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Abstract
We illustrate a general technique to construct towers of fields producing high order elements
in Fq2n , for odd q , and in F22·3n , for n ≥ 1. These towers are obtained recursively by

x2n + xn = v(xn−1), for odd q , or x3n + xn = v(xn−1), for q = 2, where v(x) is a polynomial
of small degree over the prime field Fq and xn belongs to the finite field extension Fq2n ,
for an odd q , or to F22·3n . Several examples are provided to show the numerical efficacy of
our method. Using the techniques of Burkhart et al. (Des Codes Cryptogr 51(3):301–314,
2009) we prove similar lower bounds on the orders of the groups generated by xn , or by the
discriminant δn of the polynomial. We also provide a general framework which can be used
to produce many different examples, with the numerical performance of our best examples
being slightly better than in the cases analyzed in Burkhart et al. (2009).
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1 Introduction

Finding elements of high multiplicative order in a finite field is an interesting problem in
computational number theory and has applications in cryptography (for instance: Discrete
Logarithm Problem). A general method to find high order elements was given in [11], later
improved in [8, 18]. Another general result in this area is an algorithmic technique for finding
primitive elements which is devised in [12]. Such technique is efficient in finite fields of
small characteristic. Other strategies which allow to construct elements of high order usually
address specific sequences of finite fields. In this regard, methods involving Gauss periods
were first proposed in the results summarized in [26]. After that, an extensive literature
followed with works such as [1, 5, 16, 17, 19]. Recently, Artin-Schreier extensions were also
effectively used in [13, 21]. Another interesting approach is to look for high order elements
which arise as coordinates of points on an algebraic curve defined over a finite field (see
for example [4, 24, 25]). One way which has been explored for generating elements of this
type is through the iterative use of polynomial equations of type f (xn−1, xn) = 0, defining
suitable towers of fields, which we address as recursive towers in this work. Examples of
this can be found in [3, 20, 22, 25].

In [3], a recursive tower defined by f (xn−1, xn) is used to produce elements δn with high
multiplicative order inFq2n , for an odd q , and inFq3n , for q �= 3. The choice of the polynomial
f for the recursive process to generate high order elements in finite field extensions, was
limited to the equations of the modular curve towers in [10].

In this work, we attempt to generalize the choice of the polynomials.We illustrate in detail
several interesting towers of fields defined by x2n + xn = v(xn−1), where v(x) ∈ Fq [x], for
an odd q , or x3n + xn = v(xn−1), for v(x) ∈ F2[x]. These towers generate elements of high
orders in Fq2n and in F22·3n , for n ≥ 1. We also give a recipe for finding other towers of the
same formwhich have similar properties. The simple algebraic conditions given in Sections 3
and 4, which differ partially from the conditions required in [3] (Remark 3.1 below), seem to
play an important role toward this. In fact, in many of the cases we studied, these conditions
are useful to prove the existence of high order elements xn , in the field extension.

Throughout this paper, δn inFq2n is the discriminant of the polynomial f (xn, y) inFq2n [y].
In Corollary 3.5, we prove that the multiplicative orders of xn and δn grow very fast if x2n− j

and δ2n− j do not belong to F
q2n− j−1 , for all j < n − 1. Similar results hold also in even

characteristic, see Corollary 4.3. Notably, despite the bounds obtained are similar and have
no advantage with respect to the ones in [3], the even characteristic case turns out to be
completely new. In particular, no additional conditions on the discriminant are required, and
the details of the proof are worked out in a different manner. Furthermore the numerical
performance of some of our examples improves slightly on [3], in the iterations we were
able to compute. As already mentioned above, the polynomials used in [3] are the models of
certain modular curves given in [10]. Despite this fact, a possible relation of the construction
of high order elements with the arithmetic properties of such curves does not seem to play a
role in the proof of the lower bounds. Instead, in one case, we domake use of some arithmetic
properties of the algebraic curve considered by us (Lemma 5.4).

A comparative study with other relevant literature has also been carried-out. For example,
a specific construction of high order elements in the same type of fields of odd characteristic
q can be found in [7], and some variations on it are in [6, 15]. Comparing the numerical
performance of their construction with our variety of examples, we observe that the results
are similar for q ≡ 1 (mod 4), while for q ≡ 3 (mod 4) our construction performs better
(see Sect. 7 for examples with q = 3, 11).
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High order elements in finite fields

In Sect. 2, we introduce the notation that we use in the paper. In Sects. 3 and 4, we give the
main results which allow us to obtain the lower bounds on the order of xn and δn . Section 3
deals with odd characteristic and Sect. 4 deals with even characteristic. The lists of towers
satisfying the properties given in Sects. 3 and 4 are provided in Sects. 5 and 6, respectively.
Finally, in Sect. 7, we list numerical results obtained using MAGMA [2], about the seven
towers listed in Sects. 5 and 6.

2 Background and notation

Let q be a prime and letFq andF∗
q denote the finite fieldwith q elements and its multiplicative

group, respectively.We recall that every extensionFqr /Fq of finite fields, for a positive integer
r , is cyclic and the Galois group is generated by the Frobenius automorphism a �→ aq , for
each a ∈ Fqr .

By tower of fields, or simply a tower, we mean a sequence of field extensions

K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ . . . .

We are interested in infinite towers, namely towers such that the degree [Kn : K1] grows
to infinity. All the towers considered in this paper are actually finite, normal and separable,
i.e., each extension Kn/Kn−1 is finite, normal and separable, for every n > 1. When q
is odd, for each positive integer n, let Kn = Fq(xn), where the element xn ∈ Fq2n is
given by a recursive formula f (xn−1, xn) = 0, for a polynomial f (x, y) ∈ Fq [x, y]. In
this case, we say that the tower K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ . . . is defined by f (xn−1, xn)
and we address this kind of towers as recursive towers. We focus on towers defined by
f (xn−1, xn) = x2n + xn −v(xn−1), for n ≥ 2, with x1 ∈ Fq2 , and where v(x) is a polynomial
in Fq [x]. We denote by δn the discriminant δn = 1 + 4v(xn), for n ≥ 1. We point out that
both elements xn and δn belong to Fq2n , but they could also lie in a smaller extension F

q2k

for some k < n. Given the tower defined by f (xn−1, xn), we denote by g(x, y) ∈ Fq [x, y] a
polynomial giving the relation between two consecutive discriminants δn−1 and δn , namely
g(δn−1, δn) = 0. In the case of even characteristic (Sects. 4 and 6), we deal with towers
defined by f (xn−1, xn) = x3n + xn + v(xn−1), with xn ∈ F22·3n , for n ≥ 1, and v(x) being a
polynomial in F2[x].

Given two positive integers j and n, such that j < n, we denote the norm of the field
extension Fq2n /Fq2n− j by, Nn, j : Fq2n → F

q2n− j . The norm in the odd case is Nn, j (x) =
x

∏ j
i=1(q

2n−i +1). In order to apply the same techniques to even characteristic, we also denote
by Nn, j : F22·3n → F

22·3n− j the norm of the extension F22·3n /F22·3n− j , namely Nn, j (x) =
x

∏ j
i=1(4

2·3n−i +43
n−i +1). For every characteristic, we use the conventions N(x) := Nn,1(x) and

Nn,0(x) = x .
We use the following lemma for estimating the order of the elements in finite fields.

Lemma 2.1 Let � be a prime and let ��n (x) = ∑�−1
j=0 x

j�n−1
be the �n-th cyclotomic poly-

nomial for a positive integer n. Let a, b and c be positive integers such that b < c and
a ≡ 1 mod �. Then gcd

(
��b+1(a),��c+1(a)

) = �, in particular 1
�
��b+1(a) and 1

�
��c+1(a)

are coprime. Moreover, if p is a prime dividing 1
�
��b+1(a), then p > �b+1.

Proof See [3, Lemmas 1 and 2]. 
�
In order to prove that a cubic polynomial is irreducible, we need the following results.
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Lemma 2.2 If u ∈ F22·3n and c := u + u−1 ∈ F22·3n−1 , then u ∈ F22·3n−1 .

Proof If u /∈ F22·3n−1 , then x2 + cx + 1 is the minimum polynomial of u over F22·3n−1 . So
u ∈ F22·3n ∩ F24·3n−1 = F22·3n−1 and we get a contradiction. 
�
Lemma 2.3 Let u3 ∈ F22·3n−1 be a root of the quadratic polynomial x2 + t x + 1, with
t ∈ F22·3n−1 . Then y := u + u−1 ∈ F22·3n is a root of the cubic polynomial x3 + x + t , and
furthermore y ∈ F22·3n−1 if and only if u ∈ F22·3n−1 .

Proof This is Cardano’s formula for solving cubic equations in even characteristic. The
second statement follows by Lemma 2.2 taking y = c = u + u−1. 
�

3 Towers in odd characteristic

In order to find good towers we restrict our search to polynomials f (x, y) = y2 + y − v(x),
with v(x) ∈ Fq [x] being a non-zero polynomial, which satisfy Condition (1) below and at
least one of the last two conditions:

(1) f (xn−1,0)
xn−1

is a square in F
q2n−1 for n ≥ 2;

(2) g(δn−1,0)
xn−1

is a square in F
q2n−1 for n ≥ 2;

(2’) g(δn−1,0)
δn−1

is a square in F
q2n−1 for n ≥ 2.

Remark 3.1 We have found examples, in the literature, of towers of fields which satisfy
Condition (2’) above, but do not verify Condition (1) (see [3, Section 4, formula (5)]). We
wonder whether such examples satisfy a suitable analog of (1)which ensures that Proposition
3.3 below holds anyway.

Remark 3.2 These conditions are not sufficient for obtaining high order elements from each
tower, but, for our particular choices of f , they are sufficient to construct a recursive tower
defined by f (xn−1, xn) as Proposition 3.3 below shows.

The following key proposition ensures that all the polynomials f (xn−1, xn) listed in Sect. 5
define infinite towers of fields. In particular it shows that [Kn : Kn−1] = 2, for all n > 1.
The argument of the proof is the corresponding analogue of [3, Proposition 1] but it could
be applied to many different towers.

Proposition 3.3 Let v(x) ∈ Fq [x] be a polynomial and assume that f (xn−1, xn) = x2n +
xn − v(xn−1) satisfies Conditions (1) and (2), or Conditions (1) and (2’). If xn−1 and δn−1

are not squares in the multiplicative group F
∗
q2n−1 for a suitable n ≥ 2, then x j and δ j are

not squares in the multiplicative group F∗
q2 j

, for j ≥ n.

Proof The element xn is not in F
q2n−1 because δn−1 is not a square in F

q2n−1 , therefore

f (xn−1, y) is the minimal polynomial of xn . We need to ensure that x (q2
n−1)/2

n = −1. As in
[3, Proposition 1], we obtain:

x (q2
n−1)/2

n = (xq
2n−1+1

n )(q
2n−1−1)/2 = N(xn)

(q2
n−1−1)/2

= f (xn−1, 0)
(q2

n−1−1)/2 = −1,
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where N(xn) = xq
2n−1+1

n = f (xn−1, 0) is the norm of xn over Fq2n−1 and we use Condition
(1) in last equality to show that f (xn−1, 0) is not a square in F

q2n−1 for n > 1.
Consider the discriminant δn . Again g(δn−1, y) is the minimal polynomial of δn = 1 +

4v(xn). Since, in Fq2n , we know that f (xn ,0)
xn

is a square by Condition (1), −1 is a square
and xn is not a square as above, then v(xn) = − f (xn, 0) is not a square in Fq2n . Hence,
δn /∈ F

q2n−1 . The same computation as above yields:

δ
(q2

n−1)/2
n = (δ

q2
n−1+1

n )(q
2n−1−1)/2 = N(δn)

(q2
n−1−1)/2

= g(δn−1, 0)
(q2

n−1−1)/2 = −1,

where we use Condition (2), respectively (2’), in last equality to show that g(δn−1, 0) is not a
square in F

q2n−1 , because xn−1, (respectively δn−1), is a non-square by hypothesis. It follows
that xn and δn are non-squares in Fq2n . Repeating the same argument, we find that x j and δ j
are not squares in F

q2 j
, for all j > n, which completes the proof. 
�

The importance of this proposition is evident if we consider Corollary 3.5 below, which
is an analogue of [3, Proposition 2]. We first state the following property of the norm that is
used in the proof of the corollary.

Lemma 3.4 Let n ≥ 2 and j < n be positive integers, then

Nn, j (xn)

xn− j
=

j∏

k=1

Nn−k, j−k

(
Nn−k+1,1(xn−k+1)

xn−k

)

.

Moreover
Nn, j (xn)
xn− j

is a square in F
q2n− j .

Proof The case j = 1 is trivial. By induction on j , let j ≥ 2 and assume the result holds for
j − 1, then

Nn, j (xn)

xn− j
= x

(q2
n−1+1)

∏ j
i=2(q

2n−i +1)
n

xn− j

=
⎛

⎝ xq
2n−1+1

n

xn−1

⎞

⎠

∏ j
i=2(q

2n−i +1)
x

∏ j
i=2(q

2n−i +1)
n−1

xn− j

=
(
Nn,1(xn)

xn−1

)∏ j
i=2(q

2n−i +1) Nn−1, j−1(xn−1)

xn− j

=
(
Nn,1(xn)

xn−1

)∏ j−1
i=1 (q2

n−1−i +1) j−1∏

k=1

Nn−k−1, j−k−1

(
Nn−k,1(xn−k)

xn−k−1

)

= Nn−1, j−1

(
Nn,1(xn)

xn−1

) j∏

k=2

Nn−k, j−k

(
Nn−k+1,1(xn−k+1)

xn−k

)

.

The remaining part of the proof follows by Condition (1). 
�
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Corollary 3.5 Let v(x) be a polynomial in Fq [x] and assume that f (xn−1, xn) = x2n + xn −
v(xn−1) satisfies Conditions (1) and (2), or Conditions (1) and (2’), and that x1 and δ1 are
not squares in Fq2 . Then x2n /∈ F

q2n−1 and the order of xn is greater than

2
1
2 (n2+3n)+ord2(q−1)−2,

for all n > 1. The same lower bound also holds for the order of δn if δ2n /∈ F
q2n−1 for all

n > 1.

Proof We know that xn /∈ F
q2n−1 by Proposition 3.3, therefore we have that x2n = −xn +

v(xn−1) /∈ F
q2n−1 for all n > 1. We show that the order of xn has a common factor with the

odd number q2
n− j +1
2 proving that x

2(q2
n −1)

q2
n− j +1

n �= 1, for j = 1, 2, . . . , n−1. For j = 1, we have

x

2(q2
n −1)

q2
n−1+1

n = x2(q
2n−1−1)

n �= 1,

since x2n /∈ F
q2n−1 , as we have just seen. For j ≥ 2, we get

x

2(q2
n −1)

q2
n− j +1

n =
(

x
∏ j−1

k=1(q
2n−k +1)

n

)2(q2
n− j −1)

= Nn, j−1(xn)
2(q2

n− j −1)

and the last member above is 1 only if Nn, j−1(xn)2 ∈ F
q2n− j . We show that this is not

possible. Consider Nn, j (xn) = Nn− j+1,1(Nn, j−1(xn)). If Nn, j−1(xn)2 ∈ F
q2n− j , then either

Nn, j (xn) = Nn, j−1(xn)2 or Nn, j (xn) = Nn, j−1(xn). The latter equality is not possible since
Nn, j−1(xn) is not a square in F

q2n− j+1 by Lemma 3.4 but Nn, j (xn) ∈ F
q2n− j is a square in

F
q2n− j+1 . The former equality, by Lemma 3.4, gives:

1 =
xn− j

∏ j
k=1 Nn−k, j−k

(
Nn−k+1,1(xn−k+1)

xn−k

)

x2n− j+1

∏ j−1
k=1

(
Nn−k, j−k−1

(
Nn−k+1,1(xn−k+1)

xn−k

))2

=
xn− j

Nn− j+1,1(xn− j+1)

xn− j

∏ j−1
k=1 Nn−k, j−k

(
Nn−k+1,1(xn−k+1)

xn−k

)

x2n− j+1

∏ j−1
k=1

(
Nn−k, j−k−1

(
Nn−k+1,1(xn−k+1)

xn−k

))2

=
Nn− j+1,1(xn− j+1)

∏ j−1
k=1Nn− j+1,1

(
Nn−k, j−k−1

(
Nn−k+1,1(xn−k+1)

xn−k

))

x2n− j+1

∏ j−1
k=1

(
Nn−k, j−k−1

(
Nn−k+1,1(xn−k+1)

xn−k

))2

=
(xn− j+1)

q2
n− j +1 ∏ j−1

k=1

(
Nn−k, j−k−1

(
Nn−k+1,1(xn−k+1)

xn−k

))q2n− j +1

x2n− j+1

∏ j−1
k=1

(
Nn−k, j−k−1

(
Nn−k+1,1(xn−k+1)

xn−k

))2

= xq
2n− j −1

n− j+1

j−1∏

k=1

(

Nn−k, j−k−1

(
Nn−k+1,1(xn−k+1)

xn−k

))q2
n− j −1

.
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Since the last term is 1, then

xn− j+1

j−1∏

k=1

Nn−k, j−k−1

(
Nn−k+1,1(xn−k+1)

xn−k

)

∈ F
q2n− j ,

but this is impossible because xn− j+1 is a non-square in F
q2n− j+1 , by Proposition 3.3, but

Nn−k, j−k−1

(
Nn−k+1,1(xn−k+1)

xn−k

)

= Nn−k, j−k−1

(
f (xn−k, 0)

xn−k

)

is a square in F
q2n− j+1 , for each k < j , by Condition (1) and by multiplicativity of the norm.

This odd common factor ensures, by Lemma 2.1 with a = q , b = n − j and � = 2,
the existence of a lower bound on the order of xn , namely p j > 2n− j+1, for every j =
1, 2, . . . , n − 1. Hence, the order is bounded below by

2
n(n+1)

2 −1 =
n−1∏

j=1

2n− j+1 <

n−1∏

j=1

p j .

The remaining term 2n+ord2(q−1)−1 follows as in [3, Proposition 2]. By the repetition of
the difference of squares formula, we get:

ord2

(
q2

n − 1

2

)

=
n−1∑

j=0

ord2(q
2 j + 1) + ord2(q − 1) − 1 = n + ord2(q − 1) − 1,

for all n ≥ 1. It follows that 2n+ord2(q−1)−1 divides the order of xn because x
q2

n −1
2

n = −1 by
Proposition 3.3. The proof for δn is similar. 
�

4 Towers in even characteristic

The even analogue of Conditions (1) and (2) in the odd case for polynomials f (x, y) =
y3 + y + v(x), with v(x) ∈ F2[x], is:
(3) There exists an integer e ≥ 0 such that f (xn−1, 0) = x2

e

n−1 for all n ≥ 2.

This means that we can restrict our study to polynomials in the form f (x, y) = y3+ y+ x2
e
,

with e ≥ 0, and deduce similar results as in the previous section. In Sect. 6, we find some
cases where the towers defined by polynomials f (xn−1, xn) are infinite and Galois. This is
achieved by finding a suitable initial element x1 ∈ F26 . Under these hypotheses we have an
analogue of Proposition 3.3.

Proposition 4.1 Consider an infinite normal tower defined by f (xn−1, xn) = x3n + xn + x2
e

n−1
for a certain e ≥ 0, for all n > 1. Let p be a prime divisor of |F∗

22·3n−1 |, for a suitable n > 1,

and assume that xn−1 is not a p-th power in the multiplicative group F∗
22·3n−1 . Then x j is not

a p-th power in the multiplicative group F∗
22·3 j

, for j ≥ n.

Proof By assumption f (xn−1, y) is irreducible, so xn /∈ F22·3n−1 and f (xn−1, y) is the

minimum polynomial of xn . We need to check that x (43
n−1)/p

n �= 1. As in the proof of
Proposition 3.3, we obtain:
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x (43
n−1)/p

n = (x4
2·3n−1+43

n−1+1
n )(4

3n−1−1)/p

= N(xn)
(43

n−1−1)/p = f (xn−1, 0)
(43

n−1−1)/p,

where N(xn) = x4
2·3n−1+43

n−1+1
n = f (xn−1, 0) is the norm of xn over F22·3n−1 . The last

term is not equal to 1 because xn−1 is not a p-th power in F22·3n−1 , hence, by Condition (3),
f (xn−1, 0) is not a p-th power as well. 
�

The analogue of Lemma 3.4 in even characteristic is the following:

Lemma 4.2 Let e ≥ 0, n ≥ 2 and j < n be positive integers, then

Nn, j (xn)

x2
ej

n− j

=
j∏

k=1

Nn−k, j−k

(
Nn−k+1,1(xn−k+1)

x2
e

n−k

)2e(k−1)

.

In particular, if the tower defined by f (xn−1, xn) satisfies Condition (3) for a certain e ≥ 0,
then Nn, j (xn) = x2

ej

n− j .

Proof By induction on j . For j = 1 the result is trivial. Let j ≥ 2 and assume the result
holds for j − 1, then:

Nn, j (xn)

x2
ej

n− j

= x
(42·3n−1+43

n−1+1)
∏ j

i=2(4
2·3n−i +43

n−i +1)
n

x2
ej

n− j

=
⎛

⎝x4
2·3n−1+43

n−1+1
n

x2
e

n−1

⎞

⎠

∏ j
i=2(4

2·3n−i +43
n−i +1)

⎛

⎜
⎝
x

∏ j
i=2(4

2·3n−i +43
n−i +1)

n−1

x2
e( j−1)

n− j

⎞

⎟
⎠

2e

=
(
Nn,1(xn)

x2
e

n−1

)∏ j
i=2(4

2·3n−i +43
n−i +1) (

Nn−1, j−1(xn−1)

x2
e( j−1)

n− j

)2e

=Nn−1, j−1

(
Nn,1(xn)

x2
e

n−1

) j−1∏

k=1

Nn−k−1, j−k−1

(
Nn−k,1(xn−k)

x2
e

n−k−1

)2ek

=Nn−1, j−1

(
Nn,1(xn)

x2
e

n−1

) j∏

k=2

Nn−k, j−k

(
Nn−k+1,1(xn−k+1)

x2
e

n−k

)2e(k−1)

.

The remaining part of the proof follows by Condition (3). 
�

Corollary 4.3 Consider an infinite normal tower defined by f (xn−1, xn) = x3n + xn + x2
e

n−1,
for a certain e ≥ 0, for all n > 1. If x1 is not a cube in F26 , then x3n /∈ F22·3n−1 for all n ≥ 2
and the order of xn in the tower defined by f (xn−1, xn) is greater than

3
1
2 (n2+3n)−1.

Proof The proof is similar to the proofs of Corollary 3.5 and [3, Proposition 4].We know that

xn /∈ F22·3n−1 by Proposition 4.1, so x3n = xn + v(xn−1) /∈ F22·3n−1 . It follows that
(
x3n

)2e
/∈
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F22·3n−1 . In order to show that the order of xn has a common factor with 1
3 (4

2·3n− j +43
n− j +1),

we show that x
3(43

n −1)

42·3n− j +43
n− j +1

n �= 1, for j = 1, 2, . . . , n − 1. We have:

x

3(43
n −1)

42·3n− j +43
n− j +1

n = x
43
n −1

43
n− j −1

· 3(43
n− j −1)

42·3n− j +43
n− j +1

n = x

3(43
n −1)(43

n− j −1)

43
n− j+1−1

n

= x
3(43

n− j −1)
∏ j−1

i=1 (42·3n−i +43
n−i +1)

n = Nn, j−1(xn)
3(43

n− j−1).

By Lemma 4.2 we have that Nn, j (xn) = x2
ej

n− j , for j = 1, 2, . . . , n − 1. But
(
x2

e( j−1)

n− j+1

)3
/∈

F
22·3n− j for all j ≥ 1. It follows that Nn, j−1(xn)3(4

3n− j−1) cannot be equal to 1. This ensures,
by Lemma 2.1 with a = 4, b = n− j and � = 3, the existence of a lower bound on the order
of xn , namely p j > 3n− j+1, for every j = 1, 2, . . . , n − 1. Hence, we get a lower bound for
the order of xn , which is

3
n(n+1)

2 −1 =
n−1∏

j=1

3n− j+1 <

n−1∏

j=1

p j .

The remaining term 3n follows by the computation of the power of 3 dividing the order of
xn . By the repetition of the difference of cubes formula, we have:

ord3

(
43

n − 1

3

)

=
n−1∑

j=0

ord3(4
2·3 j + 43

j + 1) + ord3(4 − 1) − 1 = n,

for all n ≥ 1. This term divides the order of xn , since x
43
n −1
3

n �= 1, by Proposition 4.1. 
�

5 Examples of good towers in odd characteristic

In this section we find high order elements in Fq2n , for odd q , using five good towers.

In this section, we denote by ε the element 4−1 inside Fq . We consider the polynomials
fi (xn−1, xn) := x2n + xn − vi (xn−1), for i ∈ {1, 2, . . . , 5}, where vi (x) is a polynomial
chosen as follows:

(1) v1(x) := εx;
(2) v2(x) := 4x(x + 3ε)2;
(3) v3(x) := 2εx;
(4) v4(x) := 8x(2x + 3ε)2;
(5) v5(x) := 8x(x + 3ε)2.

Remark 5.1 Condition (1) holds for all the previous polynomials and the relation between
two consecutive discriminants is given respectively by:

g1(δn−1, δn) = δ2n − δn − εδn−1 + ε;
g2(δn−1, δn) = δ2n − δn − 4δ3n−1 + 6δ2n−1 − 9εδn−1 + ε;
g3(δn−1, δn) = δ2n − δn−1;
g4(δn−1, δn) = δ2n + 48δn−1δn − 256δ3n−1 + 288δ2n−1 − 81δn−1;
g5(δn−1, δn) = δ2n − 16δ3n−1 + 24δ2n−1 − 9δn−1.
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The first two towers satisfy Condition (2). In fact

g1(δn−1, 0) = −ε(1 + 4xn−1) + ε = −xn−1;
g2(δn−1, 0) = xn−1(xn−1 + 3ε)2(x3n−1 + 6x2n−1 + 9ε2xn−1 + 3ε3)2.

Similarly the last three towers satisfy Condition (2’). In fact,

g3(δn, 0) = −δn;
g4(δn, 0) = −256δn(δn − 9ε2)2;
g5(δn, 0) = −16δn(δn − 3ε)2.

Hence, Proposition 3.3 applies to fi (xn−1, xn), for i ∈ {1, 2, . . . , 5} once we have some
starting points.

The next two lemmas ensures the existence of a non-square x1 such that δ1 is a non-square
in Fq2 as well. This would be the corresponding analogue of [3, Lemma 3], but here we also
need that both x1 and δ1 must be non-squares. This requires more effort, especially for the
last tower f5(xn−1, xn) below, but, as a balance, this gives a lower bound for the order of xn ,
also.

The present proof relies mainly on elementary combinatorial arguments.

Lemma 5.2 Let c ∈ Fq be a non-zero element. There is at least a non-square x1 ∈ Fq2 such
that x1 + c is a non-square as well.

Proof Consider the actionρ ofFq onFq2 as an additive group, namelywehaveρg(x) = x+g,

for g ∈ Fq and x ∈ Fq2 . Then, Fq2 is partitioned into q orbits. There are exactly 1
2 (q

2 + 1)
squares in Fq2 . Among these, there are all the elements of the orbit Fq . It follows that there

are exactly 1
2 (q

2 − 2q + 1) square elements in q − 1 orbits. Hence, there is at least one orbit
with at most 1

2 (q −1) square elements and at least 1
2 (q +1) non-square elements. We denote

this orbit by S. It follows that there are at least two consecutive non-squares in S under the
repeated action of ρc, namely a and ρc(a) = a + c. The lemma follows by choosing x1 = a.


�
Example 5.3 Consider, q = 3 and c = 1. Denote by z a generator ofF∗

32
satisfying z2 = z+1.

There are exactly 5 squares in F
∗
32
, but 3 of them are in the same orbit F3. The remaining

ones are z2 = z + 1 and z6 = 2z + 2. One can check that they belong to the orbits

S1 = (z; z + 1 = z2; z + 2 = z7) and S2 = (2z = z5; 2z + 1 = z3; 2z + 2 = z6).

As x1 we can choose the element 2z or z+2.They are both roots of the polynomial x2 = 2x+1,
so we use this polynomial for q = 3 in Sect. 7.

In order to show the existence of a suitable initial element x1 for the tower defined by
f5(xn−1, xn) we prove the following lemma.

Lemma 5.4 Let q be an odd prime and let p(x) be a cubic polynomial in Fq [x] without
multiple roots, such that p(0) �= 0. Then:

(i) The curve C1 : y2 = p(x) has at most q2 + 2q affine Fq2 -rational points and the curve
C2 : y2 = p(x2) has at least q2 − 4q − 1 affine Fq2 -rational points.

(ii) If q ≥ 11, then there is at least a non-square x1 ∈ Fq2 such that p(x1) is a non-square
in Fq2 as well.
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Proof (i) We note that p(x2) is square-free since p(x) is square-free and p(0) �= 0 by
hypothesis. The first statement follows by Weil bound |N − (q2 + 1)| ≤ 2gq , for every
smooth projective curve of genus g with N points over Fq2 , since C1 is an elliptic curve and
C2 has genus at most 2, see [23, Propositions 6.1.3 (a) and 6.2.3 (b)]. It is well known that
the number of points at infinity is 1 in an elliptic curve and it is at most 2 in a genus 2 curve.
Hence, (i) is proved.

(ii) By contradiction we assume that p(α) is a square for all non-square α ∈ Fq2 . Let

β ∈ Fq2 be a square root of p(α). Since there are exactly 1
2 (q

2 − 1) non-squares in Fq2 and
β �= 0, except at most for 3 choices of α, then the pairs (α, β) and (α,−β) produce at least
q2 −4 distinct points of C1. We show that such points are too many. We estimate the number
of squares α such that p(α) is also a square in Fq2 . Each point (t, y) in C2 corresponds to the
point (x, y) in C1 with x = t2. This correspondence is not 1 − 1 because, when t �= 0, the
point (−t, y) determines the same point in C1. Let N be the number of affine Fq2 -rational

points of C2, then C1 must have more than N
2 affine Fq2 -rational points (x, y) with x being

a square in Fq2 . By Part (i), we have N ≥ q2 − 4q − 1. Counting the points of C1 we get,

again by Part (i), q2 − 4 + 1
2 (q

2 − 4q − 1) ≤ q2 + 2q which yields, after a straightforward
computation, q2 − 8q − 9 ≤ 0. It follows that q ≤ 9, which is contrary to our assumption
on q . Hence, there is at least one non-square x1 ∈ Fq2 such that p(x1) is a non-square too. 
�
Remark 5.5 The condition q ≥ 11 in the previous lemma is not necessary and here we show
that Part (ii) also holds for q = 3, 5, 7 for the polynomial p(x) = 1 + 4v5(x), which is
not square-free for q = 3. This is useful in the proof of Corollary 5.6. We are interested in
this polynomial since the discriminant δ1 of f5 above is p(x1) and so we need to be able to
choose an element x1 ∈ Fq2 such that both x1 and δ1 are non-squares.

For q = 7, we choose x1 in F72 as a root of x2 + 5x + 5. Then a straightforward
computation shows that both x1 and p(x1) = 4x31 − x21 + 4x1 + 1 are non-squares in F72

since x241 = p(x1)24 = −1.
Similarly, for q = 5, if we choose x1 being a root of the polynomial x2 + 4x + 2, in F52 ,

then p(x1) = 2x31 + 3x21 + 3x1 + 1 and x121 = p(x1)12 = −1. Hence, both x1 and p(x1) are
non-square in F52 .

Finally, for q = 3, if we choose x1 as a root of the polynomial x2 + 2x + 2, as in
Example 5.3 above, then p(x1) = 1 − x31 and x41 = p(x1)4 = −1, hence x1 and p(x1) are
non-squares in F32 as well.

We use the aforementioned examples in Sect. 7.

The following corollary ensures the existence of towers defined by fi (xn−1, xn) generating
high order elements for i ∈ {1, 2, . . . , 5}.
Corollary 5.6 The polynomials fi (xn−1, xn), for i ∈ {1, 2, . . . , 5}, define infinite towers
of fields. Moreover, for a suitable choice of x1, the order of xn in Fq2n is greater than

2
1
2 (n2+3n)+ord2(q−1)−2. The same bound holds for δn in the towers defined by f1(xn−1, xn)

and f2(xn−1, xn) and, when q > 3, for δn in the tower defined by f4(xn−1, xn).

Proof First, for each tower considered, we show the existence of a non-square starting point
x1 such that the discriminant δ1 is a non-square as well. A straightforward computation shows
that δ1 = x1 + 1 for f1 and that δ1 = 16x31 + 24x21 + 9x1 + 1 = (x1 + 1)(4x1 + 1)2 for
f2. Hence, for the first two polynomials, it is enough to choose x1 as in Lemma 5.2 with
c = 1. A straightforward computation also shows that δ1 = 2

(
x1 + 1

2

)
for f3 and that

δ1 = 128
(
x1 + 1

2

)
(x1 + 2ε2)2 for f4. Hence, for the third and the fourth polynomial, it is
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enough to choose x1 as in Lemma 5.2 with c = 1
2 . For the last tower, by Remark 5.5, we can

take x1 as in Remark 5.5 for q ≤ 7 and we can take x1 as in Lemma 5.4 for q ≥ 11.
Now, we know, by Remark 5.1, that all the considered towers satisfy Conditions (1) and

(2), or Conditions (1) and (2’). Therefore, the result for xn follows by Corollary 3.5. For
δn we have to check that δ2n /∈ F

q2n−1 for n > 1, in the tower defined by f1(xn−1, xn) and
f2(xn−1, xn), for q ≥ 3, and by f4(xn−1, xn) for q > 3. But this follows by the expression
of g1(δn−1, δn), g2(δn−1, δn) and g4(δn−1, δn) in Remark 5.1. 
�
As in [3], the bound of the previous corollary does not seem to be sharp, in fact in many
cases we were able to construct generators of the multiplicative group F

∗
q2n

, whose order is

q2
n − 1, which is much higher than 2

n2
2 . The interested reader can compare the tables in

Sect. 7 with the experimental results of [3].

Remark 5.7 The bound in the Corollary 5.6 above, does not hold for δn in the tower defined
by f3(xn−1, xn) and f5(xn−1, xn). In fact, δ2n ∈ F

q2n−1 , for all n > 1, which can be verified
easily. The interested reader can see the numerical results in Sect. 7. A careful comparison
between the results for these two polynomials reveals an interesting differencewhen q > 3. In
fact, the order of the discriminant δn turns out to grow very slowly using f3 in comparison to
f5. The reason is that in the former tower the discriminants satisfy the relation g3(δn−1, δn) =
δ2n − δn−1 = 0, which yields δ2

n−1

n = δ2
n−2

n−1 = . . . = δ1 ∈ Fq2 . This implies that we can

estimate the order of δn , which turns out to be lower than 2n−1+ord2(q2−1). In the tower
defined by f5(xn−1, xn), we have that δ2

j

n ∈ F
q2n− j holds for j = 1, but not for all j < n.

This explains why the order grows comparatively faster when q > 3. In the case q = 3 the
polynomial equation g5(δn−1, δn) = δ2n −δ3n−1 = 0 gives δ2

n−1

n = δ3
n−1

1 ∈ F32 . This explains
why the numerical results for the order of δn are similar to the tower defined by f3(xn−1, xn).

Remark 5.8 From the relation g4(δn−1, δn) = 0 between δn and δn−1 in the fourth tower,
for q = 3, we get g4(δn−1, δn) = δ2n − δ3n−1 = 0. Hence, we observe that the proof of last
corollary does not work when q = 3. We also point out that f4(xn−1, xn) = f5(xn−1, xn)
when q = 3. This fact explains why the numerical results in the corresponding tables in
Sect. 7 have the same values in the first two columns.

Of course could exist other towers satisfying analogues of Conditions (1) and (2) or Con-
ditions (1) and (2’) above. An extensive computer search could show the non-existence of
similar examples of the form f (xn−1, xn) = x2n + xn +v(xn−1), with deg(v(x)) ≤ 3, at least
for small prime fields.

6 Examples of good towers in even characteristic

In this section we list polynomials generating high order elements, as in Sect. 5. We have to
adapt some proofs in even characteristic, since we have to prove that our cubic polynomials
f (xn−1, y) are irreducible in F22·3n−1 [y]. Let e be a non-negative integer. In the following

results, we prove that f (xn−1, xn) := x3n + xn + x2
e

n−1 actually defines an infinite normal
separable tower.

Lemma 6.1 Let e and n be integers such that e ≥ 0 and n ≥ 2, and let xn−1 ∈ F22·3n−1 .

Assume that u3n ∈ F22·3n−1 is a root of the quadratic polynomial y2 + x2
e

n−1y + 1 and that
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xn := un+u−1
n /∈ F22·3n−1 is a root of the cubic polynomial y3+y+x2

e

n−1. Let un+1 ∈ F22·3n+1

be a third root of u2
e

n . Then:

(i) un+1 /∈ F22·3n ;
(ii) u3n+1 and u

−3
n+1 are the roots of y

2 + x2
e

n y + 1;

(iii) xn+1 := un+1 + u−1
n+1 is a root of y3 + y + x2

e

n and xn+1 /∈ F22·3n .

Proof Part (i) follows since u9n+1 = (u3n+1)
3 = (u2

e

n )3 = (u3n)
2e belongs to F22·3n−1 and since

F22·3n does not contain any 9-th root of non-cubic elements in F22·3n−1 because 9 does not
divide

|F∗
22·3n |

|F∗
22·3n−1 | = 1 + 43

n−1 + 42·3n−1
,

for all n ≥ 1.
Part (ii) follows by straightforward verification.
The last part follows by Lemma 2.3 and by Parts (i) and (ii). 
�

Part (iii) in the previous lemma shows by induction that if f (x1, y) = y3 + y + x2
e

1 is
irreducible in F26 [y], then f (xn, y) = y3 + y + x2

e

n is also irreducible in F22·3n [y] for all
n > 1. It follows that the Galois group of the splitting field of f (xn, y) is the cyclic group
Z/3Z.

We summarize the results above in the following corollary, which provides a good initial
choice for x1, resulting in f (xn−1, xn) to be a normal separable recursive tower.

Corollary 6.2 Let e ≥ 0 be an integer. Then f (xn−1, xn) := x3n +xn +x2
e

n−1 defines an infinite
tower of fields and, for a suitable choice of x1, the order of xn ∈ F22·3n , for n ≥ 2, is greater

than 3
1
2 (n2+3n)−1.

Proof Let x1 be one of the roots of h(x) := x6 + x5 + x3 + x2 +1. The reader can verify that
each root of this polynomial is not a cube in F218 . By Lemma 6.1, Part (iii), the fact that the
roots of y2 + x2

e

1 y + 1 are not cubes implies that f (xn, y) = y3 + y + x2
e

n is irreducible for
each n ≥ 1. Hence f (xn−1, xn) defines an infinite tower of fields which is Galois because
they are extensions of finite fields. Since f clearly satisfies Condition (3) of Sect. 4, so the
proof follows by Corollary 4.3. 
�
In Sect. 7 we collated the numerical results for f6(xn−1, xn) := x3n + xn + xn−1 and
f7(xn−1, xn) := x3n + xn + x2n−1 corresponding to e = 0 and e = 1, respectively. The
initial element x1 is one of the roots of h(x) := x6 + x5 + x3 + x2 + 1 as explained in the
proof of Corollary 6.2.

7 Numerical results

In this section, we have collated themultiplicative orders o(xn) (and o(δn) for q odd) for small
n in the towers defined by fi (xn−1, xn), for i = 1, 2, . . . , 7. In most of the cases we obtained
generators of the multiplicative groups F∗

q2n
and F∗

22·3n . We tabulated base 2 logarithm of the

orders as they grow exponentially. In particular, in Tables 1, 2, 3, 4, 5 we list the numerical
results in odd characteristic for f1, . . . , f5. The interested reader can also find the lower and
upper bounds for o(xn) and o(δn) listed in Tables 6 and 7, for odd and even characteristic
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Table 6 Upper bounds for odd q ≤ 11 and lower bound

q 3 5 7 11 Lower bound

n log2(q
2n − 1) log2(q

2n − 1) log2(q
2n − 1) log2(q

2n − 1) log2(2
(n2+3n)/2)

1 3.0 4.6 5.6 6.9 2.0

2 6.3 9.3 11.2 13.8 5.0

3 12.7 18.6 22.5 27.7 9.0

4 25.4 37.2 44.9 55.4 14.0

5 50.7 74.3 89.8 110.7 20.0

6 101.4 148.6 179.7 221.4 27.0

7 202.9 297.2 359.3 442.8 35.0

8 405.8 594.4 718.7 885.6 44.0

9 811.5 1188.8 1437.4 1771.2 54.0

Table 7 Results for f6(xn−1, xn) and f7(xn−1, xn) for q = 2 and related lower and upper bounds

f (xn−1, xn) = f6(xn−1, xn) f7(xn−1, xn) Lower bound Upper bound

n log2(o(xn )) log2(o(xn)) log2(3
n(n+3)/2) log2(4

3n − 1)

1 6.0 6.0 3.2 6.0

2 18.0 18.0 7.9 18.0

3 54.0 54.0 14.3 54.0

4 162.0 162.0 22.2 162.0

5 486.0 486.0 31.7 486.0

6 1458.0 1458.0 42.8 1458.0

respectively. Finally, in Table 8, we compare one of our examples in characteristic 3, with
the constructions of [3] and [7].

MAGMA [2] computational algebra system was used for the experiments and a sample
MAGMA code and output, for q = 11 can be found in [9]. The performance of the code
depends on the efficiency of the root finding algorithm that one uses. We have used the
standard function of MAGMA [2] for finding roots.

8 Conclusion and future work

In [3], the choice of polynomials for the recursive process to generate high order elements in
finite field extensions, was limited to the equations of the modular curve towers in [10]. In
this work, we attempted to generalize the choice of the polynomials. This provides us with
more examples with similar properties. A central theme of this research work is to find a
recipe to choose polynomials to use the recursive process. There might be other equations
which could help to attain similar bounds. It would be interesting to understand in general
which equations are good and which ones are not. We also point out that there could be other
explicit towers satisfying similar properties. We were in fact attracted previously by other
interesting exampleswith v(x) being a polynomial of higher degree overFq , which turned out
to give high order elements, although the proof seems to be much harder. A possible relation
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High order elements in finite fields

linking together these equations could allow to obtain other families of towers with good
parameters. We also expect to improve our results by extending the construction of Sect. 3
to higher degree polynomials and extending the construction of Sect. 4 to odd characteristic
q > 3.

Another question that would be interesting to explore is the possible relation with some
geometric construction. In fact, since the tower in [3] is obtained from the equation of a mod-
ular curve, it is a natural question to ask whether our results have a geometric interpretation
or not. We hope that a finer understanding of the subject might also possibly provide a recipe
for finding high order elements from towers obtained from different forms.
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