

(1)

to themessage computedby theuser inRound1of the protocol fromFig. 2.However, although
zero-knowledge proofs of knowledge [14, 30] can be constructed for any NP statement
[32], using generic methods to implement the above relation may be inefficient, given that
EncKey1 can be an arbitrarily complex (still efficiently computable) circuit.

Instead, we introduce the notion of invertible pair encoding and use it to significantly
simplify the above NP relation.

4.1 Invertible pair encodings

For every p ∈ N, the function EncKey1(p, ·) of any BKG-compatible pair encoding can
be considered injective. Note that if EncKey1(p, y1)= EncKey1(p, y2) for two different
y1, y2, then, correctness and security of the encoding imply that ∀x, P(x, y1) ⇔ P(x, y2)
and thus, y1 and y2 can be considered “equivalent” under P . Consequently, we can consider
the inverse function that on input a list, k, of polynomials over Zp[r, r̂, b], produces a value
y such that k = EncKey1(p, y).

Definition 8 (Invertible pair encoding) We say a (EncCt, EncKey, Pair) encoding is
invertible5 if there exists an efficiently computable decoding algorithm DecKey that∀p ∈ N,
on input a list in Zp[r, r̂, b], outputs y ∈ Y such that,

∀ k : ∃y ∈ Y s.t. EncKey(p, y) = k, it holds EncKey(p, DecKey(k)) = k .

5 For our purpose, we focus on the inversion of the key encoding. For other applications, this definition may
be extended to the ciphertext encoding.

123

Blind key-generation attribute-based encryption 2285

We leave as an open problem to (dis)prove that any pair encoding admits an equivalent
invertible pair encoding. To the best of our knowledge, all pair encodings from the literature
are invertible.

We require pair encodings be invertible so that it is enough for the user to prove that it knows
the coefficients that are committed inside the messages M (�)

i . This way, the simulator (for
the malicious user) can extract the coefficients from the proof of knowledge and, because the
encoding is invertible, find a value y ∈ Y such that EncKey(p, y) equals the polynomials
associated to them. However, note that invertibility may not be enough: what happens if
there exists no y satisfying the requirements? Invertibility only guarantees that it is possible
to efficiently find y in case it exists. In order to solve this problem, we observe that all pair
encodings from the literature are designed in a similar way. Namely, polynomials are built by
adding monomials whose coefficient depends on the value y, or whose variables are chosen
based on the value. We abstract this idea in the notion of algebraic pair encoding.

Definition 9 (Algebraic pair encoding) Letϒ = (w̄, w, ŵ, m̄,m, m̂, n).We say a pair encod-
ing ϒ-pair encoding (EncCt, EncKey, Pair) is algebraic if algorithm EncKey defines
polynomials as sums of monomials of the following three types:

• public monomials: their coefficient and variables are independent of y,
• secret-coefficient monomials:monomials of the form μyr̂i ′ or μyri b j for some, i ′ ∈ [m̂]

or i ∈ [m], j ∈ [n] and some μy ∈ Zp (that depends on y).
• secret-variable monomials:monomials of the form r̂η̂y or rηy b j or ri bνy for some j ∈ [n],

i ∈ [m] and η̂y ∈ [m̂], ηy ∈ [m] or νy ∈ [n] (dependent on y).

Furthermore, we require an algebraic pair encoding be surjective, that is, for all possible
values μ ∈ Z

∗
p of the coefficients of secret-coefficient monomials, there exists some y ∈ Y

such that EncKey(p, y) has secret-coefficients matching μ.

Our Example 1 (in Appendix B) illustrates the three types of monomial from the above
definition.

Remark 6 Note that the structure of an algebraic pair encoding is fixed and only the secret
coefficients or the secret variables can depend on value y ∈ Y . To the best of our knowledge,
all existing pair encodings are algebraic.

Given an algebraic pair encoding, the zero-knowledge proof of knowledge from (1) can
be done very efficiently. This is because if the pair encoding is algebraic, there exist disjoint
sets �,
 ⊂ N × N × N of public coefficients and binary coefficients respectively, there
exists a function f : � → Zp and there exist clusters � = {(�s, gs, γs)}s∈�, where for
every s ∈ �, �s ⊂ N × N × N, gs : �s → Zp and γs ∈ Zp , such that, for any value of the

coefficients φ
(�)
{i, j} ∈ Zp (for i ∈ [m], j ∈ [n] and � ∈ [m̄1]) satisfying

∀(i, j, �) ∈ �, φ
(�)
{i, j}= f (i, j, �) ∧ ∀(i, j, �) ∈
, φ

(�)
{i, j}∈ {0, 1}

∧ ∀s ∈ �, γs = ∑

(i, j,�)∈�s
gs(i, j, �)φ

(�)
{i, j}

there exists y ∈ Y such that

EncKey1(y) → { ∑

i∈[m̂] φ
(�)
i r̂i + ∑

i∈[m]
∑

j∈[n] φ
(�)
{i, j}ri b j

}

�∈ [m̄1].

for certain arbitrary φ
(�)
i . We refer to Appendix B for some examples.

Wedescribe the actively secure version of our protocol in Fig. 3.Note that if the encoding is
algebraic, the proof of knowledge from (1) is equivalent to the proof of knowledge described

123

2286 M. Abe, M. Ambrona

Fig. 3 Modification of the protocol fromFig. 2 to achieve active security in the case of algebraic pair encodings

in Round 1 of Fig. 3. In fact, we leverage techniques from [12] to design a very efficient
�-protocol for implementing such a proof. We present it in Appendix C.

Theorems 4 and 5 are relative to the modification of our protocol, described in Fig. 3.
As in the previous section, we define honest algorithms U1, A1, that follow the Blind-KG
protocol and U2, A2, honest algorithms that pass their input to F and do not modify their
output.

Theorem 4 (Security against malicious authorities) For every algorithm A (acting as the
authority in the real world) there exists a simulator S s.t. for all ι = (mpk, y,msk), all PPT
distinguishers D, and all sufficiently large λ ∈ N,

∣

∣Pr
[D(RealU1,A(ι))=1

] − Pr
[D(IdealU2,S(ι))=1

] ∣

∣ ≤ εzk(λ) + εext (λ).

Theorem 5 (Security against malicious users) For every algorithm U (acting as a user in the
real world) there exists a simulator S s.t. for all ι = (mpk, y,msk), all PPT distinguishers
D, and all sufficiently large λ ∈ N,
∣

∣ Pr
[D(RealU,A1(ι))=1

] − Pr
[D(IdealS,A2(ι))=1

] ∣

∣ ≤ εzk(λ) + εext (λ) + Adv
G2
DLOG(λ)

123

Blind key-generation attribute-based encryption 2287

where Adv
G2
DLOG is an upper-bound on the probability of PPT machines solving the discrete

logarithm problem in G2.

5 Implementation

We implement a general library for attribute-based encryption based on predicate and pair
encodings with support for blind key-generation. Our library is based on the Relic-Toolkit [5]
for pairingswith a 256-bitsBarreto-NaehrigCurve [15].We evaluate our blind key-generation
protocol and compare it to the normal key-generation algorithm. All the experiments were
executed on a 8-core machine with 4.00GHz Intel Core i7-4790K CPU and 16GB of RAM.
Our source code6 will be publicly available and open source for reproducibility and verifia-
bility.

Our experimental results, described in Table 1, correspond to an implementation of
attribute-based encryption based on the SXDH assumption (1-Lin). The first block cor-
responds to the pair encoding for zero inner-product described in our Example 2 (in
Appendix B). The second, corresponds to an encoding for CP-ABE [20, 22, 33]. The third
is an encoding for broadcast encryption, described in our Example 3.

In every block, we compare the three different algorithms of our protocol for blind key-
generation described in Fig. 2 (Round 1, Round 2 and Finalize key) and the normal key-
generation algorithm, in terms of the execution time, size of the output and number of
group operations over the group G2. Group operations over G2 are represented by a pair
of integers separated by |, corresponding to the number of group law operations and group
exponentiations respectively.

We show results for the median times of 10 executions of randomly selected instances
of different problem sizes. In the case of inner-product, keys are generated with respect to
randomly sampled vectors of the given lengths. In the case of Boolean-formulae, keys are
generated with respect to randomly selected sets of attributes of the given cardinalities. In
the case of broadcast encryption, keys are generated with respect to a random identity over a
system of n identities. Note that in this encoding, keys have approximately t elements, and
ciphertexts approximately n

t group elements. Numbers in the above table correspond to the
honest-but-curious version of our protocol.

We have also implemented an interactive ZK proof of knowledge based on our�-protocol
from Appendix C. In order to give an intuition of the overhead introduced by this proof (to
achieve active security), we present the numbers corresponding to proof for the inner-product
encoding:

Vector length: 100 1000 10000

User’s total execution time: 0.17 s 1.61 s 16.8 s
User’s total information transmitted: 3.58 KB 32.3 KB 0.32 MB

Authority’s total execution time: 0.15 s 1.53 s 16.53 s
Authority’s total information transmitted: 96 B 96 B 96 B

6 At the moment, we will provide it to the program chairs for the reviewing process, upon request.

123

2288 M. Abe, M. Ambrona

Ta
bl
e
1

E
va
lu
at
io
n
re
su
lts
.C

om
pa
ri
so
n
be
tw

ee
n
bl
in
d
an
d
no

rm
al
ke
y-
ge
ne
ra
tio

n.
Fo

r
th
e
ho

ne
st
-b
ut
-c
ur
io
us

ve
rs
io
n
of

ou
r
pr
ot
oc
ol

In
ne
r-
pr
od

uc
t

V
ec
to
r
le
ng

th
:1

00
V
ec
to
r
le
ng

th
:1

00
0

V
ec
to
r
le
ng

th
:1

00
00

T
im

e
Si
ze

G
2
op
s.

T
im

e
Si
ze

G
2
op
s.

T
im

e
Si
ze

G
2
op
s.

R
ou

nd
1

0.
05

s
12

8B
20

2|2
04

0.
52

s
12

8B
19

96
|19

94
6.
16

s
12

8B
19

91
0|1

98
06

R
ou

nd
2

0.
16

s
25

6B
2|2

06
1.
67

s
25

6B
2|2

00
6

22
.2
s

25
6B

2|2
00

06

Fi
na
liz

e
ke
y

4m
s

25
6B

4|4
4m

s
25

6B
4|4

5m
s

25
6B

4|4
N
or
m
al
K
G

0.
24

s
25

6B
20

0|4
04

2.
17

s
25

6B
19

94
|39

94
27

.3
s

25
6B

19
90

8|3
98

06

B
oo

le
an

fo
rm

ul
ae

N
◦ o

f
at
tr
ib
ut
es
:1

0
N

◦ o
f
at
tr
ib
ut
es
:1

00
N

◦ o
f
at
tr
ib
ut
es
:1

00
0

T
im

e
Si
ze

G
2
op
s.

T
im

e
Si
ze

G
2
op
s.

T
im

e
Si
ze

G
2
op
s.

R
ou

nd
1

0.
04

s
1.
37

K
B

34
|44

0.
41

s
12

.6
K
B

33
6|4

04
8.
18

s
12

5K
B

32
72

|40
04

R
ou

nd
2

0.
05

s
1.
50

K
B

2|6
6

0.
66

s
12

.7
K
B

2|6
06

6.
85

s
12

5K
B

2|6
00

6

Fi
na
liz
e
ke
y

0.
04
s

1.
50
K
B

44
|44

0.
39

s
12

.7
K
B

40
4|4

04
5.
39

s
12

5K
B

40
04

|40
04

N
or
m
al
K
G

0.
04
s

1.
50
K
B

2|4
4

0.
42

s
12

.7
K
B

2|4
04

5.
53

s
12

5K
B

2|4
00

4

B
ro
ad
ca
st
en
cr
yp

tio
n

n t
=

10
3
,t

=
50

n t
=

50
,t

=
10

3
n t

=
10

3
,t

=
10

3

T
im

e
Si
ze

G
2
op
s.

T
im

e
Si
ze

G
2
op
s.

T
im

e
Si
ze

G
2
op
s.

R
ou

nd
1

0.
24

s
6.
37

K
B

20
8|2

04
5.
29

s
12

5K
B

40
08

|40
04

6.
88

s
12

5K
B

32
72

|40
04

R
ou

nd
2

2.
16

s
6.
50

K
B

2|2
20

6
4.
19

s
12

5K
B

2|4
10

6
8.
10

s
12

5K
B

2|6
00

6

Fi
na
liz

e
ke
y

0.
19

s
6.
50

K
B

20
4|2

04
4.
09

s
12

5K
B

40
04

|40
04

4.
42

s
12

5K
B

40
04

|40
04

N
or
m
al
K
G

2.
11
s

6.
50
K
B

6|2
10

4
2.
15

s
12

5K
B

6|2
10

4
5.
18

s
12

5K
B

6|4
00

4

123

Blind key-generation attribute-based encryption 2289

6 Concluding remarks

We have presented an efficient protocol for blind key-generation, built on top of the general
framework for attribute-based encryption introduced by Attrapadung [7]. Our construction
can be instantiated with any BKG-compatible pair encoding, a new notion that we define in
this work. Furthermore, we provide theoretical results that establish that every pair encoding
can be transformed with minimal overhead into a BKG-compatible one. Consequently, our
work significantly broadens the scope of blind key-generation ABE in terms of predicate
expressivity and it can lead to more efficient constructions of oblivious transfer with fine-
grained access control.

Our experimental results show that our blind key-generation protocol introduces a rea-
sonable overhead, comparable to the cost of normal key-generation, being suitable for real
applications. We leave for future work to prove explicit asymptotic bounds on the complex-
ity of our construction. Finally, we have focused on synthetic case studies. Combining our
methods with more realistic case studies (such as electronic medical records or streaming of
data over untrusted clouds) is a very interesting direction for future work.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10623-022-01069-5.

Funding Not applicable.

Availability of data andmaterial Not applicable.

Declarations

Conflicts of interest Any person employed by NTT would be in CoI.

Code availability Available now upon request (open source in the future).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proofs of themain body

A.1 Lemmas from Sect. 3

Proof of Lemma 1

Note that our notation allows us to handle the different cases w < ŵ and w ≥ ŵ (or m < m̂
andm ≥ m̂) simultaneously. (Observe that the range [w+1, ŵ] is defined as empty ifw ≥ ŵ.)

Proof Let ϒ = (w̄, w, ŵ, m̄,m, m̂, n) and let (EncCt, EncKey, Pair) be a ϒ-pair encod-
ing for P . We define a new ϒ ′-pair encoding, (EncCt ′, EncKey′, Pair ′), below, where

123

https://doi.org/10.1007/s10623-022-01069-5
https://doi.org/10.1007/s10623-022-01069-5
http://creativecommons.org/licenses/by/4.0/

2290 M. Abe, M. Ambrona

ϒ ′ = (w̄, max (w, ŵ), 0, m̄, max (m, m̂), 0, n+2) and then argue that it is a valid encod-
ing for the same predicate P .

Let b, s, ŝ, r , (α, r̂) be the variables of the original encoding. (Note that |b| = n, |s| = w,
|ŝ| = ŵ, |r| = m, |r̂| = m̂.) Consider fresh variables bn+1, bn+2, si , r j , for i ∈ [w+1, ŵ]
and j ∈ [m+1, m̂] and let the variables of the new encoding be ŝ′ = ∅, (α′, r̂ ′

) = (α,∅)

and7

b′ = (b, bn+1, bn+2) s′ = (s, sw+1, . . . , sŵ) r ′ = (r, rm+1, . . . , rm̂).

Define vectors 8 s̃ = (s1, . . . , sŵ) and r̃ = (r1, . . . , rm̂), and let the encoding be

• EncCt ′(p, x): run cx ← EncCt(p, x), output c′x (s′, b′):= cx (s, bn+1 s̃, b).9

• EncKey′(p, y): run ky ← EncKey(p, y), output k′
y(r

′, b′):= ky(r, (α, bn+2 r̃), b).
• Pair ′(p, x, y): run (E, F) ← Pair(p, x, y) and output (E ′, F ′) defined as

E ′:=
(

E
0

w′ ×m̄

)

F ′:= (

F 0
w̄×m′

)

where w′:=max (ŵ−w, 0) and m′:=max (m̂−m, 0).

Observe that the presented encoding does not contain lone variables (except α), since all
variables in s′ and r ′ always appear multiplied by b j , for some j ∈ [n+2]. Also, observe
that all structural constraints are satisfied.

To see reconstructability, note that, due to the correctness of the original encoding, for
every (x, y) ∈ P , s�Eky(r, (α, r̂), b) + cx (s, ŝ, b)�F r = αs1 and, because the right-hand
side does not contain variables ŝ nor r̂ , it must be

αs1 = s�Eky(r, (α, bn+2 r̃), b) + cx (s, bn+1 s̃, b)�F r

= s′�E ′k′
y(r

′, b′) + c′x (s′, b′)�F ′r ′

where c′x (s′, b′) ← EncCt ′(p, x), and k′
y(r

′, b′) ← EncKey′(p, y) and (E ′, F ′) ←
Pair ′(p, x, y).

Finally, for security (non-reconstructability), we proceed by contradiction. Assume that
there exist (x, y) /∈ P and there exist matrices E1, E2, F1, F2 s.t.

s�E1k′
y + (sw+1, . . . , sŵ)E2k′

y + c′�x F1r + c′�x F2(rm+1, . . . , rm̂)� = αs1. (2)

The above is a polynomial equality and so, it must holdwhenwe only consider themonomials
that contain bn+2, which gives us

s�E1ky(0m, (0, r̃), 0n) + (sw+1, . . . , sŵ)E2ky(0m, (0, r̃), 0n) = 0.

But now, looking at the coefficient of si , for every i ∈ [w] in the above equality, we get
E1ky(0m, (0, r̃), 0n) = 0w and, by linearity, we have that

(∗) the vector of polynomials E1ky(r, (α, r̂), b) does not depend on r̂ .

By a very similar analysis based on variable bn+1 and the coefficient of ri , for i ∈ [m],
we can deduce that

7 Observe that if w ≥ ŵ, s′ = s. Analogously, if m ≥ m̂, r ′ = r .
8 Note that if w ≤ ŵ, s̃ = s′ and otherwise, s̃ equals the first ŵ components of s. Analogously for r̃ .
9 cx (s, bn+1 s̃, b) denotes evaluation of polynomial cx : Z

w
p × Z

ŵ
p × Z

n
p → Zp on value

(s, (bn+1 s̃1, . . . , bn+1 s̃ŵ), b).

123

Blind key-generation attribute-based encryption 2291

(∗∗) the vector of polynomials cx (s, ŝ, b)�F1 does not depend on ŝ.

Now, substituting variables sw+1, . . . , sŵ and rm+1, . . . , rm̂ by 0 in Eq. (2), and using
facts (∗) and (∗∗), we get

s�E1ky(r, (α, r̂), b) + cx (s, ŝ, b)�F1r = αs1

which contradicts the security of the original encoding. ��

Proof of Lemma 2

Proof It is known that, without loss of generality, we can consider pair encodings where the
first polynomial of EncKey is the only one that contains α and it is of the form α + r1b1.

This fact has already been used in the literature [4, 9] for other purposes. It can be easily
derived by applying generic dual transformation defined in [10] twice. (Note that the dual
transformation is an involution and does not modify the predicate after being applied twice.)
Lemma 2 is a direct consequence of the combination of the previous fact with our Lemma 1.

��

A.2 Theorems from Sect. 3.3

Proof of Theorem 1

Proof Observe that the part of the secret key that does not depend on y, i.e., r and
EncKey2(p), has been given to the user as {ρi }i∈[m] and {σ�}�∈[m̄2] respectively and these
values have been computed exactly as in KeyGen. The remaining elements of the key have
been computed (for every � ∈ [m̄1]) as:

˜sk�:= τ� − ∑m
i=1 Z

(�)
i ρi + ∑m̂

i=1 φ
(�)
i σπ(i)

= ∑m
i=1

(

Z (�)
i + ∑n

j=1 φ
(�)
{i, j}Wj

)

Bri − ∑m
i=1 Z

(�)
i Bri + ∑m̂

i=1 φ
(�)
i σπ(i)

= ∑m
i=1

(

∑n
j=1 φ

(�)
{i, j}Wj Bri

)

+ ∑m̂
i=1 φ

(�)
i B r̂i

which is identically distributed to the output of KeyGen. ��

Proof of Theorem 2

Proof Note that viewA1 in the real world contains mpk and the messages from the user
corresponding to M (�)

i for i ∈ [m] and � ∈ [m̄1], whereas in the ideal world, viewS only
contains mpk. The simulator can complete the view by sampling a uniform random matrix
V (�)
i of dimension (k+1)×(k+1) (with coefficients overZp), for every i ∈ [m] and � ∈ [m̄1]

and simulating M (�)
i as V (�)

i B. Observe that the simulation is perfect. ��

Proof of Theorem 3

Proof In the real world, if (mpk,msk) ∈ K, the user’s view will be formed by

viewU1 =
(

{Z�
i }i∈[m],�∈[m̄1], {ρi }i∈[m], {σ�}�∈[m̄2], {τ�}�∈[m̄1]

)

123

2292 M. Abe, M. Ambrona

where Z (�)
i are an independent uniformly sampled random matrices of dimension (k+1)×

(k+1), and where ρi , σ� and τ� are computed as in Fig. 2 (based on Z (�)
i and y). The simulator

can sample matrices ˜Z (�)
i uniformly at random of dimension (k+1)×(k+1), then call the

ideal functionality F on (mpk, y), receiving sky :=(sk1, . . . , skm, ˜sk1, . . . , ˜skm̄). It now sets

ρ̃i :=ski for every i ∈ [m] σ̃�:=˜skm̄1+� for every � ∈ [m̄2] and

τ̃�:=˜sk� + ∑m
i=1

˜Zi ρ̃i − ∑m̂
i=1 φ

(�)
i σ̃π(i) for every � ∈ [m̄1]

whereφ
(�)
i is the coefficient of r̂i in the �-th polynomial of EncKey1(p, y), for every i ∈ [m̂].

Because every party is honest, note that viewA1 ≡ (mpk,msk) = viewA2 and observe that
the simulated view

viewS =
(

{˜Z�
i }i∈[m],�∈[m̄1], {ρ̃i }i∈[m], {̃σ�}�∈[m̄2], {̃τ�}�∈[m̄1]

)

is identically distributed to the real view viewU1 for any (mpk, y,msk) such that
(mpk,msk) ∈ K. Finally, if (mpk,msk) /∈ K, note that the user’s view in the real world
will consist only of random matrices (the authority will interrupt the Blind-KG protocol in
Round 2), which can be easily simulated. ��

Proof of Theorem 4, security against malicious authorities

Proof In the real world, viewA containsmsk,mpk, themessages from the user corresponding
to M (�)

i for all i ∈ [m], � ∈ [m̄1] and the zero-knowledge proof of knowledge π1. On the
other hand, in the ideal world, the initial view of the simulator only contains msk and, after
receiving the first message from F , viewS additionally contains mpk. The simulator can
complete the view by sampling uniform random matrices V (�)

i of dimension (k+1) × (k+1)

for every i ∈ [m] and � ∈ [m̄1], simulating M (�)
i as V (�)

i B and simulating a zero knowledge
proof of knowledge π̃1 for the NP-statement described in Round 1 of Fig. 3. Observe that
the simulation is perfect, except for the zero-knowledge simulation error.

Now from these simulated values, S will proceed exactly as algorithm A does in the
real world, eventually producing some values {ρ̃i }i∈[m], {̃σ�}�∈[m̄2] and {̃τ�}�∈[m̄1], together
with a proof of knowledge π̃2 for the NP-relation described in Round 2 of Fig. 3 w.r.t these
values. The simulator will verify π̃2 and if the proof is rejected, it will interrupt its execution
(it will not send any message to the ideal functionality F). If it is accepted, it will run the
extractor algorithm on π̃2, to obtain values msk′, and r = ({ri }i∈[m], {r̂i ′}i ′∈[m̂]

)

such that
(mpk,msk′) ∈ K and

∀ i ∈ [m], ρ̃i = �Bri �2 ∧ ∀ � ∈ [m̄1], τ̃� = ∑

i∈[m] V
(�)
i Bri

∀� ∈ [m̄2], σ̃� = hϕ(�)

msk′ ·� ∑

i ′ ϕ
(�)

i ′ B r̂i ′ + ∑

i, j ϕ
(�)
{i, j}Wi Bri �2.

Then, the simulator will allow the secret key-generation by sending (msk′, r) to the ideal
functionalityF . Observe that if the extraction is successful, the secret key thatU2 will receive
in the ideal world is distributed as the secret key thatU1 will obtain after finishing the protocol
from Fig. 3. Note that there is only one msk′ that satisfies the above relation, but there exist
many different values r . However, observe that all values of r that satisfy the relation will
lead to the same secret key, since the actual key can be seen as a function of values V (�)

i , ρi ,
σ� and τ�, which are invariant for every r .

123

Blind key-generation attribute-based encryption 2293

Therefore, the only difference between the real and the simulated views is due to the zero-
knowledge error. To finished the proof note that we could convert any any distinguisher
between the real and ideal views into a distinguisher for for the zero-knowledge property
of the ZK scheme. To conclude, note that all the steps where conditioned on the event that
extraction was successful. Therefore, the final bound must take into account the extraction
error εext . ��

Proof of Theorem 5, security against malicious users

Proof On input (mpk, y), the authority will proceed exactly as algorithmU , producingmpk′,
some values { ˜M (�)

i }�∈[m̄1],i∈[m] and a proof π̃1, identically distributed to the values that U
will send to A1 in the real world.

The simulator will then verify π̃1 with respect to the produced values and the relation
described and Round 1 of Fig. 3. If the verification fails, S will interrupt its execution. Note
that this happens with exactly the same probability A1 rejects the proof in the real world and
halts. If the proof is accepted, the simulator will run the extractor to obtain witness values
{φ(�)

{i, j}}i∈[m], j∈[n] in Zp and matrices {Z (�)
i }�∈[m̄1],i∈[m] in Zp of dimension (k+1) × (k+1)

such that

∀ � ∈ [m̄1], M (�)
i =�

(∑

j∈[n] φ
(�)
{i, j}Wj B

) + Z (�)
i B�2 ∧ ∑

(i, j)∈
�
φ

(�)
{i, j} = γ�

∀(i, j, μ) ∈ ��, φ
(�)
{i, j} = μ ∧ ∀(i, j) ∈
�, φ

(�)
{i, j} ∈ {0, 1}.

Observe that the Pedersen-like commitments M (�)
i are computationally binding under the

discrete logarithm assumption in G2. Therefore, although there exist several witnesses for
the NP relation, the extractor algorithm can only provide one of them (or otherwise, it can
be used to solve the discrete logarithm problem). This guarantees that the witness that the
simulator extracts is identically distributed to the witness that the malicious user may also
extract (from its own proof) in the real world. Now, let k1 be the vector of polynomials

k1:=
{ ∑

i∈[m̂] φ
(�)
i r̂i + ∑

i∈[m]
∑

j∈[n] φ
(�)
{i, j}ri b j

}

�∈[m̄1].

Because the pair encoding is algebraic, there exists y′ ∈ Y such that EncKey1(y′) → k1.
And, because the pair encoding is invertible, the simulator can find such y′ by running
DecKey(k1 ‖ EncKey2). Now, the simulator sends (mpk′, y′) to the ideal functionality,
obtaining sky′ :=(sk1, . . . , skm, ˜sk1, . . . , ˜skm̄) or ⊥. The case of ⊥ will occur only when the
master secret key msk owned by A2, and mpk′ do not form a valid pair. In such a case, the
simulator halts. Observe that, in the real world,A1 (who owns the samemsk) will detect that
(mpk′,msk) at the beginning of Round 2, with exactly the same probability S received ⊥
from F . In case of receiving a key, the simulator sets

ρ̃i :=ski for every i ∈ [m] σ̃�:=˜skm̄1+� for every � ∈ [m̄2] and

τ̃�:=˜sk� + ∑m
i=1

˜Zi ρ̃i − ∑m̂
i=1 φ

(�)
i σ̃π(i) for every � ∈ [m̄1]

whereφ
(�)
i is the coefficient of r̂i in the �-th polynomial of EncKey1(p, y), for every i ∈ [m̂].

As in the proof of honest-but-curious security, the above simulated values are identically
distributed to the real view viewU . We can conclude as in the proof of Theorem 4. ��

123

2294 M. Abe, M. Ambrona

B Examples

Example 1 Consider the following pair encoding for the IBE predicate. That is, P(x, y) = 1
iff x = y, for x, y ∈ Zp:

EncKey(y):=(α + r1b1, yr1b2 + r1b3) EncCt(x):=s1b1 + xs2b2 + s2b3

The second polynomial of EncKey(y) contains a secret-coefficient monomial: yr1b2. On
the other hand, r1b3 is a public monomial. Note that this polynomial contains other public
monomials (with 0 coefficient), e.g. 0r1b1.

Now, consider the pair encoding for KP-ABE corresponding to the scheme by Lewko
et al. [37]. For attribute universe U , X ∈ U , a linear secret sharing matrix A ∈ Z

�×k
p and

π : [�] → U ,

EncKey(A, π):={Ai r̂ + ri bπ(i)}i∈[�] EncCt(X):={s1bx }x∈X
where r̂:=(α, r̂1, . . . , r̂k−1)

�, and P(X , (A, π)) is defined as 1 iff ∃
 ⊆ [�] : π(
) ⊆
X and (1, 0, . . . , 0) is in the row span of A
.

In this case, every monomial in Ai r̂ is a secret-coefficient monomial, whereas monomials
of the from ri bπ(i) are secret-variable monomials. Note that both pair encodings presented
above are surjective. ��

Example 2 (Pair encoding for zero-inner product [11]) Let x, y ∈ Z
n
p and let the predicate

P be defined as P(x, y) = 1 iff x�y = 0. The following is a pair encoding for P:

EncKey(y):=(α + r1b0, r1b0 + ∑

i∈[n] yir1bi) EncCt(x):={xi s1bn+1 + s1bi }i∈[n]

In this case, EncKey1(y) is formed by the second polynomial of EncKey and so, m̄1 = 1.
Furthermore, the encoding is algebraic, where:

(public coeffs) �:={(1,0,1), (1,n+1,1)} and f (1,0,1):=1, f (1,n+1,1):=0.
(binary coeffs)
:=∅. (clusters) �:=∅. �

Example 3 (Pair encoding for broadcast encryption [20, 27]) For t, n ∈ N such that t |n, let
x ∈ ({0, 1} n

t)t , y ∈ [t]×[nt] and let the predicate P be defined as P((x1, . . . , xt), (y1, y2)) =
1 iff (x y1)y2 = 1. The following is a pair encoding for P:

EncKey(y1, y2):=(α+r1b0, {(� = y2)(r1b0+r1by1)+r1bt+�}�∈[nt])
EncCt(x):={s1b� + ∑

j∈[nt](x�) j s1bt+ j }�∈[t]

In this case, EncKey1(y) is formed all the polynomials of EncKey except the first one and
so, m̄1 = n

t . Furthermore, the encoding is algebraic, where:

(public coeffs) �:={(1,t+ j,�)} j,�∈[tn] where ∀�, f (1,t+�,�):=1, and ∀ j, �
= j ,
f (1,t+ j,�):=0.
(binary coeffs)
:=
1 ∪
2, with
1:={(1, j, �)} j,�∈[nt],
2:={(1, 0, �)}�∈[nt].
(clusters) �:={(
1, (λx .1), 1), {(��, g, 0)}�∈[nt]}.

where λx .1 denotes the constant function 1; ∀� ∈ [nt], ��:={(1, j, �)} j∈[0, nt]; and g is a
function defined as −1 if the second argument is 0, or 1 otherwise. ��

123

Blind key-generation attribute-based encryption 2295

Fig. 4 �-protocol for relation R1. Operator ◦ denotes element-wise product

C6-protocol for the PoK of Fig. 3

For coefficientsφ j ∈ Zp for all j ∈ [n], and amatrix Z overZp of dimension (k+1)×(k+1),
we define10

Commpk(φ1, . . . , φn; Z):=�
(∑

j∈[n] φ jW j B
) + Z B�2.

In Fig. 4, we provide a zero-knowledge proof of knowledge for the relation

R1:=
⎧

⎨

⎩

(φ{i, j}, Zi)

∀i ∈ [m]
j ∈ [n]

:
∀i ∈[m], Mi = Commpk(φ{i,1}, . . . , φ{i,n}; Zi) ∧
∀(i, j)∈�, φ{i, j}= f (i, j) ∧ ∀(i, j)∈
, φ{i, j} ∈{0, 1} ∧
∀s∈�, γs = ∑

(i, j)∈�s
gs(i, j)φ{i, j}

⎫

⎬

⎭

Such a protocol can be used to prove the relation described in the first round of Fig. 3.
Note that, for the sake of simplicity in the notation, we have not considered the � ∈ [m̄1]
indices in R1. In the majority of pair encodings, where the clusters do not involve elements
between different polynomials, the generic conjunction of �-protocols is enough to handle
the necessary relation. For the rest of pair encodings (an example is the encoding from

10 This can be always done if (is , js) is such that gs (is , js)
= 0. If gs is always 0, nothing needs to be done.

123

2296 M. Abe, M. Ambrona

Example 3), it is not complicated to modify our �-protocol consider all polynomials at the
same time.

Lemma 3 The protocol described in Fig. 4 is perfectly complete, perfect special honest
verifier zero-knowledge and 3-special sound.

For the sake of space, we do not include an explicit protocol for the relation in Round 2 of
Fig. 3. We note that such a proof is necessary to satisfy the strong simulation-based security.
In practice, such a proof is not so critical. The user is interested in receiving a valid secret key
for y and it can check the validity of the obtained key by encrypting messages for different
values x and decrypting them with the key, verifying that decryption is successful whenever
(x, y) ∈ P .

Proof Of Lemma 3 • Perfect completeness. Note that if the prover knows a valid witness
and follows the protocol all verification equations are satisfied. In particular, ∀(i, j)∈�,
a{i, j}:=0, and so, for the first verification equation,

∀(i, j) ∈ �, β{i, j} = e φ{i, j}+a{i, j} = e φ{i, j} = e f (i, j).

For the second equation,

∀s ∈ �,
∑

(i, j)∈�s
gs(i, j)β{i, j} = ∑

(i, j)∈�s

(

gs(i, j)e φ{i, j}+a{i, j}
)

= e
∑

(i, j)∈�s
gs(i, j)φ{i, j} = e γs .

For the third, for all i ∈ [m]:
Me

i ◦ Ai = Commpk({φ{i, j}} j∈[n]; Zi)
e ◦ Commpk({a{i, j}} j∈[n]; Ri)

11= Commpk({e φ{i, j}+a{i, j}} j∈[n]; e Zi+Ri) = Commpk(β{i,1}, . . . , β{i,n};�i) .

Finally, the fourth also holds, for all i ∈ [m]:
Be
i ◦ Ci = Commpk({b{i, j}} j∈[n]; Si)e ◦ Commpk({c{i, j}} j∈[n]; Ti)
= Commpk({e b{i, j}+c{i, j}} j∈[n]; e Si+Ti) = Commpk(η{i,1}, . . . , η{i,n};�i) .

because, ∀(i, j) /∈
, b{i, j} = c{i, j} = η{i, j} = 0 and ∀(i, j) ∈
, we haveφ{i, j} ∈ {0, 1}
and so, φ2{i, j} = φ{i, j}. Therefore,11

e b{i, j} + c{i, j} = e a{i, j}(1− 2φ{i, j})− a2{i, j}
= e a{i, j}(1− 2φ{i, j})− a2{i, j} + e2(φ{i, j} −φ2{i, j})
= (e φ{i, j} + a{i, j})(e−(e φ{i, j} + a{i, j})) = β{i, j}(e−β{i, j}) = η{i, j}.

• Special honest verifier zero-knowledge. If the challenge e is known. A simulator can
produce a valid transcript that is identically distributed to a transcript created by an
honest prover, as follows.

(i) For every (i, j) ∈ �, set β{i, j}:=e f (i, j) and ∀(i, j) /∈ �, sample β{i, j} ←$
Zp .

(ii) For every s ∈ �, pick some (is, js) ∈ �s such that gs(is, js)
= 0 and modify the
value of β{i, j} so that

∑

(i, j)∈�s
gs(i, j)β{i, j} = γs e.

(iii) Define η{i, j} as η{i, j}(e− η{i, j}) for every (i, j) ∈
 and 0 otherwise.

(iv) Sample matrices �i , �i , Si uniformly from Z
(k+1)×(k+1)
p for every i ∈ [m].

(v) Set Bi :=�Si B�2 for every i ∈ [m].
11 By linearity of the commitments.

123

Blind key-generation attribute-based encryption 2297

(vi) Set Ai :=M−e
i ◦ Commpk(β{i,1}, . . . , β{i,n};�i) for every i ∈ [m].

(vi) Set Ci :=B−e
i ◦ Commpk(η{i,1}, . . . , η{i,n};�i) for every i ∈ [m].

Note that the simulation is perfect because in both a real transcript and the simulated
transcript variables β{i, j} for all (i, j) /∈ � and matrices �i and �i for all i ∈ [m] are
independent and uniformly random,modulo the condition

∑

(i, j)∈�s
gs(i, j)β{i, j} = γs e

for all s ∈ �. Furthermore, the value of β{i, j} for all (i, j) ∈ � is completely determined,
as well as matrices Ai and Ci for all i ∈ [m], in both kinds of proof.

• 3-special soundness. Note that two answers, say {β{i, j}}i, j , {�i , �i }i∈[m] and {β̂{i, j}}i, j ,
{�̂i , �̂i }i∈[m] to 2 different challenges, say e and ê (respectively), with the same first
message lead to a valid witness. It is enough to set

φ{i, j}:=β{i, j} − β̂{i, j}
e− ê

∀(i, j) ∈ [m]×[n] and Zi = �i − �̂i

e− ê
∀i ∈ [m]

Note that such an opening satisfies,

∀(i, j) ∈ �, φ{i, j} = β{i, j} − β̂{i, j}
e− ê

= e f (i, j)− ê f (i, j)

e− ê
= f (i, j)

Furthermore,

∀s ∈ �,
∑

(i, j)∈�s

gs(i, j)φ{i, j} =
∑

(i, j)∈�s

gs(i, j)
(β{i, j} − β̂{i, j})

e− ê
= γs

Finally, the last verification equation tells us that for every (i, j) ∈
, the following
polynomial in x

x2(φ{i, j} − φ2{i, j}) + x(a{i, j}(1− 2φ{i, j} − b{i, j})− a2{i, j} − c{i, j}

evaluates to 0 in both e and ê. If there existed a third valid answer to a different challenge
but the first same message, the polynomial would have three roots, but its degree is at
most 2. Therefore, it must be the zero polynomial (Zp is a field), and thus, the coefficient
for x2 must be zero: φ{i, j} ∈{0, 1}. ��

References

1. Ambrona, M., Barthe, G., Gay, R., Wee, H.: Attribute-based encryption in the generic group model:
automated proofs and new constructions. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 647–664. ACM Press (October/November 2017)

2. Ambrona, M., Gilles, B., Benedikt, S.: Generic transformations of predicate encodings: constructions
and applications. In: Jonathan, K., Hovav, S. (eds.) CRYPTO 2017, Part I, LNCS, vol. 10401, pp. 36–66.
Springer, Heidelberg (2017)

3. Agrawal S., ChaseM.: A study of pair encodings: predicate encryption in prime order groups. In: Kushile-
vitz E.,Malkin T. (eds.) TCC2016-A, Part II, LNCS, vol. 9563, pp. 259–288. Springer, Heidelberg (2016).

4. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate encryption schemes. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I, LNCS, vol. 10210, pp. 627–656. Springer,
Heidelberg (April/May 2017)

5. Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.: RELIC is an Efficient LIbrary for
Cryptography. https://github.com/relic-toolkit/relic

6. Akinyele, J.A., Lehmann, C.U., Green, M.D., Pagano, M.W., Peterson, Z.N.J., Rubin, A.D.: Self-
protecting electronicmedical records using attribute-based encryption. Cryptology ePrint Archive, Report
2010/565, 2010. http://eprint.iacr.org/2010/565

123

https://github.com/relic-toolkit/relic
http://eprint.iacr.org/2010/565

2298 M. Abe, M. Ambrona

7. Attrapadung N.: Dual system encryption via doubly selective security: framework, fully secure functional
encryption for regular languages, andmore. In:NguyenP.Q.,OswaldE. (eds.) EUROCRYPT2014,LNCS,
vol. 8441, pp. 557–577. Springer, Heidelberg (2014).

8. Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encod-
ings. In: J.H.Cheon, T. Takagi (eds.)ASIACRYPT2016, Part II, LNCS, vol. 10032, pp. 591–623. Springer,
Heidelberg (December 2016)

9. Attrapadung N.: Unbounded dynamic predicate compositions in attribute-based encryption. In: Ishai Y.,
Rijmen V. (eds.) EUROCRYPT 2019, Part I, LNCS, vol. 11476, pp. 34–67. Springer, Heidelberg (2019).

10. Attrapadung N., Yamada S.: Duality in ABE: converting attribute based encryption for dual predicate
and dual policy via computational encodings. In: Nyberg K. (ed.) CT-RSA 2015, LNCS, vol. 9048, pp.
87–105. Springer, Heidelberg (2015).

11. Boneh D., Boyen X.: Efficient selective-ID secure identity based encryption without random oracles. In:
Cachin C., Camenisch J. (eds.) EUROCRYPT 2004, LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg
(2004).

12. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures
based on DDH. In: Pernul, G., Ryan, EP.Y.A., Weippl, R. (eds.) ESORICS 2015, Part I, LNCS, Vol. 9326,
pp. 243–265. Springer, Heidelberg (September 2015)

13. Blum,M., Feldman, P.,Micali, S.Non-interactive zero-knowledge and its applications (extended abstract).
In: 20th ACM STOC, pp. 103–112. ACM Press (May 1988)

14. Bellare M., Goldreich O.: On defining proofs of knowledge. In: Brickell E.F. (ed.) CRYPTO’92, LNCS,
vol. 740, pp. 390–420. Springer, Heidelberg (1993).

15. Barreto P.S.L.M., Naehrig M.: Pairing-friendly elliptic curves of prime order. In: Preneel B., Tavares S.
(eds.) SAC 2005, LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006).

16. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Sym-
posium on Security and Privacy, pp. 321–334. IEEE Computer Society Press (May 2007)

17. Boneh D., Waters B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan S.P. (ed.) TCC
2007, LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007).

18. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control. In: Al-Shaer, E.,
Jha, S., Keromytis, A.D. (eds.) ACM CCS 2009, pp. 131–140. ACM Press (November 2009)

19. Coull S.E., Green M., Hohenberger S.: Controlling access to an oblivious database using stateful anony-
mous credentials. In: Jarecki S., Tsudik G. (eds.) PKC 2009, LNCS, vol. 5443, pp. 501–520. Springer,
Heidelberg (2009).

20. Chen J., Gay R., Wee H.: Improved dual system ABE in prime-order groups via predicate encodings.
In: Oswald E., Fischlin M. (eds.) EUROCRYPT 2015, Part II, LNCS, vol. 9057, pp. 595–624. Springer,
Heidelberg (2015).

21. Canard, S., Hamdi, A., Laguillaumie, F.: Blind functional encryption. In: ICICS (2020)
22. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: Ning, P., Capitani di Vimercati,

S.D., Syverson, P.F. (eds.) ACM CCS 2007, pp. 456–465. ACM Press (October 2007)
23. Chen J., Wee H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti R., Garay J.A.

(eds.) CRYPTO 2013, Part II, LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013).
24. Chen, J., Wee, H.: Dual system groups and its applications—compact HIBE and more. Cryptology ePrint

Archive, Report 2014/265, 2014. http://eprint.iacr.org/2014/265
25. Dinh, T.T.A., Datta, A.:. Streamforce: outsourcing access control enforcement for stream data to the

clouds. In: Fourth ACM Conference on Data and Application Security and Privacy, CODASPY’14, San
Antonio, TX, USA - March 03–05, 2014, pp. 13–24 (2014)

26. Escala A., Herold G., Kiltz E., Ràfols C., Villar J.: An algebraic framework for Diffie-Hellman assump-
tions. In: Canetti R., Garay J.A. (eds.) CRYPTO 2013, Part II, LNCS, vol. 8043, pp. 129–147. Springer,
Heidelberg (2013).

27. Fiat A., NaorM.: Broadcast encryption. In: StinsonD.R. (ed.) CRYPTO’93, LNCS, vol. 773, pp. 480–491.
Springer, Heidelberg (1994).

28. Green M., Hohenberger S.: Blind identity-based encryption and simulatable oblivious transfer. In: Kuro-
sawa K. (ed.) ASIACRYPT 2007, LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007).

29. Groth J., Kohlweiss M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald
E., Fischlin M. (eds.) EUROCRYPT 2015, Part II, LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg
(2015).

30. Goldwasser, S.,Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended
abstract). In: 17th ACM STOC, pp. 291–304. ACM Press (May 1985)

31. Goldwasser S., Micali S., Rackoff C.: The knowledge complexity of interactive proof systems. SIAM J.
Comput. 18(1), 186–208 (1989).

123

http://eprint.iacr.org/2014/265

Blind key-generation attribute-based encryption 2299

32. GoldreichO.,Micali S.,WigdersonA.: How to prove all NP-statements in zero-knowledge, and amethod-
ology of cryptographic protocol design. In: Odlyzko A.M. (ed.) CRYPTO’86, LNCS, vol. 263, pp.
171–185. Springer, Heidelberg (1987).

33. Goyal, V., Pandey, O., Sahai, A, Waters, B.: Attribute-based encryption for fine-grained access control
of encrypted data. In: Juels, A., Wright, R.N., Capitani di Vimercati, S.D. (eds.) ACM CCS 2006, pp.
89–98. ACM Press (October/November 2006). Available as Cryptology ePrint Archive Report 2006/309.

34. Katz J., SahaiA.,WatersB.: Predicate encryption supporting disjunctions, polynomial equations, and inner
products. In: Smart N.P. (ed.) EUROCRYPT 2008, LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008).

35. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in Complexity Theory,
pp. 102–111 (1993)

36. Lewko A.B.: Tools for simulating features of composite order bilinear groups in the prime order setting.
In: Pointcheval D., Johansson T. (eds.) EUROCRYPT 2012, LNCS, vol. 7237, pp. 318–335. Springer,
Heidelberg (2012).

37. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EURO-
CRYPT 2010, LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (May/June 2010)

38. Lewko A.B., Waters B.: New techniques for dual system encryption and fully secure HIBE with short
ciphertexts. In: Micciancio D. (ed.) TCC 2010, LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg
(2010).

39. Lewko A.B.,Waters B.: Unbounded HIBE and attribute-based encryption. In: Paterson K.G. (ed.) EURO-
CRYPT 2011, LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011).

40. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption. In: Cheon, J.H., Takagi,
T., (eds.) ASIACRYPT 2016, Part I, LNCS, vol. 10031, pp. 729–758. Springer, Heidelberg (December
2016)

41. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures.
In: Ning, P., Capitani di Vimercati, S.D., Syverson, P.F. (eds.) ACM CCS 2007, pp. 195–203. ACM Press
(October 2007)

42. Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report Tech. Memo TR-81, Aiken
Computation Laboratory (1981)

43. Rial A.: Blind attribute-based encryption and oblivious transfer with fine-grained access control. Des.
Codes Cryptogr. 81(2), 179–223 (2016).

44. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe attribute-
based encryption. In: Sadeghi, A.-R., Gligor, V.D., Yung, M., (eds.) ACM CCS 2013, pp. 463–474. ACM
Press (November 2013)

45. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.)
CRYPTO’84, LNCS, vol. 196, pp 47–53. Springer, Heidelberg (August 1984)

46. Sahai A., Waters B.R.: Fuzzy identity-based encryption. In: Cramer R. (ed.) EUROCRYPT 2005, LNCS,
vol. 3494, pp. 457–473. Springer, Heidelberg (2005).

47. Waters B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In:
Halevi S. (ed.) CRYPTO 2009, LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009).

48. Waters B.: Functional encryption for regular languages. In: Safavi-Naini R., Canetti R. (eds.) CRYPTO
2012, LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012).

49. Wee H.: Dual system encryption via predicate encodings. In: Lindell Y. (ed.) TCC 2014, LNCS, vol.
8349, pp. 616–637. Springer, Heidelberg (2014).

50. Wang, F.,Mickens, J., Zeldovich,N.,Vaikuntanathan,V.: Sieve:Cryptographically enforced access control
for user data in untrusted clouds. In: 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pp. 611–626. Santa Clara, CA, March 2016. USENIX Association.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Blind key-generation attribute-based encryption for general predicates
	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Overview of our protocol for blind key-generation
	1.3 Related work

	2 Background
	2.1 Attribute-based encryption
	2.2 Pair encodings
	2.3 Attribute-based encryption from pair encodings

	3 Blind key-generation ABE
	3.1 Security definition
	3.2 Blind-KG compatible pair encodings
	3.3 Blind key-generation ABE from pair encodings

	4 Achieving active security
	4.1 Invertible pair encodings

	5 Implementation
	6 Concluding remarks
	A Proofs of the main body
	A.1 Lemmas from Sect. 3
	Proof of Lemma 1
	Proof of Lemma 2

	A.2 Theorems from Sect. 3.3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4, security against malicious authorities
	Proof of Theorem 5, security against malicious users

	B Examples
	CΣ-protocol for the PoK of Fig. 3
	References

