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Abstract
Zps -additive codes of length n are subgroups of Zn

ps , and can be seen as a generalization of
linear codes over Z2, Z4, or Z2s in general. A Zps -linear generalized Hadamard (GH) code
is a GH code over Zp which is the image of a Zps -additive code by a generalized Gray map.
In this paper, we generalize some known results for Zps -linear GH codes with p = 2 to any
odd prime p. First, we show some results related to the generalized Carlet’s Gray map. Then,
by using an iterative construction of Zps -additive GH codes of type (n; t1, . . . , ts), we show
for which types the corresponding Zps -linear GH codes of length pt are nonlinear over Zp .
For these codes, we compute the kernel and its dimension, which allow us to give a partial
classification. The obtained results for p ≥ 3 are different from the case with p = 2. Finally,
the exact number of non-equivalent such codes is given for an infinite number of values of
s, t , and any p ≥ 2; by using also the rank as an invariant in some specific cases.
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1 Introduction

Let Zps be the ring of integers modulo ps with p prime and s ≥ 1. The set of n-tuples over
Zps is denoted by Z

n
ps . In this paper, the elements of Zn

ps will also be called vectors. The
order of a vector u over Zps , denoted by o(u), is the smallest positive integer m such that
mu = 0.

A code over Zp of length n is a nonempty subset of Zn
p , and it is linear if it is a subspace

of Zn
p . Similarly, a nonempty subset of Zn

ps is a Zps -additive if it is a subgroup of Zn
ps . Note

that, when p = 2 and s = 1, a Zps -additive code is a binary linear code and, when p = 2
and s = 2 , it is a quaternary linear code or a linear code over Z4.

Two codes C1 and C2 over Zp of length n are said to be monomially equivalent (or just
equivalent) provided there is a monomial matrix M such that C2 = {cM : c ∈ C1}. Recall
that a monomial matrix is a square matrix with exactly one nonzero entry in each row and
column. They are said to be permutation equivalent if there is a permutation matrix P such
thatC2 = {cP : c ∈ C1}. Recall that a permutation matrix is a square matrix with exactly one
1 in each row and column and 0s elsewhere. A permutationmatrix represents a permutation of
coordinates, so we can also say that they are permutation equivalent if there is a permutation
of coordinates π such that C2 = {π(c) : c ∈ C1}. Similarly, two Zps -additive codes, C1 and
C2, are said to be permutation equivalent if they differ only by a permutation of coordinates,
that is, if there is a permutation of coordinates π such that C2 = {π(c) : c ∈ C1}.

In [15], aGraymap fromZ4 toZ2
2 is defined asφ(0) = (0, 0),φ(1) = (0, 1),φ(2) = (1, 1)

and φ(3) = (1, 0). There exist different generalizations of this Gray map, which go from
Z2s to Z

2s−1

2 [5, 7, 9, 16, 19]. The one given in [16] can be defined in terms of the elements
of a Hadamard code [19], and Carlet’s Gray map [7] is a particular case of the one given in
[19] satisfying

∑
λiφ(2i ) = φ(

∑
λi2i ) [11]. In this paper, we focus on a generalization of

Carlet’s Gray map, from Zps to Z
ps−1

p , which is also a particular case of the one given in

[25]. We define Φ : Zn
ps → Z

nps−1

p as the component-wise Gray map φ.
Let C be a Zps -additive code of length n. We say that its image C = Φ(C) is a Zps -linear

code of length ps−1n. Since C is a subgroup of Zn
ps , it is isomorphic to an abelian structure

Z
t1
ps × Z

t2
ps−1 × · · · × Z

ts−1

p2
× Z

ts
p , and we say that C, or equivalently C = Φ(C), is of type

(n; t1, . . . , ts). Note that |C| = pst1 p(s−1)t2 · · · pts . Unlike linear codes over finite fields,
linear codes over rings do not have a basis, but there exists a generator matrix for these codes
having minimum number of rows, that is, t1 + · · · + ts rows.

The Hamming weight of a vector u ∈ Z
n
p , denoted by wtH (u), is the number of nonzero

coordinates of u. The Hamming distance of two vectors u, v ∈ Z
n
p , denoted by dH (u, v),

is the number of coordinates in which they differ. Note that dH (u, v) = wtH (v − u). The
minimum distance of a code C over Zp is d(C) = min{dH (u, v) : u, v ∈ C,u �= v}.

Two structural properties of codes over Zp are the rank and dimension of the kernel. The
rank of a code C over Zp is simply the dimension of the linear span, 〈C〉, of C . The kernel
of a code C over Zp is defined as K(C) = {x ∈ Z

n
p : x + C = C} [3, 20]. If the all-zero

vector belongs to C , then K(C) is a linear subcode of C . Note also that if C is linear, then
K (C) = C = 〈C〉. We denote the rank of C as rank(C) and the dimension of the kernel as
ker(C). These parameters can be used to distinguish between non-equivalent codes, since
equivalent ones have the same rank and dimension of the kernel.

A generalized Hadamard (GH) matrix H(p, λ) = (hi j ) of order n = pλ over Zp is a
pλ × pλ matrix with entries from Zp with the property that for every i, j , 1 ≤ i < j ≤ pλ,

each of the multisets {his − h js : 1 ≤ s ≤ pλ} contains every element of Zp exactly λ times
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[17]. An ordinary Hadamard matrix of order 4μ corresponds to a GH matrix H(2, λ) over
Z2, where λ = 2μ [2]. TwoGH matrices H1 and H2 of order n are said to be equivalent if one
can be obtained from the other by a permutation of the rows and columns and adding the same
element of Zp to all the coordinates in a row or in a column. We can always change the first
row and column of a GH matrix into zeros and we obtain an equivalent GH matrix which is
called normalized. From a normalized Hadamard matrix H , we denote by FH the code over
Zp consisting of the rows of H , and CH the one defined as CH = ⋃

α∈Zp
(FH + α1), where

FH + α1 = {h + α1 : h ∈ FH } and 1 denotes the all-one vector. The code CH over Zp is
called a generalized Hadamard (GH) code [10]. Note that CH is generally a nonlinear code
over Zp .

Let C be a Zps -additive code such that Φ(C) is a GH code. Then, we say that C is a Zps -
additiveGH code andΦ(C) is aZps -linear GH code. Note that a GH code overZp of length N

has pN codewords and minimum distance N (p−1)
p . It is known that the Z4-linear Hadamard

codes of length 2t can be classified by using either the rank or the dimension of the kernel as
a complete invariant for determining the equivalence class [18, 21]. There are exactly 	 t−1

2 

such codes for all t ≥ 2. Later, in [11], an iterative construction for Z2s -linear Hadamard
codes was described, and the linearity and kernel of these codes were established. A partial
classification by using the kernel was obtained, and the exact amount of non-equivalent such
codes was given up to t = 11 for any s ≥ 2.

Linear codes over Zps were studied by Blake [4] and Shankar [22] in 1975 and 1979,
respectively.Nevertheless, the study of codes over rings increased significantly after the publi-
cation of some good properties of linear codes overZ4 and the definition of theGraymap [15].
After that,Z2s -additive codes and their images under the Graymap have been deeply studied,
for example, in [7], and later in [26] and [14]. In [19], Krotov studied Z2s -linear Hadamard
codes and their dual codes by using different generalizations of the Gray map. In [23, 24],
considering Carlet’s generalization of the Gray map, two-weight Zps -linear and Z2s -linear
codes are studied. Note that Zps -linear Hadamard codes are in fact a particular case of these
two-weight codes.More recently,Zps -linearGHcodes have been constructed in [1] as images
under the Gray map of Butson Hadamard codes, defined from Butson Hadamard matrices.

This paper is focused on Zps -linear GH codes of length pt , for any t ≥ 3, s ≥ 2 and p
an odd prime. We generalize some results related to the linearity, kernel and classification of
such codes, that are given for p = 2 in [11]. This paper is organized as follows. In Sect. 2,
we recall the definitions of different Gray maps for elements of Zps , and we establish some
properties for the one considered in this paper, called Carlet’s Gray map. In Sect. 3, we
describe the construction of Zps -linear GH codes of type (n; t1, . . . , ts) when this Gray map
is used. In Sects. 4 and 5, we establish for which types these codes are linear, and we give the
kernel and its dimension whenever they are nonlinear. In Sect. 6, we show that, in general, the
dimension of the kernel is not enough to classify completely Zps -linear GH codes. However,
for an infinite number of values of t and s, we can obtain a full classification and give the
exact amount of non-equivalent such codes. It is worth to mention that the obtained results for
p ≥ 3 are different from the binary case. Moreover, new classification results are given also
for p = 2. Finally, in Sect. 7, we give some conclusions and further research on this topic.

2 Generalized graymap and some properties

In this section, first we give the definition of some Gray maps for elements of Zps , and then
we establish some properties for the one considered in this paper.
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1040 D. K. Bhunia et al.

The usual Gray map from Z4 to Z
2
2, given in [15], has been generalized to a Gray map

from Z2s to Z
2s−1

2 in [7, 19]. Actually, Carlet’s Gray map from [7] is a particular case of
the Gray map given in [19] satisfying

∑
λiφ(2i ) = φ(

∑
λi2i ) [11]. Similarly, in [25], a

generalized Gray map from Zps to Z
ps−1

p , with p prime, is defined as follows. Let P be the
linear code over Zp generated by a matrix A of size s × ps−1 as follows:

A =
(
1
Y

)

, (1)

where the columns of the matrix Y are all different vectors in Zs−1
p . It is easy to check that P

is a linear two-weight code of size ps with nonzero weights (p − 1)ps−2 and ps−1. Indeed,
it is a linear GH code over Zp , and the corresponding GH matrix H(p, ps−2) is known
as the Sylvester Hadamard matrix. Note that P is also known as the 1st order generalized
Reed-Muller code [2]. Whether the results hold or not is independent of the choice of Y . We
arrange the codewords in P = {c0, c1, . . . , cps−1} in such a way that c0 = 0 and for all u,
0 ≤ u ≤ ps−1 −1, and j , 0 ≤ j ≤ p−1, we have that cu+ j ps−1 − cu = ( j, j, . . . , j). Then,
the Gray map φ is defined as

φ : Zps −→ Z
ps−1

p

u �−→ cu .
(2)

Example 1 Let p = 3 and s = 2. For example, we can take A =
(
1 1 1
0 1 2

)

and P = {c0 =
(0, 0, 0), c1 = (0, 1, 2), c2 = (0, 2, 1), c3 = (1, 1, 1), c4 = (1, 2, 0), c5 = (1, 0, 2), c6 =
(2, 2, 2), c7 = (2, 0, 1), c8 = (2, 1, 0)}. Then, the Gray map defined by (2) is φ(u) = cu for
all u ∈ Z32 .

Carlet’s Gray map from Z2s to Z
2s−1

2 [7] can be generalized to a map from Zps to Z
ps−1

p

as follows [13]:

φ(u) = (us−1, us−1, . . . , us−1) + (u0, . . . , us−2)Y , (3)

where u ∈ Zps ; [u0, u1, . . . , us−1]p is the p-ary expansion of u, that is, u = ∑s−1
i=0 ui p

i

with ui ∈ Zp; and Y is the same matrix as in (1), that is, a matrix of size (s − 1) × ps−1

whose columns are all the vectors in Zs−1
p .

The Gray map defined by (3) is a particular case of the one defined by (2), when we
consider P = {c0, c1, . . . , cps−1}, with cu = φ(u) for all 1 ≤ u ≤ ps − 1. In fact, since the
p-ary expansion of u, 1 ≤ u ≤ ps−1 − 1, is [u0, u1, . . . , us−2, 0]p , the p-ary expansion of
u + j ps−1 is [u0, u1, . . . , us−2, j]p and we have that cu+ j ps−1 − cu = ( j, j, . . . , j). From
now on, throughout the paper, we only consider this particular generalization of the Gray

map. We define Φ : Zn
ps → Z

nps−1

p as the component-wise extended map of φ.

Example 2 Let p = 3 and s = 2. Consider Y = (0 1 2) as in Example 1. Table 1 shows the
Gray map φ for the elements of Z32 , defined by using (3). Note that this Gray map coincides
with the one given in Example 1. However, if in Example 1 we consider another order of
the elements of P such that c1 �= (0, 1, 2) or c2 �= (0, 2, 1), then both Gray maps would be
different.

Lemma 1 Let u ∈ Zps and λ ∈ Zp. Then, φ(u + λps−1) = φ(u) + (λ, λ, . . . , λ).

123



On the linearity and classification ofZps -linear... 1041

Table 1 Gray map for Z32 by
using (3) u ∈ Z32 [u0, u1]3 φ(u) = (u1, u1, u1) + u0Y ∈ Z

3
3

0 [0, 0]3 (0, 0, 0)

1 [1, 0]3 (0, 1, 2)

2 [2, 0]3 (0, 2, 1)

3 [0, 1]3 (1, 1, 1)

4 [1, 1]3 (1, 2, 0)

5 [2, 1]3 (1, 0, 2)

6 [0, 2]3 (2, 2, 2)

7 [1, 2]3 (2, 0, 1)

8 [2, 2]3 (2, 1, 0)

Proof Note that u + λps−1 = u1 + λ0 ps−1 + λps−1 = u1 + (λ0 + λ)ps−1, where u1 ∈
{0, . . . , ps−1 − 1} and λ0 ∈ Zp . Then, by the definition of φ, φ(u + λps−1) = φ(u1) +
(λ0 + λ, . . . , λ0 + λ) = φ(u1) + (λ0, . . . , λ0) + (λ, . . . , λ) = φ(u) + (λ, . . . , λ). �
Corollary 1 Let λ,μ ∈ Zp. Then, φ(λμps−1) = λφ(μps−1) = λμφ(ps−1).

Proof By the definition of φ, we have that φ(μps−1) = (μ, . . . , μ). Then, φ(λμps−1) =
(λμ, . . . , λμ) = λ(μ, . . . , μ) = λφ(μps−1) = λμφ(ps−1). �

Let u, v ∈ Zps and [u0, u1, . . . , us−1]p , [v0, v1, . . . , vs−1]p be the p-ary expansions of
u and v, respectively, i.e. u = ∑s−1

i=0 ui p
i and v = ∑s−1

i=0 vi pi . We define two operations
“⊕p” and “�p” between elements in Zps as u ⊕p v = ∑s−1

i=0 ri p
i , where ui + vi = ri in

Zp , and u �p v = ∑s−1
i=0 ti p

i , where

ti =
{
1 if ui + vi ≥ p,
0 otherwise.

Note that the p-ary expansion of u⊕p v is [r0, r1, . . . , rs−1]p = [u0+v0, . . . , us−1+vs−1]p
and the p-ary expansion of u �p v is [t0, t1, . . . , ts−1]p , where ti ∈ {0, 1}. We denote in the
same way, “⊕p” and “�p”, the component-wise operation.

Proposition 1 Let u, v ∈ Zps . Then, φ(u) + φ(v) = φ(u ⊕p v).

Proof Let [u0, u1, . . . , us−1]p , [v0, v1, . . . , vs−1]p be the p-ary expansions of u and v,
respectively. Let yi be the (i + 1)-th row of Y , 0 ≤ i ≤ s − 2. Then, φ(u) =
(us−1, us−1, . . . , us−1) + ∑s−2

i=0 uiyi and φ(v) = (vs−1, vs−1, . . . , vs−1) + ∑s−2
i=0 viyi .

Therefore, φ(u) + φ(v) = (rs−1, rs−1, . . . , rs−1) + ∑s−2
i=0 riyi = φ(u ⊕p v), where

ri = ui + vi in Zp for 0 ≤ i ≤ s − 1. �
Proposition 2 Let u, v ∈ Zps . Then, u ⊕p v = u + v − p(u �p v).

Proof Let [u0, u1, . . . , us−1]p , [v0, v1, . . . , vs−1]p be the p-ary expansions of u and v,
respectively. Note that 0 ≤ ui + vi ≤ 2p − 2. By the division algorithm for integers,
we can write ui + vi = pti + ri , where ti is 1 if ui + vi ≥ p and it is 0 otherwise, and
0 ≤ ri ≤ p − 1. Then, we have u + v = ∑s−1

i=0 (ui + vi )pi = ∑s−1
i=0 (pti + ri )pi =

p
∑s−1

i=0 ti p
i + ∑s−1

i=0 ri p
i = p(u �p v) + u ⊕p v. Therefore, u ⊕p v = u + v − p(u �p v).

�

123
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Corollary 2 Let u, v ∈ Zps . Then, φ(u) + φ(v) = φ(u + v − p(u �p v)).

Proof The result follows from Proposition 1 and Proposition 2. �
Corollary 3 Let u, v ∈ Zps . Then, ps−1u ⊕p v = ps−1u + v.

Proof Let [u0, u1, . . . , us−1]p , [v0, v1, . . . , vs−1]p be the p-ary expansions of u and v,
respectively. We have that [0, . . . , 0, u0]p is the p-ary expansion of ps−1u, so ps−1u �p v

is ps−1 if u0 + vs−1 ≥ p and it is 0 otherwise. In any case, p(ps−1u �p v) = 0. Hence, the
result follows from Proposition 2. �
Corollary 4 Let u ∈ Zps and [u0, u1, . . . , us−1]p its p-ary expansion. Then, for any i ∈
{0, . . . , s − 1}, φ(u) + φ(pi ) = φ(u + pi − pi+1ti ), where

ti =
{
1 if ui = p − 1,
0 otherwise.

Corollary 5 Let u, v ∈ Zps . Then, φ(ps−1u + v) = φ(ps−1u) + φ(v).

Proof The result follows from Proposition 1 and Corollary 3. �

Note that Lemma 1 and Corollary 1 are true for any Gray map φ defined by (2). However,
Proposition 1 is only true if we consider the one defined by (3). For example, if φ(1) =
(1, 0, 2) and φ(2) = (1, 2, 0), then φ(2) + φ(4) = φ(2) + φ(1 + 3) = φ(2) + φ(1) +
(1, 1, 1) = (0, 0, 0), but φ(2 ⊕p 4) = φ(3) = (1, 1, 1).

From [8], the homogeneous weight of an element u ∈ Zps is defined by

wt∗(u) =
⎧
⎨

⎩

0 if u = 0,
ps−1 if u ∈ ps−1

Zps \ {0},
(p − 1)ps−2 otherwise,

(4)

and the corresponding homogeneous distance of u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) ∈ Z

n
ps is defined as follows: d∗(u, v) = ∑n

i=1 wt
∗(ui − vi ). Note that

Carlet’s Gray map is an isometry which transforms homogeneous distances defined in Z
n
ps

to Hamming distances defined in Z
nps−1

p .

Proposition 3 Let u, v ∈ Zps be two distinct elements. Then, φ(u) − φ(v) = φ(u − v) =
(λ, . . . , λ) if u − v = λps−1 ∈ ps−1

Zps \ {0}, and φ(u) − φ(v) contains every element of
Zp exactly ps−2 times if u − v ∈ Zps \ ps−1

Zps .

Proof First, if u−v = λps−1 ∈ ps−1
Zps \{0}, then by Lemma 1, φ(u) = φ(v)+(λ, . . . , λ)

with λ �= 0. So, φ(u) − φ(v) = (λ, . . . , λ) = φ(λps−1) = φ(u − v).
Assume now that u − v ∈ Zps \ ps−1

Zps . Then, without loss of generality, either u ∈
ps−1

Zps , v ∈ Zps \ ps−1
Zps or u, v ∈ Zps \ ps−1

Zps . For the first case,φ(u) = (λ1, . . . , λ1)

and φ(v) = φ(v1) + (λ2, . . . , λ2), where v1 ∈ {1, 2, . . . , ps−1 − 1} and λ1, λ2 ∈ Zp .
Note that φ(v1) is a nonzero row of the GH matrix H(p, ps−2) corresponding to the GH
code φ(Zps ). Therefore, φ(v1) contains every element of Zp exactly ps−2 times and hence
φ(u) − φ(v) contains every element of Zp exactly ps−2 times. For the second case, φ(u) =
φ(u1)+(λ1, . . . , λ1) and φ(v) = φ(v1)+(λ2, . . . , λ2), where u1, v1 ∈ {1, 2, . . . , ps−1−1}
and λ1, λ2 ∈ Zp . Again, note that both φ(u1) and φ(v1) are nonzero rows of H(p, ps−2),
so they contain every element of Zp exactly ps−2 times. Thus, in this case, φ(u) − φ(v)

contains every element of Zp exactly ps−2 times. �
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Proposition 4 Let u, v ∈ Zps . Then, dH (φ(u), φ(v)) = wtH (φ(u − v)).

Proof If u = 0 or v = 0, the result is trivially true. We assume that u �= 0 and v �= 0, and we
consider three cases. First, ifu = v, the result is true trivially. Second, if u−v ∈ ps−1

Zps \{0},
then by Proposition 3,φ(u)−φ(v) = φ(u−v), and hence dH (φ(u), φ(v)) = wtH (φ(u−v)).
Finally, assume that u − v ∈ Zps \ ps−1

Zps . Again, by Proposition 3, φ(u) − φ(v) contains
every element of Zp exactly ps−2 times, and hence dH (φ(u), φ(v)) = (p − 1)ps−2 =
wtH (φ(u − v)). �

3 Construction of Zps-additive GH codes

The description of generator matrices having minimum number of rows for Z4-additive
Hadamard codes, and an iterative construction of these matrices, are given in [18]. In [19],
Z2s -additive Hadamard codes are defined for s > 2, and an iterative construction is given in
[11]. In this section, we generalize these results for Zps -additive GH codes with s ≥ 2 and p
an odd prime. Specifically, we define an iterative construction for the generator matrices and
establish that they generate Zps -additive GH codes, as in [11] for p = 2. The generalization
of the construction is quite straightforward, but the proof that the codes are GH is different
from the binary case. This result has also been obtained independently in [1] by using another
approach and considering Butson Hadamard matrices.

Let Ti = { j · pi−1 : j ∈ {0, 1, . . . , ps−i+1 − 1}} for all i ∈ {1, . . . , s}. Note that
T1 = {0, . . . , ps − 1}. Let t1, t2, . . . , ts be non-negative integers with t1 ≥ 1. Consider the
matrix At1,...,ts

p whose columns are exactly all the vectors of the form zT , z ∈ {1} × T t1−1
1 ×

T t2
2 × · · · × T ts

s . We write At1,...,ts instead of At1,...,ts
p when the value of p is clear by the

context.
Let 0, 1, 2, . . . ,ps − 1 be the vectors having the elements 0, 1, 2, . . . , ps − 1 from Zps

repeated in each coordinate, respectively.

Example 3 For p = 3 and s = 3, we have the following matrices:

A1,0,1 =
(
1 1 1
0 9 18

)

, A1,1,0 =
(
1 1 1 1 1 1 1 1 1
0 3 6 9 12 15 18 21 24

)

,

A2,0,0 =
(
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

)

,

A1,1,1 =
⎛

⎝
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24
0 0 0 0 0 0 0 0 0 9 9 9 9 9 9 9 9 9 18 18 18 18 18 18 18 18 18

⎞

⎠ ,

A2,0,1 =
(
A2,0,0 A2,0,0 A2,0,0

0 9 18

)

,

A2,1,0 =
(
A2,0,0 A2,0,0 A2,0,0 A2,0,0 A2,0,0 A2,0,0 A2,0,0 A2,0,0 A2,0,0

0 3 6 9 12 15 18 21 24

)

.

Any matrix At1,...,ts can be obtained by applying the following iterative construction. We
start with A1,0,...,0 = (1). Then, if we have a matrix A = At1,...,ts , for any i ∈ {1, . . . , s}, we
may construct the matrix

Ai =
(

A A · · · A
0 · pi−1 1 · pi−1 · · · (ps−i+1 − 1) · pi−1

)

. (5)
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Finally, permuting the rows of Ai , we obtain a matrix At ′1,...,t ′s , where t ′j = t j for j �= i and

t ′i = ti + 1. Note that any permutation of columns of Ai gives also a matrix At ′1,...,t ′s .

Example 4 Let p = 3 and s = 3 as in Example 3. From the matrix A1,0,0 = (1), we obtain
the matrix A2,0,0; and from A2,0,0 we can construct A2,0,1, where A2,0,0 and A2,0,1 are the
matrices given in Example 3. Note that we can also generate another matrix A2,0,1 as follows:

from A1,0,0 = (1), we obtain A1,0,1 =
(
1
k

)

, where k = (0, 9, 18), given in Example 3; and

from A1,0,1, we can construct the matrix

A1 =
⎛

⎝
1 1 1 1 · · · 1 1
k k k k · · · k k
0 1 2 3 · · · 25 26

⎞

⎠ .

Then, after permuting the rows of A1, we have a matrix

A2,0,1 =
⎛

⎝
1 1 1 1 · · · 1 1
0 1 2 3 · · · 25 26
k k k k · · · k k

⎞

⎠ ,

which is different to the matrix A2,0,1 of Example 3. These two matrices A2,0,1 generate
permutation equivalent codes.

In this paper, we consider that the matrices At1,t2,...,ts are constructed recursively starting
from A1,0,...,0 in the following way. First, we add t1 − 1 rows of order ps , in order to obtain
At1,0,...,0; then t2 rows of order ps−1 to generate At1,t2,0,...,0; and so on, until we add ts rows
of order p to achieve At1,t2,...,ts .

LetHt1,...,ts be theZps -additive code generated by thematrix At1,...,ts , where t1, . . . , ts ≥ 0
with t1 ≥ 1. Let n = pt−s+1, where t = (∑s

i=1(s − i + 1) · ti
) − 1. It is easy to see that

Ht1,...,ts is of length n and has |Ht1,...,ts | = psn = pt+1 codewords. Note that this code is of
type (n; t1, t2, . . . , ts). Let Ht1,...,ts = Φ(Ht1,...,ts ) be the corresponding Zps -linear code.

Example 5 For p = 3 and λ = 1, we consider the following normalized GH matrix:

H(3, 1) =
⎛

⎝
0 0 0
0 1 2
0 2 1

⎞

⎠ .

Then, FH = {(0, 0, 0), (0, 1, 2), (0, 2, 1)} and CH = ⋃
α∈Z3

(FH + α1), which coincides
with the code P given in Example 1. Note thatCH is a linear GH code overZ3 of length 3, and
CH = H1,0 = Φ(H1,0) = Φ(Z9), where H1,0 is generated by A1,0 = (1). More generally,
we can consider the normalized GH matrix H(p, 1) given by the multiplicative table over
Zp . Then, the corresponding GH code over Zp is CH = H1,0 = Φ(H1,0) = Φ(Zp2), which
is linear.

Example 6 The codeH1,0,...,0 is generated by A1,0,...,0 = (1), soH1,0,...,0 = Zps . This linear
code over Zps has length n = 1 and cardinality ps . Thus, the code H1,0,...,0 = Φ(H1,0,...,0)

over Zp has length N = ps−1 and cardinality ps = Np. Actually, H1,0,...,0 = Φ(Zps ) is
the linear GH code over Zp of length ps−1 used to define the Gray map Φ, so it is generated
by (1).

The result given by Theorem 1 is already proved in [19] and [11] for p = 2. In [19], it is
shown that each Z2s -linear Hadamard code is equivalent to Ht1,...,ts for some t1, . . . , ts ≥ 0
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with t1 ≥ 1, considering a generalized Gray map that includes the one given by Carlet. In
[11], another technique is used to obtain that theZ2s -linear codes Ht1,...,ts are Hadamard. For
p ≥ 3 prime, the result is already proved in [1]. However, we include another proof which
is different, and it is not a generalization of the ones given in [19] and [11] neither.

Let G be a generator matrix of a Zps -additive code C of length n. Then, (G · · ·G) is a
generator matrix of the r -fold replication code of C, (C, . . . , C) = {(c, . . . , c) : c ∈ C}, of
length r · n.

Theorem 1 Let t1, . . . , ts be non-negative integers with t1 ≥ 1. The Zps -linear code Ht1,...,ts

of type (n; t1, . . . , ts) is aGHcode overZp of length N = pt , with t = (
∑s

i=1(s−i+1)·ti )−1
and n = pt−s+1.

Proof Let H = Ht1,...,ts be the Zps -additive code of length n generated by the matrix A =
At1,...,ts . We can write H = ∪λ∈Zp (AH + λ · ps−1), where AH = {h (mod ps−1) : h ∈ H}
and AH + λ · ps−1 = {h + λ · ps−1 : h ∈ AH} for any λ ∈ Zp . Then, by Lemma 1,
H = Φ(H) = ∪λ∈Zp (Φ(AH) + λ · 1). The code H has length pt = nps−1 and cardinality
pt+1 = nps . Then, it is enough to proof that Φ(AH) corresponds to the rows of a GH matrix
H(p, ps−2n). We take two distinct elements u, v from AH. Now, we have to show that
Φ(u) − Φ(v) contains every element of Zp exactly ps−2n times.

We consider two cases depending on the order of u − v. First, if o(u − v) = p, then, by
construction, u − v contains every element of ps−1

Zps exactly n/p times. Thus, Φ(u − v)
contains every element ofZp exactly ps−1n/p = ps−2n times. By Proposition 3,Φ(u−v) =
Φ(u) − Φ(v) and hence Φ(u) − Φ(v) contains every element of Zp exactly ps−2n times.
Second, if o(u − v) > p, then by construction, u − v contains every element of ps−1

Zps

exactly α times, α ≥ 0, and the remaining n− pα coordinates are fromZps \ ps−1
Zps . So, by

Proposition 3, Φ(u)−Φ(v) contains every element of Zp exactly α ps−1 + (n− pα)ps−2 =
ps−2n times. �

Example 7 LetH2,0,0 be the Z27-additive code generated by A2,0,0 given in Example 3. The
Z27-linear code H2,0,0 = Φ(H2,0,0) has length N = 27 · 9 = 35, pN = 36 codewords and
minimum (Hamming) distance N (p − 1)/p = 162. Therefore, it is a Z27-linear GH code.

4 Linearity of Zps-linear GH codes

As shown in [18, 21], the codes H1,t2
2 and H2,t2

2 , t2 ≥ 0, are the only Z4-linear Hadamard

codes which are linear. In [14], it is proved that the codes H1,0,...,0,ts
2 , ts ≥ 0, are linear.

Indeed, in [11], it is shown that for s > 2 the codes H1,0,...,0,1,ts
2 and H1,0,...,0,ts

2 , ts ≥ 0,
are the only Z2s -linear Hadamard codes which are linear. The next result shows that for any
p ≥ 3 prime, s ≥ 2 and ts ≥ 0, H1,0,...,0,ts

p are the only Zps -linear GH codes which are
linear. Note that this result for p ≥ 3 does not coincide with the case p = 2.

Theorem 2 The Zps -linear GH codes H1,0,...,0,ts , with p ≥ 3 prime, s ≥ 2 and ts ≥ 0, are
linear.

Proof We prove that these codes are linear by induction on ts . By Example 6, H1,0,...,0 is
linear. Assume, H = Φ(H), where H = H1,0,...,0,ts , s ≥ 2 and ts ≥ 0, is linear. Now, we
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have to show that Hs = H1,0,...,0,ts+1 is linear. By the iterative construction,

Hs = {Φ((h,h, . . . ,h) + λ(0,ps−1, 2ps−1, . . . , (p − 1)ps−1) : h ∈ H, λ ∈ Zp}
= {(Φ(h),Φ(h + λps−1),Φ(h + λ2ps−1), . . . , Φ(h + λ(p − 1)ps−1)) :

h ∈ H, λ ∈ Zp},
and, by Corollaries 5 and 1, it is equal to

{(Φ(h),Φ(h) + λΦ(ps−1),Φ(h) + λΦ(2ps−1), . . . , Φ(h) + λΦ((p − 1)ps−1)) :
h ∈ H, λ ∈ Zp} = {(h′,h′ + λ · 1,h′ + λ · 2, . . . ,h′ + λ · (p − 1)) : h′ ∈ H , λ ∈ Zp}.

Thus, we can partition Hs into p-blocks, Hs0, Hs1, Hs2, . . . , Hs(p−1), where

Hs0 = {(h′,h′, . . . ,h′) : h′ ∈ H},
Hs1 = {(h′,h′ + 1,h′ + 2, . . . ,h′ + (p − 1)) : h′ ∈ H},
Hs2 = {(h′,h′ + 2,h′ + 4, . . . ,h′ + 2(p − 1)) : h′ ∈ H},

....

Hs(p−1) = {(h′,h′ + (p − 1),h′ + 2(p − 1), . . . ,h′ + 1)) : h′ ∈ H}.
Since H is linear, it is clear that if we take any two vectors from Hs , then their addition
belongs to any one of the blocks Hs0, Hs1, Hs2, · · · , Hs(p−1). Therefore, Hs is linear. �
Theorem 3 The Zps -linear GH codes H1,0,...,0,ts , with p ≥ 3 prime, s ≥ 2 and ts ≥ 0, are
the only Zps -linear GH codes which are linear.

Proof By Theorem 2, we have that the codes H1,0,...,0,ts are linear.
Let H = Φ(H), where H = Ht1,...,ts . For any i ∈ {1, . . . , s}, we define Hi = Φ(Hi ),

whereHi = Ht ′1,...,t ′s , t ′i = ti + 1 and t ′j = t j for j �= i . We consider that H = Φ(H), where

H = H1,0,...,0. Now, we prove that Hi is nonlinear for any i ∈ {1, . . . , s − 1}.
Note that the generator matrix of Hi has two rows: w1 = 1 and w2 = pi−1(0, 1, . . . ,

ps+1−i − 1). Let w2 j be the j-th coordinate of w2 and [(w2 j )0, (w2 j )1, . . . , (w2 j )s−1]p its
p-ary expansion. By Corollary 4, φ(w2 j )+φ(pi−1) = φ(w2 j + pi−1 − z j ), where z j = pi

if (w2 j )i−1 = p − 1, and 0 otherwise. Note that w2 j = pi−1( j − 1), so (w2 j )i−1 = p − 1
if and only if j ∈ {p, 2p, . . . , ps+1−i }. Then, Φ(w2) + Φ(pi−1) = Φ(w2 + pi−1 − z),

where z = (z1, z2, . . . , z ps+1−i ) ∈ Z
ps+1−i

ps , z j = pi for j ∈ {p, 2p, . . . , ps+1−i } and z j = 0
otherwise. Therefore, we just need to show that z /∈ Hi .

Note thatwtH (Φ(z)) = ps−i ·wtH (φ(pi )). If i = s−1, thenwtH (Φ(z)) = p·ps−1 = ps .
If i ∈ {1, . . . , s−2}, then wtH (Φ(z)) = ps−i ·(p−1)ps−2 = p2s−i−2(p−1). However, the
minimum distance of Hi is ps−2(p − 1)ps+1−i = p2s−i−1(p − 1). Therefore, Φ(z) /∈ Hi ,
for i ∈ {1, . . . , s − 1}.

Finally, in general, for H = Φ(H), where H = Ht1,...,ts , we prove that if H is nonlinear,
then Hi is nonlinear for any i ∈ {1, . . . , s}. Assume that Hi is linear. Then, by the iterative
construction (5), for anyu, v ∈ H, we have that (u, . . . ,u), (v, . . . , v) ∈ Hi .Moreover, since
Hi is linear, Φ((u, . . . ,u)) + Φ((v, . . . , v)) = Φ((a, . . . , a) + λ · pi−1(0, 1, . . . , ps−i+1 −
1)) ∈ Hi , where a ∈ H and λ ∈ Zps . Therefore, Φ(u) + Φ(v) = Φ(a) ∈ H , and we have
that H is linear and the result follows. �
Example 8 Considering all non-negative integer solutions with t1 ≥ 1 of the equation 4 =
3t1 + 2t2 + t3 − 1, we have that the Zp3 -linear GH codes of length p4 are the following:

H1,0,2
p and H1,1,0

p . By Theorem 3, we have that H1,0,2
p is linear, so ker(H1,0,2

p ) = 5. By the

same theorem, we also have that H1,1,0
p is nonlinear, so ker(H1,1,0

p ) = 3 < 5.
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Example 9 Considering all non-negative integer solutions with t1 ≥ 1 of the equation 5 =
3t1+2t2+t3−1, we have that theZp3 -linear GH codes of length p5 are the following: H1,0,3

p ,

H1,1,1
p and H2,0,0

p . By Theorem 3, we have that H1,0,3
p is linear, so ker(H1,0,3

p ) = 6. By the

same theorem, we also have that H1,1,1
p and H2,0,0

p are nonlinear, so ker(H1,1,1
p ) = 4 < 6

and ker(H2,0,0
p ) = 2 < 6.

5 Kernel of Zps-linear GH codes

For Z4-linear Hadamard codes and Z2s -linear Hadamard codes with s > 2, the kernel and
its dimension are given in [18, 21] and [11], respectively. In this section, we generalize these
results for Zps -linear GH codes with p ≥ 3 prime and s ≥ 2. First, we establish a lower
bound on the dimension of the kernel, and then we construct a basis of the kernel and give its
exact dimension. We see that all the basis vectors of the kernel for p ≥ 3 are the generalized
forms of the nonlinear ones for p = 2 except Φ(

∑s−2
i=0 p

i), which does not belong to the
kernel, and so the dimension of the kernel is decreased by one for p ≥ 3 prime.

Let At1,...,ts be the generator matrix ofHt1,...,ts , and letwi be the i-th row vector of At1,...,ts .
By construction,w1 = 1 and o(wi ) ≤ o(w j ) if i > j .We define σ ∈ {1, . . . , s} as the integer
such that o(w2) = ps+1−σ . For H1,0,...,0, we define σ = s. Note that σ = 1 if t1 > 1, and
σ = min{i : ti > 0, i ∈ {2, . . . , s}} if t1 = 1. In the case σ = s, the code is H1,0,...,0,ts ,
which is linear.

Let u = (u1, . . . , un) ∈ Z
n
ps and [u j,0, u j,1, . . . , u j,s−1]p be the p-ary expansion of u j ,

where j ∈ {1, . . . , n}. Let i be an integer such that i ∈ {0, . . . , s − 1}. Then, we denote by
u(i) the vector having in the j-th coordinate the i-th element of the p-ary expansion of u j ,
that is, u(i) = (u1,i , . . . , un,i ) ∈ Z

n
p .

Proposition 5 Let H = Ht1,...,ts be the Zps -additive GH code of type (n; t1, . . . , ts) with
p ≥ 3 prime. Let Hp be the subcode of H which contains all the codewords of order p. Let
M = {pm}σ−2

m=0 if σ ≥ 2, and M = ∅ if σ = 1. Then,
〈
Φ(Hp),Φ(M)

〉 ⊆ K (Φ(H))

and ker(Φ(H)) ≥ (
∑s

i=1 ti ) + σ − 1.

Proof Let H = Φ(H) and τ = ∑s
i=1 ti . Let Q = {(o(wk)/p)wk}τk=1. Since Hp contains

all the elements of H of order p, we have that the set Φ(Q) is a basis for the linear subcode
Hp = Φ(Hp) of H over Zp . By Corollary 5, for all b ∈ Hp and u ∈ H, we have that
Φ(b) + Φ(u) = Φ(b + u) ∈ H and, therefore, Hp ⊆ K (H).

Assume σ ≥ 2. Now, we prove that Φ(pm) ∈ K (H) for all m ∈ {0, . . . , σ − 2}.
Equivalently, we show that Φ(pm) + Φ(u) ∈ H for all u ∈ H. If u ∈ H, then
u = λ · 1 + u′, where λ ∈ Zps and o(u′) ≤ o(w2) = ps+1−σ . Let u = (u1, . . . , un) ∈
Z
n
ps and [u j,0, u j,1, . . . , u j,s−1]p be the p-ary expansion of u j , j ∈ {1, . . . , n}. Let

[λ0, λ1, . . . , λs−1]p be the p-ary expansion of λ ∈ Zps . Note that if v ∈ Zps is of order
pi , then its p-ary expansion is of the form [0, . . . , 0, vs−i , vs−i+1, . . . , vs−1]p . Since m ∈
{0, . . . , σ −2} and o(u′) ≤ ps+1−σ , we have that u(m) = (u1,m, . . . , un,m) = (λm, . . . , λm).
By Corollary 4, we have that Φ(pm) + Φ(u) = Φ(pm + u − pm+1tm), where tm = 1 or
tm = 0 depending on whether λm = p − 1 or not, respectively. Therefore, pm+1tm is 0 or
pm+1. In both cases, pm+1tm ∈ H, so Φ(pm) + Φ(u) = Φ(pm + u − pm+1tm) ∈ H .

Finally,we have to see that the elements of the set {Φ(Q),Φ(M)} are linearly independent.
Clearly, the elements of Φ(Q), and also the elements of Φ(M), are linearly independent. By
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construction, the generator matrix At1,...,ts is a block upper triangular matrix, so it is easy to
see that the codewords of Φ(Q) are linearly independent of the ones of Φ(M). Therefore,
we have that the dimension of the linear span of this set is τ +σ −1, so ker(H) ≥ τ +σ −1.
�
Lemma 2 Let v, λ ∈ Zps . Then, v �p λ = ∑s−1

i=0 (v �p λi pi ), where [λ0, λ1, . . . , λs−1]p is
the p-ary expansion of λ.

Proof Let v ∈ Zps and let [v0, v1, . . . , vs−1]p be its p-ary expansion. By definition, we have
that v �p λ = v �p

∑s−1
i=0 λi pi = ∑s−1

i=0 ti p
i , where ti is 1 if vi + λi ≥ p, and 0 otherwise.

Note that ti pi = v �p λi pi , so v �p
∑s−1

i=0 λi pi = ∑s−1
i=0 (v �p λi pi ). �

Lemma 3 Let H = Ht1,...,ts be the Zps -additive GH code of type (n; t1, . . . , ts) with p ≥ 3
prime. Let N = {∑s−2

i=σ−1 λipi : λi ∈ Zp} if σ ≤ s − 1, and N = {0}, otherwise. Then,
Φ(N ) ∩ K (Φ(H)) = {0}.
Proof Let H = Φ(H). Assume σ ≤ s − 1 and let u = ∑s−2

i=σ−1 λipi ∈ N such that
Φ(u) ∈ K (H). We want to prove that u = 0. Assume that there exists u �= 0, so there exists
i0 ∈ {σ − 1, . . . , s − 2} such that λi0 �= 0.

By construction, the second row w2 of At1,...,ts is a pt−2s+σ -fold replication of
v = pσ−1(0, 1, . . . , ps+1−σ − 1), and o(w2) = ps+1−σ . By Corollary 2, we have that
Φ(w2) + Φ(u) = Φ(w2 + u − p(w2 �p u)). Since Φ(u) ∈ K (H), p(w2 �p u) ∈ H.
Let w2 = (w1, w2, . . . , wn) and [w j,0, w j,1, . . . , w j,s−1]p be the p-ary expansion of w j ,
j ∈ {1, . . . , n}. Note that, byLemma2,wehave that p(w2�pu) = p

∑s−2
i=σ−1(w2�pλipi) =

p
∑s−2

i=σ−1 Ti pi ∈ H, where Ti = (t1,i , t2,i , . . . , tn,i ), and t j,i = 1 if w j,i + λi ≥ p and
t j,i = 0 otherwise.

Let τ = ∑s
i=1 ti . Since σ ≤ s − 1, τ ≥ 2. If τ = 2, then H has length m = ps+1−σ

and the only rows in At1,...,ts are 1 and w2. Note that, in this case, w2 = v. If τ ≥ 3, for
k ∈ {3, . . . , τ }, the k-th row wk of At1,...,ts contains zeros in the first ps+1−σ coordinates by
construction. Hence, for τ ≥ 2, any element of H restricted to the first ps+1−σ coordinates
is of the form μ11 + μ2v for some μ1, μ2 ∈ Zps . We have that p

∑s−2
i=σ−1 Ti pi restricted

to the first m = ps+1−σ coordinates is p
∑s−2

i=σ−1 T
′
i p

i , where T′
i = (t1,i , t2,i , . . . , tm,i ).

Therefore, we have to find μ1, μ2 ∈ Zps such that p
∑s−2

i=σ−1 T
′
i p

i = μ11 + μ2v.
Since the first coordinate of v is 0, the first coordinate of v(i) is 0 for all i ∈ {0, . . . , s−1}.

Then, we have that μ1 = 0, so

p
s−2∑

i=σ−1

T′
i p

i = μ2v. (6)

Note that v = ∑s−1
i=0 v

(i) pi = ∑s−1
i=σ−1 v

(i) pi . Let x = p
∑s−2

i=σ−1 T
′
i p

i and y = μ2v. On
the one hand, we assume that μ2 ∈ A = {0, ps−σ+1, . . . , (p − 1)ps−σ+1}, and then y = 0.
Moreover, since there exists λi0 �= 0, we have that T′

i0
has at least a nonzero coordinate, so

x �= 0 and we get a contradiction. On the other hand, we assume that μ2 ∈ Zps \ A. Let
x(i) = (x1,i , x2,i , . . . , xm,i ), σ ≤ i ≤ s − 1. Note that x j,i ∈ {0, 1} for all j ∈ {1, 2, . . . ,m}
and i ∈ {σ, . . . , s − 1}. However, since v = pσ−1(0, 1, . . . , ps+1−σ − 1), there exists
i1 ∈ {σ, . . . , s − 1} such that the coordinates of y(i1) are not in {0, 1}, and hence we obtain a
contradiction. Therefore, if u �= 0, then p(w2 �p u) �= μ11 + μ2v and hence u = 0. �
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Lemma 4 Let H = Ht1,...,ts be the Zps -additive GH code of type (n; t1, . . . , ts) with p ≥ 3
prime. Let wk be the k-th row of At1,...,ts and τ = ∑s

i=1 ti . Let M = {v = ∑τ−ts
k=2 λkwk :

λk ∈ Zps , o(v) > p},N = {∑s−2
i=σ−1 λipi : λi ∈ Zp} if σ ≤ s−1, andN = {0}, otherwise.

LetM+N = {vM+vN : vM ∈ M∪{0}, vN ∈ N }. Then,Φ(M + N )∩K (Φ(H)) = {0}.

Proof Let H = Φ(H), which has length N = n · ps−1. By Lemma 3, we already know that
Φ(N ) ∩ K (H) = {0}.

Now, we prove that Φ(M) ∩ K (H) = ∅. Let v = ∑τ−ts
k=2 λkwk = (v1, v2, . . . , vn) ∈ M.

Since o(v) > p and o(wk) ≤ ps+1−σ , o(v) = pq for some 2 ≤ q ≤ s+1−σ . By the iterative
construction (5) of At1,...,ts , we know that all the elements ofZps of order equal to or less than
pq appear as a coordinate of v. Let [v j,0, v j,1, . . . , v j,s−1]p be the p-ary expansion of v j ,
j ∈ {1, . . . , n}. ByCorollary 4, we have thatΦ(v)+Φ(ps−q) = Φ(v+ps−q− ps−q+1Ts−q),
where Ts−q = (t1,(s−q), t2,(s−q), . . . , tn,(s−q)), and for j ∈ {1, . . . , n} , t j,(s−q) = 1 if
v j,(s−q) = p − 1 and 0 otherwise. Again, it is enough to see that ps−q+1Ts−q /∈ H to prove
that Φ(v) /∈ K (H). Since, v = ∑τ−ts

k=2 λkwk = (v1, v2, . . . , vn) and o(v) = pq for some
2 ≤ q ≤ s + 1 − σ , we have that, by construction, v contains every element of ps−1

Zps

exactly α times, α > 0, and the remaining n − pα coordinates are from Zps \ ps−1
Zps . So,

wtH (Φ(ps−q+1Ts−q)) ≤ (n− pα) ·(p−1)ps−2 < n ·(p−1)ps−2 = N (p−1)/p = d(H).
Therefore, Φ(v) /∈ K (H) and Φ(M) ∩ K (H) = ∅.

Now, we prove that Φ(M + N ) ∩ K (H) = {0}. Let v = vM + vN ∈ (M + N )\{0},
where vM ∈ M and vN ∈ N . We just proved that Φ(v) /∈ K (H) if vM = 0 or vN = 0.
Therefore, we can assume that vM �= 0 and vN �= 0. We know that vN = (v, . . . , v).
Let [v0, v1, . . . , vs−1]p be the p-ary expansion of v. Let vN1 and vN2 be the elements of
Zps having p-ary expansion [0, . . . , 0, vs−q , . . . , vs−1]p and [v0, . . . , vs−q−1, 0, . . . , 0]p ,
respectively. Then, vN = vN1 + vN2 , where vNi = (vNi , . . . , vNi ) for i ∈ {1, 2}. Since
o(vM) = pq with 2 ≤ q ≤ s+1−σ , the p-ary expansion of each one of its coordinates is of
the form [0, . . . , 0, (vM)s−q , . . . , (vM)s−1]p . Note that we also have that o(vN1) ≤ o(vM)

by construction.
It is easy to see that p(vN2 �p ps−q) = 0. Therefore, wtH (Φ(p(v �p ps−q))) =

wtH (Φ(p((vM + vN1) �p ps−q))). Since o(vN1) ≤ o(vM), it is easy to see that
there exists a permutation of coordinates π such that π(vM + vN1) = vM. Thus,
wtH (Φ(p((vM + vN1) �p ps−q))) = wtH (Φ(p(vM �p ps−q))), and since o(vM) = pq

with 2 ≤ q ≤ s + 1 − σ , we get a contradiction as above. Therefore, Φ(v) /∈ K (H) and
Φ(M + N ) ∩ K (H) = {0}. �

Theorem 4 Let H = Ht1,...,ts be the Zps -additive GH code of type (n; t1, . . . , ts) with
p ≥ 3 prime. Let Hp be the subcode of H which contains all the codewords of order p. Let
M = {pm}σ−2

m=0 if σ ≥ 2, and M = ∅ if σ = 1. Then,
〈
Φ(Hp),Φ(M)

〉 = K (Φ(H))

and ker(Φ(H)) = (
∑s

i=1 ti ) + σ − 1.

Proof The result follows by Proposition 5 and Lemma 4. �

Corollary 6 LetH = Ht1,...,ts be the Zps -additive GH code of type (n; t1, . . . , ts) with p ≥ 3
prime. Let wk be the k-th row of At1,...,ts and τ = ∑s

i=1 ti . Let Q = {(o(wk)/p)wk}τk=1 and

M = {pm}σ−2
m=0 if σ ≥ 2, and M = ∅ if σ = 1. Then, {Φ(Q),Φ(M)} is a basis of K (Φ(H)).
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Example 10 Let H1,1,0
3 be theZ27-linearGHcode. ByTheorem4,we have that ker(H1,1,0

3 ) =
3 since σ = 2. Moreover, we can construct K (H1,1,0

3 ) from a basis by Corollary 6. We have
that Q = {9, (0, 9, 18, 0, 9, 18, 0, 9, 18)} and M = {1}. Thus,

K (H1,1,0
3 ) = 〈Φ(9),Φ((0, 9, 18, 0, 9, 18, 0, 9, 18)),Φ(1)〉.

More generally, if H1,1,0
p is a Zp3 -linear GH code with p an odd prime, then we have that

K (H1,1,0
p ) = 〈Φ(p2),Φ(u),Φ(1)〉,

where u is the p-fold replication of (0, p2, 2p2, . . . , (p − 1)p2), so ker(H1,1,0
p ) = 3. Note

that ker(H1,1,0
2 ) = 5 since H1,1,0

2 is linear [11].

Example 11 Let H2,0,0
3 be the Z27-linear GH code considered in Example 7. By Theorem 4,

we have that ker(H2,0,0
3 ) = 2 since σ = 1. Moreover, we can construct K (H2,0,0

3 ) from a
basis byCorollary 6.We have that Q = {9,u = (0, 9, 18, 0, 9, 18, 0, 9, 18, 0, 9, 18, 0, 9, 18,
0, 9, 18, 0, 9, 18, 0, 9, 18, 0, 9, 18)} and M = ∅. Thus,

K (H2,0,0
3 ) = 〈Φ(9),Φ(u)〉.

In the general case of the Zp3 -linear GH codes H2,0,0
p with p an odd prime, we have that

K (H2,0,0
p ) = 〈Φ(p2),Φ(u)〉,

where u is the p2-fold replication of (0, p2, 2p2, . . . , (p − 1)p2), so ker(H2,0,0
p ) = 2. Note

that ker(H2,0,0
2 ) = 3 [11].

6 Classification of Zps-linear GH codes

The classification of theZ4-linear Hadamard codes of length 2t , for any t ≥ 3, using the rank
or the dimension of the kernel is shown in [18, 21]. In [11], it is shown that the dimension of
the kernel can not be used to establish a complete classification of the Z2s -linear Hadamard
codes of length 2t , in general, for any t ≥ 3 and s > 2. However, it is also shown that this
invariant allows us to obtain some partial results on the classification of these codes, through
some examples. In this section, we obtain these results for Zps -linear GH codes of length pt ,
with t ≥ 1, s ≥ 2 and p an odd prime, which do not coincide exactly with the case p = 2.
Moreover, we also establish for which parameters t and s the dimension of the kernel gives
a full classification, and give the exact number of non-equivalent codes in these cases.

By Theorem 3, for any t ≥ 1, s ≥ 2, and p ≥ 3 prime, there is exactly one Zps -linear GH
code of length pt , H1,0,...,0,ts , that is linear. Moreover, the following result implies that we
can focus on t ≥ 5 and 2 ≤ s ≤ t − 2 to classify the nonlinear ones.

Theorem 5 Let At,s,p be the number of non-equivalent Zps -linear GH codes of length pt ,
and p ≥ 3 prime. Then,

At,s,p =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t ≥ 3 and s ≥ t + 2,
1 if t ≥ 3 and s ∈ {t, t + 1},
2 if t ≥ 3 and s = t − 1,
2 if t = 4 and s = 2,

and theZps -linear GH code is linear whenAt,s,p = 1. Moreover, if t ≥ 5 and 2 ≤ s ≤ t−2,
then At,s,p ≥ 2, and there is one which is linear and at least one which is nonlinear.
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Proof First, if t ≥ 3 and s ≥ t + 2, then the equation

t =
( s∑

i=1

(s − i + 1) · ti
)

− 1, (7)

with t1 ≥ 1, does not have any non-negative integer solution, so At,s,p = 0. If t ≥ 3 and
s = t + 1, then (7) has only one solution (t1, . . . , ts) = (1, 0, . . . , 0). If t ≥ 3 and s = t ,
(7) has only the solution (1, 0, . . . , 0, 1). By Theorem 3, for all the above solutions, we
obtain exactly one linear code Ht1,...,ts . Note that, when t = 3 and s = 2, the solutions are
(1, 2) and (2, 0); when t ≥ 4 and s = t − 1, the only two solutions are (1, 0, . . . , 0, 2) and
(1,0,…,0,1,0); and when t = 4 and s = 2, the solutions are (1, 3) and (2, 1). By Theorem 3,
for these cases, we obtain exactly one linear code and one nonlinear code, so At,s,p = 2.

Finally, when t ≥ 5 and s = 2, (7) always has at least the solutions (t1, t2) = (1, t+1−2)
and (2, t+1−4); andwhen t ≥ 5and2 < s ≤ t−2, at least the solutions (1, 0, . . . , 0, t−s+1)
and (1, 0, . . . , 0, 1, t − s − 1). By Theorem 3, there is exactly one linear code and at least
one nonlinear code, so At,s,p ≥ 2. �

The following example shows that the dimension of the kernel can not be used, in general,
to classify completely all nonlinear Zps -linear GH codes of length pt , once t ≥ 5 and
2 ≤ s ≤ t − 2 are fixed.

Example 12 The Zp3 -linear GH codes of length p8 (t = 8 and s = 3) are the following:

H1,0,6
p , H1,1,4

p , H1,2,2
p , H1,3,0

p , H2,0,3
p , H2,1,1

p and H3,0,0
p . When p is an odd prime, their

kernels are of dimension 9, 7, 6, 5, 5, 4 and 3, respectively, by Theorem 4. Therefore, by
using this invariant, we can say that all of them are non-equivalent except H1,3,0

p and H2,0,3
p ,

which have the same dimension of the kernel. Note that, as shown in [11], for p = 2, the
codes H1,1,4

2 and H1,0,6
2 are linear, and hence equivalent, whereas H1,1,4

p is nonlinear when
p ≥ 3.

By using the computer algebra system Magma [6], when p = 3, we have that
rank(H1,3,0

3 ) = 22 and rank(H2,0,3
3 ) = 16, so they are non-equivalent. Actually, all these

Z33 -linear GH codes have ranks 9, 14, 22, 16, 26, 48 and 10, respectively, so we can use the
rank instead of the dimension of the kernel to classify completely the Z33 -linear GH codes
of length 38 = 6561.

As shown in the next example, for some values of t ≥ 5 and 2 ≤ s ≤ t − 2, it is indeed
possible to establish a complete classification by using just the dimension of the kernel.
Actually, in Theorem 6, we show some infinite families of parameters for which this is also
true.

Example 13 By Theorem 4, it is possible to check that, for any 5 ≤ t ≤ 7, 2 ≤ s ≤ t − 2 and
p an odd prime, all nonlinear Zps -linear GH codes of length pt have a different dimension
of the kernel, so this invariant allows us to classify them. For t = 8, t = 9 and t = 10, it
also works, except when s ∈ {3}, s ∈ {3, 4} and s ∈ {3, 4, 5}, respectively. For these given
values of t and s, we can just obtain a partial classification by using the kernel.

By using Magma, we have also computed the rank of the nonlinear Z3s -linear GH codes
of length 3t , for any 4 ≤ t ≤ 10 and 2 ≤ s ≤ t −1. Indeed, Tables 4 and 5 show the values of
(t1, . . . , ts) and the pair (r , k), where r is the rank and k the dimension of the kernel, for all
these codes. Note that the values of (t1, . . . , ts) and k do not depend on p, so they are the same
for any p ≥ 3 prime. Therefore, the results given in Examples 12 and 13 can also be checked
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Table 2 Number At,s,3 of
non-equivalent Z3s -linear GH
codes of length 3t

t 3 4 5 6 7 8 9 10

Z32 2 2 3 3 4 4 5 5

Z33 1 2 3 4 5 7 8 10

Z34 1 1 2 3 5 6 9 11

Z35 0 1 1 2 3 5 7 10

Z36 0 0 1 1 2 3 5 7

Z37 0 0 0 1 1 2 3 5

Z38 0 0 0 0 1 1 2 3

Z39 0 0 0 0 0 1 1 2

by looking at these tables. They also show that all nonlinear Z3s -linear GH codes of length
3t have different values of the rank, once 5 ≤ t ≤ 10 and 2 ≤ s ≤ t − 2 are fixed. Therefore,
for these cases, as in Example 12, we have that the codes are pairwise non-equivalent. This
gives us a complete classification, by using the rank, and the numberAs,t,3 of non-equivalent
Z3s -linear GH codes of length 3t , as shown in Table 2 for any 3 ≤ t ≤ 10 and 2 ≤ s ≤ t +1.
The cases where the dimension of the kernel is not enough to classify them are shown in bold
type.

Theorem 6 Let At,s,p be the number of non-equivalent Zps -linear GH codes of length pt .
Then, for any t ≥ 3, 2 ≤ s ≤ t − 1 and p ≥ 3 prime,

At,s,p ≤ |{(t1, . . . , ts) ∈ N
s : t =

( s∑

i=1

(s − i + 1) · ti
)

− 1, t1 ≥ 1}|.

Moreover, this bound is tight in the following cases:

1. for any t ≥ 3 and s = 2,
2. for any 3 ≤ t ≤ 7 and 2 ≤ s ≤ t + 1,
3. for any t ≥ 7 and s = t − 2,
4. for any t ≥ 7 and s = t − 3,
5. for any t ≥ 9 and s = t − 4,
6. for t = 8 and s = 4,
7. for p = 3, any 3 ≤ t ≤ 10 and 2 ≤ s ≤ t + 1.

Proof Item 2 is given by Example 13. Item 7 is true by Tables 4 and 5, since given any
possible t and s, all the codes have a different value of the rank.

For Item 1, since t ≥ 3 and s = 2, the solutions of (7) are (t1, t − 2t1 + 1), where t1 ≥ 1
and t + 1 ≥ 2t1. If t1 = 1, the solution is (1, t − 1), and then the dimension of the kernel of
the corresponding code is 1 + t − 1 + 2 − 1 = t + 1. If t1 ≥ 2, then the dimension of the
kernel is t− t1+1+1−1 = t+1− t1 by Theorem 4, which gives different values for distinct
values of t1. Therefore, in this case, we see that there are exactly 	 t+1

2 
 non-equivalent codes.
For Item 3, since t ≥ 7 and s = t −2, then s ≥ 5. Therefore, we have at least five terms in

the addition part of equation t + 1 = (t − 2)t1 + (t − 3)t2 + · · · + 2tt−3 + tt−2, with t1 ≥ 1,
and hence we have exactly three solutions, which are (1, 0, . . . , 0, 3), (1, 0, . . . , 0, 1, 1),
and (1, 0, . . . , 0, 1, 0, 0). The dimensions of the kernel for the corresponding codes are
4+ t − 2− 1 = t + 1, 3+ t − 3− 1 = t − 1 and 2+ t − 4− 1 = t − 3, respectively. Since
all these values are different, in this case, we have exactly three non-equivalent codes.
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For Item 4, if t = 7 and s = 4, then we already know that there are exactly five non-
equivalent codes by Item 2. If t ≥ 8 and s = t − 3, then by applying the same argument
as in Item 3, we have exactly five solutions: (1, 0, . . . , 0, 1, 0, 0, 0), (1, 0, . . . , 0, 1, 0, 1),
(1, 0, . . . , 0, 2, 0), (1, 0, . . . , 0, 4) and (1, 0, . . . , 0, 1, 2). The dimensions of the kernel for
the corresponding codes are t−5, t−3, t−2, t+1 and t−1, respectively. Again, since these
values are different for a given t , in this case, we have exactly five non-equivalent codes.

For Item5, if t = 9and s = 5,wehave exactly seven solutions: (1, 0, 0, 0, 5), (1, 0, 0, 2, 1),
(1, 0, 1, 0, 2), (1, 0, 1, 1, 0), (1, 1, 0, 0, 1), (2, 0, 0, 0, 0) and (1, 0, 0, 1, 3), and the dimen-
sions of the kernel for the corresponding codes are 10, 7, 6, 5, 4, 2 and 8, respectively.
If t ≥ 9 and s = t − 4, then by applying the same argument as in Item 3,
we have exactly seven solutions: (1, 0, . . . , 0, 5), (1, 0, . . . , 0, 2, 1), (1, 0, . . . , 0, 1, 0, 2),
(1, 0, . . . , 0, 1, 1, 0), (1, 0, . . . , 0, 1, 0, 0, 1), (1, 0, . . . , 0, 1, 0, 0, 0, 0) and (1, 0, . . . , 0, 0,
1, 3), and the dimensions of the kernel for the corresponding codes are t +1, t −2, t −3, t −
4, t−5, t−7 and t−1, respectively. Finally, since these values are different, we have exactly
seven non-equivalent codes.

For Item 6, since t = 8 and s = 4, we have exactly six solutions: (1, 0, 0, 5),
(1, 0, 2, 1), (1, 1, 0, 2), (1, 1, 1, 0), (2, 0, 0, 1) and (1, 0, 1, 3) and the dimensions of the ker-
nel for the corresponding codes are 9, 6, 5, 4, 3 and 7, respectively. Again, since these values
are different, we have exactly six non-equivalent codes. �
Corollary 7 Let At,s,p be the number of non-equivalent Zps -linear GH codes of length pt ,
and p ≥ 3 prime. Then,

1. At,s,p = 	 t+1
2 
 if t ≥ 3 and s = 2,

2. At,s,p as in Table 2 if 3 ≤ t ≤ 7 and 2 ≤ s ≤ t + 1,
3. At,s,p = 3 if t ≥ 7 and s = t − 2,
4. At,s,p = 5 if t ≥ 7 and s = t − 3,
5. At,s,p = 7 if t ≥ 9 and s = t − 4,
6. At,s,p = 6 if t = 8 and s = 4,
7. At,s,p as in Table 2 if p = 3, 3 ≤ t ≤ 10 and 2 ≤ s ≤ t + 1.

Proof It follows by the proof of Theorem 6. �
Corollary 8 Let At,s,2 be the number of non-equivalent Z2s -linear GH codes of length 2t .
Then,

1. At,s,2 = 	 t+1
2 
 − 1 if t ≥ 3 and s = 2,

2. At,s,2 as in Table 2 given in [11] if 3 ≤ t ≤ 11 and 2 ≤ s ≤ t + 1,
3. At,s,2 = 2 if t ≥ 7 and s = t − 2,
4. At,s,2 = 4 if t ≥ 7 and s = t − 3,
5. At,s,2 = 6 if t ≥ 9 and s = t − 4,
6. At,s,2 = 5 if t = 8 and s = 4.

Proof Recall that Item 1 is proved in [18, 21]. The proof of the other items follows by the
same arguments as in the proof of Theorem 6, but using previous results given in Theorems
2, 3, 4 and 5, and Table 2 from [11]. �

Note that Theorem 5 gives As,t,p for the extreme cases when there are only one or two
non-equivalent codes, and together with the results given by Corollary 7, we conjecture that
they cover all cases when the kernel allows us to classify Zps -linear GH codes of length pt

with p ≥ 3 prime. Indeed, they do cover all cases that are not in bold type in Table 2. We
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Table 3 Bounds for the number
At,p of non-equivalent
Zps -linear GH codes of length
pt

t 3 4 5 6 7 8 9 10

lower bound K 2 2 4 4 6 6 8 8

lower bound RK (p = 3) 2 2 4 4 7 8 12 14

upper bound 2 3 6 9 15 22 33 46

also giveAs,t,2 for the same cases in Corollary 8, since they were not included in [11]. Note
that the values of As,t,2 are different from As,t,p with p ≥ 3 prime, but they just differ by
one unit, because two of the codes are linear, instead of just one.

Next, we focus on Zps -linear GH codes, once only the length pt is fixed. First, Example
14 shows that there are Zps -linear GH codes with s > 2, which are not equivalent to any
Zp2 -linear GH code of the same length pt . Then, Example 15 also shows that there are
Zp2 -linear GH codes which are not equivalent to any Zps -linear GH codes with s > 2.

Example 14 Let H2,0,0
p be the Zp3 -linear GH code of length p5 with p an odd prime. Recall

that ker(H2,0,0
p ) = 2 by Theorem 4, and hence H2,0,0

p is nonlinear. By Corollary 7, there are

three Zp2 -linear GH codes of length p5, H1,4
p , H2,2

p and H3,0
p . The first one is linear, and the

last two have ker(H2,2
p ) = 4 and ker(H3,0

p ) = 3 by Theorem 4. Hence, there is no Zp2 -linear
GH code equivalent to the Zp3 -linear GH code H2,0,0 of length p5.

Example 15 By Theorem 3 or Table 4, we have that there are five nonlinear Zps -linear GH
codes of length p5 (t = 5): H2,2

p , H3,0
p , H2,0,0

p , H1,1,1
p and H1,0,1,0

p . Recall that the values of

(t1, . . . , ts) and k do not depend on the value of p. It is easy to see that H
3,0
p is not equivalent

to any Zps -linear GH codes with s > 2, by considering just the dimension of the kernel.
Other examples like this one can be found when t is odd, and at least for p = 3. For example,
by Tables 4 and 5, for t = 7 and t = 9 there are Z32 -linear GH codes, H4,0

3 and H5,0
3 ,

respectively, which are not equivalent to any Z3s -linear GH codes with s > 2 of the same
length, by using both invariants: the rank and dimension of the kernel.

Finally, we establish some lower and upper bounds on the number of non-equivalent Zps -
linear GH codes of length pt , when only the length pt is fixed, for some values of t . By
Theorem 4, we can determine a lower bound (K) taking into account just the dimension of
the kernel. This lower bound can be improved (RK) if we consider both invariants, the rank
and the dimension of the kernel, at least for p = 3 and t ≤ 10. Note that there are codes
having the same dimension of the kernel with different ranks (for p = 3 and t = 7, 8, 9, 10),
and codes having the same rank with different dimensions of the kernel (for p = 3 and
t = 9, 10). An upper bound can be given easily by considering all non-equivalent Zps -linear
GH codes of length pt , once t and s are fixed, as it is shown in the next theorem.

Theorem 7 Let At,s,p be the number of non-equivalent Zps -linear GH codes of length pt ,
and p ≥ 3 prime. Let At,p be the number of non-equivalent Zps -linear GH codes of length
pt , for any s ≥ 2. Then, At,p ≤ ∑t−1

s=2(At,s,p − 1) + 1.

The results related to the upper and lower bound of the value At,p are summarized in
Table 3, where we give these bounds for all 3 ≤ t ≤ 10.

123



On the linearity and classification ofZps -linear... 1055

Table 4 Rank and kernel for all nonlinear Z3s -linear GH codes of length 3t

t = 4 t = 5 t = 6 t = 7

(t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k)

Z32 (2, 1) (6,3) (2, 2) (7,4) (3, 1) (12,4) (3, 2) (13,5)

(3, 0) (11,3) (2, 3) (8,5) (4, 0) (21,4)

(2, 4) (9,6)

Z33 (1, 1, 0) (6,3) (2, 0, 0) (13,2) (1, 2, 0) (12,4) (1, 2, 1) (13,5)

(1, 1, 1) (7,4) (2, 0, 1) (14,3) (2, 0, 2) (15,4)

(1, 1, 2) (8,5) (2, 1, 0) (25,3)

(1, 1, 3) (9,6)

Z34 (1, 0, 1, 0) (7,4) (1, 1, 0, 0) (14,3) (1, 0, 2, 0) (13,5)

(1, 0, 1, 1) (8,5) (1, 1, 0, 1) (15,4)

(2, 0, 0, 0) (14,2)

(1, 0, 1, 2) (9,6)

Z35 (1, 0, 0, 1, 0) (8,5) (1, 0, 1, 0, 0) (15,4)

(1, 0, 0, 1, 1) (9,6)

Z36 (1, 0, 0, 0, 1, 0) (9,6)

7 Conclusions and further research

In this paper, we establish the classification of theZps -linear GH codes of length pt once t , s,
and p are fixed, giving the exact numberAt,s,p of non-equivalent such codes for all possible
parameters, except for t ≥ 8 and 3 ≤ s ≤ t − 5. For these values, at least if p = 3 and
t = 8, 9, 10 (and p = 2 and t = 8, 9, 10, 11 [11]), there are codes with the same dimension
of the kernel, so this invariant can not be used to fully classify. However, in these cases, we
have checked that the rank classifies. We conjecture that, even though there are some cases
when the dimension of the kernel does not classify, the rank always does, and thus At,s,p

coincides with the upper bound given in Theorem 6 if p is an odd prime, and the one given
in [11,Theorem 5] if p = 2.

On the other hand, when only t and p are fixed, at least if p = 2 and p = 3, we have
Zps -linear GH codes of length pt (with different values of s) which have the same values
for the rank and dimension of the kernel. For p = 2, these codes are equivalent as shown
in [12]. Another further research on this topic would be to determine whether they are also
equivalent for any odd prime p.

The Zps -linear GH codes studied in this paper are the ones obtained by using Carlet’s
Gray map. As mentioned in the introduction, there are other Gray maps, which could be
used to generate GH codes from the Zps -additive codes Ht1,...,ts

p constructed in Sect. 3 for
p > 2 prime or in [11] for p = 2. However, the results about the linearity, kernel, rank, and
classification would be different. For example, the Z16-linear Hadamard code Φ(H1,1,0,0

2 )

has rank r = 9 and kernel of dimension k = 4 [11]. By using other Gray maps φ′ such that∑
λiφ

′(2i ) �= φ′(
∑

λi2i ), the parameters (r , k) become (9, 2), (11, 3), (11, 2), and (13, 2),
so we could obtain new non-equivalent GH codes.
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Table 5 Rank and kernel for all nonlinear Z3s -linear GH codes of length 3t

t = 8 t = 9 t = 10

(t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k)

Z32 (3, 3) (14,6) (3, 4) (15,7) (3, 5) (16,8)

(4, 1) (22,5) (4, 2) (23,6) (4, 3) (24,7)

(2, 5) (10,7) (5, 0) (36,5) (5, 1) (37,6)

(2, 6) (11,8) (2, 7) (12,9)

Z33 (1, 2, 2) (14,6) (1, 2, 3) (15,7) (1, 2, 4) (16,8)

(1, 3, 0) (22,5) (1, 3, 1) (23,6) (1, 3, 2) (24,7)

(2, 0, 3) (16,5) (2, 0, 4) (17,6) (1, 4, 0) (37,6)

(2, 1, 1) (26,4) (2, 1, 2) (27,5) (2, 0, 5) (18,7)

(3, 0, 0) (48,3) (2, 2, 0) (43,4) (2, 1, 3) (28,6)

(1, 1, 4) (10,7) (3, 0, 1) (49,4) (2, 2, 1) (44,5)

(1, 1, 5) (11,8) (3, 0, 2) (50,5)

(3, 1, 0) (82,4)

(1, 1, 6) (12,9)

Z34 (1, 0, 2, 1) (14,6) (1, 0, 2, 2) (15,7) (1, 0, 2, 3) (16,8)

(1, 1, 0, 2) (16,5) (1, 0, 3, 0) (23,6) (1, 0, 3, 1) (24,7)

(1, 1, 1, 0) (26,4) (1, 2, 0, 0) (49,4) (1, 1, 0, 4) (18,7)

(2, 0, 0, 1) (35,3) (1, 1, 0, 3) (17,6) (1, 1, 1, 2) (28,6)

(1, 0, 1, 3) (10,7) (1, 1, 1, 1) (27,5) (1, 1, 2, 0) (44,5)

(2, 0, 0, 2) (36,4) (1, 2, 0, 1) (50,5)

(2, 0, 1, 0) (64,3) (2, 0, 0, 3) (37,5)

(1, 0, 1, 4) (11,8) (2, 0, 1, 1) (65,4)

(2, 1, 0, 0) (121,3)

(1, 0, 1, 5) (12,9)

Z35 (1, 0, 0, 2, 0) (14,6) (1, 0, 0, 2, 1) (15,7) (1, 0, 0, 2, 2) (16,8)

(1, 0, 1, 0, 1) (16,5) (1, 0, 1, 0, 2) (17,6) (1, 0, 0, 3, 0) (24,7)

(1, 1, 0, 0, 0) (35,3) (1, 0, 1, 1, 0) (27,5) (1, 0, 1, 0, 3) (18,7)

(1, 0, 0, 1, 2) (10,7) (1, 1, 0, 0, 1) (36,4) (1, 0, 1, 1, 1) (28,6)

(2, 0, 0, 0, 0) (96,2) (1, 0, 2, 0, 0) (50,5)

(1, 0, 0, 1, 3) (11,8) (1, 1, 0, 0, 2) (37,5)

(1, 1, 0, 1, 0) (65,4)

(2, 0, 0, 0, 1) (97,3)

(1, 0, 0, 1, 4) (12,9)

Z36 (1, 0, 0, 1, 0, 0) (16,5) (1, 0, 0, 0, 2, 0) (15,7) (1, 0, 0, 0, 2, 1) (16,8)

(1, 0, 0, 0, 1, 1) (10,7) (1, 0, 0, 1, 0, 1) (17,6) (1, 0, 0, 1, 0, 2) (18,7)

(1, 0, 1, 0, 0, 0) (36,4) (1, 0, 0, 1, 1, 0) (28,6)

(1, 0, 0, 0, 1, 2) (11,8) (1, 0, 1, 0, 0, 1) (37,5)

(1, 1, 0, 0, 0, 0) (97,3)

(1, 0, 0, 0, 1, 3) (12,9)

123



On the linearity and classification ofZps -linear... 1057

Table 5 continued

t = 8 t = 9 t = 10

(t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k)

Z37 (1, 0, 0, 0, 0, 1, 0) (10,7) (1, 0, 0, 0, 1, 0, 0) (17,6) (1, 0, 0, 0, 0, 2, 0) (16,8)

(1, 0, 0, 0, 0, 1, 1) (11,8) (1, 0, 0, 0, 1, 0, 1) (18,7)

(1, 0, 0, 1, 0, 0, 0) (37,5)

(1, 0, 0, 0, 0, 1, 2) (12,9)

Z38 (1, 0, 0, 0, 0, 0, 1, 0) (11,8) (1, 0, 0, 0, 0, 1, 0, 0) (18,7)

(1, 0, 0, 0, 0, 0, 1, 1) (12,9)

Z39 (1, 0, 0, 0, 0, 0, 0, 1, 0) (12,9)
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