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Abstract
New constructions for moderate-density parity-check (MDPC) codes using finite geometry
are proposed. We design a parity-check matrix for the main family of binary codes as the
concatenation of two matrices: the incidence matrix between points and lines of the Desar-
guesian projective plane and the incidence matrix between points and ovals of a projective
bundle. A projective bundle is a special collection of ovals which pairwise meet in a unique
point. We determine the minimum distance and the dimension of these codes, and we show
that they have a natural quasi-cyclic structure. We consider alternative constructions based
on an incidence matrix of a Desarguesian projective plane and compare their error-correction
performance with regards to a modification of Gallager’s bit-flipping decoding algorithm. In
this setting, our codes have the best possible error-correction performance after one round of
bit-flipping decoding given the parameters of the code’s parity-check matrix.
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1 Introduction

The close interplay between coding theory and finite geometry has emerged multiple times
in the last 60 years, starting from the works of Prange [27] and Rudolph [31], where they
proposed to construct linear codes starting from projective planes. Their idea was to use
the incidence matrix of the plane as a generator matrix or as a parity-check matrix of a
linear code, showing that the underlying geometry can be translated in metric properties of
the corresponding codes. Generalizations of these constructions have been studied since the
70’s and are still the subject of active research (see [2]). The relations between these two
research areas had also a strong impact in the opposite direction. The most striking example
is certainly the non-existence proof of a finite projective plane of order 10 shown in [20]. This
groundbreaking result came—with the help of a computer—after a series of papers analyzed
the binary linear code coming from a putative projective plane of order 10.

A very important class of codes which was sensibly influenced by geometric constructions
is given by low-density parity-check (LDPC) codes, which were introduced by Gallager in
his seminal 1962 paper [7]. LDPC codes, as originally proposed, are binary linear codes with
a very sparse parity-check matrix. This sparsity property is the bedrock of efficient decoding
algorithms. Already Gallager provided two of such algorithms whose decoding complexity
per iteration is linear in the block length. However, LDPC codes came to fame much later,
when in 2001 Richardson, Shokrollahi and Urbanke [29] were able to show that LDPC
codes are capable to approach the Shannon capacity in a practical manner. The above authors
derived this result using random constructions of very large and sparse parity-checkmatrices.
Because of these random constructions the performance of the codes was only guaranteed
with high probability and there was also the practical disadvantage that the storage of a
particular parity-check matrix required a lot of storage space.

There are several design parameters onewants to optimizewhen constructingLDPCcodes.
On the side of guaranteeing that the distance is reasonably large, it was realized early that it
is desirable that the girth of the associated Tanner graph is large as well. This last property
helps to avoid decoding failures in many decoding algorithms. Thus, in order to guarantee
that an LDPC code had desirable design parameters, such as a large distance or a large girth
of the associated Tanner graph, some explicit constructions were needed. Already in 1982
Margulis [23] used group theoretic methods to construct a bipartite Cayley graph whose girth
was large. This line of research was extended by Rosenthal and Vontobel [30] using some
explicit constructions of Ramanujan graphs, which have exceptionally large girth.

Maybe the first time objects from finite geometry were used to construct explicitly some
good LDPC codes was in the work of Kou, Lin and Fossorier [19]. These authors gave four
different constructions using affine and projective geometries over finite fields which did
guarantee that the resulting code had a good distance and the associated Tanner graph had a
girth of at least 6. Using points and lines in Fm

q Kim, Peled, Perepelitsa, Pless and Friedland
[18] came up with incidence matrices representing excellent LDPC codes. In the last 15 years
there has been active research to come up with further explicit constructions of LDPC codes
with desirable parameters based on combinatorial structures [12, 19, 22, 35, 36].

Moderate-density parity-check (MDPC) codes were first introduced by Ouzan and Be’ery
[25]. Misoczki, Tillich, Sendrier and Barreto [24] showed that MDPC codes could still be
decoded with low complexity as long as the row-weight of each row vector of the parity-
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check matrix was not much more than the square root of the length of the code. These authors
also showed that MDPC codes are highly interesting for the use in the area of code based
cryptography. Similar as for LDPC codes, it is an important task to come up with explicit
constructions of MDPC codes where, e.g., a good minimum distance can be guaranteed.
Already Ouzan and Be’ery [25] provided a construction using cyclotomic cosets. Further
constructions using quasi-cyclic codes can be found in [11, 24].

This paper adds another dowel to the theory of error-correcting codes arising from geo-
metric objects. We propose a new construction of linear codes using projective bundles in a
Desarguesian projective plane, resulting in a family ofMDPC codes. Concretely, a projective
bundle in a projective plane of order q is a collection of q2 + q + 1 ovals which mutually
intersect in a unique point. We consider the incidence structure consisting of the lines of
a projective plane together with the ovals of a projective bundle. Such an incidence struc-
ture arises from studying the Fq -sublines of a scattered linear set of pseudoregulus type in
PG(1, q3) [21]. The incidence matrix of this structure will serve as a parity-check matrix of
the proposed binary codes. We completely determine their dimension and minimum distance
for both q even and odd. In addition, we observe that we can design these codes to possess
a quasi-cyclic structure of index 2. As a consequence, their encoding can be achieved in
linear time and implemented with linear feedback shift registers. Moreover, also the storage
space required is only half their length. We then generalize this construction and consider
other variations. Their error-correcting performance with regards to Gallager’s bit-flipping
algorithm is discussed.

The main motivation arises from [34], where the error-correction capability of the bit-
flipping decoding algorithm on the parity-check matrix of an MDPC code was analyzed.
There, it was derived that its performance is inversely proportional to the maximum column
intersection of the parity-check matrix, which is the maximum number of positions of ones
that two distinct columns share. We show indeed that the maximum column intersection of
the derived parity-checkmatrices is the smallest possible for the chosen parameters, implying
in turn the best possible performance for one round of the bit-flipping algorithm.

The paper is organized as follows: Sect. 2 consists of the coding theory background needed
in the paper. In particular, we introduce the family ofMDPC codes and we recall the result on
the performance of the bit-flipping algorithm presented in [34], which was decisive for the
idea of this construction. In Sect. 3 we give a brief overview on projective planes, studying
the basic properties of codes arising from them. Section 4 is dedicated to the new proposed
MDPC code design using projective bundles. Here, we study some of the code properties and
we determine its dimension, minimum distance and minimum weight codewords. The paper
is based on the master’s thesis of the first author [5] and in this section we extend the results
which were originally stated there. The goal of Sect. 5 is to generalize the results stated in
Sect. 4 in order to have more flexibility in the choice of the parameters. This is done by using
several disjoint projective bundles instead of only one. We then propose another construction
of binary codes in Sect. 6, which only uses the incidence matrix of a projective plane and its
transpose, and study minimum distance and minimum weight codewords. We then compare
the error-correction performances of the new codes by running several experiments. Finally,
we recap our findings and draw some conclusive remarks in Sect. 7.
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2 Coding theory andmoderate-density parity-check codes

Let us start by briefly recalling some basics of coding theory. Throughout the paper q will
always be a prime power, and we will denote the finite field with q elements by Fq . The set
of vectors of length n over Fq will be denoted by Fn

q .
We consider the Hamming weight on F

n
q defined as

wt(v) := |{i ∈ {1, . . . , n} | vi �= 0}| .
It is well-known that it induces a metric, namely the Hamming distance which is given by

dH : Fn
q × F

n
q −→ N

(u, v) �−→ wt(u − v).

Definition 2.1 A q-ary linear code C of length n and dimension dim(C) = k is a k-
dimensional linear subspace ofFn

q endowedwith theHammingmetric. Theminimumdistance
ofC is theminimumamongall the possibleweights of the nonzero codewords and it is denoted
by d(C), i.e.

d(C) := min{wt(c) | c ∈ C, c �= 0}.
In general, finding the minimum distance of a linear code and classifying its nonzero

codewords of minimum weight is not an easy task. Even for linear codes from geometric
constructions, it is often highly non-trivial to find sharp bounds or a classification of the
smallest weight words, see for example [1, 3, 17, 26, 35].

A q-ary linear code of length n and dimension k will be denoted for brevity by [n, k]q
code, or by [n, k, d]q code if the minimum distance d is known.

Any [n, k]q code C has a dual code which is defined as

C⊥ = {x ∈ F
n
q | x · c� = 0, ∀c ∈ C}.

A generator matrix of an [n, k]q code C is a matrix G ∈ F
k×n
q whose rows form a basis

of C . A generator matrix H ∈ F
(n−k)×n
q for the dual code C⊥ is called a parity-check matrix

of C . Note that C can also be represented by a parity-check matrix H , since it corresponds
to its right kernel, i.e.

C = ker(H) = {c ∈ F
n
q | c · H� = 0}.

Amatrix A ∈ F
r×s
q is said to have row-weight w, for some nonnegative integerw, if every

row of A has Hamming weight equal to w. Similarly, we say that A has column-weight v, if
each of its columns has Hamming weight v.

In the following we will focus on the family of moderate-density parity-check (MDPC)
codes. They are an extension of the well-known low density parity-check (LDPC) codes,
and they are defined by the row-weight of a parity-check matrix. The terminology was first
introduced in [25], and then these codes were reintroduced and further generalized in [24]
for cryptographic purposes.

Definition 2.2 Let {Ci } be a family of binary linear codes of length ni with parity-check
matrix Hi . If Hi has row weight O(

√
ni ), {Ci } is called a (family of) moderate-density

parity-check (MDPC) code. If, in addition, the weight of every column of Hi is a constant
vi and the weight of every row of the Hi is a constant wi we say the MDPC code is of type
(vi , wi ).
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MDPC codes have been constructed in various ways. In their seminal paper [25], Ouzan
and Be’ery designed cyclic MDPC codes carefully choosing the idempotent generator of the
dual code. This structure has been generalized in order to design quasi-cyclic MDPC codes
(see [11, 24]). A different approach has been proposed in [34], where a random model is
considered.

In the definition of an MDPC code the chosen parity-check matrix is very important.
Indeed, as for LDPC codes, an MDPC code automatically comes together with a decod-
ing algorithm—for instance the bit-flipping algorithm—whose performance depends on the
chosen parity-check matrix. Thus, in order to study the error-correction performance, we
introduce the following quantity.

Definition 2.3 Let H be a binary matrix. The maximum column intersection is the maximal
cardinality of the intersection of the supports of any pair of distinct columns of H .

The following result was found by Tillich in 2018 (for more details and the proof see
[34]). It states the amount of errors that can be corrected within one round of the bit-flipping
decoding algorithm.

Theorem 2.4 Let C be an MDPC code of type (v,w) with parity-check matrix H. Let sH
denote the maximum column intersection of H. Performing one round of the bit-flipping
decoding algorithm with respect to H, we can correct all errors of weight at most 
 v

2·sH �.
It hence follows that, the smaller sH , the more errors can be corrected after one round of the
bit-flipping decoding algorithm. Using a random construction as the one proposed by Tillich,
the expected value for the maximum column intersection sH is O(

log n
log log n ), as shown in [34,

Proposition 2]. We would like to design MDPC codes in such a way that sH is as small as
possible and, more importantly, that sH is deterministic. With this we can ensure that the
bit-flipping decoder is able to correct a given amount of errors, which we will discuss in
Sects. 4.3 and 6.2.

3 MDPC codes from projective planes

The projective plane PG(2, q) is a point-line geometry constructed from a three-dimensional
vector space V over Fq . Its points and lines are the one- and two-dimensional subspaces
of V , respectively and the containment relation in V defines the incidence relation of the
plane. It has q2 + q + 1 points and equally many lines. The geometry satisfies the following
properties:

1. Any two distinct points are incident with exactly one common line;
2. Any two distinct lines are incident with exactly one common point;
3. There are four points such that no three of them are collinear.

This means that PG(2, q) can also be regarded as a symmetric 2-(q2 + q + 1, q + 1, 1)-
design, where the lines correspond to the blocks. Moreover, every line in PG(2, q) is incident
with q + 1 points and dually, every point is incident with q + 1 lines. One way to represent
PG(2, q) is by an incidence matrix. This is a matrix A whose rows and columns are indexed
by points and lines, respectively such that

(A)p� =
{
1 if p is incident with �

0 otherwise.
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Here we describe an alternative way to represent the projective plane PG(2, q). We can
identify the set of points with the integers modulo q2+q+1. For the description of the lines,
we will follow the instruction presented by Hirschfeld in [10, p77—p79]. Let us therefore
introduce the following set.

Definition 3.1 A set D = {d0, . . . , dr } ⊆ Z/(r2 + r + 1)Z is called a perfect difference set,
if all differences (di − d j ) with i �= j , are distinct modulo r2 + r + 1, for i, j ∈ {0, . . . , r}.
Example 3.2 For instance, consider r = 2. One can show that the set D = {0, 1, 3} of
r + 1 = 3 integers is indeed a perfect difference set, since any two differences between two
distinct elements are pairwise disjoint modulo r2 + r + 1 = 7.

Hirschfeld showed in [10, Theorem 4.2.2 and its Corollary] that the set of lines of PG(2, q)

is fully described by the circulant shifts modulo q2 + q + 1 of a perfect difference set of
q + 1 elements. In this way we obtain a circulant incidence matrix in which the support of
the first column is D.

In order to illustrate this, consider the Fano plane PG(2, 2) consisting of seven points and
lines.We have seen, that the points will be identified with the integers modulo q2+q+1 = 7.
For the set of lines we will use the cyclic shifts (modulo 7) of the set D = {0, 1, 3}, which we
have seen is in fact a perfect difference set. Explicitly, we obtain the following set of points
P and set of lines L

P = {0, 1, 2, 3, 4, 5, 6},
L = {{0 + i, 1 + i, 3 + i} | i ∈ {0, . . . , 6}}.

The defining properties of projective planes have made them a good source of error-
correcting codes by taking their incidence matrices as the parity-check matrix, as was done
already in the late 1950s, cf. [27] or [31].

Definition 3.3 Let H be an incidence matrix of Π = PG(2, q) over the binary finite field F2.

We define the code C2(Π)⊥ ⊆ F
q2+q+1
2 via

C2(Π)⊥ = ker(H).

Codes from planes have been intensively studied and many properties have been derived
thanks to the underlying geometric structure. Among the most relevant properties, Graham
and MacWilliams [9] completely determined the dimension of the codes Cp(Π)⊥ over Fp

and their minimum distance when p = 2 was determined by Assmus and Key [2]. Here we
state the two results, restricting ourselves only to the case p = 2.

Theorem 3.4 The code C2(Π)⊥ is a [q2 + q + 1, k, d]2 code, where

(k, d) =
{

(1, q2 + q + 1) if q is odd ,

(22h − 3h + 2h, 2h + 2) if q = 2h .

The first part just follows from the observation that if A is the incidence matrix of a
projective plane of order q , then by definition

A�A = AA� = q I + J ,

where I is the identity matrix and J the all-one matrix of size q2 + q + 1.
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From Theorem 3.4 we can see that binary codes from PG(2, q) are only interesting when-
ever q is even. Moreover, one can see that the incidence matrix of Π has constant row and
column weight equal to q + 1 which is O(

√
q2 + q + 1). Hence, codes from projective

planes are very special examples of MDPC codes. With the aid of Theorem 2.4, we can show
that one round of the bit-flipping algorithm on these codes permits to decode up to half the
minimum distance with no failure probability, for any projective plane.

Theorem 3.5 Let Π be a projective plane of even order and H its incidence matrix, which is
the parity-check matrix of the code C2(Π)⊥. After performing one round of bit-flipping on H
we can correct any error of weight up to 
 d−1

2 �, where d is the minimum distance of C2(Π)⊥.

Proof Since a projective plane is in particular a symmetric 2-(q2 + q + 1, q + 1, 1)-design,
the maximum column intersection of H is 1. Moreover, the matrix H is of type (q+1, q+1).
Hence, applying Theorem 2.4, we obtain that one round of the bit-flipping algorithm corrects
every error of weight at most 
 d−1

2 �. 
�
Theorem 3.5 shows that codes from planes are really powerful, and have the best per-

formance according to Theorem 2.4, for a given matrix of type (q + 1, q + 1) and size
(q2 + q + 1) × (q2 + q + 1). However, we can only construct codes from projective planes
of even order, resulting in [22h + 2h + 1, 22h − 3h + 2h, 2h + 2]2 codes. This lack of choice
of the parameters motivated many variations on this construction. In the last 50 years, many
codes have been constructed based on underlying geometric objects: Euclidean and projec-
tive geometries over finite fields [6, 19, 33], linear representation of Desarguesian projective
planes [26], (semi-)partial geometries [16, 35], generalized quadrangles [17, 36], general-
ized polygons [22], Ramanujan graphs [23, 30], q-regular bipartite graphs from point line
geometries [18] and other incidence structures coming from combinatorial designs [12–15].

For the same reason, we propose a new construction of (families of) MDPC codes based
on a suitable system of conics in a Desarguesian projective plane that behaves itself like a
projective plane. This is encapsulated in the concept of projective bundles, which we define,
along with other notions from finite geometry, in the following section.

4 MDPC codes from projective bundles

In this section we present the new MDPC codes using projective bundles by constructing its
parity-check matrix. We start off by introducing the relevant geometrical objects, which are
ovals and projective bundles in PG(2, q).

Definition 4.1 An oval in PG(2, q) is a set of q + 1 points, such that every line intersects it
in at most two points.

The classical example of an oval is a non-degenerate conic, i.e. the locus of an irreducible
homogeneous quadratic equation. When q is odd, Segre’s seminal result [32] shows that the
converse is also true: every oval is a conic.

Definition 4.2 A line in PG(2, q) is skew, tangent or secant to a given oval if it intersects it
in zero, one or two points, respectively.

We recall some properties of ovals which were first recorded by Qvist [28]. We include
the proof as it will be relevant later.
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Lemma 4.3 An oval in PG(2, q) has q + 1 tangent lines, one in each point.

– If q is odd, every point not on the oval is incident with zero or two tangent lines.
– If q is even, then all tangent lines are concurrent.

Proof Consider a point on the oval. Then there are q lines through this point intersecting the
oval in one more point. This means that one line remains, which is necessarily a tangent line,
hence proving the first part of the lemma.

Now suppose that q is odd and consider a point on a tangent line, not on the oval. As the
number of points of the oval, i.e. q + 1, is even, this point is incident with an odd number of
tangent lines more. Since the point is arbitrary, and there are q + 1 tangent lines in total, this
implies that every point on the tangent line (but not on the oval) is incident with exactly two
tangent lines.

When q is even, we consider a point on a secant line, but not on the oval and proceed in
a similar fashion as before: the number of points on the oval but not on the secant is q − 1
and hence odd, so this point is incident with an odd number of tangents. Since this point is
arbitrary, and there are q + 1 tangent lines, this implies that every point on the secant line
is incident with exactly one tangent line. This also means that the intersection point of two
tangent lines is necessarily the intersection of all tangent lines: this intersection point cannot
be on a secant as we just saw, so the q + 1 lines through the point are either tangent or skew.
Since the oval has q + 1 points, which are all contained in one of these lines, we deduce that
they must be all tangent. 
�

When q is even, one can add the point of concurrency of the tangent lines, which is called
the nucleus, to the oval to obtain a set of q + 2 points that has zero or two points in common
with every line. This leads us to the following definition.

Definition 4.4 A hyperoval is a set of q + 2 points in PG(2, q) such that every line has zero
or two points in common. A dual hyperoval is a set of q + 2 lines such that every point is
incident with zero or two lines.

We will encounter these objects again later on. We are now in the position to define
projective bundles.

Definition 4.5 A projective bundle is a collection of q2 + q + 1 ovals of PG(2, q) mutually
intersecting in a unique point.

Projective bundles were introduced by Glynn in his Ph.D. thesis [8] under the name
‘packings of (q + 1)-arcs’. The original definition is a bit more general and applies to any
projective plane instead of just PG(2, q). Since the only known projective bundles exist in
PG(2, q), it suffices for our purposes to restrict ourselves to this case.

It follows from the definition that one can consider the points of PG(2, q) and the ovals
of a projective bundle as the points and lines of a projective plane of order q . We can then
define the notion of secant, tangent and skew ovals (which belong to the projective bundle)
with respect to a line. Moreover, one can interchange the role of lines and ovals in the proof
of Lemma 4.3 and find the following statement, which we record for convenience.

Lemma 4.6 Given a projective bundle, a line in PG(2, q) has q + 1 tangent ovals, one in
each point.

• If q is even, then all tangent ovals are concurrent.
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• If q is odd, every point not on the line is incident with zero or two tangent ovals to this
line.

When q is even, we can similarly as before define a hyperoval of ovals as a set of q + 2
ovals such that every point is contained in zero or two of them.

An interesting property of projective bundles is that a third projective plane can be found.
This result is due to Glynn [8, Theorem 1.1.1] and served as the motivation for projective
bundles: to possibly find new projective planes from known ones.

Theorem 4.7 Consider the ovals of a projective bundle and the lines of PG(2, q) as points
and lines, respectively, with incidence defined by tangency. Then this point-line geometry is
a projective plane of order q.

We can rephrase this in terms of incidence matrices as follows: if A and B are the point-
line incidence matrices of PG(2, q) and the projective plane whose lines are the ovals of a
projective bundle, then A�B (mod 2) is again the incidence matrix of a projective plane.
However, for q even this idea to construct new projective planes does not work, since then
all three projective planes are isomorphic [8, Corollary 1.1.1].

Glynn showed that projective bundles indeed exist for any q , and his examples are all
bundles of conics.When q is odd, he showed the existence of three distinct types of projective
bundles in PG(2, q), by identifying them with planes in PG(5, q). It was shown in [4] that
perfect difference sets can also be used to describe these projective bundles. In fact, given a
perfect difference set D ⊆ Z/(q2 + q + 1)Z and its circular shifts corresponding to the set
of lines of PG(2, q), the three bundles are represented in the following way.

1. Cirumscribed bundle: set of all circular shifts of −D.
2. Inscribed bundle: set of all circular shifts of 2D.
3. Self-polar bundle: set of all circular shifts of D/2.

We are now going to construct the parity-check matrix as mentioned at the beginning of
this section. Let us denote the projective plane formed by the points and lines of PG(2, q)

by Π and the one formed by the points and the ovals of a projective bundle of PG(2, q) by Γ .
Then define

H = ( A | B ), (1)

where A and B are the incidence matrices of Π and Γ , respectively. Hence, we obtain a
(q2 + q + 1) × 2(q2 + q + 1) binary matrix defined by the points, lines and ovals of a
projective bundle of PG(2, q).

Definition 4.8 A binary linear code with parity-check matrix H given in (1) is called a
projective bundle code and we will denote it by

C2(Π � Γ)⊥ = ker(H).

Clearly, the matrix H given in (1) has constant row-weight w = 2(q + 1) and constant
column-weight v = q+1. Hence,C2(Π�Γ)⊥ is anMDPC code of length n = 2(q2+q+1)
and type (q + 1, 2(q + 1)).

Remark 4.9 The family of MDPC codes that we are considering is built upon a parity-check
matrix as in (1). In such a matrix the number of columns is twice the number of rows and
this coincides with the setting originally studied in [24].

123



2952 J. Bariffi et al.

Example 4.10 Let us give a short example of a projective bundle code for a relatively small
parameter q = 3. Hence, we consider the projective plane PG(2, 3). Recall, that the set of
points P is given by the set of integers modulo q2 +q +1 = 13. The set of lines L is defined
by the image of a perfect difference set D of four integers under repeated application of the
Singer cycle S(i) = i + 1. It is easy to verify that D = {0, 1, 3, 9} is a perfect difference set,
i.e.

L = {{0 + i, 1 + i, 3 + i, 9 + i} | i ∈ Z/13Z}.
At this point, let us choose an inscribed bundle BI in PG(2, 3). As shown above, this bundle
is represented by the cyclic shifts of 2D = {0, 2, 5, 6}. Hence, we obtain

BI = {{0 + i, 2 + i, 5 + i, 6 + i} | i ∈ Z/13Z}.
Concatenating the two corresponding incidence matrices A and B yields the desired parity-
check matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 · · · · · 1 · 1 1 · · · · · · 1 1 · · 1 ·
1 1 · · · 1 · · · · · 1 · · 1 · · · · · · 1 1 · · 1
· 1 1 · · · 1 · · · · · 1 1 · 1 · · · · · · 1 1 · ·
1 · 1 1 · · · 1 · · · · · · 1 · 1 · · · · · · 1 1 ·
· 1 · 1 1 · · · 1 · · · · · · 1 · 1 · · · · · · 1 1
· · 1 · 1 1 · · · 1 · · · 1 · · 1 · 1 · · · · · · 1
· · · 1 · 1 1 · · · 1 · · 1 1 · · 1 · 1 · · · · · ·
· · · · 1 · 1 1 · · · 1 · · 1 1 · · 1 · 1 · · · · ·
· · · · · 1 · 1 1 · · · 1 · · 1 1 · · 1 · 1 · · · ·
1 · · · · · 1 · 1 1 · · · · · · 1 1 · · 1 · 1 · · ·
· 1 · · · · · 1 · 1 1 · · · · · · 1 1 · · 1 · 1 · ·
· · 1 · · · · · 1 · 1 1 · · · · · · 1 1 · · 1 · 1 ·
· · · 1 · · · · · 1 · 1 1 · · · · · · 1 1 · · 1 · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the zero entries in the parity-check matrix are represented by dots.

Remark 4.11 Observe that the matrix H defined in (1) can be constructed from a perfect
difference set D, by taking the circular shifts of D and sD, with s ∈ {−1, 2, 2−1}. Such a
matrix has a double circulant structure. Thus, the resulting codeC2(Π�Γ)⊥ is quasi-cyclic of
index 2, and encoding can be achieved in linear time and implemented with linear feedback
shift registers. Furthermore, we can also deduce—because of the circular structure—that the
number of bits required to describe the parity-check matrix is about (q+1) log2(q

2+q+1),
which is approximately 2(q + 1) log2(q).

Remark 4.12 For q odd, when Γ is a circumscribed bundle, the incidence structureΠ�Γ given
by the points of PG(2, q) and the set of lines together with the ovals in Γ has already appeared
in the literature. Indeed, it coincides with the incidence structure given by a scattered linear
set of pseudoregulus type in PG(1, q3) and the set of its Fq -sublines; see [21, Remark 20].

In the following subsections we will analyse the dimension, minimum distance and error-
correction performance with respect to the bit-flipping decoding algorithm of C2(Π � Γ)⊥.

4.1 Dimension

Recall from Theorem 3.4 that a binary code C2(Π)⊥ from a projective plane Π ∼= PG(2, q),
is either trivial of codimension 1—when q is odd—or it is non-trivial to determine its
dimension—when q is even. In our case, the structure of our code allows to both have a
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non-trivial code and to determine the exact dimension for all q . To do so, recall that if A is
the incidence matrix of a projective plane of order q , then

AA� = A�A = q I + J ,

where J is the all-one matrix of appropriate size.
Using this result we are able to state the dimension of C2(Π � Γ)⊥.

Proposition 4.13 Let Π be a projective plane of order q and let Γ be a projective bundle in
Π. Then,

dim
(
C2(Π � Γ)⊥

)
=

{
q2 + q + 2 if q is odd,

22h+1 + 2h+1 − 2(3h) + 1 if q = 2h .

Proof In order to determine the dimension of the code, we need to compute the rank of a
parity-check matrix H = ( A | B ). Since H is of size (q2 + q + 1) × 2(q2 + q + 1), we
can already say that the rank of H is at most q2 + q + 1. Now we consider the two cases.
Case I q odd We know from Theorem 3.4 that rk(A) = q2 + q , which gives us the lower

bound rk(H) ≥ rk(A) = q2 + q .
The matrix H has full rank q2 + q + 1 if and only if there exists no element in the

left-kernel, i.e. if there is no nonzero vector x ∈ F
q2+q+1
2 such that

xH = 0. (2)

However, if x is the all-one vector then Eq. (2) is satisfied. Hence, there is an element in the
cokernel which implies that H cannot have full rank and we conclude that dimC2(Π�Γ)⊥ =
q2 + q + 2.
Case II q even In this case, we consider the matrix

H�H =
(
A�A A�B
B�A B�B

)
=

(
J A�B

(A�B)� J

)
.

By Theorem 4.7 and the discussion below, A�B = C is again the incidence matrix of
PG(2, q), and hence the sum of all its rows/columns is equal to the all-one vector. Therefore,
by doing row operations on H�H , we obtain the matrix(

0 A�B + J
(A�B)� J

)
,

which has the same rank as H�H . Hence,

rk(H) ≥ rk(H�H) = rk(A�B) + rk(A�B + J ) ≥ 2 rk(A�B) − 1,

where the last inequality comes from the fact that J has rank 1, and the rank satisfies the
triangle inequality. On the other hand, we have that the all-one vector is in the column
spaces of both A and B, showing that rk(H) ≤ rk(A) + rk(B) − 1. Since A, B and A�B
are all incidence matrices of a Desarguesian plane, they all have the same rank. Therefore,
combining the two inequalities, we obtain

rk(H) = 2 rk(A) − 1,

and using Theorem 3.4, we can conclude that

dim
(
C2(Π � Γ)⊥

)
= 2(q2 + q + 1) − rk(H) = 2(q2 + q + 1) − 2 rk(A) + 1

= 2 dim(C2(Π)⊥)) + 1 = 22h+1 + 2h+1 − 2(3h) + 1.
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�
We can thus already say that C2(Π � Γ)⊥ is a [2(q2 + q + 1), q2 + q + 2]2 MDPC code of
type (q + 1, 2q + 1).

4.2 Minimum distance

As mentioned earlier, we are interested in the error-correction capability. A relevant quantity
to give information about error-correction and also error-detection is the minimum distance
of a linear code.

In the followingwewill determine the exact value of theminimumdistance ofC2(Π�Γ)⊥.
An important observation for the proof is that geometrically, the support of a codeword of
C2(Π�Γ)⊥ corresponds to a set of lines and ovals such that every point of PG(2, q) is covered
an even number of times.

Theorem 4.14 Theminimum distance of C2(Π�Γ)⊥ is q+2 and the supports of the minimum
weight codewords can be characterized, depending on the parity of q. For q odd, the support
of a minimum weight codeword is

– an oval and its q + 1 tangent lines, or
– a line and its q + 1 tangent ovals.

On the other hand for q even, we find that the support of a minimum weight codeword is

– a dual hyperoval, or
– a hyperoval of ovals.

Proof Take a codeword of minimum weight in C2(Π � Γ)⊥ and consider its support. This is
a set of r lines L and s ovals O such that every point in PG(2, q) is incident with an even
number of these elements. We will show that r + s ≥ q + 2 and equality only holds for the
two examples stated.

Every point is incident with q + 1 lines and q + 1 conics, so let ai , 0 ≤ i ≤ 2q + 2, be
the number of points that are covered i times by the r lines and s conics in the support of the
minimumweight codeword. Thenwe can double count the tuples (P), (P, E1), (P, E1, E2),
where P is a point and E1, E2 ∈ L ∪ O are lines or ovals incident with this point. Remark
that by assumption ai = 0 whenever i is odd. We find the following three expressions:

2q+2∑
i=0

ai = q2 + q + 1 (3)

2q+2∑
i=0

iai = (r + s)(q + 1) (4)

2q+2∑
i=0

i(i − 1)ai ≤ r(r − 1) + s(s − 1) + 2rs, (5)

where the last inequality follows as a line and oval intersect in at most two points. From these
equations, we can find

∑2q+2
i=0 i(i −2)ai ≤ (r +s)(r +s−q−2) and hence r +s ≥ q+2, as

the sum on the left-hand side has only non-negative terms. Moreover, in the case of equality,
ai = 0 whenever i /∈ {0, 2}.
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Now consider a codeword of weight r + s = q + 2, consisting of r lines L and s ovals
O . We will investigate the cases q odd and even separately and show the characterisation.
Case I q odd Since q + 2 is odd and hence one of r or s is, we can suppose without loss of
generality that r is odd. The argument works the same when s is odd, by interchanging the
roles of lines and ovals.

Consider a line not in L . Then this line is intersected an odd number of times by the r lines
in L . Therefore, it should be tangent to an odd number of ovals in O , recalling that every point
is incident with zero or two elements from L ∪ O . In particular, any line not in L is tangent
to at least one oval in O . So count the N pairs (�, c), where � is a line not in L , c ∈ O and
|� ∩ O| = 1. By the previous observation, it follows that q2 + q + 1− r = q2 − 1+ s ≤ N .
On the other hand, a oval has q + 1 tangent lines so that N ≤ s(q + 1). Combining these
two leads to s ≥ q , which implies that r = 1 and s = q + 1. Remark that this argument only
depends on r being odd.

If o ∈ O is one of these q + 1 ovals, we see that the other q ovals intersect O in q distinct
points, as no point is incident with more than two elements from L ∪ O . This immediately
implies that the unique line in L must be tangent to o. As O was arbitrary, we conclude that
the support of the codeword consists of one line and q + 1 ovals tangent to it. By Lemma 4.6
this indeed gives rise to a codeword, as every point not on the line is incident with zero or
two ovals.
Case II q even The situation is slightly different. Since q + 2 is even now, either r and s
are both odd, or both even. When r is odd, we can reuse the argument from before to find
the configuration of q + 1 ovals tangent to a line. However, by Lemma 4.6 we know that
these q + 1 ovals are all incident with a unique point, which is hence covered q + 1 times, a
contradiction.

So suppose that r and s are even. Any line in L is intersected by the r −1 other lines in L ,
leaving q + 1− (r − 1) points to be covered by the ovals in O , which is an even number. We
see that we must have an even number of tangent ovals to this line. Similarly for a line not
in L , we observe that it is intersected an even number of times by the r lines in L and hence
it should have an even number of intersections with the ovals in O , leading again to an even
number of tangent ovals. In summary, every line in PG(2, q) is incident with an even number
of tangent ovals. Now consider any line � and recall that the ovals tangent to � are concurrent,
say in the point N�, by Lemma 4.6. However, as we saw before, N�, like any other point, is
covered zero or twice by the elements of O ∪ L . It follows that N� is incident with zero or
two ovals in O and hence that � is tangent to zero or two ovals of O . So suppose that s > 0,
meaning we have at least one oval in O and consider its q + 1 tangent lines. Then each of
these lines should have one more tangent oval, and all of these are distinct by Corollary 4.7,
which means we find s = q + 2 ovals forming a hyperoval of ovals. If s = 0, we find a dual
hyperoval, concluding the theorem. 
�

4.3 Error-correction capability

It is well-known that the minimum distance of a code gives information about the decoding
radius. This means that it reveals an upper bound on the amount of errors that can be always
detected and corrected.

We would like to focus in this subsection here on the performance of the constructed
MDPC code C2(Π � Γ)⊥ within one round of the bit-flipping decoding algorithm. We now
adapt and apply Theorem 2.4 to the parity-check matrix H of C2(Π � Γ)⊥ given in (1).
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Proposition 4.15 Themaximum column intersection of the matrix H defined in (1) is sH = 2.
Thus, after performing one round of the bit-flipping algorithm on H we can correct all the
errors of weight at most 
 q+1

4 � in the code C2(Π � Γ)⊥.

Proof From the construction of H we have that H consists of two matrices A and B which
are the incidence matrices of points and lines and points and ovals of a projective bundle in
PG(2, q), respectively. Clearly, both matrices A and B have a maximum column intersection
equal to 1 as two distinct lines in a projective plane intersect in exactly one point and a
similar property holds for every pair of distinct ovals of a projective bundle by definition.
Since every line intersects an oval in at most 2 points, the maximum column intersection of
the matrix H is at most 2. On the other hand, if we consider any two distinct points on an oval
in the projective bundle, there always exists a line passing through them. Hence, sH = 2.
The second part of the statement then follows directly from Theorem 2.4. 
�

Remark 4.16 Observe that sH = 1 for a parity-check matrix of size (q2 + q + 1) × c and
column weight q + 1 implies c ≤ q2 + q + 1. this can be seen by counting the tuples
{(x, y, B) | x, y ∈ B} in two ways. Thus, the value sH = 2 is the best possible for c >

q2 + q + 1. Furthermore, compared to a random construction of MDPC code, our design
guarantees a deterministic error-correction performance for one round of the bit-flipping
decoding algorithm. In particular, for the random model proposed in [34] it was proved
that the expected value of sH is O(

log n
log log n ). Hence, our construction guarantees an error-

correction capability for one round of the bit-flipping algorithm which improves the random
construction by a factor O(

log n
log log n ).

Additionally, we have implemented the parity-check matrix for our MDPC code design
as well as the bit-flipping decoding algorithm. We were interested if we could correct even
more errors than the number guaranteed in Proposition 4.15. Since the bit-flipping decoding
algorithm is only dependent on the syndrome and not on the actual chosen codeword, we took
the all-zero codeword and added a pseudo-random error-vector of a fixed weight wt(e) ≥

 q+1

4 �.We have generated 105 distinct error vectors. Each of these error vectors thenwas used
to run one round of the bit-flipping decoding algorithm for all the three different families of
MDPC codes that we have constructed. It turned out that the codes constructed from each of
the three types of projective bundles—circumscribed, inscribed, self-polar—showed exactly
the same error-correction performance.

Finally,we have computed the probability of successful error-correction for the parameters
q ∈ {5, 7, 9, 11, 13, 17, 19, 23, 25}. The following results were obtained for the different
error weights.

Table 1 shows that the probability to correct even more errors grows as we increase q .
This is due to the fact, that for small q we reach the unique decoding radius much faster.

In the following we show some empirical results on the success probability after perform-
ing more than one round of the bit-flipping decoding algorithm (Tables 2, 3).

Remark 4.17 In [34] the author analyzed also the error-correction performance after two
rounds of the bit-flipping decoding algorithm. More precisely he estimated the probability
that one roundof the algorithmcorrects enough errors so that in the second round all remaining
errors will be correctable. Following the notation of that paper, let us denote by S the number
of errors left after one round of the bit-flipping algorithm. Assuming that we have an MDPC
code of length n and of type (v,w), where both v and w are of order �(

√
n), the probability
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Table 1 Probability to correctly
decode a received word, with
error-weight 
 q+1

4 � + i for
i = 1, 2, 3, after one round of the
bit-flipping decoding algorithm

q 
 q+1
4 � + 1 errors 
 q+1

4 � + 2 errors 
 q+1
4 � + 3 errors

5 50.82% 0.16% –

7 7.02% 0.34% –

9 79.31 % 3.86% –

11 43.83% 0.19% –

13 90.4% 14.4% –

17 97.2% 57.8% 7.8%

19 91.8% 42.6% 10.7%

23 97.86 % 77.66% 31.3%

25 99.87% 95.3% 71.25%

Table 2 Probability to correctly
decode a received word, with
error-weight 
 q+1

4 � + i for
i = 1, 2, 3, 4, after two rounds of
the bit-flipping decoding
algorithm

q 
 q+1
4 � + 1 
 q+1

4 � + 2 
 q+1
4 � + 3 
 q+1

4 � + 4

5 64.52% 3.45% – –

7 31.58% 4.75% – –

9 93.41 % 30.77% – –

11 43.83% 0.19% – –

13 99.45% 84.15% 35.52% 0.55%

17 100% 99.35% 84.69% 36.81%

Table 3 Probability to correctly
decode a received word, with
error-weight 
 q+1

4 � + i for
i = 1, 2, 3, 4, after three rounds
of the bit-flipping decoding
algorithm

q 
 q+1
4 � + 1 
 q+1

4 � + 2 
 q+1
4 � + 3 
 q+1

4 � + 4

5 64.52% 3.45% – –

7 45.61% 5.26% – –

9 94.51% 32.97% – –

11 93.23% 33.84% 8.27% –

13 99.45% 94.54% 44.36% 1.64%

17 100% 100% 93.49% 50.81%

that S is at least a certain value t ′ satisfies the following inequality:

P
(
S ≥ t ′

) ≤ 1√
t ′
e
t ′v
4 ln(1−e− 4wt

n )+ t ′
8 ln(n)+O(t ′ ln(t ′/t)), (6)

where t = �(
√
n) is the initial amount of errors that were introduced.

We have seen in Proposition 4.15, that performing one round of the bit-flipping algorithm
to a parity-check matrix H of C2(Π � Γ)⊥ we can correct 
 q+1

4 � errors. Therefore, a second
round of the bit-flipping is able to correct completely if after one round there are nomore than

 q+1

4 � errors left. Applying (6) for t ′ = 
 q+1
4 � to the parity-check matrix H of C2(Π � Γ)⊥

given in (1), we obtain that we can successfully correct every error of weight t = �(
√
n)

after two rounds of the bit-flipping decoding algorithm with probability e−�(n).

123



2958 J. Bariffi et al.

5 Generalizations

Since our aim is to have more flexibility in the parameters, here we generalize the approach
of Sect. 4, by considering several disjoint projective bundles.

Let t > 1 be a positive integer and let us fix aDesarguesian projective planeΠ = PG(2, q).
Let Γ1, . . . , Γt be disjoint1 projective bundles of conics in Π. Since we want sH to be low,
we cannot take projective bundles of ovals in general, as for example two ovals in PG(2, q),
q even, could intersect in up to q points: take any oval, add the nucleus and delete another
point to find a second oval intersecting it in q points. In Proposition 5.3 we will see that by
choosing conics, we find sH = 4. Furthermore, the number t of disjoint projective bundles
cannot be chosen arbitrarily. However, the restrictions we have on t will not affect our intent
to construct MDPC codes; see the discussion in Remark 5.4 for the admissible values of t .

Let us denote by A the incidence matrix of Π and by Bi the incidence matrix of the
projective bundle Γi , for each i ∈ {1, . . . , t}. We then glue together all these matrices and
consider the code C2(Π � Γ1 � . . . � Γt )

⊥ to be the binary linear code whose parity-check
matrix is

Hq,t := (A | B1 | · · · | Bt ) . (7)

As already discussed, it is important to specify which parity-check matrix of a code we
consider when we study the decoding properties, since the bit-flipping algorithm depends on
the choice of the parity-check matrix.

We focus now on the parameters on the constructed codes. We first start with a result on
the dimension of the code C2(Π � Γ1 � . . . � Γt )

⊥

Proposition 5.1 Let Π = PG(2, q) be a Desarguesian projective plane of order q and let
Γ1, . . . , Γt be t projective bundles in Π. Then,

dim
(
C2(Π � Γ1 � . . . � Γt )

⊥)
= t(q2 + q + 1) + 1 if q is odd,

dim
(
C2(Π � Γ1 � . . . � Γt )

⊥)
≥ (t + 1)(22h − 3h + 2h) + t if q = 2h .

Proof The proof goes as for Proposition 4.13.
Case I q odd We know from Theorem 3.4 that rk(A) = q2 + q , which gives us the lower

bound rk(Hq,t ) ≥ rk(A) = q2 + q .
On the other hand, since A and each matrix Bi have the all-one vector in its left-kernel,

we have that also Hq,t has a nontrivial left-kernel, and hence rk(Hq,t ) = q2 + q , yielding

dim
(
C2(Π � Γ1 � . . . � Γt )

⊥)
= (t + 1)(q2 + q + 1) − rk(Hq,t ) = t(q2 + q + 1) + 1.

Case II q even Let us write q = 2h . In this case, we have that the all-one vector belongs to
the column spaces of each matrix Bi . Therefore,

rk(Hq,t ) ≤ rk(A) +
t∑

i=1

rk(Bi ) − t .

1 Here with “disjoint” we mean that any two distinct projective bundles have no common oval.
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Thus, we obtain

dim
(
C2(Π � Γ1 � . . . � Γt )

⊥)
= (t + 1)(q2 + q + 1) − rk(Hq,t )

≥ (t + 1)(q2 + q + 1) − rk(A) −
t∑

i=1

rk(Bi ) + t

= (t + 1) dim(C2(Π)⊥) + t

= (t + 1)(22h − 3h + 2h) + t,

where the last equality comes from Theorem 3.4. 
�
Also in this general casewe can study theminimumdistance of the codeC2(Π�Γ1�. . .�Γt )

⊥,
generalizing the result on the minimum distance obtained when t = 1 in Theorem 4.14.
However, this time we are only able to give a lower bound.

Proposition 5.2 The minimum distance of C2(Π � Γ1 � . . . � Γt )
⊥ is at least

⌈ q+2
2

⌉
.

Proof The proof goes in a similar way as the one of Theorem 4.14. Take a codeword of
minimum weight in C2(Π � Γ1 � . . . � Γt )

⊥ and consider its support. This is a set L of r lines
and a set Oi of si ovals for each i ∈ {1, . . . , t} such that every point in PG(2, q) is incident
with an even number of these elements. We will show that r + s1 + . . . + st ≥ q+2

2 .
Let ai , 0 ≤ i ≤ (t + 1)(q + 1), be the number of points that are covered i times,

then we can double count the tuples (P), (P, E1), (P, E1, E2), where P is a point and
E1, E2 ∈ L ∪ O1 ∪ . . . ∪ Ot are lines or ovals incident with this point. Remark that by
assumption ai = 0 whenever i is odd. We find the following three expressions:

(t+1)(q+1)∑
i=0

ai = q2 + q + 1 (8)

(t+1)(q+1)∑
i=0

iai =
(
r +

t∑
i=1

si

)
(q + 1) (9)

(t+1)(q+1)∑
i=0

i(i − 1)ai ≤ r(r − 1) +
t∑

i=1

si (si − 1) + 2r

( t∑
i=1

si

)
+ 4

( ∑
1≤i< j≤t

si s j

)
, (10)

as two conics intersect in at most 4 points by Bézout’s theorem. Subtracting (9) from (10)
we obtain

0 ≤
(t+1)(q+1)∑

i=0

i(i − 2)ai =
(
r +

t∑
i=1

si

)(
r − q − 2 +

t∑
i=1

si

)
+ 2

( ∑
1≤i< j≤t

si s j

)
.

One can easily check that this last quantity is in turn at most(
r +

t∑
i=1

si

)(
2r − q − 2 + 2

t∑
i=1

si

)
,

which then implies

r +
t∑

i=1

si ≥ q + 2

2
.


�
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As a direct consequence of Proposition 5.2 we have that in principle it should be possible
to correct at least

⌊ q
4

⌋
errors in the code C2(Π � Γ1 � . . . � Γt )

⊥ when q is even, and at least⌊ q+1
4

⌋
when q is odd. However, also in this case, when running one round of the bit-flipping

algorithm on the matrix Hq,t given in (7), we only correct a smaller fraction of them, as the
following result shows.

Proposition 5.3 Themaximum column intersection of the matrix Hq,t defined in (7) is at most
4. Thus, after performing one round of the bit-flipping algorithm on Hq,t we can correct all

the errors of weight at most 
 q+1
8 � in the code C2(Π � Γ1 � . . . � Γt )

⊥.

Proof The maximum column intersection is given by the maximum number of points lying
in the intersection of elements in Π � Γ1 � . . . � Γt . Each pair of lines intersects in exactly a
point, and the same holds for every pair of conics belonging to the same projective bundle,
since each projective bundle is itself (ismorphic to) a projective plane. Moreover, every line
intersects a conic in at most two points, and we have already seen that each pair of conics
meets in at most 4 points. Hence, the maximum column intersection of Hq,t is at most 4. The
second part of the statement directly follows from Theorem 2.4. 
�

Remark 5.4 At this point it is natural to ask whether it is possible to construct disjoint pro-
jective bundles, and—if so—how many of them we can have. It is shown in [4, Theorem

2.2] that one can always find (q − 1) disjoint projective bundles when q is even, and q2(q−1)
2

of them when q is odd. We want to remark that this is not a restriction, since we still want
that our codes C2(Π � Γ1 � . . . � Γt )

⊥ (together with the parity-check matrices Hq,t of the
form (7)) give rise to a family of MDPC codes. Thus, we are typically interested in family
of codes where t is a constant and does not grow with q .

Remark 5.5 This construction provides a better performance of (one round of) the bit-flipping
algorithm compared to the one run on random constructions of MDPC codes explained in
[34]. As already explained in Remark 4.16, the random construction ofMDPC codes provides
in average MDPC codes whose maximum column intersection is O(

log n
log log n ), and thus one

round of bit-flipping algorithm corrects errors of weight at most O(
√
n log log n
log n ) in these

random codes. Hence, also the generalized constructions of codes from projective bundles
have asymptotically better performance in terms of the bit-flipping algorithm.

6 Further variations and comparisons

In the previous section we have shown that codes constructed using projective bundles have a
very interesting combinatorial and geometric structure, which allows to determine the param-
eters and correction capability properties. In particular, we were able not only to determine
theminimum distance of codes obtained using only a projective bundle, but we also classified
their minimum weight codewords.

In terms of parameters, it is clear that there exist better families of linear codes. Indeed, the
codes presented in Sect. 4 have minimum distance O(

√
n) and hence they are certainly not

asymptotically good. Nevertheless, in addition to the geometric structure, the combinatorial
characterization also allows a very efficient storage.

In particular, let q = 2h be even, and consider a projective plane Π ∼= PG(2, 2h) and the
inscribed projective bundle Γ in PG(2, q). Then, it is readily seen that B = A2. When instead
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one has that Γ is a circumscribed bundle, then A = B2. In both cases, we have that the code
C2(Π � Γ)⊥ is (equivalent to) a code with parity-check matrix of the form

H = ( A | A2 ).

Since we have seen in the proof of Proposition 4.13 that for q even we have rk(H) =
2 rk(A)− 1, then one can verify that the code C2(Π� Γ)⊥ is made by two copies of C2(Π)⊥,
together with the all-one vector. Formally, we have

C2(Π � Γ)⊥ =
{
(c + λx | c′ + λx) | c, c′ ∈ C2(Π)⊥, λ ∈ F2

}
,

where x denotes the all-one vector of length (22h + 2h + 1). Thus, for coding theoretic
purposes, this code is not more interesting than just the code C2(Π)⊥ itself. However, we
remark that we included nevertheless the results also when q is even, in order to have a
complete study and for their intrinsic geometrical interest.

6.1 Another code construction

Now, for the case of q odd, we present another construction that only deals with the incidence
matrix A of a projective plane Π ∼= PG(2, q). We define the code Dp(Π)⊥ to be the code
over Fp whose parity-check matrix is

H :=
(

I A
A� I

)
. (11)

For the rest of this section, we will always use H to denote the matrix in (11). The following
lemma is a straightforward computation using Gaussian elimination, whose proof is left to
the reader.

Lemma 6.1 Let q be an odd prime power and let Π be a projective plane of order q. The
code Dp(Π)⊥ coincides with the right kernel of(

I A
0 J + (q + 1)I

)
.

In particular, if q is odd and p = 2 the following matrices are parity-check matrices for the
code D2(Π)⊥:

H1 :=
(

I A
0 x

)
, H2 :=

(
A� I
x 0

)
,

where x is the all-one vector of length q2 + q + 1.

Observe that the columns of the matrix H in (11), as well as those of H1 and H2 of
Lemma 6.1, can be thought as corresponding to lines and points of Π. In particular, the first
q2+q+1 columns of H (resp. H1 and H2) correspond to the points ofΠ and the last q2+q+1
columns of H (resp. H1 and H2) correspond to the lines of Π. Furthermore, as we did in
Theorem 4.14, since we are only considering binary codes, we also identify the supports
of the codewords with the corresponding sets of lines and/or points. By the definition of its
parity-check matrix, it follows that a codeword in D2(Π)⊥ corresponds to a set of points and
lines such that every point and line in PG(2, q) is incident with an even number of elements,
where a point (resp. line) is incident with itself but no other point (resp. line). Furthermore,
by Lemma 6.1, we see from considering the last row that both the number of points and the
number of lines in a subset corresponding to a codeword should be even.
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Theorem 6.2 Let q be an odd prime power, and let Π be a projective plane of order q. Then,
D2(Π)⊥ is a [2(q2 +q+1), q2 +q, 2q+2]2 code. Furthermore, the codewords of minimum
weight correspond to one of the following cases:

– Any two distinct lines �1 and �2 of Π and the set of points on one of �1 or �2 but not both;
– Dually, any two distinct points P1, P2 and the set of lines through one of P1 or P2 but

not both;
– An oval and its q + 1 tangent lines.

Proof The fact that dim(D2(Π)⊥) = q2 + q directly follows from Lemma 6.1, since it is
immediate to see that the matrices H1 and H2 have full row rank equal to q2 + q + 2.

Thus, we only need to determine the minimum distance d of D2(Π)⊥. The three families
of subsets mentioned above indeed define codewords of D2(Π)⊥, which can be seen by the
discussion preceding the theorem. Therefore, the minimum distance is at most the weight of
any of these three, which is 2q + 2 for all of them. We will show that this is the minimum
possible and characterize the three types as the only codewords of this weight.

So take a set of r points and s lines and assume r + s ≤ 2q + 2. We cannot have r = 0 or
s = 0 as can be seen geometrically or by Lemma 6.1, so by their evenness we find r , s ≥ 2.
Since any line contains q + 1 points and any two lines intersect in one point, we see that
there are at least s(q + 1) − s(s − 1) points which are covered an odd number of times. This
means that r ≥ s(q + 2− s), and hence r + s ≥ s(q + 3− s). The minimum is attained for
s ∈ {2, q + 1} and equals 2q + 2 so the minimum distance is indeed 2q + 2.

We now characterize the codewords of minimum weight. When s = 2, we have two lines
�1, �2 and we need to add the 2q points on (�1 ∪ �2) \ (�1 ∩ �2) as they are incident with an
odd number of lines. This already adds up to 2q + 2 and this set indeed defines a codeword.
Dually, when r = 2 the same argument shows that one finds the second type of minimum
weight codeword. Finally when r = s = q + 1 we find equality in the argument above
which implies that there are no three lines concurrent, and dually that no three points are
collinear. In other words, we find the union of an oval and a dual oval, which can only define
a codeword if the dual oval consists exactly of the tangent lines of the oval, which gives the
last type. 
�
Corollary 6.3 The number of minimum weight codewords in D2(Π)⊥ is equal to q(q2 + q +
1)(q2 + 1).

Proof By Theorem 6.2, the codewords of minimumweight are of three types. The number of
codewords of the first type equals the number of pair of lines, and by duality is also equal to
the number of codewords of the second type. They clearly sum up to (q2 + q + 1)q(q + 1).
The number of codewords of the last type coincides with the number of ovals in PG(2, q),
which by Segre’s theorem [32] is equal to q2(q3 − 1), i.e. the number of nondegenerate
conics. This gives the desired result. 
�

6.2 Error-correction capability and experimental results

In the following result we derive the error-correction capability of (one round of) the bit-
flipping algorithm.

Proposition 6.4 The intersection number of the matrix H defined in (11) is sH = 2. Thus,
after performing one round of the bit-flipping algorithm on H we can correct all the errors
of weight at most 
 q+1

4 � in the code D2(Π)⊥.
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Table 4 Probability to correctly
decode a received word, with
error-weight 
 q+1

4 � + i for
i = 1, 2, 3, 4, after one round of
the bit-flipping decoding
algorithm

q 
 q+1
4 � + 1 
 q+1

4 � + 2 
 q+1
4 � + 3 
 q+1

4 � + 4

5 100% 51.61% 9.68% 1.61%

7 100% 64.91% 13.16% 6.14%

9 100% 100% 74.73% 42.86%

11 100% 100% 86.84% 53.01%

13 100% 100% 100% 92.08%

17 100% 100% 100% 100%

Table 5 Probability to correctly
decode a received word, with
error-weight 
 q+1

4 � + i for
i = 1, 2, 3, 4, after two rounds of
the bit-flipping decoding
algorithm

q 
 q+1
4 � + 1 
 q+1

4 � + 2 
 q+1
4 � + 3 
 q+1

4 � + 4

5 100% 53.23% 51.61% 9.68%

7 100% 64.91% 63.16% 52.63%

9 100% 100% 84.62% 68.68%

11 100% 100% 99.25% 84.21%

13 100% 100% 100% 99.73%

17 100% 100% 100% 100%

Proof It is clear that the intersection number is sH = 2. Hence, by Theorem 2.4, after one
round of the bit-flipping algorithm on H we can correct all the errors of weight 
 q+2

4 �, which
is equal to 
 q+1

4 � since q is odd. 
�
Thus, we have that the correction capability of one round of the bit-flipping algorithm for

H as in (11) is the same as the one for H in (1). Hence, with these two choices of parity-
check matrices and using one round of the bit-flipping algorithm, the codes C2(Π � Γ)⊥ and
D2(Π)⊥ have the same error-correction capability, at least for what concerning all the error
patterns.

Nevertheless, similar to the experiments seen in Sect. 4.3 we were curious on how many
additional errors we can add to the number of errors found in Proposition 6.4 and still be able
to correct after one and more rounds of the bit-flipping decoding algorithm. The simulations
were run under the exact same circumstances as for the code C2(Π � Γ)⊥ in order to be able
to compare the results. The following tables show the success rate of correcting more than

(q + 1)/4� errors within up to four rounds of bit-flipping.

Table 4 already shows us that the code D2(Π)⊥ based on a parity-check defined in (11)
has a probability of 1 to correct one error more than the expected number of errors from
Proposition 6.4 for every value of q presented in Table 4. If we increase the number of
rounds of the bit-flipping algorithm we expect that more and more errors are correctable.
This expectation is motivated by Theorem 6.2, stating that the minimum distance of D2(Π)⊥
is given by d(D2(Π)⊥) = 2q +2. Hence the unique decoding radius is q +1, which is about
four times as large as the number of errors correctable within one round of bit-flipping. The
Tables 5, 6 and 7 support this expectation.

6.3 Comparisons

In this final section let us compare the two code constructions C2(Π � Γ)⊥ and D2(Π)⊥ of
MDPC codes. First of all, with both the constructions we are able to give deterministic results
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Table 6 Probability to correctly
decode a received word, with
error-weight 
 q+1

4 � + i for
i = 1, 2, 3, 4, after three rounds
of the bit-flipping decoding
algorithm

q 
 q+1
4 � + 1 
 q+1

4 � + 2 
 q+1
4 � + 3 
 q+1

4 � + 4

5 100% 100% 90.32% 32.26%

7 100% 100% 76.32% 57.02%

9 100% 100% 100% 80.22%

11 100% 100% 100% 84.21%

13 100% 100% 100% 100%

17 100% 100% 100% 100%

Table 7 Probability for D2(Π)⊥
to correctly decode a received
word, with error-weight


 q+1
4 � + i for i = 1, 2, 3, 4, after

four rounds of the bit-flipping
decoding algorithm

q 
 q+1
4 � + 1 
 q+1

4 � + 2 
 q+1
4 � + 3 
 q+1

4 � + 4

5 100% 100% 98.38% 43.55%

7 100% 100% 83.33% 57.89%

9 100% 100% 100% 82.42%

11 100% 100% 100% 84.59%

13 100% 100% 100% 100%

17 100% 100% 100% 100%

on the error-correction performance for one round of the bit-flipping decoder, which for the
random construction in [34] is not possible.

The two codes C2(Π � Γ)⊥ and D2(Π)⊥ have the same length and almost the same
dimension. From Theorem 4.14 and Theorem 6.2, we know that the minimum distance
of D2(Π)⊥ is almost twice of the minimum distance of C2(Π � Γ)⊥. Hence D2(Π)⊥, in
general, is able to correct almost twice as many errors asC2(Π�Γ)⊥. Nevertheless, applying
Theorem 2.4 to both of them, yields the same result for one round of the bit-flipping decoding
algorithm. Furthermore, we observe that the number of nonzero entries of the parity-check
matrix (1) for C2(Π��)⊥ is almost the same as the number of nonzero entries of the parity-
check matrix (11) for D2(Π)⊥. Since the complexity of the bit-flipping decoder is depending
on the length n, the maximal number of iterations and the number of nonzero entries, we
deduce that it will have roughly the same run time.

To conclude we can say, that the construction using projective bundles shows interesting
properties from a mathematical viewpoint. Nevertheless, from a coding theoretic perspective
the code D2(Π)⊥, which has the same length and almost the same dimension as C2(Π� Γ)⊥,
shows a higher error-correction performance with respect to the bit-flipping decoder. In fact,
its minimum distance is almost twice as large and hence the unique decoding radius is larger.

7 Conclusion

In this paper we proposed a new construction of a family of moderate-density parity-check
codes arising from geometric objects. Starting from a Desarguesian projective plane Π of
order q and a projective bundle Γ in Π, we constructed a binary linear code whose parity-
check matrix is obtained by concatenating the incidence matrices of Π and Γ . We observed
that we can construct these two matrices taking the circular shifts of two perfect difference
sets modulo (q2 + q + 1), providing a natural structure as a quasi-cyclic code of index
2. Hence, the storage complexity is linear in the length and the encoding can be achieved
in linear time using linear feedback shift registers. Furthermore, the underlying geometry
of Γ and Π allowed us to study the metric properties of the corresponding code, and we
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could determine its exact dimension and minimum distance, as well as its minimum weight
codewords. We then analyzed the performance of the bit-flipping algorithm showing that it
outperforms asymptotically the one of the random construction of codes obtained in [34].
We then generalized the construction of this family of codes by concatenating the incidence
matrices of several disjoint projective bundles living in the Desarguesian projective plane Π.
In this case we were able to provide lower bounds on the parameters of the obtained codes
exploiting their geometric properties. Nevertheless, we could still show that one round of
the bit-flipping algorithm has the best asymptotic performance in terms of error-correction
capability for the given parameters of the defining parity-check matrix. Finally, we gave an
alternative construction of binary codes whose parity check matrices only use the incidence
matrix ofΠ and its transpose.We determined the parameters of these codes and characterized
the minimum weight codewords. The error-correction performance was then empirically
studied by implementing the parity-check matrix and running the bit-flipping decoding for
several iterations. The empirical results showed that this alternative construction outperforms
the construction using projective bundles in terms of being able to successfully decode more
errors. Hence, adding redundant rows to the parity-checkmatrixmight seem to be a promising
tool to improve the error-correction performance. Future research, thus, might study the case,
when adding additional linearly dependent rows to the parity-check matrix of C2(Π � Γ)⊥
and analyzing its performance for the bit-flipping decoder. In particular, it would be very
interesting to understand whether there is a systematic way to add redundant parity-check
equations in order to maximize the bit-flipping decoder performance.
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