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Abstract
The extended coset leader weight enumerator of the generalized Reed–Solomon [q + 1, q −
3, 5]q code is computed. In this computation methods in finite geometry, combinatorics and
algebraic geometry are used. For this we need the classification of the points, lines and
planes in the projective three space under projectivities that leave the twisted cubic invariant.
A line in three space determines a rational function of degree at most three and vice versa.
Furthermore, the double point scheme of a rational function is studied. The pencil of a true
passant of the twisted cubic, not in an osculation plane gives a curve of genus one as double
point scheme. With the Hasse–Weil bound on Fq -rational points we show that there is a
3-plane containing the passant.

Keywords Extended coset leader weight enumerator · Generalized Reed–Solomon code ·
Twisted cubic · Classification of lines in three space over finite fields
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1 Introduction

In general the computation of the weight enumerator of a code is hard and even harder so
for the coset leader weight enumerator. Generalized Reed–Solomon codes are MDS, so their
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weight enumerators are known and its formulas depend only on the size of the finite field,
the length and the dimension of the code. The coset leader weight enumerator of an MDS
code depends on the geometry of the associated projective system of the dual code. The
coset leader weight enumerator of the Fq -ary generalized Reed–Solomon codes of length
q + 1 of codimension four is considered, so its associated projective systems are normal
rational curves. Moreover the coset leader weight enumerators of the extensions of these
codes over Fqm are determined. In case of the [q + 1, q − 2, 4]q code where the associated
projective system consists of the q + 1 points of an irreducible plane conic, the answer [17]
depends on whether the characteristic is odd or even. If the associated projective system of
the [q + 1, q − 3, 5]q code consists of the q + 1 points of a twisted cubic, the answer is the
main result of this paper and depends on q modulo 6.

Our result depends on the classifications of the points, lines and planes in P
3 under

projectivities that leave the twisted cubic invariant. The classification of points and planes
was done in [3, 13] and they gave a partition of lines in classes which is not a complete
classification. The knowledge of the point-plane incidence matrix is applied to multiple
covering codes by [1]. But for our purpose we need to knowwhether a given line is contained
in a 3-plane.

The main result of this paper is a refined partition and the plane-line incidence. Recent
papers [4, 5, 10] compute the number of times a line of a given class is contained in a plane
of a given class, except for the class O6 (true passants not in an osculation plane). In [10] a
conjecture is given about the number of classes of lines in a complete classification.

We showed that the class O6 is subdivided further in classes that depend on a modulus,
a continuous invariant that is the cross-ratio of an associated 4-tuple of points. It is left as a
conjecture whether this gives a complete classification of the classes in O6.

In our approach, we use the relation between rational functions and codimension two
subspaces. Furthermore, the double point scheme Eϕ of a rational function ϕ is studied in
general. If the rational function ϕ is a separable simple morphism of degree d , then Eϕ is an
absolutely irreducible curve of genus (d − 1)2. In particular the pencil of planes containing
a given line, that is a true passant, not in an osculating plane defines a rational function and
its double point scheme is a curve of genus 1. With the Hasse–Weil bound it is shown that
there is a 3-plane containing a given true passant in case q ≥ 23.

2 The coset leader weight enumerator

The extended coset leader weight enumerator of a code is considered and it is just our
aim to determine this enumerator of the code associated to the twisted cubic. Let C be
an Fq -linear code of length n. Let r ∈ F

n
q . The weight of the coset r + C is defined by

wt(r + C) = min{wt(r + c) : c ∈ C}. A coset leader is a choice of an element r ∈ F
n
q of

minimal weight in its coset, that is wt(r) = wt(r + C). Let αi be the number of cosets of C
of weight i . The coset leader weight enumerator is the polynomial with coefficients αi .

A coset leader decoder gives as output r − e, where r is the received word and e is a
chosen coset leader of the coset of r. So r − e is a nearest codeword to r, but sometimes it
is not the only one. The probability of decoding correctly by the coset leader decoder on a
q-ary symmetric channel with cross-over probability p is computed by means of the coset
leader weight enumerator, see [19, Prop. 1.4.32].

Let C be an Fq -linear code with parameters [n, k, d], that is of length n, dimension k
and minimum distance d . Then C ⊗ Fqm is the Fqm -linear code generated by C and it is
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The extended coset leader weight enumerator of a twisted cubic code 2225

called the extension code of C over Fqm . The weight enumerator of such an extension code
has coefficients that are polynomials in qm , see [16, 18]. Similarly the extended coset leader
weight enumerator of C has coefficients αi (T ) that are polynomials in T such that αi (qm) is
the number of cosets of C ⊗ Fqm that are of weight i , see [12, 17]. Now αi (qm) is divisible
by qm − 1 for all m, i ≥ 1, since the coset weight of r+ C and of λr+ C ⊗Fqm with respect
to C ⊗ Fqm have the same size for all nonzero λ ∈ Fqm . So also αi (T ) is divisible by T − 1
for all i ≥ 1. Define

ai (T ) := αi (T )

T − 1
.

Then ai (T ) = (n
i

)
(T − 1)i−1 for all 1 ≤ i ≤ (d − 1)/2 and

∑n−k
i=0 αi (T ) = T n−k . So

∑n−k
i=1 ai (T ) = ∑n−k−1

i=0 T i .

2.1 Codes versus projective systems

Let Fq be the field with q elements, where q = ph for some prime p. The projective space
of dimension r is denoted by Pr . Let F be a field. An F-rational point of Pr is an equivalence
class ofFr+1\{0} under the equivalence relation x ≡ y if and only if x = λy for some nonzero
λ ∈ F. The equivalence class of x = (x0, x1, . . . , xr ) is denoted by (x0 : x1 : . . . : xr ). Dually
a hyperplane in P

r given by the equation a0X1 + a1X1 + · · · + ar Xr = 0 is denoted by
[a0 : a1 : . . . : ar ]. Let X be a subvariety of Pr . Then the set of F-rational points of X is
denoted by X (F) and by X (q) in case F = Fq .

A subspace of Pr (qm) is an intersection of hyperplanes, and it will be called Fq -rational
if it extends a corresponding subspace in Pr (q).

Let H be a parity check matrix of C , that is an (n − k) × n matrix such that c ∈ C if
and only if HcT = 0. Hence, a codeword of weight w corresponds one-to-one to a linear
combination of w columns of a given parity check matrix adding up to zero. The syndrome
s (with respect to H) of a received word r ∈ F

n
q is the column vector of length n − k defined

by s = HrT . This gives a one-to-one correspondence between cosets and syndromes. The
coset of a word of minimal weight corresponds one-to-one to a minimal way to write the
syndrome of that word as a linear combination of the columns of a given parity check matrix.

From now on we assume that the minimum distance of the code is at least 3, so H
has no zero column and no two columns are dependent. So its columns can be viewed as
homogeneous coordinates of n distinct points in projective space of dimension n − k − 1.

More generally, let H be a l × n matrix of rank l with elements from Fq . We view the
columns of H as a projective system [19, §8.3.2], that is a setP of n points in projective space
P

r (q), with r = l −1 that do not lie in a hyperplane, in particular we assume that the columns
are non-zero, and no pair is dependent. We now want to determine αi = αi (q) which is the
number of vectors in Fl

q that are a linear combination of some set of i columns of H , but not

less.More generally, wewant to determineαi (qm)which is the number of vectors inFl
qm with

the same property over Fqm for i = 0, . . . , l. We think projectively, so for i = 1, . . . , r + 1
wewant to determine ai (qm) the number of points inPr (Fqm ) that lie in a projective subspace
of dimension i − 1 that intersects P in exactly i points, and not for smaller i .

3 The normal rational curve

The normal rational curve of degree r is the curve Cr in P
r with parametric representation

{(xr : xr−1y : . . . : xyr−1 : yr ) | (x : y) ∈ P
1}, see [13, §21.1]. This map gives an
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isomorphism of P1 with Cr and the point (x : 1) (and (1 : 0)) on P
1 is identified with

(x3 : x2 : x : 1) (and (1 : 0 : 0 : 0)) on Cr and both are denoted by P(x) (and P(∞)) where
the context makes it clear what is meant.

Combinatorially, the most important property of Cr is that no r + 1 points are in a hyper-
plane. In the following, we will take r = 3 so we have the curve C3 in P

3. This curve is
also called the twisted cubic. In this dimension, the set Cr (q) is maximal with respect to the
property that no 4 points are coplanar (for q > 3).

3.1 The twisted cubic C3

The definitions of this section can be found [13].
The conjugate of x ∈ F̄q is defined by x̄ = xq .
A chord is the line joining two points of C3. We distinguish real chords, joining two

different points of C3, tangents, where the two points coincide, and imaginary chords, where
the two points are conjugate points of the extension of C3 to P

3(q2).
Anosculating plane is a plane that intersects the twisted cubic in one pointwithmultiplicity

three. An axis is the line of intersection of two osculating planes. A real axis is the intersection
of two different osculating planes, an imaginary axis is the intersection of two osculating
planes at conjugate points of C3 in P

3(q2). If p = 3, then there is exactly one axis, the
intersection of all osculating planes and it is called the axis of 03.

The tangent at the point P(x) = (x3 : x2 : x : 1) is the line 〈(x3, x2, x, 1), (3x2, 2x, 1, 0)〉,
and at the point P(∞) = (1 : 0 : 0 : 0) we have 〈(1, 0, 0, 0), (0, 0, 1, 0)〉.

A passant or external line is a line disjoint from C3(q), it is called true if it is not an
imaginary chord.

A unisecant is a line intersecting C3(q) in 1 point, it is called true if it is not a tangent.
A bisecant or simply secant is a line intersecting C3(q) in 2 points (this is the same as a

real chord).
An i -plane, i = 0, 1, 2, 3, is a plane containing i points of C3(q).
A subspace of P3(qm) (so a point, line or plane) will be called rational if it extends a

corresponding subspace in P
3(q).

A regulus in P
3(q) is the collection of rational lines that are transversals of three given

skew lines, that is the collection of lines that intersect three given lines that are mutually
disjoint. The regulus of three skew lines consists of q + 1 skew lines. The complementary
regulus of the regulus of three skew lines l1, l2, l3, is the regulus of any three lines l ′1, l ′2, l ′3
in the regulus of l1, l2, l3.

3.2 The problem

We consider the coset leader weight enumerator for the extended Reed–Solomon [q +1, q −
3, 5] code with 4× (q +1) parity check matrix H whose columns are the vectors (1, t, t2, t3)
together with (0, 0, 0, 1). The projective system of H is the twisted cubic, that is normal
rational curve of degree 3 in P

3(q).
So, what we want is an answer to the following questions, first for P3(q) itself, but also

for P3(qm):
a1: How many points belong to the curve C3(q)?
a2: How many points, not already counted under a1, are on a line containing two points

of C3(q)?
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The extended coset leader weight enumerator of a twisted cubic code 2227

a3: Now the interesting part starts, how many points are there on a 3-plane, that is a plane
containing three points of C3(q), not already counted under a1 or a2?

The first two questions turn out to be trivial and for the third we introduce the following
definition.

Definition 3.1 Letμq be the number of rational lines ofP3(q) that lie in one or more 3-planes
and are not real chords.

Theorem 3.2 The extended coset leader weight enumerator of the extended Reed–Solomon
[q + 1, q − 3, 5] code is given by

a1(T ) = q + 1 and a2(T ) = (q+1
2

)
(T − 1),

and a3(T ) is equal to

1
2q(q + 1)2 + (q+1

3

) [
T 2 + T + 1 − (q2 + q + 1)(T − q + 1)

] + μq · (T − q),

and

a4(T ) = T 3 + T 2 + T + 1 − a1(T ) − a2(T ) − a3(T ).

Proof Thenumber of points of the curveC3(q) isq+1. Soa1 = q+1 and alsoa1(qm) = q+1,
since in our problem C3(q) is restricted to P

3(q). Hence a1(T ) = q + 1.
There are

(q+1
2

)
secants, each one of them contributes q − 1 points (for m: qm − 1), since

two secants don’t intersect in a point outside C3(q), for that would imply four coplanar points
on C3(q). So a2(qm) = (q+1

2

)
(qm − 1) for all m. Hence a2(T ) = (q+1

2

)
(T − 1).

These two cases also follow from the general result that ai (T ) = (n
i

)
(T − 1)i−1 for all

1 ≤ i ≤ (d − 1)/2 for an [n, k, d] code, since in this case n = q + 1 and d = 5.
Nowweconsider the computation ofa3. InP3(q) the answer is easy: the rest, so 1

2q(q+1)2.
Indeed a point that does not lie on the curve or on a secant or on a 3-plane can be used to
extend the arc, but it is well known that the arc is maximal (for q > 3).

Outside P3(q) we argue as follows: If a point is on more than one 3-plane, then it must be
on a line of P3(q), so forgetting about these points for the moment, this means that each of
the

(q+1
3

)
different 3-planes contributes q2m +qm +1− (q2 +q +1)− (q2 +q +1)(qm −q)

points that are certainly in this 3-plane only.
The remaining points are outside P3(q) on a line of P3(q), which is not a real chord and

that is contained in a 3-plane.
We give the formula for a3(qm) in terms of the parameter μq .

1
2q(q + 1)2 + (q+1

3

) [
q2m + qm + 1 − (q2 + q + 1)(qm − q + 1)

] + μq(qm − q).

Hence, a3(T ) is equal to

1
2q(q + 1)2 + (q+1

3

) [
T 2 + T + 1 − (q2 + q + 1)(T − q + 1)

] + μq(T − q).

The first term counts the points P in P
3(q), not on C3(q) that are either on a tangent of a

rational point of C3(q) or on an imaginary chord of C3(q).
The second term is the number of points outside P3(q), in a rational plane, but not on a

rational line.
The third term is the number of points outside P3(q), on a rational line that is contained

in a 3-plane and is not a real chord.
Finally a1(T ) + a2(T ) + a3(T ) + a4(T ) = T 3 + T 2 + T + 1. Hence, a4(T ) can be

expressed in the known terms a1(T ), a2(T ) and a3(T ):

a4(T ) = T 3 + T 2 + T + 1 − a1(T ) − a2(T ) − a3(T ) ��
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The rest of this article is devoted to the determination of the value of μq , that turns out
to depend on the value of q mod 6 and will be given in Sect. 8.2. In order to do that we will
give the relation between rational functions and codimension two subpaces of the projective
space in Proposition 6.5. Furthermore, we classify several types of lines in Theorem 8.1.

4 The classification of planes and points in P
3

Almost everything in this section can be found in [3] and [13, Chap. 21].

The group Gq = PGL(2, q) of nonsingular 2 × 2 matrices

(
a b
c d

)
with ad − bc 
= 0,

modulo nonzero multiples of the identity. So Gq has order (q2 − 1)(q2 − q)/(q − 1) =
q(q2 − 1).

The group Gq acts via ϕ(x : y) = (ax + by : cx + dy) on P
1, also denoted by ϕ(x) =

(ax + b)/(cx + d) and it acts sharply 3-transitively on Fq ∪ {∞}. If ϕ ∈ Gq2 , that is with
coefficients in Fq2 we define the conjugate of ϕ by ϕ̄(x) = (āx + b̄)/(c̄x + d̄). Furthermore,
Gq acts on C3(q) and this gives the following map on column vectors:

(x3, x2, x, 1) �→ ((ax + b)3, (ax + b)2(cx + d), (ax + b)(cx + d)2, (cx + d)3).

This mapping has matrix
⎛

⎜⎜
⎝

a3 3a2b 3ab2 b3

a2c a2d + 2abc b2c + 2abd b2d
ac2 bc2 + 2acd ad2 + 2bcd bd2

c3 3c2d 3cd2 d3

⎞

⎟⎟
⎠ ,

hence its action extends to a linear collineation of P3(q). For q ≥ 5, Gq is the full group of
projectivities in P

3(q) fixing C3(q) by [13, Lemma 21.1.3]. In [13, p. 233] the action is on
row vectors on the left, whereas in this paper the action is on column vectors on the right,
since we consider the projective system of the code with the column vectors of the parity
check matrix as its points.

Proposition 4.1 Under Gq there are five orbits Ni of planes with ni = |Ni | :
N1 : Osculating planes of 03(q), n1 = q + 1.
N2 : Planes with exactly two points of C3(q), n2 = q(q + 1).
N3 : Planes with three points of C3(q), n3 = 1

6q(q2 − 1).
N4 : Planes with exactly one point of C3(q), not osculating, n4 = 1

2q(q2 − 1).
N5 : Planes with no points of C3(q), n5 = 1

3q(q2 − 1).

Proof See Corollary 4 of Chapter 21 in [13]. ��
Remark 4.2 There is another way to look at this which is the approach in [10]: For the plane
[1 : c : b : a] consider the cubic f (x) = x3 + cx2 + bx + a = (x − α)(x − β)(x − γ ).

N1: If α = β = γ we have an osculating plane, where α = ∞ corresponds to the plane
[0 : 0 : 0 : 1], or X3 = 0.

N2: If α = β 
= γ , we have a plane with two points. The case α = β = ∞, γ = 0
corresponds to the plane [0 : 0 : 1 : 0] or X2 = 0.

N3. If α, β, γ are different elements from Fq we get a plane with three points, for α = ∞,
β = 0, γ = 1 we get [0 : 1 : −1 : 0], or X1 = X2.
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N4. If α ∈ Fq , β = γ̄ /∈ Fq . If α = ∞ then we have the plane [0 : 1 : −t : n] for some
irreducible polynomial X2 − t X + n = 0, with t = β + β̄ and n = ββ̄.

N5. Finally if f is irreducible we have a plane without points of C3(q).

At each point P(x) = (x3 : x2 : x : 1) of C3 we have an osculating plane π(x) = [1 :
−3x : 3x2 : −x3] and π(∞) = [0 : 0 : 0 : 1] parameterizing the osculating developable 03.

If q 
= 0 mod 3, so if p 
= 3 then there is an associated null-polarity

(a0 : a1 : a2 : a3) ↔ [−a3 : 3a2 : −3a1 : a0]
interchanging C3 and 03, and their corresponding chords and axes.

Proposition 4.3 Under Gq there are five orbits Mi of points with mi = |Mi | :
(i) If p 
= 3, then

M1 : Points on C3(q), m1 = q + 1.
M2 : Points off C3(q), on a tangent, m2 = q(q + 1).
M3 : Points on three osculating planes, m3 = 1

6q(q2 − 1).
M4 : Points off C3(q), on exactly one osculating plane, m4 = 1

2q(q2 − 1).
M5 : Points on no osculating plane, m5 = 1

3q(q2 − 1).
(ii) If p = 3, then

M1 : Points on C3(q), m1 = q + 1.
M2 : Points on all osculating planes, m2 = q + 1.
M3 : Points off C3(q), on a tangent, on one osculating plane, m3 = q2 − 1.
M4 : Points off C3(q), on a real chord, m4 = 1

2q(q2 − 1).
M5 : Points on an imaginary chord, m5 = 1

2q(q2 − 1).

Proof See Corollary 5 of Chapter 21 in [13]. ��
Remark 4.4 If p 
= 3, thenM2 is also the set of points on exactly two osculating planes, and
M3 ∪ M5 is the set of points not in C3(q) on a real (or imaginary) chord, andM4 is the set
of points not in C3(q) on an imaginary (or real) chord if q ≡ 1 mod 3 (or q ≡ −1 mod 3
respectively) by the corollary of [13, Lemma 21.1.11].

If p = 3, then M2 ∪ M3 is the set of points not in C3(q) on a tangent.
Hence, for all q we have that every point not in C3(q) is on a unique line that is a tangent,

a real chord or an imaginary chord.

Remark 4.5 We will give a partition of the lines in P3 in Sect. 8.

5 Algebraic curves

For the theory of algebraic curves wewill refer to the textbooks [11, 14, 21]. By an (algebraic)
curve we mean an algebraic variety over a field F of dimension one, so it is absolutely
irreducible.Most of the timewe assume that the curve is nonsingular, unless stated otherwise.
The genus of the curve X is denoted by g(X ).

5.1 Divisors on a curve

Let X be a curve over Fq . A place of a curve X over the finite field Fq is an orbit under the
Frobenius of the points of X (Fqm ) of some finite extension Fqm of Fq . The degree of the
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place P is the number of points in its orbit and is denoted by deg(P). Alternatively a place
can be defined as a discrete valuation of the function field Fq(X ).

The number of points of the projective line that are defined over Fq is equal to q + 1, and
a place of degree d corresponds one-to-one to a monic irreducible polynomial in Fq [X ] of
degree d . In particular 1

2 (q
2 − q) is the number of places of degree 2.

A divisor on a curveX is a formal sum of places P with integer coefficients such that only
finitely many coefficients are nonzero. The degree of the divisor D = ∑

P m P P is defined
by deg(D) = ∑

P m P deg(P). A divisor is called effective in case all its coefficients are
nonnegative. A divisor

∑
P m P is called simple if m P = 0 or m P = 1 for all places P .

5.2 Ramified covers

For the following we refer to [11, 14, 21].

Definition 5.1 Consider a morphism ϕ : X → Y of the nonsingular absolutely irreducible
curves X and Y over the field F. Then F(X ), the function field of X is a finite field extension
of F(Y), the function field of Y , via ϕ. The degree of this extension is also called the degree
of ϕ and will be denoted by deg(ϕ).

The set of rational functions of F(X ) that are defined at a place P is denoted by OP and
is local ring, that is a ring with a unique maximal idealMP . Moreover this maximal ideal is
a principal ideal and a generator ofMP is called a local parameter at the place P . Let x be a
local parameter at the place P of X . Then x is a generator ofMP . Let y be a local parameter
at the place Q = ϕ(P) of Y . Then the local ring of Y at Q is via ϕ a subring of OP . In this
way we consider y as an element ofOP and y = cxe where c is an invertible element ofOP

and e is a non-negative integer that is called the ramification index of ϕ at the place P and
is denoted by eP (ϕ) or by eP . The morphism ϕ is said to ramify at P and P a ramification
place of ϕ if eP > 1.

Remark 5.2 Ageometricway to consider ramification is by considering�ϕ = {(P, ϕ(P))|P ∈
X } in X × Y , the graph of ϕ : X → Y . Now �ϕ is a curve on the surface X × Y . The ram-
ification index of ϕ at the place P is equal to the intersection multiplicity of �ϕ with the
’horizontal’ line {(P ′, ϕ(P))|P ′ ∈ X } at (P, ϕ(P)).

Proposition 5.3 If P is a place of X and ϕ(P) = Q, then Q is a place of Y and deg(Q)

divides deg(P) and deg(P)/ deg(Q) is called the relative degree and denoted by deg(P, Q).
If Q is a place of Y , then

deg(ϕ) =
∑

ϕ(P)=Q

eP deg(P, Q).

In particular, the fibre ϕ−1(Q) consist of at most deg(ϕ) places.

Proof See [21, Theorem III.1.11]. ��
Remark 5.4 If deg(ϕ) ≤ 3, then ϕ is injective on the set of ramification places by Proposition
5.3.

Definition 5.5 Let ϕ : X → Y be a separable morphism between two curves. The ramifica-
tion at P is called tame if the characteristic does not divide eP , otherwise it is called wild.
The morphism ramifies at finitely many places. The ramification divisor of ϕ is defined by

Rϕ =
∑

P

(eP − 1)P.
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Definition 5.6 Consider a morphism ϕ : X → Y . Let x be a local parameter at the place P
of X . Let y be a local parameter at the place Q = ϕ(P) of Y . Then y = cxe where c is an
invertible element of OP and e is the ramification index of ϕ at the place P . Let y′ be the
derivative of y with respect to the derivation of x . The different exponent of ϕ at the place P
is the smallest d such that y′ ∈ Md

P and is denoted by dP (ϕ) or by dP . The different divisor
of ϕ is defined by

Dϕ =
∑

P

dP deg(P).

Remark 5.7 By the Leibniz rule we have

y′ = c′xe + ecxe−1.

Hence, dP ≥ eP − 1, and dP = eP − 1 if and only if the ramification at P is tame, that is if
characteristic of F does not divide eP . If the ramification is wild then dP + 1 is not divisible
by the characteristic.

Theorem 5.8 (Riemann–Hurwitz genus formula) Let ϕ : X → Y be a separable morphism
between curves that is not constant. Then

2g(X ) − 2 = deg(ϕ)(2g(Y) − 2) + deg(Dϕ).

Proof See [11, Corollary 2.4], [14, Theorem 7.27] and [21, Theorem III.4.12]. ��
If the degree of the morphism ϕ is 1, then the morphism is an isomorphism and there is

no ramification.

6 Rational functions on the projective line

In this section we show that there is a one-to-one correspondence between L-equivalence
classes of non-constant rational functions on P

1 over F of degree d and codimension 2
subspaces of Pd(F). Propositions on the possible ramification behaviour and the Riemann–
Hurwitz genus formula give us the RL-classification of rational functions of degree 2.

6.1 Equivalence of rational functions

Definition 6.1 A rational function ϕ : P1 ��� P
1 over Fq of degree d . is given by ϕ(x : y) =

( f (x, y) : g(x, y)) where f (x, y) and g(x, y) are homogeneous polynomials of degree d .
Let h(x, y) = gcd(( f (x, y), g(x, y)). The divisor defined by h(x, y) = 0 is called the base
divisor ϕ and is denoted by Bϕ . More precisely, let h(x, y) = ∏

i π
mi
i where the πi are

mutually distinct irreducible polynomials and the mi are positive integers. Let Pi be the
place of P1 that corresponds to πi . The divisor

∑
i mi Pi is called the base divisor of ϕ and

is denoted by Bϕ .

Definition 6.2 Let ϕ,ψ : P1 → P
1 be two rational functions defined over F. They are called

right (R) equivalent if there is an automorphism α ∈ PGL(2,F) such that ψ = ϕ ◦ α, and
left (L) equivalent if there is an automorphism β ∈ PGL(2,F) such that ψ = β ◦ ϕ.

Furthermore, ϕ and ψ are called right-left (RL) equivalent if there automorphisms α ∈
PGL(2,F) and β ∈ PGL(2,F) such that ψ = β ◦ ϕ ◦ α. If moreover β = α−1, then ϕ,ψ

are called conjugate.
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Remark 6.3 Let ϕ : P1 ��� P
1 be given by ϕ(x : y) = ( f (x, y) : g(x, y)).

(1) Let h(x, y) = gcd(( f (x, y), g(x, y)). Then ϕ is a well-defined map outside the zero zet
of h(x, y). Let f̃ (x, y) = f (x, y)/h(x, y), g̃(x, y) = g(x, y)/h(x, y) and ϕ̃(x : y) =
( f̃ (x, y) : g̃(x, y)). Then ϕ̃ is a well-defined function on P1, and ϕ and ϕ̃ define the same
function outside the zero zet of h(x, y). We call ϕ̃ is the associated morphism of ϕ.
We will a make distinction between the notions of a rational function P

1 ��� P
1 and a

morphism P
1 → P

1.
(2) Let f (x, y) = ∑d

j=0 f j xd− j y j and g(x, y) = ∑d
j=0 g j xd− j y j . The 2× (d +1)matrix

with first row ( f0, f1, . . . , fd) and second row (g0, g1, . . . , gd) has rank s ≤ 2, then
s ≤ d and the image of ϕ is contained in a subspace of P1 of dimension s − 1, that
is either P1 or a point when ϕ is constant. Therefore, we assume from now on that the
image of ϕ is not constant. Hence, d ≥ 2.

(3) Under the L-equivalence of the action of PGL(2,F), the projectivities of P1, we may
assume that the 2×(d +1)matrix is in row reduced echelon form. (4) The corresponding
rational function on the affine line is also denoted byϕ and is given byϕ(x) = f (x)/g(x),
where f (x) and g(x) are univariate polynomials d = max{deg( f (x)), deg(g(x))}. By
(3) we may assume that d = deg( f (x)) > deg(g(x)), and f (x) and g(x) are monic, and
f0e = 0 where e = deg(g(x)).

Remark 6.4 Let ϕ : P1 → P
1 be a separable morphism. Then deg(Dϕ) = 2d − 2 by the

Riemann–Hurwitz genus formula 5.8.

(1) If d = deg( f (x)) > deg(g(x)), then ϕ(P∞) = P∞ and the ramification exponent of
P∞ = (1 : 0) is equal to d − deg(g(x)).

(2) Let P = (x0 : 1) with x0 in some extension of Fq and ϕ(x0) = 0. Then ϕ(x) =
(x − x0)eP ψ(x) for some rational function ψ(x) such that ψ(x0) 
= 0. So ϕ′(x) =
eP (x − x0)eP −1ψ(x) + (x − x0)eP ψ ′(x). Hence, ϕ ramifies at P , that is eP > 1 if and
only if ϕ′(x0) = 0.

6.2 Rational functions versus codimension two subspaces

Proposition 6.5 Let F be a field with algebraic closure F̄. Then there is a one-to-one corre-
spondence between L-equivalence classes of non-constant rational functions on P

1 over F
of degree d and codimension 2 subspaces of Pd(F). Furthermore„ the rational function is a
morphism if and only if the codimension subspace does not intersect Cd(F̄).

Proof The proof formorphisms andF = C is given in [7, p. 106] and generalizes for arbitrary
fields as follows.

Let ϕ(x : y) = ( f (x, y) : g(x, y)) be a non-constant rational function on P
1 over F of

degree d with f (x, y) = ∑d
j=0 f j xd− j y j and g(x, y) = ∑d

j=0 g j xd− j y j with f j , g j ∈ F

for all j . Let Lϕ be the subspace of Pd(F) defined by the homogeneous linear equations
∑d

j=0 f j X j = 0 and
∑d

j=0 g j X j = 0. The rational map ϕ is not constant. So f (x, y) and
g(x, y) are not a constant multiple of each other. Hence, Lϕ is a codimension 2 subspace of
P

d(F).
If f (x, y) and g(x, y) have a non-constant factor h(x, y) in common, then Lϕ intersects

Cd(F̄) at the zero set of h(x, y).
Conversely, letL be a codimension 2 subspace ofPd(F) by the equations

∑d
j=0 f j X j = 0

and
∑d

j=0 g j X j = 0. Define f (x, y) = ∑d
j=0 f j x j yd− j and g(x, y) = ∑d

j=0 g j x j yd− j .
Then f (x, y) and g(x, y)are not a constant multiple of each other, since L has codimension
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2. So ϕL defined by ϕL(x : y) = ( f (x, y) : g(x, y)) is a non-constant rational functions on
P
1 over F of degree d .
If L intersects Cd(F̄) at P(x0 : y0), then f (x0, y0) = 0 and g(x0, y0) = 0. Hence,

f (x, y) = (x0y − y0x)c(x, y) and g(x, y) = (x0y − y0x)d(x, y) for some homogeneous
polynomials c(x, y) and d(x, y) of degree d −1. Therefore, f (x, y) and g(x, y) have a factor
in common.

If ψ is L-equivalent with ϕ, then there are a, b, c, d ∈ F such that ad − bc 
= 0 and
ψ(x, y) = (a f (x, y) + bg(x, y))/(c f (x, y) + dg(x, y)). Hence, Lψ = Lϕ .

Conversely, another pair of homogeneous linear equations definingLwill giveψ , a rational
function on P1 over F of degree d that is L-equivalent with ϕ. ��
Remark 6.6 The number of intersection points ofLϕ with Cd(F̄), counted with multiplicities,
that is the degree of the base divisor of ϕ is equal to deg(ϕ)−deg(ϕ̃), where ϕ̃ is the associated
morphism of ϕ.

Remark 6.7 Let ϕ(x) = f (x)/g(x)) be a non-constant rational function of degree d with
f (x) = ∑d

j=0 f j xd− j and g(x) = ∑d
j=0 g j xd− j and f j , g j ∈ F for all j . Then x ∈ ϕ−1(u)

if and only if P(x) is in the hypersurface Hϕ,u with equation
∑d

j=0( f j − ug j )x j = 0. More
precisely the ramification exponent of ex (ϕ) is equal to the intersection multiplicity of that
hypersurface with Cr .

In particular places in the support of Rϕ correspond one-to-one to those places where Hϕ,u

is tangent to Cr for some u. The hypersurfaces Hϕ,u contain Lϕ for all u and they form the
so called pencil of hyperplanes of Lϕ .

Remark 6.8 Every morphism ϕ : P1 → P
1 of degree d has a different divisor Dϕ that is an

effective divisor of degree 2d − 2. Let Cd = 1
d

(2d−2
d−1

)
be the d-th Catalan number. If F is

an algebraically closed field and D an effective divisor of 2d − 2 mutually distinct points,
then there are Cd morphisms on P

1 of degree d with the given D as different divisor [9].
In particular, there are 2 morphisms on P

1 of degree 3 with the given effective divisor D of
degree 4 as different divisor.

6.3 A partition of morphisms on P1 of degree 2

Proposition 6.9 Let ϕ : P1 → P
1 be a morphism of degree 2 over Fq .

Then one of the following cases hold:
(1) q is odd and ϕ is separable and tame and Dϕ = Rϕ and
(1.a) there are two Fq -rational points P1 and P2 such that Rϕ = P1 + P2,
(1.b) there is a place Q of degree 2 such that Rϕ = Q,
(2) q is even and
(2.a) ϕ is purely inseparable,
(2.b) ϕ is separable and Rϕ = P and Dϕ = 2P for a Fq -rational point P.

Proof If themorphism is not separable, then the characteristic divides the degree of ϕ. Hence,
the characteristic is 2 and the map is purely inseparable. If the morphism is separable, then
deg(Dϕ) = 2 by Remark 6.4. Furthermore, the ramification index is 2 at every place where
ϕ ramifies by Proposition 5.3.

(1) If the characteristic is odd, then the ramification index is 2 at the ramification places,
which is not divisible by the characteristic. Hence, Dϕ = Rϕ and has degree 2. So either

(1.a) there are two Fq -rational points P1 and P2 such that Rϕ = P1 + P2, or
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(1.b) there is a place Q of degree 2 such that Rϕ = Q.
(2) If the characteristic is even, then either
(2.a) ϕ is purely inseparable,
(2.b) or ϕ is separable and ramifies at a place P . Then eP = 2 by Proposition 5.3 and

the ramification is wild and 2 = eP ≤ dP ≤ deg Dϕ = 2. So P is an Fq -rational point and
Rϕ = P and Dϕ = 2P ��
Remark 6.10 Without proof we mention that all the cases given in Proposition 6.9 do appear
and are RL-equivalent to one of the following normal forms:

(1.a) ϕ(x) = x2 and Rϕ = P(0) + P(∞) with P(0) = ϕ(P(0)) and P P(∞) =
ϕ(P(∞)).

(1.b) ϕ(x) = (x2 + d)/x where d a chosen non-square in Fq and Rϕ = Q with Q the
place of degree 2 corresponding to the irreducible polynomial X2 − d .

(2.a) ϕ(x) = x2 where ϕ is purely inseparable.
(2.b) ϕ(x) = x2/(x + 1) where ϕ is separable and Rϕ = P(0) and Dϕ = 2P(0).

Definition 6.11 Let ϕ : P1 → P
1 be a morphism. Denote by pi, j,k the number of places Q

of P1 of degree i that have j places of degree k in ϕ−1(Q).

Remark 6.12 If pi, j,k is not zero, then i divides k and j ≤ deg(ϕ) by Proposition 5.3.

Proposition 6.13 Let ϕ : P
1 → P

1 be a separable morphism of degree 2 over Fq . Then
corresponding to those given in Proposition 6.9 the following holds:

(1.a) p1,1,1 = 2, p1,2,1 = p1,1,2 = 1
2 (q − 1).

(1.b) p1,1,1 = 0, p1,2,1 = p1,1,2 = 1
2 (q + 1).

(2.a) p1,1,1 = q + 1, p2,1,2 = 1
2 (q

2 − q).
(2.b) p1,1,1 = 1, p1,2,1 = p1,1,2 = 1

2q.

Proof The cases correspond to those given in Proposition 6.9.
(1.a). We have that Rϕ = P1 + P2. So p1,1,1 = 2. Every rational point P of P1 is mapped

to a rational point of P1, and ϕ−1(Q) has at most 2 rational points for every rational point
Q of Y , since deg(ϕ) = 2. So p1,1,1 + 2p1,2,1 = q + 1. For every rational point Q of Y we
have that ϕ−1(Q) consists either of one ramification point or two rational points or one place
of degree 2. Hence, 2 + p1,2,1 + p1,1,2 = q + 1. Combining these two equations gives the
result.

The other cases are treated similarly. ��

7 The double point scheme of amorphism

In this section we consider the double point scheme of a morphism. This scheme is an
absolutely irreducible nonsingular curve of genus (d − 2)2 if the morphism is a simple
separable rational function of degree d . In particular the curve has genus 1 if the rational
function has degree 3. So we can apply the Hasse–Weil bound on the number of rational
points. This allows us to conclude that there is a triple (x, y, z) of mutually distinct Fq -
rational points of P1 such that ϕ(x) = ϕ(y) = ϕ(z) for the rational function ϕ if q ≥ 23.
That again will show in Proposition 8.4 that there is a rational plane that intersects the twisted
cubic in three mutually distinct Fq -rational points if the plane contains a line of class O6 (a
true passant not in an osculating plane).
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Letϕ : P1 ��� P
1 be a non-constant rational function of degree d withϕ(x) = f (x)/g(x).

Suppose there exist x, y ∈ F such that x 
= y and ϕ(x) = ϕ(y). Then ϕ(x)−ϕ(y)
x−y = 0. So

( f (x)g(y) − f (y)g(x))/(x − y) = 0.

Definition 7.1 Let ϕ : P1 ��� P
1 be a rational function of degree d with ϕ(x) = f (x)/g(x).

The double point polynomial 
ϕ of ϕ is defined by


ϕ(x, y) = f (x)g(y) − f (y)g(x)

x − y
.

Remark 7.2 Let h(x) = gcd( f (x), g(x)) and f̃ (x) = f (x)/h(x) and g̃(x) = g(x)/h(x).
Then ϕ̃(x) = f̃ (x)/g̃(x) is a morphism, that is f̃ (x) and g̃(x)) are relatively prime. Further-
more, 
ϕ(x, y) = h(x)h(y)
ϕ̃(x, y).

Remark 7.3 Thedouble point polynomial ofϕ is a symmetric bivariate polynomial of bidegree
at most (d − 1, d − 1). The bihomogenization of the double point polynomial of ϕ is defined
by


ϕ(x0, x1, y0, y1) =
∑

0≤i, j≤d−1

ai j xd−1−i
0 xi

1yd−1− j
0 y j

1 ,

where 
ϕ(x, y) = ∑
0≤i, j≤d−1 ai j xi y j .

Then
ϕ(x0, x1, y0, y1) is a symmetric bivariate, bihomogeneous polynomial of bidegree
(d − 1, d − 1).

Definition 7.4 Let Eϕ be the subscheme of P
1 × P

1 defined by the ideal generated by
ϕ(x0, x1, y0, y1). It is called the double point scheme of ϕ. See [6, Definition V-41].

Remark 7.5 Apermutation rational function is a rationalmorphismϕ : P1 → P
1 definedover

Fq such that the map on the Fq -rational points is a permutation. Clearly ϕ is a permutation
rational function if and only if Eϕ has no points Fq -rational points outside the diagonal.
Similarly, a polynomial f (x) ∈ Fq [x] is called permutation polynomial if f induces a
permutation on Fq . In [15] the polynomial F(x, y) = [ f (x + y)g(x) − f (x)g(x + y)]/y is
defined for a rational function ϕ(x) = f (x)/g(y). Now 
ϕ(x, y) = F(x, y − x).

Lemma 7.6 Let ϕ(x) = f (x)/g(x) be a rational function. Then

(1) 
ϕ(x, x) = f ′(x)g(x) − f (x)g′(x),
(2) (x, x) ∈ Eϕ(F̄) if and only if ϕ ramifies at x.

Proof (1) Proved similarly as in Calculus.
(2) 
ϕ(x, x) = f ′(x)g(x) − f (x)g′(x) is the numerator of the derivative ϕ′(x).

Therefore, (x, x) ∈ Eϕ(F̄) if and only if 
ϕ(x, x) = 0 if and only if ϕ′(x) = 0 if and
only if ϕ ramifies at x .

��
Definition 7.7 The ramification at P is called simple if eP = 2. The morphism ϕ is called
simple if all its ramification places are simple and if ϕ ramifies at distinct places P1 and P2,
then ϕ(P1) and ϕ(P2) are distinct.

Definition 7.8 Let π1 : Eϕ → P
1 be the projection on the first factor and π2 : Eϕ → P

1 the
projection on the second factor.
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Proposition 7.9 Let ϕ : P1 → P
1 be a separable simple morphism. Then Eϕ is reduced and

nonsingular.

Proof Eϕ is contained in P
1 × P

1 and is defined by one equation. So it has no embedded
components. Hence, if it nonsingular, then it is reduced. Therefore, it is sufficient to show
that Eϕ is nonsingular. Let P = (a, b) ∈ Eϕ(F̄).

Let L = π−1
1 (a) and M = π−1

2 (b). If one of the intersection multiplicities I (P;L, Eϕ)

or I (P;M, Eϕ) is 1, then Eϕ is nonsingular at P . Furthermore, eP (π1) = I (P;L, Eϕ) and
eP (π2) = I (P;M, Eϕ) holds for the ramification exponents as in 6.7.

(1) If a = b, then ϕ ramifies at a by Proposition 7.6 with exponent 2, since ϕ is simple.
So ϕ(x) = (x − a)2 f (x)/g(x) and f (0) 
= 0 
= g(0). Hence, 
ϕ(a, y) = −(y −
a)2 f (y)g(0)/(a − y) = (y − a) f (y)g(a) and its multiplicity at y = a is 1, since
f (a) 
= 0 
= g(a). Therefore, I ((a, a);L, Eϕ) = e(a,a)(π1) = 1 and Eϕ is nonsingular
at (a, a).

(2) Ifa 
= b andϕ does not ramify ata and also not at b, thenϕ(x) = (x−a)(x−b) f (x)/g(x)

and f (a) 
= 0 
= g(a) and f (b) 
= 0 
= g(b). Hence, 
ϕ(a, y) = −(y − a)(y −
b) f (y)g(a)/(a − y) = (y − b) f (y)g(a) and its multiplicity at y = b is 1, since
f (b) 
= 0 
= g(a). Therefore, I ((a, b);L, Eϕ) = eP (π1) = 1 and Eϕ is nonsingular at
(a, b).

(3) If a 
= b and ϕ ramifies at a or b, then not at both, since ϕ is simple. We may assume
by symmetry of 
ϕ(x, y) in x and y that ϕ ramifies at a and not at b. So ϕ(x) = (x −
a)2(x − b) f (x)/g(x) and f (a) 
= 0 
= g(a) and f (b) 
= 0 
= g(b). Hence, 
ϕ(a, y) =
−(y − a)2(y − b) f (y)g(a)/(a − y) = (y − a)(y − b) f (y)g(a) and its multiplicity at
y = b is 1, since a 
= b and f (b) 
= 0 
= g(a). Therefore, I ((a, b);L, Eϕ) = eP (π1) = 1
and Eϕ is nonsingular at (a, b).
Therefore, Eϕ is nonsingular. ��

Proposition 7.10 Let ϕ : P1 → P
1 be a separable simple morphism of degree d ≥ 2. Then

Eϕ is an absolutely irreducible nonsingular curve of genus (d − 2)2.

Proof Let ϕ : P1 → P
1 be a separable map of degree d ≥ 2 with simple ramification. Then

Eϕ is reduced and nonsingular by Proposition 7.9 and of bidegree (d − 1, d − 1).
Suppose Eϕ is reducible over the algebraic closure. Then it is the union of X and Y , say

of bidegrees (a1, a2) and (d − 1 − a1, d − 1 − a2), respectively such that (a1, a2) 
= (0, 0)
and (a1, a2) 
= (d − 1, d − 1). Without loss of generality we may assume that X and Y
have no component in common. So deg(X · Y) = a1(d − 1 − a2) + a2(d − 1 − a1) > 0
according to the Theorem of Bézout for the product of projective spaces [20, Chapter IV,
§2.1] as mentioned in Sect. 5.1. Hence, X and Y have a point in common over the algebraic
closure. So Eϕ is singular at that point, which is a contradiction. Therefore, Eϕ absolutely
irreducible, that is irreducible over the algebraic closure.

A non-singular curve in P
1 × P

1 of bidegree (m, n) has genus (m − 1)(n − 1). This is
shown by the adjunction formula for a curve on a surface, see [11, Chapter V, Example 1.5.2].
Hence, Eϕ has genus (d − 2)2. ��
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Corollary 7.11 Let ϕ : P1 → P
1 be a separable simple morphism of degree 3. Then Eϕ is an

absolutely irreducible nonsingular curve of genus 1.

Proof This is a special case of Proposition 7.10. See also [2]. ��
Remark 7.12 Let ϕ : P1 → P

1 be a separable simple morphism of degree 3. Then Eϕ is an
absolutely irreducible nonsingular curve of genus 1. Any Fq -rational point of Eϕ outside the
diagonal gives a pair (x, y) such that x 
= y and ϕ(x) = ϕ(y) and (x, x) and (y, y) not in Eϕ .
Hence, there is a third point z, distinct from x and y such that (x, z) ∈ Eϕ . ϕ(x) = ϕ(y) =
ϕ(z). The number of Fq -rational points of Eϕ on the diagonal is at most deg(Dϕ) = 4 by by
Lemma 7.6. For every (x, x) ∈ Eϕ there exists a y such that (x, y), (y, x) ∈ Eϕ . So we have
to exclude for every at most 12 points from Eϕ(Fq). The Hasse–Weil bound [21, §5.2] gives
|Eϕ | ≥ q + 1 − 2

√
q. Therefor, if q ≥ 23, then |Eϕ | > 12 and there is a triple (x, y, z) of

mutually distinct Fq -rational points of P1 such that ϕ(x) = ϕ(y) = ϕ(z).

8 Lines in P
3

We start by repeating the observation of Remark 4.4.
Two chords do not intersect in a point outside C3(q), as a consequence, every point (not

in C3(q)) is contained in a unique chord.
If p 
= 3 then we also have the dual statement: Two axes can only be coplanar in an

osculating plane, every non-osculating plane contains exactly one axis.
Let us determine the chord through (x3 : x2 : x : 1) and (y3 : y2 : y : 1). There are three

cases: x = y ∈ Fq ∪ {∞} and we have a tangent, or x 
= y in Fq and we have a real chord,
or y = x̄ ∈ Fq2 \ Fq and we have an imaginary chord.

Letn = xy and t = x+y (‘Norm’ and ‘Trace’ in the imaginary case).An easy computation
shows that the chord is

c(x, y) = 〈(−nt,−n, 0, 1), (t2 − n, t, 1, 0))〉 if x, y 
= ∞
c(∞, y) = 〈(1, 0, 0, 0), (0, y2, y, 1)〉 if y 
= ∞

c(∞,∞) = 〈(1, 0, 0, 0), (0, 1, 0, 0)〉
The chord c(x, y) is a tangent, a real chord, or an imaginary chord if the polynomial X2 −
t X + n is a square, reducible but not a square, or irreducible, respectively. In other words, if
t2 − 4n is 0, a square, or a non-square, respectively if q is odd; and t = 0, tr2(n/t2) = 0, or
tr2(n/t2) = 1, respectively if q is even.

We know that every point not in C3(q) is on a unique chord. In particular:
(1 : 0 : 0 : 0) belongs to C3(q);
(w : 1 : 0 : 0) belongs to c(∞,∞);
(w : v : 1 : 0) belongs to c(x, y), where x + y = v and xy = v2 − w;
(w : v : u : 1) belongs to c(x, y), where x + y = (uv − w)/(u2 − v) and
xy = (uw − v2)/(v − u2) if v 
= u2; and belongs to c(∞, u) if v = u2.
Next, we determine the axis that is the intersection of the osculating planes [1 : −3x :

3x2 : −x3] and [1 : −3y : 3y2 : −y3]. Again there are three cases: x = y and we have
a tangent, or x 
= y ∈ Fq and we have a real axis, or y = x̄ ∈ Fq2 \ Fq and we have an
imaginary axis. Similarly to the previous computation, it is easy to check that
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a(x, y) =〈(−3nt, n − t2, 0, 3), (3n, t, 1, 0)〉 if x, y 
= ∞
a(∞, y) =〈(−3y2, 0, 1, 0), (3y, 1, 0, 0)〉 if y 
= ∞

a(∞,∞) =〈(1, 0, 0, 0), (0, 1, 0, 0)〉

8.1 A partition of lines in P3

From [13]we follow the description of the different kinds of lines and refine the classification.
The terminology is slightly different, it is explained in the beginning of the proof.

Theorem 8.1 Let Pa = (a : 1) for a ∈ Fq and P∞ = (1 : 0). Let Qd be the place of degree
2 given by the irreducible polynomial x2 − d, where d ∈ F

∗
q is a non-square. Choose a fixed

irreducible polynomial x2 + x + n, that is with discriminant 1 − 4n being a non-square
in case q is odd, and tr(n) = 1 if q is even. Let Q be the place of degree 2 given by the
irreducible polynomial x2 + x + n.

The set of lines of P3(q) are partitioned in the table below. The parameters u, v and d
in the table are fixed and chosen such that u, 3v and d are non-squares. Some classes only
occur for characteristic 2 or 3 and are indicated by Oi (2) and Oi (3), respectively, and O′

i
is not defined in characteristic 3. All classes except O6 form orbits under the action of Gq .

For every orbit a representative line L, the corresponding rational function ϕ =
f (x)/g(x), the base divisor Bϕ of ϕ, and the ramification divisor Rϕ̃ and different divi-
sor Dϕ̃ of the associated morphism ϕ̃ are given. The two vectors generating the line L are
given in the first and second row of the corresponding class. The f (x) and Rϕ̃ are given in
the first row, and g(x) and Dϕ̃ in the second row.

The unisecant, osculating and plane are abbreviated by unisec., oscul. and pl., respectively.

Class Name Size L ϕ(x) = f (x)/g(x) Bϕ Rϕ̃; Dϕ̃

O1 Real chords 1
2q2 + 1

2q (1, 0, 0, 0) x2 P0 + P∞ 0
(0, 0, 0, 1) x 0

O′
1 Real axes 1

2q2 + 1
2q (0, 1, 0, 0) x3 0 2P0 + 2P∞

(0, 0, 1, 0) 1 2P0 + 2P∞
O2 Tangents q + 1 (0, 0, 1, 0) x3 2P0 0

(0, 0, 0, 1) x2 0
O3 Imaginary 1

2q2 − 1
2q (n,−n, 0, 1) x3 + (n − 1)x − nx Q 0

chords (1 − n,−1, 1, 0) x2 + x + n 0
O′

3 Imaginary 1
2q2 − 1

2q (3n, n − 1, 0, 3) x3 − 3nx − n 0 2Q
axes (3n,−1, 1, 0) x2 + x + 1

3 (1 − n) 2Q
O4 True unisec. q2 + q (0, 1, 0, 0) x3 P0 P0 + P∞

in oscul. pl. (0, 0, 0, 1) x P0 + P∞
O−

4 (2) True unisec. q + 1 (0, 1, 0, 0) x3 P0 Purely
in oscul. pl. (0, 0, 0, 1) x inseparable

O+
4 (2) True unisec. q2 − 1 (0, 1, 1, 0) x3 P0 P0

in oscul. pl. (0, 0, 0, 1) x2 + x 2P0
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Class Name Size L ϕ(x) = f (x)/g(x) Bϕ Rϕ̃; Dϕ̃

O−
5 Unisec. not 1

2q3 − 1
2q (−d, 0, 1, 0) x3 + dx P0 Qd

in oscul. pl. (0, 0, 0, 1) x2 Qd

O+
5 Unisec. not 1

2q3 − 1
2q (−1, 0, 1, 0) x3 + x P0 P1 + P−1

in oscul. pl. (0, 0, 0, 1) x2 P1 + P−1

O5(2) Unisec. not q3 − q (1, 0, 1, 0) x3 + x P0 P1

in oscul. pl. (0, 0, 0, 1) x2 2P1

O′−
5 Passants in 1

2q3 − 1
2q (0, 0, 1, 0) x3 0 Q3v + 2P0

oscul. pl. (0, v, 0, 1) x2 − v Q3v + 2P0

O′+
5 Passants in 1

2q3 − 1
2q (0, 0, 1, 0) x3 0 P1 + P−1 + 2P0

oscul. pl. (0, 1
3 , 0, 1) x2 − 1

3 P1 + P−1 + 2P0

O′
5(2) Passants in q3 − q (0, 0, 1, 0) x3 0 P1 + 2P0

oscul. pl. (0, 1, 0, 1) x2 + 1 2P1 + 2P0

O6 Passants not q4 − q3 0 Simple
in oscul. pl. −q2 + q

O7(3) Axis of03 1 (0, 1, 0, 0) x3 0 Purely
(0, 0, 1, 0) 1 inseparable

O−
8.1(3) Passants 1

2q2 − 1
2 (0, 1, 0, 0) x3 − ux 0 2P∞

meeting axis (u, 0, 1, 0) 1 4P∞
O+

8.1(3) Passants 1
2q2 − 1

2 (0, 1, 0, 0) x3 − x 0 2P∞
meeting axis (1, 0, 1, 0) 1 4P∞

O8.2(3) Passants q3 − q (1, 1, 0, 0) x3 − x2 0 P0 + 2P∞
meeting axis (0, 0, 1, 0) 1 P0 + 3P∞

Proof Everything is shown in Lemma 21.1.4 of [13], except the subdivisions of O4, O5, O′
5

and O8, and the statements about the rational functions. We use the term true unisecant for
non-tangent lines that intersect C3(q) in exactly one point. Similarly, for external lines we
also use the term passant, and such a line is called a true passant if it is not a chord.

Every representative line L of an orbit is given by two vectors, that is by a 2 × 4 matrix
L of rank 2. Let H be the 2 × 4 matrix in row reduced echelon form such that L H T = 0.
Then the rows of H give the coefficients of equations of the line L, and the rational function
ϕL by Proposition 6.5.

O1: real chords form a single orbit. A representative of a line in this orbit is given by
L = c(0,∞) = 〈(1, 0, 0, 0), (0, 0, 0, 1)〉. So H has rows (0, 1, 0, 0), (0, 0, 1, 0). Hence,
ϕ(x) = x2/x , ϕ̃(x) = x , and ϕ has base divisor P(0) + P∞, and Rϕ̃ = Dϕ̃ = 0.

O′
1: real axes form a single orbit (p 
= 3). So it suffices to consider a particular line

L = a(0,∞) = 〈(0, 1, 0, 0), (0, 0, 1, 0)〉. So H has rows (1, 0, 0, 0), (0, 0, 0, 1). Hence,
ϕ(x) = ϕ̃(x) = x3, and Rϕ = Dϕ = 2P(0) + 2P∞.

O3: imaginary chords form a single orbit with representative L = c(ξ, ξ̄ ) =
〈(n,−n, 0, 1), (1 − n,−1, 1, 0)〉, where ξ, ξ̄ are the zeros of X2 + X + n. So H has rows
(1, 0, n − 1,−n), (0, 1, 1, n). Hence, ϕ(x) = (x3 + (n − 1)x − nx)/(x2 + x + n) and
ϕ̃(x) = x − 1, and ϕ has base divisor Q, and Rϕ̃ = Dϕ̃ = 0.

O′
3: imaginary axes form a single orbit (p 
= 3) with representative L = a(ξ, ξ̄ ) =

〈(3n, n−1, 0, 3), (3n,−1, 1, 0)〉. So H has rows (1, 0,−3n,−n), (0, 1, 1, 1
3 (1−n)). Hence,

ϕ(x) = ϕ̃(x) = (x3 − 3nx − n)/(x2 + x + 1
3 (1 − n)) and Rϕ = Dϕ = 2Q.

O2, O4 and O5: unisecants.
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It is sufficient to look at the unisecants through P(0) = (0 : 0 : 0 : 1) So, we may apply
elements from the stabilizer of P = P(0) in Gq , that is Gq,P . This subgroup consists of the
matrices

Ma,c =

⎛

⎜
⎜
⎝

a3 0 0 0
a2c a2 0 0
ac2 2ac a 0
c3 3c2 3c 1

⎞

⎟
⎟
⎠ .

There are three cases: O2 unisecants that are tangent, O4 unisecants in an osculating plane,
andO5 unisecants not in an osculating plane. This is the partition in [13, Lemma 21.1.4], we
are going to refine this.

The first case is that the line 〈(0, 0, 0, 1), (0, 0, 1, 0)〉 is mapped to itself. This gives:
O2: tangents with representative L = 〈(0, 0, 0, 1), (0, 0, 1, 0)〉. These lines form a single

orbit (of size q +1). So H has rows (1, 0, 0, 0), (0, 1, 0, 0). Hence, ϕ(x) = x3/x2, ϕ̃(x) = x ,
and ϕ has base divisor 2P(0), and Rϕ̃ = Dϕ̃ = 0.

A second type of line is L = 〈(0, 0, 0, 1), (0, 1, u, 0)〉, u 
= ∞. This line in the osculating
plane [1 : 0 : 0 : 0], is mapped to 〈(0, 0, 0, 1), (0, 1, (u + 2c)/a, 1) by using Ma,c.

Consider first the case that q is odd. Choosing c = −u/2 gives:
O4: true unisecants in an osculating plane withL = 〈(0, 0, 0, 1), (0, 1, 0, 0)〉 and this also

shows that they form a single orbit of size q(q + 1). So H has rows (1, 0, 0, 0), (0, 0, 1, 0).
Hence, ϕ(x) = x3/x , ϕ̃(x) = x2, and ϕ has base divisor P(0), and Rϕ = Dϕ = P(0)+ P∞.

We continue with the case that q is even. Now 〈(0, 0, 0, 1), (0, 1, u/a, 0)〉 is the image
of L under the map Ma,c. If u = 0 we find the same as in the case q odd. If u 
= 0 we get
L = 〈(0, 0, 0, 1), (0, 1, 1, 0)〉. This gives two orbits:

O−
4 (2): with representative L = 〈(0, 0, 0, 1), (0, 1, 0, 0)〉. This orbit has size q +1. So H

has rows (1, 0, 0, 0), (0, 0, 1, 0). Hence, ϕ(x) = x3/x has base divisor P(0), and ϕ̃(x) = x2

is purely inseparable.
O+

4 (2): with representative L = 〈(0, 0, 0, 1), (0, 1, 1, 0)〉; of size q2 − 1. So H has rows
(1, 0, 0, 0), (0, 1, 1, 0). Hence, ϕ(x) = x3/(x2 + x), ϕ̃(x) = x2/(x + 1), and ϕ has base
divisor P(0), and Rϕ̃ = P(0), Dϕ̃ = 2P(0).

The third type of line is 〈(0, 0, 0, 1), (1, u, v, 0)〉, corresponding essentially to:
O5: unisecants not in an osculating plane.
This line is mapped by Ma,c to 〈(0, 0, 0, 1), (1, (u + c)/a, (c2 + 2cu + v)/a2, 0)〉 (by

making the last coordinate 0) and we now take c = −u and obtain 〈(0, 0, 0, 1), (1, 0, (v −
u2)/a2, 0)〉. This gives the following two cases:

If v = u2, then L is the secant through P(0) and P(∞), so we have already seen these
lines.

If v 
= u2, letw = (u2−v)/a2 
= 0 and d = w−1. Choosing different a’s does not change
the quadratic character of d , hence we get L = 〈(0, 0, 0, 1), (−d, 0, 1, 0)〉 with d 
= 0 being
a square or a non-square if q is odd, and one case if q is even. Consider the two cases if q is
odd:

O−
5 : d is a non-square, with representative L = 〈(0, 0, 0, 1), (−d, 0, 1, 0)〉. This orbit

has size 1
2q(q2 − 1). So H has rows (1, 0, d, 0), (0, 1, 0, 0). Hence, ϕ(x) = (x3 + dx)/x2,

ϕ̃(x) = (x2 + d)/x , and ϕ has base divisor P(0), and Rϕ̃ = Dϕ̃ = Qd .
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O+
5 : d is a non-zero square, we can take d = 1 with representative L = 〈(0, 0, 0, 1), (−1,

0, 1, 0)〉. This orbit has size 1
2q(q2 − 1), too. So ϕ(x) = (x3 + x)/x2, ϕ̃(x) = (x2 + 1)/x ,

and ϕ has base divisor P(0), and Rϕ̃ = Dϕ̃ = P(1) + P(−1).
O5(2): ifq is even everynon-zero element is a square andwe taked = 1with representative

L = 〈(0, 0, 0, 1), (1, 0, 1, 0)〉. This orbit has size q(q2 − 1). So ϕ(x) = (x3 + x)/x2,
ϕ̃(x) = (x2 + 1)/x , and ϕ has base divisor P(0), and Rϕ̃ = P(1) and Dϕ̃ = 2P(1).

O′
5: passants in an osculating plane, p 
= 3.

We take our favourite osculating plane π = [1 : 0 : 0 : 0] at the point P = (0 : 0 : 0 : 1).
The stabilizer group Gq,P of P under Gq is as before and has size q(q − 1). In this plane we
take our favourite external line: Lv = 〈(0, 0, 1, 0), (0, v, 0, 1)〉 ⊆ π . It is easy to check that
the stabilizer of Lv under Gq,P is generated by diag(1,−1, 1,−1), and Lv and La2v are in
the same orbit. So the orbit of Lv under Gq,P has size q(q − 1) if q is even and 1

2q(q − 1)
if q is odd. Now H has rows (1, 0, 0, 0), (0, 1, 0,−v). Hence, ϕ(x) = ϕ̃(x) = x3/(x2 − v),
and ϕ′(x) = x2(x2 − 3v)/(x2 − v)2. If q is odd, then Lu and Lv such that 3u is a non-zero
square and 3v is a non-square are in two different orbits and together they are all external
lines in π .

O′−
5 : with 3v a non-square with representative L = 〈(0, 0, 1, 0), (0, v, 0, 1), 〉. This orbit

has size 1
2q(q2 − 1), and Rϕ = Dϕ = 2P(0) + Q3v .

O′+
5 : with 3v a non-zero square, we take v = 1

3 with representative L = 〈(0, 1
3 , 0, 1), (0,

0, 1, 0)〉. This orbit has size 1
2q(q2 − 1), and ϕ(x) = ϕ̃(x) = x3/(x2 − 1

3 ) and Rϕ = Dϕ =
2P(0) + P(1) + P(−1).

O′
5(2): ifq is even every non-zero element is a square andwe takev = 1with representative

L = 〈(0, 1, 0, 1), (0, 0, 1, 0)〉. This orbit has size q(q2−1), and ϕ(x) = ϕ̃(x) = x3/(x +1)2,
and Rϕ̃ = 2P(0) + P(1) and Dϕ̃ = 2P(0) + 2P(1).

O6 = O′
6: true passants not in an osculating plane.

Let ϕ be a rational function in this class. Then ϕ is a morphism, since the corresponding
line is a passant so it does not intersect C3. The ramification exponents eP (ϕ) for all places
P are at most 2, since the passant is not in an osculating plane by Remark 6.7. Hence, Rϕ is
simple. Moreover ϕ does not ramify at two distinct points in a fibre ϕ−1(Q) for all places Q
by Proposition 5.3. Hence, ϕ is a simple morphism.

The morphism ϕ : P1 → P
1 of degree 3 gives an extension L of degree 3 of K = Fq(x),

the field of rational functions in one variable, and there exists a unique intermediate field S,
K ⊆ S ⊆ L , such that S/K is separable and L/S is purely inseparable, see [21, Appendix 8].
If the extension degrees of K ⊆ S ⊆ L are s and l, respectively then sl = 3 the degree of the
extension L/K . So either S = L and ϕ is separable, or K = S and L/K is purely inseparable
and p = 3, so ϕ(x) = x3 after a RL-transformation which is case O7(3). Therefore, ϕ is a
separable simple morphism.

O7(3): the axis of 03, p = 3 with L = 〈(0, 1, 0, 0), (0, 0, 1, 0)〉. So H has rows
(1, 0, 0, 0), (0, 0, 0, 1). Hence, ϕ(x) = ϕ̃(x) = x3 and ϕ is purely inseparable.

O8(3): passants meeting the axis, p = 3.
Every plane containing the axis is an osculating plane. So every line meeting the axis is

in an osculating plane. We may take as osculating plane π(∞) = [0 : 0 : 0 : 1], that is given
by X3 = 0. Let L be a passant contained in π(∞) meeting the axis given by X0 = X3 = 0
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at the point P = (0 : u : v : 0). All ϕ in Gq leave the axis invariant. If ϕ ∈ Gq leaves π(∞)

invariant, then it fixes also P(∞). So ϕ(x) = ax + b, that is with c = 0 and d = 1, and ϕ

leaves c(∞,∞), that is the tangent line of π(∞) given by X2 = X3 = 0 invariant. Hence,
ϕ leaves the intersection of the axis and c(∞,∞) invariant. So it leaves P1 = (0 : 1 : 0 : 0)
invariant. Indeed ϕ(0 : u : v : 0) = (0 : au − bv : v : 0). So ϕ(P1) = P1, and for all v 
= 0
there exists a ϕ with a = 1 and b = u/v such that ϕ(0 : u : v : 0) = P2 = (0 : 0 : 1 : 0).
Therefore, we may assume that the passant meets the axis in P1 or P2. This gives two cases:

Passants in π(∞) through P1 are given byL1,u = 〈((0, 1, 0, 0), (u, 0, 1, 0), 〉with u 
= 0.
The transformation ϕ(x) = ax with a = 1/u maps L1,u to L1,a2u which gives two orbits,
since q is odd:

O8.1(3)−: u a non-square with representative L = 〈(0, 1, 0, 0), (u, 0, 1, 0), 〉. This orbit
has size 1

2 (q + 1)(q − 1). So H has rows (1, 0,−u, 0), (0, 0, 0, 1). Hence, ϕ(x) = ϕ̃(x) =
x3 − ux and Rϕ = 2P(∞), Dϕ = 4P(∞).

O8.1(3)+: u a non-zero square, we can take u = 1 with representative L =
〈(0, 1, 0, 0), (1, 0, 1, 0), 〉. This orbit has size 1

2 (q + 1)(q − 1).
Passants in π(∞) through P2 are given by L2,v〈(0, 0, 1, 0), (v, 1, 0, 0)〉 with v 
= 0. The

transformation ϕ(x) = ax maps L2,v to L2,av which gives one orbit:
O8.2(3): with representativeL = 〈(0, 0, 1, 0), (1, 1, 0, 0)〉. This orbit has size (q+1)(q2−

q). So H has rows (1,−1,−0, 0), (0, 0, 0, 1). Hence, ϕ(x) = ϕ̃(x) = x3 − x2 and Rϕ =
P(0) + 2P(∞), Dϕ = P(0) + 3P(∞). ��
Remark 8.2 |O6| = q(q − 1)(q2 − 1) and |Gq | = q(q − 1)(q + 1). Hence,O6 is subdivided
in at least q −1 orbits. Without proof we state that if p 
= 2 and p 
= 3, thenO6 is subdivided
in 5 subclasses with different divisors P1 + P2 + P3 + P4, P1 + P2 + Q, Q1 + Q2, P + R
and S, where the Pi and P are places of degree 1, the Qi and Q are places of degree 2, and R
and S are places of degree 3 and 4, respectively. Moreover we conjecture that the cross-ratio
of the 4 points over F̄q of the different divisor determines the orbit.

Remark 8.3 The partition of classes in Theorem 8.1 is a refinement of the one given in [3, 13].
In characteristic 2 the classs O4 is subdivided in O4(2)+ and O4(2)−, in odd characteristic
O5 is subdivided in O+

5 andO−
5 , andO′

5 is subdivided inO′+
5 andO′−

5 , and in characteristic
3 the class O8 is subdivided in O8.1(3)+, O8.1(3)− and O8.2(3).

All classes of Theorem 8.1, except O6 form orbits under the action of Gq , and they are
also obtained in [5, Theorem 3.1] and cited also in [4, Theorem 2.3]. Our classification is in
agreement with the results of [5].

8.2 The determination of�q

In the table of the following proposition (q ≥ 23) rows indicate the classes of lines and
column headers indicate q mod 6.

Proposition 8.4 Let q ≥ 23. Then the entries in the following table indicate whether a case
contributes to μq by a plus sign, and by a minus sign otherwise.
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Class Size 1(6) 2(6) 3(6) 4(6) 5(6)
O1

1
2q2 + 1

2q − − − − −
O′

1
1
2q2 + 1

2q + − + −
O2 q + 1 − − − − −
O3

1
2q2 − 1

2q − − − − −
O′

3
1
2q2 − 1

2q − + − +
O4 q2 + q + + +

O−
4 (2) q + 1 − −

O+
4 (2) q2 − 1 + +
O5 q3 − q + + + + +
O′

5 q3 − q + + + +
O6 q4 − q3 − q2 + q + + + + +

O7(3) 1 −
O−

8.1(3)
1
2q2 − 1

2 −
O+

8.1(3)
1
2q2 − 1

2 +
O8.2(3) q3 − q +

Proof The partition of Proposition 8.1 is used. Here the different cases are considered by
increasing degree of ϕ̃.

(1) If deg(ϕ̃) = 1, then the base divisor has degree 2 and L is a chord or a tangent: O1,
O2 or O3.

O1: Real chords are in 3-planes, but do not contribute to μq , since the points on these
lines contribute already to a1(T ) or a2(T ).

O2 = O′
2: A plane that contains a tangent line at P of C3(q), intersects C3 in the divisor

2P + P ′ where P ′ is another point of C3(q). Hence, tangent lines are not contained in a
3-plane.

O3: A plane that contains an imaginary chord at Q, intersects C3 in the divisor Q + P
where P is a point of C3(q) and Q a place of degree 2. Hence, imaginary chords are not
contained in a 3-plane.

(2) If deg(ϕ̃) = 2, then the base divisor is a place P1 of degree 1 and L is a unisecant:O4

or O5.
O−

4 (2): In this case ϕ̃ is purely separable and ϕ̃−1(x) consists of one point, for all x .
Hence, there are no 3-planes containing L.

In all other subcases of O4 or O5 the morphism ϕ̃ is separable by Propositions 8.1 and
6.9. Hence, there is an Fq -rational point x on P1 such that ϕ̃−1(x) consists of two Fq -rational
points P2(x) and P3(x) which are distinct from P1 by Proposition 6.13. So apart from P1,
that is in all planes containing L, there is a 3-plane that contains P1, P2(x) and P3(x).

(3) If deg(ϕ̃) = 3, then ϕ = ϕ̃) has no base points and L is an axis or a passant. These
are the remaining cases of Proposition 8.1.

O′
1: real axes with representative rational function ϕ(x) = x3 and corresponding line L.

So 
ϕ(x, y) = x2 + xy + y2

If q = 1 mod 3, then the double point scheme Eϕ contains (x, ωx) and (x, ω2x) with
ω3 = 1 and ω 
= 1. Hence, there is a 3-plane containing L and the three points P(x), P(ωx)

and P(ω̄x) if x 
= 0 and x 
= ∞. So we get a contribution toμq . Furthermore, Eϕ is reducible
over Fq containing two components of bidegree (1, 1) that intersect in (0, 0) and (∞,∞). If
q = −1 mod 3, then Eϕ has no Fq -rational points except (0, 0) and (∞,∞) and there is no
contribution to μq . EL is irreducible over Fq , but reducible over Fq2 with two components
that are conjugate and intersect in (0, 0) and (∞,∞).
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O′
3: Imaginary axes, p 
= 3, with representative rational function ϕ(x) = (x3 − 3nx −

n)/(x2 + x + 1
3 (1 − n)) and corresponding line L. where x2 + x + n is irreducible, that is

the discriminant 1 − 4n is a non-square if q is odd, and tr(n) = 1 if q is even. Then


ϕ(x, y) = x2y2 + xy(x + y) + 1
3 (1 − n)(x2 + xy + y2) + 3xy + n(x + y) + n2.

Let ξ and ξ̄ be the roots of x2 + x + n. Consider the line L and the point P(x) on C3(q).
Under the null-polarity L and P(x) are mapped to L′ and P ′(x), respectively, where L′
is an imaginary chord of 03. So L′ intersects 03 in the conjugate points P ′(ξ) and P ′(ξ̄ ).
There exists a fractional transformation ϕ ∈ Gq2 , that is with coefficients in Fq2 such that
ϕ(ξ) = ξ , ϕ(ξ̄ ) = ξ̄ and ϕ(x) = 0. Then ϕ̄(x) = 0, ϕ̄(ξ̄ ) is the conjugate of ϕ(ξ) which is
ξ̄ , and similarly ϕ̄(ξ) = ξ . So ϕ̄ = ϕ, since Gq2 acts sharply 3-transitive on P

1(q2). Hence,
ϕ ∈ Gq and we assume without loss of generality that x = 0.

Now 
ϕ(0, y) = 1
3 (1 − n)y2 + ny + n2. This quadratic polynomial has discriminant

−3(1 − 4n)n2/9. If q is odd there are two distinct solutions if −3 is a non-square, since
1 − 4n is a non-square. So there is 3-plane containing L if q ≡ 2 mod 3, and there is no
such 3-plane if q ≡ 1 mod 3. If q is even, the quadratic equation becomes y2+y+n+1 = 0,
and we find a 3-plane for some y if the trace of ac/b2 is 0, where a = 1, b = 1 and c = n +1.
So tr(n + 1) = 0. Hence, tr(1) = 1, since tr(n) = 1. This again is the case if and only if
q ≡ 2 mod 3.

O′
5: Passants in an osculating plane, p 
= 3, with representative rational function =

x3/(x2 − v) and corresponding line L. Then


ϕ(x, y) = x2y2 − v(x2 + xy + y2).

We first consider the case that q is odd. The discriminant of 
ϕ(x, y) as polynomial in y
is vx2(4x2 − 3v). This discriminant is a square if and only if 4vx2 − 3v2 − u2 = 0 has a
Fq -rational solution (x, u). The projective curve with equation 4vx2 − 3v2z2 − u2 = 0 in
the variables x , u and z with parameter v defines a nonsingular conic with q + 1 Fq -rational
points, with at most 2 points where z = 0, at most 2 points for which u = 0, at most 2 points
leading to a solution x = y. So for q > 6 there is an x ∈ Fq such that the discriminant is
a non-zero square giving two solutions of 
ϕ(x, y) = 0 in y which are distinct from x . So
there is a 3-plane that contain the line L.

O′
5(2): is the subclass ofO′

5 with q even. In this case v is a square and we can take v = 1.
We want tr(ac/b2) = 0 with a = x2 + 1, b = x and c = x2, so tr(x2 + 1) = 0. Now the
map x �→ x2 + 1 is a bijection, so it has trace 0 for 1

2q values of x . So we get a contribution
to μq and the number of 3-planes containing L1 is 1 + 1

2q .
Hence, in all subcases of O′

5 we get a contribution to μq .
O6 = O′

6: true passants not in an osculating plane. Let L be a line in this class. The
corresponding rational function ϕ is separable and simple by Proposition 8.1. Hence, Eϕ is
a curve of genus 1 by Corollary 7.11. Furthermore, for q ≥ 23 there exist three mutually
distinct elements x, y, z in P

1(q) such that ϕ(x) = ϕ(y) = ϕ(z) by Remark 7.12. Hence,
P(x), P(y) and P(z) determine a 3-plane containing L.

O7(3): The axis of 03, p = 3. The pencil of planes containing the axis consists of all
osculating planes. Hence, the axis does not lie on a 3-plane.

O8(3): Passants meeting the axis, p = 3. This class has three orbits:
O8.1(3): The representative rational function is ϕ(x) = x3 − ux with corresponding line

L. Then 
ϕ(x, y) = x2 + xy + y2 − u and 
ϕ(x, y) = 3x2 − u = −u 
= 0, since p = 3.
The discriminant of 
ϕ(x, y) as polynomial in y is x2 − 4(x2 − u) = u.
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O8.1(3)−: This is the subcase with u a non-square. Hence, 
ϕ(x, y) = 0 has no solutions
in y for all x . The point x = ∞ corresponds with a plane tangent to C3 at P(∞), which is
not a 3-plane. Hence, there are no 3-planes containing L.

O8.1(3)+: This is the subcase with u = 1 a non-zero square. Then the discriminant is 1.
Hence, there are two solutions y = x ± 1 which are distinct from x . Therefore, there are
3-planes containing L.

O8.2(3): The representative rational function is ϕ(x) = x3 − x2 with corresponding
line L. Then 
ϕ(x, y) = x2 + xy + y2 − x − y and 
ϕ(x, x) = 3x2 − 2x = x , since
p = 3. So, if 
ϕ(x, x) = 0, then x = 0. The discriminant of 
L(x, y) as polynomial in
y is (x − 1)2 − 4(x2 − x) = 1 − x must be a non-zero-square. If q > 3, then there is a
x ∈ Fq \ {0, 1} such that 1 − x is a non-zero square, and 
ϕ(x, y) = 0 has two solutions in
y not equal to x . Hence, there is a 3-plane containing L. ��
Remark 8.5 Theorem 8.4 was enough to solve our problem, that is to know wether a line of
a given class is contained in a 3-plane or not. In [4, Theorem 3.3] a more detailed result is
given:

(a) For all classes of lines, including O6, the exact number is computed of lines of a given
class that are contained in a plane of a given class.

(b) For all classes of lines, apart fromO6, the exact number is computed of planes of a given
class through a line of a given class.

(c) For the lines of O6, the average number is computed of planes of a given class through
a line of O6.
So in fact for all cases, apart fromO6 we could have referred to [4, Theorem 3.3] instead.

Remark 8.6 The permutation rational functions of degree 3 are classified in [8]. There are 6
of them and they confirm the findings in the table of Proposition 8.4: O′

3 for q ≡ 1 mod 6,
O′

1 for q ≡ 2 mod 6, O7(3) and O8.1(3)− for q ≡ 3 mod 6, O′
3 for q ≡ 4 mod 6, and

O′
1 for q ≡ 5 mod 6.

We summarize our findings in the following.

Theorem 8.7 If q ≥ 23, then

μq =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q4 + q3 + 1
2q2 + 1

2q if q = 1 mod 6

q4 + q3 + 1
2q2 − 3

2q − 1 if q = 2 mod 6

q4 + q3 + 1
2q2 − 1

2 if q = 3 mod 6

q4 + q3 + 1
2q2 − 1

2q − 1 if q = 4 mod 6

q4 + q3 + 1
2q2 − 1

2q if q = 5 mod 6

Proof This follows from Proposition 8.4 by adding up the sizes of the corresponding entries
in the second column if there is a plus sign in the corresponding row and column of i mod 6.

��

9 Conclusion

The extended coset leader weight enumerator of the generalized Reed–Solomon [q + 1, q −
3, 5]q code is computed for q ≥ 23. For this we need to refine the known classification [3, 13]
of the points, lines and planes in the projective three space under the action of projectivities
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that leave the twisted cubic invariant. The given classification is complete except for the class
O6 of true passants not in an osculating plane. The refined classification and the line-plane
incidence, apart from O6 are also obtained in [4, 5, 10].

The relation between codimension 2 subspaces of Pr and rational functions of degree at
most r is given.

Furthermore, the double point scheme Eϕ of a rational function ϕ is studied in general. If
the rational function ϕ is a separable simple morphism of degree d , then Eϕ is an absolutely
irreducible curve of genus (d − 1)2. In particular, the pencil of a true passant of the twisted
cubic, not in an osculating plane gives a curve of genus 1 as double point scheme.

In order to compute the (extended) list weight enumerator [17] of this code is beyond the
scope of this article, since one needed to know the distribution of the numbers of Fq -rational
points of the double point schemes of all the passants not in an osculating plane.
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