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Abstract
Linear error-correcting codes can be used for constructing secret sharing schemes; however,
finding in general the access structures of these secret sharing schemes and, in particular,
determining efficient access structures is difficult.Herewe investigate the properties of certain
algebraic hypersurfaces over finite fields, whose intersection numbers with any hyperplane
only takes a few values; these varieties give rise to q-divisible linear codes with at most 5
weights. Furthermore, for q odd, these codes turn out to be minimal and we characterize the
access structures of the secret sharing schemes based on their dual codes. Indeed, the secret
sharing schemes thus obtained are democratic, that is each participant belongs to the same
number of minimal access sets and can easily be described.
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1 Introduction

A secret sharing scheme (henceforth SSS for short) is a cryptographic technique for the
management of the access to a secret s by a collective partnership. The partners, also called
participants, (to the scheme) hold shares of information and access is allowed only to certain
qualified groups of them, who can be given authorization by combining together their shares.
For any given SSS, a set of participants who can reconstruct the secret value s from its shares
is said to be an access set. Also, an access set isminimal if none of its proper subsets is in turn
an access set itself. The family of all the minimal access sets for a SSS is called the access
structure of the SSS. In [10], Massey devised a SSS based on linear codes and pointed out the
relationship between the minimal codewords of the dual code and the access structure. We
refer to his work and [7] for details on the construction and performance of these schemes.
This provides a motivation for determining the set of all minimal codewords of an arbitrary
linear code over a finite field. This problem turns out to be, in general, hard; however some
useful criteria might be obtained in the case of projective codes. Recently, several authors
have considered this problem; see e.g. [7, 9, 14] and the references therein.

In the present paper, we study certain algebraic hypersurfaces in the finite projective space
PG(r , q2) over GF(q2) of dimension r ≥ 3, whose intersection numbers with any hyperplane
only take a few values. These hypersurfaces arise in the construction of quasi-Hermitian
varieties and are, as such, also of independent interest; see [1]. Then we determine the five
weights of the corresponding q2-ary projective codes proving that, except for r = 3 and q
odd, these codes are all q-divisible, that is their weights are divisible by q; see [13]. Finally,
for q odd, we show that these projective codes are minimal and hence the related SSS’s
have an efficient access structures as they are democratic SSS’s, namely, each participant
is involved in the same number of minimal access sets. We also discuss how these access
structures are related to the involved geometry.

The paper is organized into 6 sections. Section 2 introduces the necessary background
on quasi-Hermitian varieties and minimal codes. In Sect. 3, we exhibit an infinite family
of q2-ary minimal codes arising from quasi-Hermitian varieties. In Sect. 4, we study the
intersections of certain algebraic hypersurfaces of degree 2q over GF(q2) with the extremal
subspaces of PG(r , q2) and, as a byproduct, in Sect. 5 we provide an infinite family of q-
divisible minimal codes. In 6 we consider the access structures arising from projective codes
and apply our results to the construction of infinite families of SSS’s, which can be described
algebraically.

Our main results are contained in Theorems 6, 7 and 13.

2 Preliminaries

An [n, r + 1]q projective system is a collection V of n not necessarily distinct points in the
projective space PG(r , q) over the finite field GF(q) of order q , with q a prime power. Fix a
reference frame in PG(r , q), with homogeneous coordinates (X0, X1, . . . , Xr ), and construct
a matrix G by taking as columns the coordinates of the points of V , suitably normalized. The
code C(V) having G as generator matrix is called the code determined from V .

It is straightforward to see that, even if C(V) is not uniquely determined by V , all the
codes that might be obtained in this way are in fact equivalent; so we shall often speak of the
projective code determined by V .
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Some hypersurfaces over finite fields 1505

The spectrum of the intersections of V with the hyperplanes of PG(r , q) is related with
the list of the weights of the associated code; the k-higher weights of C(V) are given by

dk(C) = n − max{| V ∩ π |: π is a projective subspace of codimension k in PG(r , q)};
note that the first higher weight d1(C(V)) is actually the minimum distance of the code C(V).
We refer to [12] for further details on this geometric approach to codes.

Error correcting codes can be used in order to devise access schemes or SSS’s. In his
seminal work [10], Massey proposed the use of minimal codewords in a dual code, in order
to specify the access structure of a SSS.

Definition 1 Let C be a code of length n. For any codeword c ∈ C and 1 ≤ i ≤ n the support
of c is the set supp(c) := {i : ci �= 0} of the positions of its non-zero components. Given
c, c′ ∈ C we write that c′ � c if supp(c′) ⊆ supp(c). We say that c is a minimal word of C if
c′ � c implies that there is α ∈ GF(q) such that c′ = αc.

Remark 1 According to our definition, a minimal codeword is just a word of C which is
not covered by any other linearly independent codewords. From the point of view of the
geometric description of the code, this is most convenient and this is consistent with the
terminology of [9]. We point out that in [10] for a codeword to be minimal it is also required
that the leftmost non-zero component of the word must be 1 (such codewords are called
minimal AS-codewords in [9]). Accordingly, if C is a linear code, the minimal AS-codewords
are exactly those minimal codewords of C which lie in the affine space PG(C) \ �∞, where
�∞ is the hyperplane at infinity of equation X0 = 0.

It is well known that a linear code is spanned by its minimal words and that all its minimum
weight codewords are minimal (according to our definition), but little can be said about the
remaining words in general.

Definition 2 A linear code is a minimal code if all of its codewords are minimal.

Ashikhmin and Barg in [3] provided a sufficient condition so that an [n, k]-linear code C over
GF(q) is minimal, namely

wmin

wmax
>

q − 1

q
, (1)

where wmin and wmax are respectively the minimum and maximum weight of non-zero
codewords of C.

Nice examples of linear codes can be obtained by considering some algebraic varieties of
PG(r , q). In general, pointsets with few intersection numbers with respect to the hyperplanes
provide codes with interesting structure.

Here we shall take into account quasi-Hermitian varieties in PG(r , q2), that is, point
sets having the same size and the same intersection numbers with respect to hyperplanes
as a non-singular Hermitian variety H(r , q2) of PG(r , q2). More in detail, the size of a
quasi-Hermitian variety V is

| H(r , q2) |= (qr+1 + (−1)r )(qr − (−1)r )

(q2 − 1)
,

whereas the intersection numbers of V with respect to hyperplanes are

| H(r − 1, q2) |= (qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
,
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and

| �0H(r − 2, q2) |= (qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
+ (−1)r−1qr−1,

where �i is an i-dimensional space of PG(r , q2) and �0H(r − 2, q2) is a cone, the join of
the vertex�0 to a non-singular Hermitian varietyH(r−2, q2) of a projective subspace�r−2

which does not contain �0. A non-singular Hermitian variety of PG(r , q2) is, by definition,
a quasi-Hermitian variety: the classical quasi-Hermitian variety.

3 Projectiveminimal codes

In recent years [4–6, 11] constructions of minimal codes arising from projective systems have
been considered. In particular, in [11] it has been proved that minimal projective codes are
equivalent to projective systems which are cutting 1-blocking sets (see [5] for the definition).

Recall that a cutting 1-blocking set (or, in brief a cutting blocking set) H is a subset of
PG(r , q) such that for any hyperplane � we have 〈� ∩ H〉 = �.

Let H be a set of points of PG(r , q), and C(H) be one of its associated projective codes.
It is straightforward to see that the words of a projective code determined by H ⊆ PG(V ),
where 〈H〉 = PG(V ) and V is the vector space underlying PG(r , q), correspond exactly
to the evaluations of the elements of the dual V ∗ of V on the given projective system. The
following result was proved in [2] and independently in [11].

Theorem 1 Let H be a set of N points of PG(r , q) such that 〈H〉 = PG(r , q). For each
i ∈ {1 . . . N } let Pi ∈ GF(q)r+1 be a fixed representative of a point [Pi ] ∈ H and denote by
C(H) the projective linear code having generator matrix whose columns are the vectors Pi .
Then C(H) is a minimal code if and only if for any hyperplane � of PG(r , q)

〈� ∩ H〉 = �. (2)

A general problem is to determine when the set of points of an algebraic variety H in
PG(r , q) is a cutting blocking set. It is easy to see that elliptic quadrics in PG(3, q), as well
as degenerate hypersurfaces, in general, are not. In [6] the authors proved that ifH is a non-
singular Hermitian variety in a given canonical form or a quadric in projective dimension
r ≥ 4, then H is a cutting blocking set and thus C(H) is minimal. We can easily extend the
same result to any quasi-Hermitian variety of PG(r , q2). IfH is a quasi-Hermitian variety of
PG(r , q2) then C(H) has 2 weights. It is straightforward to see that Condition (1) does not
hold but Theorem 1 can be applied as follows.

Theorem 2 LetH be a quasi-Hermitian variety in PG(r , q2). Then, C(H) is a minimal code.

Proof Since a quasi-Hermitian variety is a projective variety whose intersections with hyper-
planes have the same cardinalities as the intersection of a Hermitian variety, we first see that
H cannot be contained in any hyperplane of PG(r , q2). Also, suppose that there is a hyper-
plane ϕ such that dim(〈H ∩ ϕ〉) < r − 1. This means that H ∩ ϕ ⊆ � with � a projective
space of dimension at most r − 2. Thus, we would have

| H ∩ ϕ |≤ q2r−2 − 1

q2 − 1
,

which is not possible. The thesis now follows from Theorem 1. 
�
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Remark 2 If we want to study codes arising from higher degree functions defined over some
algebraic varietiesH, a convenient setting is to use Veronese embeddings and represent these
codes (in turn) as projective codes. In particular, to investigate quadratic sections of H, we
just apply the quadratic Veronese embedding

ν2r :
{
PG(r , q) → PG( r

2+3r
2 , q)

[(x0, . . . , xr )] → [(x20 , x0x1, . . . , x0xr , x21 , . . . , x2r )]
and then consider Theorem 1.
Wedenote this new code, arising from the projective systemof ν2r (H) as C2. Observe however,
that in general it is not true that 〈ν2r (H)〉 = PG( r

2+3r
2 , q).

4 Hypersurfaces with few intersection numbers

In PG(r , q2) with homogeneous coordinates (X0, X1, . . . , Xr ), consider the affine space
AG(r , q2) whose infinite hyperplane �∞ has equation X0 = 0. Then AG(r , q2) has affine
coordinates (x1, x2, . . . , xr ) where xi = Xi/X0 for i ∈ {1, . . . , r}. Consider the algebraic
variety B of affine equation

xqr − xr + αq(x2q1 + · · · + x2qr−1) − α(x21 + · · · + x2r−1) = (βq − β)(xq+1
1 + · · · + xq+1

r−1 ),

(3)

where α ∈ GF(q2)∗, β ∈ GF(q2) \ GF(q) and the following conditions are satisfied: for
odd q ,

(1) r is odd and 4αq+1 + (βq − β)2 �= 0, or
(2) r is even and 4αq+1 + (βq − β)2 is a non–square in GF(q);

for even q > 2,

(i) r is odd, or
(ii) r is even and Tr (αq+1/(βq + β)2) = 0.

In [1] the authors proved that gluing together the set of affinepoints ofBwith the degenerate
Hermitian variety

F = {(0, X1, . . . , Xr ) : Xq+1
1 + · · · + Xq+1

r−1 = 0}
gives a quasi-Hermitian variety H = (B ∩ AG(r , q2)) ∪ F . In this section we study the
intersection numbers of B with hyperplanes by a “surgery” argument, that is

• First we consider the intersection of a hyperplane � with the quasi-Hermitian varietyH;
• Then we remove from this intersection its points at infinity which are contained inF and

add the possible intersections of � with B∞ := B ∩ �∞.

More concisely, our arguments are based on these facts

1. � ∩ B = ((� ∩ H) \ H∞) ∪ (� ∩ B∞);
2. the cardinalities of � ∩ H are known;
3. | B ∩ AG(r , q2) |=| H \ H∞ |= q2r−1.

In particular | � ∩ B |=| � ∩ H | − | � ∩ H∞ | + | � ∩ B∞ |. Observe that for r = 2
F = {P∞} and B = H is a Buekenhout-Metz unital of PG(2, q2), see [8].
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4.1 Case r ≥ 3 and q odd

We compute the intersection numbers of B with respect to any hyperplane � of PG(r , q2),
with q odd. The intersection between the algebraic variety B and �∞ is the degenerate
quadric B∞ of �∞ with equation

x21 + · · · + x2r−1 = 0.

In this section Pi will denote a parabolic quadric of an i-dimensional projective space �i for
i even, whereas Ii and Ei will denote a hyperbolic and an elliptic quadric of �i , with i odd.
We set I−1 = ∅ and H(−1, q2) = H(0, q2) = ∅.

Assume that r ≥ 3 is odd. In this caseB∞ is a conewith vertex the point P∞(0, 0, . . . , 0, 1)
and basis a hyperbolic quadric Ir−2 of an (r − 2)-dimensional projective space contained in
�∞, hence | B∞ |= q2[(q2(r−2)−1)/(q2−1)+qr−3]+1 and | B |= q2r−1+q2[(q2(r−2)−
1)/(q2 − 1) + qr−3] + 1.

Let � be a hyperplane passing through the point P∞. Then � meets B∞ in a cone with
vertex the point P∞ and basis either a parabolic quadric Pr−3 or a cone �0Ir−4. Now,
suppose that the hyperplane � does not contain P∞. We observe that � meets B∞ in a
hyperbolic quadric Ir−2 of an (r − 2)-dimensional projective space contained in �∞. Thus,
the possible values of | � ∩ B |, for any hyperplane � of PG(r , q2), are:

(C1) | B∞ |;
(C2) | H(r − 1, q2) | − | P∞H(r − 3, q2) | + | P∞Pr−3 |;
(C3) | H(r − 1, q2) | − | P∞H(r − 3, q2) | +q2 | �0Ir−4 | +1;
(C4) | �0H(r − 2, q2) | − | P∞(�0H(r − 4, q2)) | +q2 | �0Ir−4 | +1;
(C5) | �0H(r − 2, q2) | − | P∞(�0H(r − 4, q2)) | + | P∞Pr−3 |;
(C6) | H(r − 1, q2) | − | H(r − 2, q2) | + | Ir−2 |;
(C7) | �0H(r − 2, q2) | − | H(r − 2, q2) | + | Ir−2 |.
In increasing order we get the following intersection numbers ni with i = 1, . . . , 5:

1. (C1) gives n1 = q2 (q2(r−2)−1)
q2−1

+ qr−1 + 1;

2. (C6) gives n2 = q2r−3 − qr−2 + qr−3 + q2(r−2)−1
q2−1

;

3. (C2) and (C5) yield n3 = q2r−3 + q2(r−2)−q2

q2−1
+ 1;

4. (C7) provides n4 = q2r−3 + qr−1 − qr−2 + qr−3 + q2(r−2)−1
q2−1

;

5. (C3) and (C4) provide n5 = q2r−3 + qr−1 + q2(r−2)−q2

q2−1
+ 1.

Now suppose that r ≥ 4 is even. In this case B∞ is a cone with vertex the point
P∞(0, 0, . . . , 0, 1) and basis a parabolic quadric Pr−2 in an r − 2-dimensional projective
space contained in �∞ and it contains q2[(q2(r−2) − 1)/(q2 − 1)] + 1 points over GF(q2).
As B ∩ AG(r , q2) contains q2r−1 affine points, we get

| B |= q2r−1 + q2[(q2(r−2) − 1)/(q2 − 1)] + 1.

We observe that a generic hyperplane of � which does not pass through P∞ meets B∞ in a
parabolic quadricPr−2 of an r−2-dimensional projective space in�∞. On the other hand, if
� contains P∞ then it meetsB∞ in a cone with vertex P∞ and basis either a cone�′

0Pr−4, or
a hyperbolic quadric Ir−3, or an elliptic quadric Er−3. Thus, the possible values of | � ∩B |,
for any hyperplane � of PG(r , q2), are:
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Some hypersurfaces over finite fields 1509

(C1) | B∞ |;
(C2) | H(r − 1, q2) | − | P∞H(r − 3, q2) | +q2 | �′

0Pr−4 | +1;
(C3) | H(r − 1, q2) | − | P∞H(r − 3, q2) | +q2 | Er−3 | +1;
(C4) | H(r − 1, q2) | − | P∞H(r − 3, q2) | +q2 | Ir−3 | +1;
(C5) | �0H(r − 2, q2) | − | P∞(�0H(r − 4, q2)) | +q2 | �′

0Pr−4 | +1;
(C6) | �0H(r − 2, q2) | − | P∞(�0H(r − 4, q2)) | +q2 | Er−3 | +1;
(C7) | �0H(r − 2, q2) | − | P∞(�0H(r − 4, q2)) | +q2 | Ir−3 | +1;
(C8) | H(r − 1, q2) | − | H(r − 2, q2) | + | Pr−2 |;
(C9) | �0H(r − 2, q2) | − | H(r − 2, q2) | + | Pr−2 |.

In increasing order, we obtain as the possible intersection numbers of B with respect to
the hyperplanes the following

(C1) gives n1 = q2 (q2(r−2)−1)
q2−1

+ 1;

(C9) gives n2 = q2r−3 − qr−1 + qr−2 + q2(r−2)−1
q2−1

;

(C3) and (C6) yield n3 = q2r−3 + q2(r−2)−q2

q2−1
− qr−2 + 1;

(C2) and (C5) provide n4 = q2r−3 + (q2(r−2)−q2)
q2−1

+ 1;

(C4) (C7)
and (C8)

provide n5 = q2r−3 + q2(r−2)−q2

q2−1
+ qr−2 + 1.

We summarize our results in the following theorem.

Theorem 3 Suppose q to be an odd prime power. Then the hypersurface B of PG(r , q2),
r ≥ 3, with equation (3) contains q2r−1 + qr−1 + (q2(r−1) − q2)/(q2 − 1) + 1 points if r
is odd or q2r−1 + (q2(r−1) − q2)/(q2 − 1) + 1 points if r is even. Furthermore its possible
intersection sizes with hyperplanes are:

• for r odd:

n1 = q2
(q2(r−2) − 1)

q2 − 1
+ qr−1 + 1, n2 = q2r−3 − qr−2 + qr−3 + q2(r−2) − 1

q2 − 1
,

n3 = q2r−3 + q2(r−2) − q2

q2 − 1
+ 1,

n4 = q2r−3 + qr−1 − qr−2 + qr−3 + q2(r−2) − 1

q2 − 1
,

n5 = q2r−3 + qr−1 + q2(r−2) − q2

q2 − 1
+ 1;

• for r even:

n1 = q2
(q2(r−2) − 1)

q2 − 1
+ 1, n2 = q2r−3 − qr−1 + qr−2 + q2(r−2) − 1

q2 − 1
,

n3 = q2r−3 + q2(r−2) − q2

q2 − 1
− qr−2 + 1, n4 = q2r−3 + (q2(r−2) − q2)

q2 − 1
+ 1,

n5 = q2r−3 + q2(r−2) − q2

q2 − 1
+ qr−2 + 1.
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4.2 Case r ≥ 3 and q even

In this case, the intersection between the algebraic varietyB and�∞ is the degenerate quadric
B∞ which consists of the single hyperplane of �∞: x1 + · · · + xr−1 = 0. Therefore the size
of B is:

q2r−1 + q2(r−2) + · · · + q2 + 1,

and the possible intersection numbers of B with respect to hyperplanes of PG(r , q2) are

(C1) | B∞ |;
(C2) | H(r − 1, q2) | − | P∞H(r − 3, q2) | + | �r−2 |;
(C3) | H(r − 1, q2) | − | P∞H(r − 3, q2) | + | �r−3 |;
(C4) | �0H(r − 2, q2) | − | P∞(�0H(r − 4, q2) | + | �r−2 |;
(C5) | �0H(r − 2, q2) | − | P∞(�0H(r − 4, q2) | + | �r−3 |;
(C6) | H(r − 1, q2) | − | H(r − 2, q2) | + | �r−3 |;
(C7) | �0H(r − 2, q2) | − | H(r − 2, q2) | + | �r−3 |.

So, for r odd we obtain the following weights:

• (C1) gives n1 = q2(r−1)−1
q2−1

;

• (C6) gives n2 = q2r−3 − qr−2 + q2(r−2)−1
q2−1

;

• (C3) and (C5) provide n3 = q2r−3 + q2(r−2)−1
q2−1

;

• (C7) yields n4 = q2r−3 + qr−1 − qr−2 + q2(r−2)−1
q2−1

;

• (C2) and (C4) provide n5 = q2r−3 + q2(r−1)−1
q2−1

.

For r even we obtain

• (C1) gives n1 = q2(r−1)−1
q2−1

;

• (C7) gives n2 = q2r−3 − qr−1 + qr−2 + q2(r−2)−1
q2−1

;

• (C3) and (C5) provide n3 = q2r−3 + q2(r−2)−1
q2−1

;

• (C6) yields n4 = q2r−3 + qr−2 + q2(r−2)−1
q2−1

;

• (C2) and (C4) provide n5 = q2r−3 + q2(r−1)−1
q2−1

.

Theorem 4 Suppose q to be even and r ≥ 3. Then the hypersurface B of Equation (3) has
q2r−1 + q2(r−2) + · · · + q2 + 1 points in PG(r , q2) and the following intersection sizes with
respect to hyperplanes:

• for r odd:

n1 = q2(r−1) − 1

q2 − 1
, n2 = q2r−3 − qr−2 + q2(r−2) − 1

q2 − 1
,

n3 = q2r−3 + q2(r−2) − 1

q2 − 1
, n4 = q2r−3 + qr−1 − qr−2 + q2(r−2) − 1

q2 − 1
,

n5 = q2r−3 + q2(r−1) − 1

q2 − 1
;
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• for r even:

n1 = q2(r−1) − 1

q2 − 1
, n2 = q2r−3 − qr−1 + qr−2 + q2(r−2) − 1

q2 − 1
,

n3 = q2r−3 + q2(r−2) − 1

q2 − 1
, n4 = q2r−3 + qr−2 + q2(r−2) − 1

q2 − 1
,

n5 = q2r−3 + q2(r−1) − 1

q2 − 1
.

4.3 Line sections ofB in PG(r, q2)

Our aim is to provide the spectrum of all possible intersection numbers between B and a line
of PG(r , q2). We are going to prove the following theorem.

Theorem 5 Let 	 be a line of PG(r , q2). Then, the possible sizes for 	 ∩ B are as follows

0, 1, 2, q − 1, q, q + 1, q + 2, 2q − 1, 2q, q2 + 1

Proof Let us assume q to be odd and consider a line 	 of PG(r , q2). If 	 is contained in �∞
then the possible sizes of 	∩B are 0, 1,2 or q2+1. Now suppose that 	 � �∞ and | 	∩B |≥ 1.
From [1], it can be directly seen that the collineation group of B acts transitively on its affine
points. Thus, we can assume that 	 passes through the origin of the fixed reference system.
We have to study the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xqr − xr + αq(x2q1 + · · · + x2qr−1) − α(x21 + · · · + x2r−1)

= (βq − β)(xq+1
1 + · · · + xq+1

r−1 ),

x1 = m1t
x2 = m2t
...

xr = mr t

(4)

where t ranges over GF(q2). First we consider the case in which mr �= 0 and hence we can
assume mr = 1. In order to study System (4), choose a primitive element γ of GF(q2) and
let ε = γ (q+1)/2. We now regard GF(q2) as a vector space over GF(q) with a fixed basis
{1, ε} and write the elements in GF(q2) as linear combinations with respect to this basis,
that is, xi = x (0)

i + x (1)
i ε. Then, εq = −ε and ε2 is a primitive element of GF(q). With this

choice of ε, setting

u = m(0)
1 m(1)

1 + · · · + m(0)
r−1m

(1)
r−1,

v =
(
m(0)

1

)2 + · · · +
(
m(0)

r−1

)2
and z =

(
m(1)

1

)2 + · · · +
(
m(1)

r−1

)2
.

Equation (4) gives

[2α0u + α1(ε
2z + v) + β1(ε

2z − v)]t20 + ε2[2α0u + α1(v + ε2z) + β1(v − ε2z)]t21
+ 2[α0(ε

2z + v) + 2α1ε
2u]t0t1 + t1 = 0 (5)
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1512 A. Aguglia et al.

The solutions (t0, t1) of (5) can be viewed as the affine points of the (possibly degenerate)
conic � of PG(2, q) associated to the symmetric 3 × 3 matrix

A =
⎛
⎜⎝
2α0u + α1(ε

2z + v) + β1(ε
2z − v) α0(ε

2z + v) + 2α1ε
2u 0

α0(ε
2z + v) + 2α1ε

2u ε2[2α0u + α1(v + ε2z) + β1(v − ε2z)] 1/2
0 1/2 0

⎞
⎟⎠ .

The number of affine points of � equals the number of points in AG(3, q2) which lie
in B ∩ 	. Observe that rank(A) ≥ 2. Let us first suppose det(A) �= 0. In this case � is a
non-degenerate conic in PG(2, q) and hence has either q − 1 or q or q + 1 affine points. If
rank(A) = 2 then � is the union of two distinct lines either defined over GF(q) or defined
over GF(q2) and conjugate to each other. This means that the number of affine points of � is
either 2q − 1 or 2q or 1. Thus if 	 ∩B∞ = ∅ then | 	 ∩B |∈ {1, q − 1, q, q + 1, 2q − 1, 2q}

Now suppose that 	 meets B∞. The point at infinity of 	 is R = (0,m1,m2 . . . ,mr ) and
R is also a point of B∞ if and only if

m2
1 + · · · + m2

r−1 = 0,

that is,
∑r−1

i=1 (m
(0)
i + εm(1)

i )2 = 0. This can be rewritten as

r−1∑
i=1

(m(0)
i )2 + ε2(m(1)

i )2 + 2ε
r−1∑
i=1

m(0)
i m(1)

i = 0,

and hence we get ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r−1∑
i=1

(m(0)
i )2 + ε2(m(1)

i )2 = 0

r−1∑
i=1

m(0)
i m(1)

i = 0.

Thus if R ∈ B∞ then v + ε2z = 0 and u = 0. In this case A becomes

A =
⎛
⎜⎝

β1(ε
2z − v) 0 0

0 ε2β1(v − ε2z) 1/2

0 1/2 0

⎞
⎟⎠ .

If det(A) �= 0 then � is an ellipse as ε2 is a non–square of GF(q). In the case in which
rank(A) = 2, then we get u = v = z = 0 and � consists of q affine points. Thus,
| 	 ∩ B |∈ {q + 1, q + 2}.

Now suppose that mr = 0. In this case the number of points in AG(3, q2) which lie in
B ∩ 	 equals the number of affine points of the degenerate conic � with associated matrix

A =
⎛
⎜⎝
2α0u + α1(ε

2z + v) + β1(ε
2z − v) α0(ε

2z + v) + 2α1ε
2u 0

α0(ε
2z + v) + 2α1ε

2u ε2[2α0u + α1(v + ε2z) + β1(v − ε2z)] 0
0 0 0

⎞
⎟⎠ .

If rank(A) = 2 then � has either 1 or 2q − 1 or 2q points. Otherwise, rank(A) = 1 and
� consists of q points, or the matrix A is the null matrix, namely � is the entire affine
plane and 	 ⊂ B. Furthermore, in the case in which | 	 ∩ B∞ |= 1, it is easy to see
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Some hypersurfaces over finite fields 1513

that � ∩ AG(2, q2) consists of a single point over GF(q) or it is the entire plane. Hence
| 	 ∩ B |∈ {1, 2, q, 2q − 1, 2q, q2 + 1} and our theorem follows for q odd.

Let us consider the case of q even. As q > 2, we can fix a basis for GF(q2) over GF(q)

as {1, ε}, with ε ∈ GF(q2) \ GF(q) such that ε2 + ε + ν = 0, for some ν ∈ GF(q) \ {1},
with Tr q(ν) = 1. Then ε2q + εq + ν = 0 and hence (εq + ε)2 + (εq + ε) = 0, leading to

εq + ε + 1 = 0. With this choice of ε, setting as before u = m(0)
1 m(1)

1 + · · · + m(0)
r−1m

(1)
r−1,

v = (m(0)
1 )2 + · · · + (m(0)

r−1)
2 and z = (m(1)

1 )2 + · · · + (m(1)
r−1)

2, (4) gives

[β1(u + v + νz) + α1(v + z + νz) + α0z] t
2
0

+ [(β1ν(u + v + νz) + α1ν(v + z + νz) + (α1 + α0)(v + z)] t21
+β1(u + v + νz)t0t1 + t1 = 0. (6)

which can be viewed again as the equation of a conic � of AG(2, q2).
It is straightforward to see that | � ∩ AG(2, q2) |∈ {1, q − 1, q, q + 1, 2q − 1, 2q, q2}.

Arguing as in the q odd case, the proof is completed.

�

5 Codes with 5 weights

We are going to determine the parameters of the projective code generated from the hyper-
surface B of Equation (3) and in particular its weight enumerator for r = 3 and q odd.

Theorem 6 Let q be an odd prime power. Then, the points ofB in PG(r , q2), r > 3 determine
aq-divisibleminimal projective codeC(B)of length N = q2r−1+qr−1+(q2(r−1)−q2)/(q2−
1) + 1 for r odd, or N = q2r−1 + (q2(r−1) − q2)/(q2 − 1) + 1 for r even, dimension r + 1
and non-zero weights:

• for r odd:

w5 = q2r−1 − q2r−3 + q2(r−2), w4 = q2r−1 − q2r−3 + q2(r−2) + qr−2 − qr−3,

w3 = q2r−1 − q2r−3 + q2(r−2) + qr−1,

w2 = q2r−1 − q2r−3 + q2(r−2) + qr−1 + qr−2 − qr−3, w1 = q2r−1;
• for r even:

w5 = q2r−1 − q2r−3 + q2(r−2) − qr−2, w4 = q2r−1 − q2r−3 + q2(r−2),

w3 = q2r−1 − q2r−3 + q2(r−2) + qr−2,

w2 = q2r−1 − q2r−3 + q2(r−2) + qr−1 − qr−2, w1 = q2r−1.

Proof Since wi = N − ni where the ni ’s are the intersection numbers of B with respect to
the hyperplanes of PG(r , q2), from Theorem (3) we have just to prove that C(B) is a minimal
code. We restrict ourselves to the case r odd. Under this hypothesis the maximal weight of
C(B) is w1 = q2r−1 whereas the minimal one is w5 = q2r−1 − q2r−3 + q2(r−2). We observe

that w5
w1

>
q2−1
q2

, that is, Condition (1) is satisfied and hence C(B) is a minimal code. 
�
From Theorem (4) we obtain the following.

Theorem 7 Let q be an evenprimepower. Then, the points ofB in PG(r , q2), r ≥ 3determine
a q-divisible projective code C(B) of length N = q2r−1 + q2(r−2) + q2(r−3) + · · · + q2 + 1,
dimension r + 1 and non-zero weights:

123



1514 A. Aguglia et al.

• for r odd:

w5 = q2r−1 − q2r−3, w4 = q2r−1 − q2r−3 + q2r−4 − qr−1 + qr−2,

w3 = q2r−1 − q2r−3 + q2(r−2),

w2 = q2r−1 − q2r−3 + q2(r−2) + qr−2, w1 = q2r−1;
• for r even:

w5 = q2r−1 − q2r−3, w4 = q2r−1 − q2r−3 + q2(r−2) − qr−2,

w3 = q2r−1 − q2r−3 + q2(r−2),

w2 = q2r−1 − q2r−3 + q2(r−2) + qr−1 − qr−2, w1 = q2r−1.

Remark 3 For q even, the code C(B) is not a minimal code, as the support of the words
of weight w5 is contained in the support of words of weight w1. This is consistent with
Theorem 1, as 〈B∞〉 = B∞ �= �∞ in this case. So, the q2 − 1 words of weight w1 = q2r−1

are exactly those which are not minimal.

Let A j denote the number of codewords of C(B) of weight j .

Proposition 8 The points ofB in PG(3, q2), with q an odd prime power, determine a minimal
projective code C(B) of length N = q5 + 2q2 + 1, non-zero weights:

w1 = q5, w2 = q5 − q3 + 2q2 + q − 1, w3 = q5 − q3 + 2q2,

w4 = q5 − q3 + q2 + q − 1, w5 = q5 − q3 + q2,

and weight enumerator w(x) := ∑
i Ai xi , where

A0 = 1, Aw1 = q2 − 1, Aw2 = (q6 − q5 + q3)(q2 − 1), Aw3 = (q4 − q2)(q2 − 1),

Aw4 = (q5 − q3)(q2 − 1), Aw5 = 2q2(q2 − 1)

and all of the remaining Ai ’s are 0.

Proof As wi = N − ni , where ni ’s are the intersection numbers of B with respect to the
planes, the first part of our theorem follows from Theorem (3) for r = 3 and from the fact
that w5/w1 > (q2 − 1)/q2. We are going to compute the weight enumerator of the code.
We observe that �∞ is the only hyperplane meeting B in 2q2 + 1 points and this means
Aw1 = q2 − 1. Also, through the point P∞ = (0, 0, 0, 1) there pass 2q2 planes meeting
�∞ ∩ B in one line and q4 − q2 planes meeting �∞ ∩ B just at the point P∞. Hence,
Aw5 = 2q2(q2 − 1) and Aw3 = (q4 − q2)(q2 − 1).

Finally, we recall thatH = (B∩AG(3, q2))∪F is a quasi-Hermitian variety of PG(3, q2).
Let us call a plane intersectingH in i points an (i)-plane ofH. Using the following properties
of H:

• The number of (q3 + q2 + 1)-planes is q5 + q2 + 1 ,
• The number of (q3 + 1)-planes is q6 − q5 + q4,
• P∞ lies on q4 − q3 (q3 + 1)-planes and on q3 + q2 + 1 (q3 + q2 + 1)-planes of H,

we get Aw4 = (q5 − q3)(q2 − 1) and Aw2 = (q6 − q5 + q3)(q2 − 1). 
�
Remark 4 Theorems 5 and 6 yield that the higher weights d1(C(B)) and dr−1(C(B)) are as
follows:
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Some hypersurfaces over finite fields 1515

• for q odd:

– if r is odd: d1(C(B)) = q2r−1 − q2r−3 + q2(r−2), dr−1(C(B)) = q2r−1

+ q2 (q2(r−2)−1)
q2−1

+ qr−1 − q2;
– if r is even: d1(C(B)) = q2r−1 − q2r−3 + q2(r−2) − qr−2, dr−1(C(B)) = q2r−1

+ q2 (q2(r−2)−1)
q2−1

− q2;

• for q even and any r : d1(C(B)) = q2r−1 − q2r−3, dr−1(C(B)) = q2r−1 + q2(r−2)

+ · · · + q4.

We leave to a future work to determine the higher weights dk(C(B)) for all 1 < k < r −1.

6 Secret sharing schemes from hypersurfaces

In this section we recall a method for constructing SSS’s based on linear codes and then we
present a class of SSS’s using the hypersurfaces introduced in Sect. 4.

Let C be an [n, k, d]q -linear code. In the SSSS(C) based on C , the secret is an element
of GF(q), and n − 1 parties P1, P2, . . . , Pn−1 as well as a trusted third party are involved.
To compute the shares with respect to a secret s, the trusted third party randomly chooses
a vector u = (u0, . . . , uk−1) ∈ GF(q)k such that s = ug0 and G = (g0, g1, . . . gn−1) is
a generator matrix of C . There are altogether qk−1 such vectors u ∈ GF(q)k. The third
party then treats u as an information vector and computes the corresponding codeword
t = (t0, t1, . . . , tn−1) = uG. He then gives ti to party Pi as share for each i ≥ 1. Note that
t0 = ug0 = s. It is easily seen that a set of shares {ti1 , ti2 , . . . , tim } determines the secret if
and only if g0 is a linear combination of gi1 , . . . , gim . The following properties hold.

Proposition 9 [10] Let G be a generator matrix of an [n, k; q]-code C. In the SSS based on
C, a set of shares {ti1 , ti2 , . . . , tim } determines the secret if and only if there exists a codeword

c = (1, 0, . . . , 0, ci1 , 0, . . . , 0, cim , 0, . . . , 0)

in the dual code C⊥ where ci j �= 0 for at least one j , 1 ≤ i1 < · · · < im ≤ n − 1 and
1 ≤ m ≤ n − 1. If there is a codeword like c in C⊥, then the vector

g0 =
∑

j=1,...,m

x j gi j

where x j ∈ GF(q) for 1 ≤ j ≤ m. Then the secret s is recovered by computing

s =
∑

j=1,...,m

x j ti j .

If a set of participants can recover the secret by combining their shares, then any group of
participants containing this set can also recover the secret.

Definition 3 A set of participants is called aminimal access set if they can recover the secret
by combining their shares and none of its proper subsets can do so. Here, a proper subset
has fewer members than this set. The access structure A(C) of the SSSS(C) is the set of its
minimal access sets.
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Proposition 10 [10] Let C be an [n, k; q]-code, and let G = (g0, g1, . . . , gn−1) be its gen-
erator matrix. If each nonzero codeword of C is a minimal word, then in the SSS based on
C⊥, there are altogether qk−1 minimal access sets. In addition, we have the following:

1. If gi is a multiple of g0, 1 ≤ i ≤ n − 1, then participant Pi must be in every minimal
access set. Such a participant is called a dictatorial participant.

2. If gi is not a multiple of g0, 1 ≤ i ≤ n − 1, then participant Pi must be in (q − 1)qk−2

out of qk−1 minimal access sets.

We refer the reader to [10] for the actual construction of the SSS.
In this section we shall consider the access structures of SSS’s arising from codes con-

structed from hypersurfaces. These access structures turn out to reflect the geometry of the
hypersurface and they also afford a compact description in terms of their automorphism
groups.

Proposition 11 Let C and C ′ be two equivalent [n, k, d]-codes over GF(q) with generator
matrices G and G ′ with G ′ = RGPD where R is a k × k invertible matrix, P is an n × n
permutationmatrix and D is an invertible n×n diagonalmatrix. Suppose that the permutation
σ : {0, . . . , n − 1} → {0, . . . , n − 1}, induced by P, fixes 0. Then there is a bijection
between the shares of the SSS’s S(C) and S(C ′) as well as between the corresponding
access structures A(C) and A(C ′).

In light of the above proposition, given an hypersurface V of PG(V ) and a fixed point P0 ∈ V ,
we can construct many equivalent [n, k, d]-linear codes with a generator matrix having P0
as its first column.

So, we propose the following notation. Let V be an hypersurface, and let P1 be a chosen
point of V; let C = C(V; P0) be a projective code arising from V , with a generator matrix
having P0 as its first column. We denote the SSS’s based on C by the symbolS(V; P0) and
the SSS’s based on C⊥ by S(V⊥; P0).
Remark 5 Suppose V ⊆ PG(V ). The elements of the access structureA(V⊥; P0) correspond
to the support of the subsets (V \{P0})\� of V as� varies among the hyperplanes of PG(V )

not containing the point P0. In particular, we can describeA(V⊥; P0) directly,without explicit
mention of the projective code C⊥ induced by V .
Definition 4 We say that two access structures A and A′ associated to SSS’sS andS′ with
set of participants X and X ′, respectively, are equivalent if there is a bijection θ : X → X ′
such that A′ = {Sθ : S ∈ A}.
Definition 5 Let S be a SSS with corresponding access structure A and set of participants
X . We say that γ ∈ Sym(X) is an automorphism of A if, for any T ∈ A, we have T γ :=
{γ (t) : t ∈ T } ∈ A. Given a subgroup � of Sym(X) and some elements S1, . . . , St ∈ A, we
say that A is a �-development of the starters S1, . . . , St if

A = {Sγ

i : γ ∈ �, i ∈ 1, . . . , t}.
Proposition 12 Let V = {P0, . . . , Pn−1} be an algebraic variety of PG(V ). Denote by
A(V⊥; P0) the access structure of the SSS S(V; P0). Let γ be a collineation of PG(V )

fixing P0 and such that γ (V) = V . Then γ̂ ∈ Sym(1, . . . , n − 1), where

γ̂ (i) = j ⇔ γ (Pi ) = Pj

acts as an automorphism of A(V⊥; P0).
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Some hypersurfaces over finite fields 1517

Proof The elements of A(V⊥; P0) correspond to the support of the complement of the inter-
section of V with the hyperplanes � of PG(V ) for which P0 /∈ �. Since γ preserves V and
fixes P0, it also acts on the hyperplanes of PG(V ) not through P0; as such γ̂ acts on the
access structures as a permutation group. 
�
Remark 6 Let V be a projective hypersurface in PG(V ) and suppose that V admits a transitive
group of automorphisms. Then, for any P, Q ∈ V we have that A(V⊥; P) is equivalent to
A(V⊥; Q).

We now apply these notions to quasi-Hermitian varieties. Let B be the hypersurface of
Equation (3) and let P0 be a fixed point of B. Denote by C = C(B) an associated projective
q2-ary [N , r + 1, d1]-code.

Using Proposition 10, we shall first prove that for q odd, the SSSS(B⊥; P0) based on the
dual code of C(B) is democratic, that is, each participant is involved in the same number of
minimal access sets, no matter the choice of the point P0.

Theorem 13 Let r ≥ 3 and q be an odd prime power. In the SSS S(B⊥; P0) := S(C⊥)

based on the dual code C⊥ := C(B)⊥, there are altogether q2r minimal access sets and
m = N − 1 participants where

• m = q2r−1 + qr−1 + (q2(r−1)−q2)
q2−1

, for r odd;

• m = q2r−1 + (q2(r−1)−q2)
q2−1

, for r even.

Furthermore, each participant Pi , ∀i = 1 . . .m, is involved in exactly (q2 − 1)q2(r−1) out of
q2r minimal access sets.

Proof Let G be a generator matrix of C(B) and let gi denote the i-column of G. We observe
that ∀i �= j gi is not a multiple of g j . Thus, the result follows from Theorem 6 and Proposi-
tions 8 and 10. 
�
Remark 7 We observe that if H is a quasi-Hermitian variety of PG(r , q2), where r ≥ 2 and
q any prime power, then the projective code C(H) is a two-weight code. From Theorem 2
we also know that C(H) is minimal. In particular, Property 2 of Proposition 10 applies and
the SSS based on the dual of C(H) turns out to be democratic. For q odd, the SSS associated
to the aforementioned code has the same number of minimal access sets as the SSS based
on C(B)⊥ but it has a different number of participants, that is (qr+1+(−1)r )(qr−(−1)r )

(q2−1)
− 1 for

r > 2.

We now present a detailed example of access structure with a rich automorphism group
by considering the case of Hermitian varieties.

Example 1 Let us consider the Hermitian surface H of PG(3, q2). Then, the projective code
C(H) has parameters [(q3+1)(q2+1), 4, q5] and its weight distribution is given by A0 = 1,
Aq5 = (q4 −1)(q3 +1) and Aq5+q2 = q8 −q7 −q4 +q3 +1. Also the automorphism group
PGU(4, q) of H is transitive on H. So, no matter what point P is chosen in H, all access
structuresA(H⊥; P) are equivalent. SinceC(H⊥) is a [(q3+1)(q2+1), (q3+1)(q2+1)−4, 3]
code, in the SSSS(H⊥; P) there are q6 minimal access sets and each participant is involved
in q6−q4 of them. As seen before, each minimal access set A ∈ A corresponds to a plane πA

not through a fixed point P1 ofH and, consequently, it has size | H \ πA | −1. In particular,
since H is a two-intersection set with respect to the (hyper)planes, the possible sizes of the

123



1518 A. Aguglia et al.

minimal access sets are q5 − 1 and q5 + q2 − 1. Observing that there is exactly one plane
through P1 meeting H in q3 + q2 + 1 points, while the remaining q4 + q2 planes meet H
in q3 + 1 points, it is straightforward to determine how many access structures of each type
there are from the weight enumerator of C(H).

We now describe in further detail the structures for q = 2. In this case the size of A is 64
and we can easily see that 32 of its minimal access sets have size 31 and the remaining 32
are of size 35. The stabilizer � of a point P1 in PGU(4, 2) has size 576. It has 5 orbits, say
�i (with i = 1, . . . , 5), on the hyperplanes of PG(3, 4) of size respectively 1, 8, 12, 32, and
32, respectively. The union of the first 3 orbits is the set of the hyperplanes through the fixed
point P1; the orbits �4 and �5 correspond to the families of hyperplanes with intersection,
respectively, 9 and 13 withH. In turn these correspond to the access structures of size 35 and
31.

Denote by {P1, . . . , P45} the points of H. It can be seen that � acts on the Pi ’s as the
permutation group generated by

γ1 := (2, 44, 38, 3, 42, 40)(4, 10, 28, 7, 13, 30)(5, 22, 15, 8, 24, 12)(6, 34, 20, 9, 32, 18)

(11, 19, 29, 14, 23, 33)(16, 25, 21)(26, 31, 27)(37, 41, 45)(39, 43)

γ2 := (10, 12, 11)(13, 15, 14)(16, 36, 26)(17, 45, 31)(18, 43, 32)(19, 44, 30)

(20, 39, 34)(21, 37, 35)(22, 38, 33)(23, 42, 28)(24, 40, 29)(25, 41, 27),

γ3 := (4, 12)(5, 10)(6, 11)(7, 15)(8, 13)(9, 14)(16, 26)(17, 35)(18, 33)(19, 34)

(20, 29)(21, 27)(22, 28)(23, 32)(24, 30)(25, 31).

By the previous remarks� acts in a natural way on the minimal access sets ofA. In particular,
A is the �-development of the following two starters:

S1 := {2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 26,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45},
S2 := {2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45}.

Remark 8 We point out that all access structure arising from Hermitian varieties are the �-
development of 2 elements under the action of a group� which is isomorphic to the stabilizer
of an isotropic point in PGU(r + 1, q).
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regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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