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Abstract

7 ps-additive codes of length n are subgroups of Z;.\v , and can be seen as a generalization of
linear codes over Zy, Z4, or Zos in general. A Z ps-linear generalized Hadamard (GH) code
is a GH code over Z, which is the image of a Z s-additive code by a generalized Gray map.
In this paper, we generalize some known results for Z js-linear GH codes with p = 2 to any
odd prime p. First, we show some results related to the generalized Carlet’s Gray map. Then,
by using an iterative construction of Z ,s-additive GH codes of type (n; 11, ..., ), we show
for which types the corresponding Z ps-linear GH codes of length p’ are nonlinear over Z,,.
For these codes, we compute the kernel and its dimension, which allow us to give a partial
classification. The obtained results for p > 3 are different from the case with p = 2. Finally,
the exact number of non-equivalent such codes is given for an infinite number of values of
s, t,and any p > 2; by using also the rank as an invariant in some specific cases.
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1 Introduction

Let Z,s be the ring of integers modulo p* with p prime and s > 1. The set of n-tuples over
Zps is denoted by ZZ.\-. In this paper, the elements of Z;“' will also be called vectors. The
order of a vector u over Z,s, denoted by o(u), is the smallest positive integer m such that
mu = 0.

A code over Z,, of length n is a nonempty subset of Z", and it is linear if it is a subspace
of Z!,. Similarly, a nonempty subset of Z'; is a Z s -additive if it is a subgroup of Z’;’,,\-. Note
that, when p = 2 and s = 1, a Zs-additive code is a binary linear code and, when p = 2
and s = 2, itis a quaternary linear code or a linear code over Zj.

Two codes Cy and C; over Z), of length n are said to be monomially equivalent (or just
equivalent) provided there is a monomial matrix M such that C; = {¢M : ¢ € C1}. Recall
that a monomial matrix is a square matrix with exactly one nonzero entry in each row and
column. They are said to be permutation equivalent if there is a permutation matrix P such
that C; = {cP : ¢ € Cy}. Recall that a permutation matrix is a square matrix with exactly one
1 in each row and column and Os elsewhere. A permutation matrix represents a permutation of
coordinates, so we can also say that they are permutation equivalent if there is a permutation
of coordinates v such that C; = {rr(¢) : ¢ € C1}. Similarly, two Z ,s-additive codes, C; and
Cy, are said to be permutation equivalent if they differ only by a permutation of coordinates,
that is, if there is a permutation of coordinates 7 such that C; = {m(¢) : ¢ € C1}.

In[15],a Gray map from Z4 toZ% isdefinedas ¢ (0) = (0,0),¢(1) = (0, 1),¢(2) = (1, 1)
and ¢ (3) = (1, 0). There exist different generalizations of this Gray map, which go from
Zps 1o Z%H [5,7,9, 16, 19]. The one given in [16] can be defined in terms of the elements
of a Hadamard code [19], and Carlet’s Gray map [7] is a particular case of the one given in
[19] satisfying 3" ;¢ (2") = ¢(3_ 2;2%) [11]. In this paper, we focus on a generalization of

s—1
Carlet’s Gray map, from Z,s to Zg , which is also a particular case of the one given in

s—1
[25]. We define @ : Z’;x — Z;’,‘D as the component-wise Gray map ¢.
Let C be a Zs-additive code of length nn. We say that its image C = @ (C) is a Zps-linear
code of length p*~'n. Since C is a subgroup of Z’I’,S, it is isomorphic to an abelian structure

ng X ZZ”"‘ X oo X Z;‘;; bx Z’;, and we say that C, or equivalently C = @(C), is of type

(n; 11, ...,15). Note that |C| = p*1 p@—=Di2... phs Unlike linear codes over finite fields,
linear codes over rings do not have a basis, but there exists a generator matrix for these codes
having minimum number of rows, that is, #; + - - - 4 #; rows.

The Hamming weight of a vector u € Z’, denoted by wty (u), is the number of nonzero
coordinates of u. The Hamming distance of two vectors u, v € Z;’,, denoted by dy(u, v),
is the number of coordinates in which they differ. Note that dg (u, v) = wty (v — u). The
minimum distance of a code C over Z), is d(C) = min{dg(u,v) :u,v e C,u # v}.

Two structural properties of codes over Z, are the rank and dimension of the kernel. The
rank of a code C over Z,, is simply the dimension of the linear span, (C), of C. The kernel
of a code C over Zj, is defined as K(C) = {x € Z’;, :x+ C = C} [3, 20]. If the all-zero
vector belongs to C, then K(C) is a linear subcode of C. Note also that if C is linear, then
K(C) = C = (C). We denote the rank of C as rank(C) and the dimension of the kernel as
ker(C). These parameters can be used to distinguish between non-equivalent codes, since
equivalent ones have the same rank and dimension of the kernel.

A generalized Hadamard (G H) matrix H(p, A) = (h;;) of order n = pA over Z), is a
pA x pA matrix with entries from Z,, with the property that forevery i, j, 1 <i < j < pA,
each of the multisets {h;s —h s : 1 <s < pA} contains every element of Z, exactly A times
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[17]. An ordinary Hadamard matrix of order 4u corresponds to a G H matrix H (2, A) over
Zy,where . = 2 [2]. Two G H matrices H and H> of order n are said to be equivalent if one
can be obtained from the other by a permutation of the rows and columns and adding the same
element of Z, to all the coordinates in a row or in a column. We can always change the first
row and column of a G H matrix into zeros and we obtain an equivalent G H matrix which is
called normalized. From a normalized Hadamard matrix H, we denote by Fy the code over
Z, consisting of the rows of H, and Cy the one defined as Cy = Uaez,, (Fg + a1), where
Fy +al = {h+4al:h e Fy} and 1 denotes the all-one vector. The code Cy over Zj, is
called a generalized Hadamard (G H) code [10]. Note that C g is generally a nonlinear code
over Zp.

Let C be a Zs-additive code such that @ (C) is a GH code. Then, we say that C is a Z -
additive GH code and @ (C) is a Z ps -linear GH code. Note that a GH code over Z, of length N

has p N codewords and minimum distance N(pT_l). It is known that the Z4-linear Hadamard

codes of length 2 can be classified by using either the rank or the dimension of the kernel as
a complete invariant for determining the equivalence class [18, 21]. There are exactly L%J
such codes for all ¢+ > 2. Later, in [11], an iterative construction for Zos-linear Hadamard
codes was described, and the linearity and kernel of these codes were established. A partial
classification by using the kernel was obtained, and the exact amount of non-equivalent such
codes was given up to t = 11 for any s > 2.

Linear codes over Z,s were studied by Blake [4] and Shankar [22] in 1975 and 1979,
respectively. Nevertheless, the study of codes over rings increased significantly after the publi-
cation of some good properties of linear codes over Z4 and the definition of the Gray map [15].
After that, Z,s-additive codes and their images under the Gray map have been deeply studied,
for example, in [7], and later in [26] and [14]. In [19], Krotov studied Zs-linear Hadamard
codes and their dual codes by using different generalizations of the Gray map. In [23, 24],
considering Carlet’s generalization of the Gray map, two-weight Z s-linear and Zys-linear
codes are studied. Note that Z s-linear Hadamard codes are in fact a particular case of these
two-weight codes. More recently, Z s -linear GH codes have been constructed in [1] as images
under the Gray map of Butson Hadamard codes, defined from Butson Hadamard matrices.

This paper is focused on Z,s-linear GH codes of length p',forany ¢t > 3,5 >2and p
an odd prime. We generalize some results related to the linearity, kernel and classification of
such codes, that are given for p = 2 in [11]. This paper is organized as follows. In Sect. 2,
we recall the definitions of different Gray maps for elements of Z s, and we establish some
properties for the one considered in this paper, called Carlet’s Gray map. In Sect. 3, we
describe the construction of Z s-linear GH codes of type (n; 11, .. ., ty) when this Gray map
is used. In Sects. 4 and 5, we establish for which types these codes are linear, and we give the
kernel and its dimension whenever they are nonlinear. In Sect. 6, we show that, in general, the
dimension of the kernel is not enough to classify completely Z s -linear GH codes. However,
for an infinite number of values of ¢ and s, we can obtain a full classification and give the
exact amount of non-equivalent such codes. It is worth to mention that the obtained results for
p > 3 are different from the binary case. Moreover, new classification results are given also
for p = 2. Finally, in Sect. 7, we give some conclusions and further research on this topic.

2 Generalized gray map and some properties

In this section, first we give the definition of some Gray maps for elements of Z s, and then
we establish some properties for the one considered in this paper.
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1040 D. K. Bhunia et al.

The usual Gray map from Z4 to Z3, given in [15], has been generalized to a Gray map
from Zos to Z%H in [7, 19]. Actually, Carlet’s ‘Gray map from [7] is a particular case of
the Gray map given in [19] satisfying > 1;¢(2") = ¢(>_ A;2") [11]. Similarly, in [25], a

s—1
generalized Gray map from Z s to ZZ , with p prime, is defined as follows. Let P be the
linear code over Z, generated by a matrix A of size s x p° —1 as follows:

1
A= (Y) )

where the columns of the matrix Y are all different vectors in Z;,_l . Itis easy to check that P
is a linear two-weight code of size p* with nonzero weights (p — 1) p* 2 and p*~!. Indeed,
it is a linear GH code over Zj,, and the corresponding GH matrix H(p, p’ ~2) is known
as the Sylvester Hadamard matrix. Note that P is also known as the Ist order generalized
Reed-Muller code [2]. Whether the results hold or not is independent of the choice of Y. We
arrange the codewords in P = {¢g, €1, ..., ¢ps—1} in such a way that ¢g = 0 and for all u,
O<u<p™'—1landj,0<j<p—1,wehavethate,, ;1 —¢ =(j,j....j). Then,
the Gray map ¢ is defined as

s—1
¢: Ly — L

u+—> cy.

(@)

(l)i; and P = {¢g =
0,0,0),¢; =(0,1,2),¢ = (0,2,1),ec3 = (1,1, 1),ea = (1,2,0),¢5 = (1,0,2),¢6 =
(2,2,2),¢7 =(2,0,1),¢c3 = (2, 1, 0)}. Then, the Gray map defined by (2) is ¢ (u) = ¢, for
allu € Zs>.

Example 1 Let p = 3 and s = 2. For example, we can take A =

S— s—1
Carlet’s Gray map from Zjps to Z% ] [7] can be generalized to a map from Zps to Zg
as follows [13]:

d)(l/{) = (uS7l7 Us—15---» uS*l) + (”05 MR} MS,2)Y, (3)

where u € Zps; [ug, uy, ..., us—1], is the p-ary expansion of u, that is, u = Zf;(l) uipi
with u; € Z,; and Y is the same matrix as in (1), that is, a matrix of size (s — 1) x pi!
whose columns are all the vectors in Z5 .

The Gray map defined by (3) is a particular case of the one defined by (2), when we

consider P = {cp, €1, ...,Cps_1}, withe, = ¢(u) forall 1 <u < p® — 1. In fact, since the
p-ary expansion of u, 1 <u < ps_l — 1,is [ug, uy, ..., ug_2,0],, the p-ary expansion of
u —i—jps_1 is [ug, uy, ..., us—2, jlp and we have thatcu+jps_1 —c,=,j,...,j). From

now on, throughout the paper, we only consider this particular generalization of the Gray

s—1
map. We define @ : ZZ: — Z'Z,p as the component-wise extended map of ¢.

Example2 Let p = 3 and s = 2. Consider ¥ = (0 1 2) as in Example 1. Table 1 shows the
Gray map ¢ for the elements of Z;2, defined by using (3). Note that this Gray map coincides
with the one given in Example 1. However, if in Example 1 we consider another order of
the elements of P such that ¢; # (0, 1,2) or ¢» # (0, 2, 1), then both Gray maps would be
different.

Lemma 1 Letu € Zys and k. € Zp. Then, $(u +Ap™') = ¢ ) + (h, A, ..., A).
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I:ibnlz (13)Gray map for Zz2 by u €’y [uo, u1l3 Gu) = (up.up,uy) +ug¥ €73

0 [0, 013 0,0,0)

1 [1,0]3 0,1,2)

2 [2,0]3 0,2, 1)

3 [0, 113 (I, 1, 1)

4 [1,1]3 (1,2,0)

5 [2,1]3 (1,0,2)

6 [0, 2]3 2,2,2)

7 [1,2]3 2,0,1)

8 [2,2]3 2,1,0)
Proof Note that u + Ap*~' = uy + Aop* ' + Ap*~' = u; + (o + M) p*~ !, where u; €
{0,...,p*"! — 1} and A9 € Z,,. Then, by the definition of ¢, ¢ (u + Ap*~1) = ¢(uy) +
Ao+A,..., 20+ =)+ (Ao, -5 20+, ..., A) =)+ (X, ..., A). |

Corollary 1 Let A, ju € Z,. Then, p(Aup*~™') = A (up*~1) = g (p*~1).

Proof By the definition of ¢, we have that ¢ (up*~") = (i, ..., ). Then, p(Aup*™!) =

Ot oo i) = A, oo ) = Ap(up® ™ = aug (p*~H. o
Letu,v € Zps and [ug, uy, ..., us—1]p, [vo, v1, ..., vs-1], be the p-ary expansions of
u and v, respectively, i.e. u = Y i u;p’ and v = Y375 v; p'. We define two operations

“®),” and “©),” between elements in Zp,s as u &, v = ZA;OI rip', where u; + v; = r; in

1
Zp,andu O, v =Y 5_) t; p, where

o Jrit i +vi = p,
"7 ] 0 otherwise.

Note that the p-ary expansion of u @, vis [ro, 71, ..., rs—1]p = [uo+vo, ..., us—1+vs-11p
and the p-ary expansion of u ©, v is [to, 11, ..., ts—1]p, Where t; € {0, 1}. We denote in the
same way, “®),” and “0©,”, the component-wise operation.

Proposition 1 Let u, v € Zs. Then, ¢p(u) + ¢ (v) = ¢(u @p v).

Proof Let [ug,u1,...,us—1lp, [vo, v1,...,vs—1], be the p-ary expansions of u and v,
respectively. Let y; be the (i + 1)-th row of ¥, 0 < i < s — 2. Then, ¢(u) =
(-1, Us—1, ..., us—1) + Zi;(% uiyi and ¢(v) = (Vs—1, Vs—1,...,Vs—1) + Zj;g Viyi-
Therefore, ¢ (1) + ¢(v) = (rg—1,Fs—1,-..,7"s—1) + Zf;g riyi = ¢ ®, v), where
ri=u;+v;inZ,for0 <i <s— 1 ]

Proposition 2 Letu, v € Zps. Then, u @, v =u +v — p(u O v).

Proof Let [ug,u1, ..., us—1lp, [v0,v1,...,v5—1], be the p-ary expansions of u and v,
respectively. Note that 0 < u; + v; < 2p — 2. By the division algorithm for integers,
we can write u; + v; = pt; + r;, where ¢; is 1 if u; + v; > P and it is O otherwise, land
0 <ri < p—1.Then, we have u +v = Zf;é(u,- +v)p = Zf;é(pti +r)p =
p Z‘f;& tip'+ Zf;é rip' = pu®pv)+udpv. Therefore, u @, v =u~+v—pUuo,v).
O
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1042 D.K.Bhunia et al.

Corollary 2 Letu,v € Zps. Then, ¢p(u) + ¢ (v) = p(u+v — p(u ©p v)).
Proof The result follows from Proposition 1 and Proposition 2. O

Corollary 3 Letu, v € Zs. Then, P lu Dpv= " lu+v.

Proof Let [ug,uy, ..., us—1]p, [vo,v1,...,v5_1], be the p-ary expansions of u and v,
respectively. We have that [0, ..., 0, uo], is the p-ary expansion of ps’lu, SO ps’lu Opv
is p*~Vif ug 4+ vs_; > p and it is O otherwise. In any case, p(p*~'u ©p v) = 0. Hence, the
result follows from Proposition 2. O
Corollary4 Let u € Zys and [ug, uy, ..., us_1l, its p-ary expansion. Then, for any i €
0.5 =1, ¢) + o (p) = ¢u + p' — p'™ 1), where

) 1Yifui=p—1,

"7 | 0 otherwise.

Corollary5 Letu, v € Zs. Then, qb(p“_]u +v) = ¢(ps_1u) + ¢ (v).

Proof The result follows from Proposition 1 and Corollary 3. O
Note that Lemma 1 and Corollary 1 are true for any Gray map ¢ defined by (2). However,

Proposition 1 is only true if we consider the one defined by (3). For example, if ¢ (1) =

(1,0,2) and ¢(2) = (1,2,0), then ¢(2) + ¢(4) = ¢(2) + ¢(1 +3) = ¢(2) + ¢(1) +
(1,1,1) = (0,0,0),but ¢ 2 ®p 4) = (3) = (1, 1, 1).

From [8], the homogeneous weight of an element u € Zs is defined by

0 if u=0,
wtt(u) = { p*! if uwep™'Zy\{0}, )

(p — 1)p*~2 otherwise,
and the corresponding homogeneous distance of w = (uy,u2,...,u,) and v =
(v, v2,...,v,) € Z’;)S is defined as follows: d*(u,v) = ZL] wt*(u; — v;). Note that

Carlet’s Gray map is an isometry which transforms homogeneous distances defined in ZZ"'

s—1
to Hamming distances defined in Z';,p .

Proposition 3 Let u, v € Zps be two distinct elements. Then, ¢ (u) — ¢ (v) = ¢p(u —v) =
Gy ifu—v=2rple pS_Ipr \ {0}, and ¢ (u) — ¢ (v) contains every element of
7, exactly p*~2 times ifu —v € L ps \ps_lsz.

Proof First,ifu—v = Ap*~! € p*~1Z,:\ {0}, thenby Lemma 1, ¢ (1) = ¢ (v) + (k, ..., 1)
with A #£ 0. S0, () —p(W) = (A, ..., 1) =p(Ap* ™) = p(u — v).

Assume now that u — v € Zps \ Tz ps. Then, without loss of generality, either u €
ps_lZp.v, v e Zp.v\ps_llp.v oru,v e Zps\pS_IZp.v.Fortheﬁrstcase,d)(u) =1, ..., A1)
and ¢(v) = ¢ (v1) + (A2, ..., A2), where v; € {1,2,..., ps_1 — 1} and Ay, Ay € Z).
Note that ¢ (v1) is a nonzero row of the GH matrix H(p, p*~2) corresponding to the GH
code ¢ (Zps). Therefore, ¢ (v) contains every element of Z,, exactly p*~2 times and hence
¢ (1) — ¢ (v) contains every element of Z, exactly p* ~2 times. For the second case, ¢ (1) =
¢+, ..., Apandgp(v) = p(v))+ (A2, ..., A2), whereu, vy € {1,2, ..., ps_1 —1}
and Ay, Ay € Zp. Again, note that both ¢ (#1) and ¢ (vy) are nonzero rows of H(p, ps’z),
so they contain every element of Z, exactly ps_2 times. Thus, in this case, ¢ (u) — ¢ (v)
contains every element of Z, exactly p* ~2 times. O
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Proposition 4 Letu,v € Zps. Then, dy (¢ (u), ¢ (v)) = wty (¢ (u — v)).

Proof If u = 0 or v = 0, the result is trivially true. We assume that u # 0 and v # 0, and we
consider three cases. First, if u = v, the resultis true trivially. Second, ifu—v € p* e/ s \{0},
then by Proposition 3, ¢ (1) —¢ (v) = ¢ (u—v),andhence dy (¢ (1), ¢ (v)) = wty (¢ (u—v)).
Finally, assume that u — v € Zs \ p"_lZps. Again, by Proposition 3, ¢ (1) — ¢ (v) contains
every element of Z, exactly ps_2 times, and hence dy (¢ (u), ¢ (v)) = (p — 1)ps_2 =
Wty (¢ — v)). o

3 Construction of Zps-additive GH codes

The description of generator matrices having minimum number of rows for Z4-additive
Hadamard codes, and an iterative construction of these matrices, are given in [18]. In [19],
Zys-additive Hadamard codes are defined for s > 2, and an iterative construction is given in
[11]. In this section, we generalize these results for Z s -additive GH codes with s > 2 and p
an odd prime. Specifically, we define an iterative construction for the generator matrices and
establish that they generate Z js-additive GH codes, as in [11] for p = 2. The generalization
of the construction is quite straightforward, but the proof that the codes are GH is different
from the binary case. This result has also been obtained independently in [1] by using another
approach and considering Butson Hadamard matrices.

LetT; = {j-p'~! : je{o1,....,p57 "t —1}} foralli € {1,...,s}. Note that
Ty ={0,..., p* — 1}. Let 11, 12, . . ., t; be non-negative integers with #; > 1. Consider the
matrix Atp1 “““ s whose columns are exactly all the vectors of the form z7, z € {1} x T]’I T
th2 x - x T{. We write A"’ instead of A;l """ ' when the value of p is clear by the
context.

Let0,1,2,...,p% — 1 be the vectors having the elements 0, 1, 2, ..., p* — 1 from L s
repeated in each coordinate, respectively.

Example 3 For p = 3 and s = 3, we have the following matrices:
11 Ao (11111 1111

918 )" “\03691215182124 )"

1

1

111111111111111111)

A],O,l

A42:00 _ 111111
o 34567891011 1213 141516 17 18 19 20 21 22 23 24 25 26
1 1

1 111111111111 11111T1T1T1:1
AbLI 91215182124 03691215182124 0 3 6 9 1215182124 |,
00000 0O 0 00 99999 9 9 9 9 181818181818 18 18 18

42.0.0 42.0.0 42,0,0
0 9 18 )

210 _ (Az,o,o A2:0.0 42,00 42.0.0 42.0.0 42.0.0 42.0.0 42.0.0 A2,0,0>

A2,0,l _

0 3 6 9 12 15 18 21 24

Any matrix A’>+'s can be obtained by applying the following iterative construction. We
start with A1-0-0 = (1). Then, if we have a matrix A = A’ foranyi € {1, ..., s}, we
may construct the matrix

Ai = (Olpi—l Lopil . (pritl 1).pi71)~ 5
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1044 D.K.Bhunia et al.

t/ = t; + 1. Note that any permutation of columns of A; gives also a matrix Aoty

Example4 Let p = 3 and s = 3 as in Example 3. From the matrix A0 = (1), we obtain
the matrix A299; and from A%%0 we can construct AZ%!, where A290 and A20-! are the
matrices given in Example 3. Note that we can also generate another matrix A%%! as follows:

from A1:0:0 = (1), we obtain ALOL = <ll(>’ where k = (0, 9, 18), given in Example 3; and

from AL0! we can construct the matrix

1111---1 1
Ai=1kkkk--- k k
0123---2526

Then, after permuting the rows of A1, we have a matrix

1111---1 1
A2 —10123..-2526 |,
kkkk--- k k

which is different to the matrix A>%! of Example 3. These two matrices A>%! generate
permutation equivalent codes.

In this paper, we consider that the matrices A>"2:'s are constructed recursively starting
from A'0-0 in the following way. First, we add ; — 1 rows of order p®, in order to obtain
A1-0--0: then #, rows of order p*~! to generate A"l 12,00 and 0 on, until we add #, Tows
of order p to achieve A":2:1s

Let H">'s be the Z s -additive code generated by the matrix A%, wheretq, ..., f; > 0
with 1y > 1. Letn = p'=*! where t = (}/_ (s —i 4+ 1) - ;) — 1. It is easy to see that
H"oofs is of length n and has |[H"s | = p’n = p'*! codewords. Note that this code is of
type (n; t1, 12, ..., tg). Let H s = @ (H">7s) be the corresponding Z s -linear code.

Example 5 For p = 3 and A = 1, we consider the following normalized GH matrix:

000
H3,1)=1012
021

Then, Fg = {(0,0,0), (0,1,2), (0,2, 1)} and Cyg = Uan3(FH + a1), which coincides
with the code P given in Example 1. Note that Cy is alinear GH code over Z3 of length 3, and
Cy =H" = o(H"O) = & (Zoy), where HV is generated by AL0 = (1). More generally,
we can consider the normalized GH matrix H (p, 1) given by the multiplicative table over
Zp. Then, the corresponding GH code over Z, is Cy = HY=pH' =9 (sz), which
is linear.

Example 6 The code 1'% is generated by A1-0-0 = (1), s0 H! 00 = Zps . 'This linear
code over Zps has length n = 1 and cardinality p*. Thus, the code H00 = @ (11.0.-:.0)
over Z, has length N = p*~! and cardinality p* = Np. Actually, H!%+0 = &(Zs) is
the linear GH code over Z, of length p*~! used to define the Gray map @, so it is generated

by (1).
The result given by Theorem 1 is already proved in [19] and [11] for p = 2. In [19], it is
shown that each Zjs-linear Hadamard code is equivalent to H'!*"’ for some t{, ..., t; > 0
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with #; > 1, considering a generalized Gray map that includes the one given by Carlet. In
[11], another technique is used to obtain that the Zps-linear codes H'*s are Hadamard. For
p > 3 prime, the result is already proved in [1]. However, we include another proof which
is different, and it is not a generalization of the ones given in [19] and [11] neither.

Let G be a generator matrix of a Z,s-additive code C of length n. Then, (G---G) is a

generator matrix of the r-fold replication code of C, (C,...,C) = {(¢,...,¢) : ¢ € C}, of
length 7 - n.
Theorem 1 Letty, ..., t; be non-negative integers with ty > 1. The Z s -linear code HMools

oftype (n; 11, ..., ty) isa GH code over Z, of length N = p', witht = (3_;_ (s—i+1)-t;)—1
andn = p'=5t1,

Proof Let H = H"'s be the Zs-additive code of length n generated by the matrix A =
Al We can write H = Upez, (Ap + A - p51), where Ay = {h (mod p*~1) :h € H}
and Ay +2-p 1 ={h+x1-p1:h e Ay) for any A € Zj,. Then, by Lemma I,
H = ®(H) = Usez,(P(Ax) + A - 1). The code H has length pl = nps_1 and cardinality
p't1 = np*. Then, it is enough to proof that & (A7) corresponds to the rows of a GH matrix
H(p, p*2n). We take two distinct elements u, v from Az . Now, we have to show that
@ (u) — P (v) contains every element of Z, exactly p* ~2p times.

We consider two cases depending on the order of u — v. First, if o(u — v) = p, then, by
construction, u — v contains every element of p*~'Z ps exactly n/p times. Thus, @ (u —v)
contains every element of Z, exactly p*~'n/p = p*~*n times. By Proposition 3, & (u—v) =
®(u) — @(v) and hence @ (u) — P (v) contains every element of Z, exactly ps_zn times.
Second, if o(u — v) > p, then by construction, u — v contains every element of p*~!Z ps
exactly a times, « > 0, and the remaining n — pa coordinates are from Z s \ Pz ps- S0, by
Proposition 3, @ (u) — @ (v) contains every element of Z, exactly o Pl - pa)p'? =

P°~2n times. O

Example 7 Let H>0 be the Zy7-additive code generated by A%%-0 given in Example 3. The
Zy7-linear code H>%0 = @ (1299 has length N =27 -9 = 3>, pN = 3° codewords and
minimum (Hamming) distance N(p — 1)/p = 162. Therefore, it is a Z,7-linear GH code.

4 Linearity of Zps-linear GH codes

As shown in [18, 21], the codes H2l”2 and H22’t2, tp > 0, are the only Zg4-linear Hadamard
codes which are linear. In [14], it is proved that the codes H21 ’0"”’0”“', ty > 0, are linear.
Indeed, in [11], it is shown that for s > 2 the codes Hzl’o""’o‘l’t“' and H21,0,...,0,zx, ts > 0,
are the only Zps-linear Hadamard codes which are linear. The next result shows that for any
p > 3 prime,s > 2 and t;, > 0, H,l’o""’o”s are the only Zs-linear GH codes which are
linear. Note that this result for p > 3 does not coincide with the case p = 2.

Theorem 2 The Zps-linear GH codes H0005 ypigh p > 3 prime, s > 2 and t; > 0, are
linear.

Proof We prove that these codes are linear by induction on ;. By Example 6, H 00 is

linear. Assume, H = & (H), where H = 10005 g > 2 and ty > 0, is linear. Now, we
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have to show that H; = H0:-04+1 ig Jinear. By the iterative construction,
= {@((h,h,....,h) +20,p 2p . (p— 1P theH, L eZy)
={@Mm), @ +2p ), dh+12p° ), ..., @+ 2(p — Dp )
heH, reZy),
and, by Corollaries 5 and 1, it is equal to
(@(h), 2(h) + A1), @(h) + 2@ (2p* "), ..., @ (h) + 2 ((p— Hp'™ ") :
heH, reZy={W W +21-L,h+1-2,....h+r-(p—1):h € H 1 eZp).
Thus, we can partition H; into p-blocks, Hyo, Hy1, Hy2, . .., Hyp—1), where
Hy ={(' b, ....h):h € H},
Hyy ={(',h+1,+2,...,h+(p-1):h e H}
Hp={(h ,h+2,h+4,... h+2(p-1):h e H},

Hyp—1) = (W, W +@p-1,h+2(p—1),...,h +1)):h € H}.
Since H is linear, it is clear that if we take any two vectors from Hj, then their addition

belongs to any one of the blocks Ho, Hy1, Hya, - - -, Hy(p—1). Therefore, H; is linear. O

Theorem 3 The Zps-linear GH codes HL0-0u0s ypigh p > 3 prime, s > 2 and t; > 0, are
the only Z,s-linear GH codes which are linear.

Proof By Theorem 2, we have that the codes H 1.0....0.% are linear.
Let H = & (H), where H = H'"+s. For any i € {1, ..., s}, we define H; = ®(H,),
where H; = H'ls, t/ =t +1and t;. = t; for j # i. We consider that H = & (H), where

H = H00 Now, we prove that H; is nonlinear for any i € {1,...,s — 1}. _
Note that the generator matrix of H; has two rows: w; = 1 and wy = p’_l(O, 1,...,
p = —1). Let wy; be the j-th coordinate of wy and [(w2;)o, (wzj)l, e (waj)s—1lp its

p-ary expansion. By Corollary 4, qb(wz,)-l-qb(p’ h = ¢)(wzj +p' l—z,) where z; = p'
if (w2j)i—1 = p — 1, and 0 otherwise. Note that wp; = p'~!(j — 1), s0 (wy;)i—1 = p — 1
if and only if j € {p,2p, ..., p**177}. Then, ®(wy) + ®(p'!) = & (wy + p! — 2z),

:+lt
where z = (z1, 22, ..., Zpe+1- ,)eZ ,zj=p'forje{p,2p,....p " andz; =0

otherwise. Therefore, we just need to show thatz ¢ H;.

Notethatth(Cb(z)) = p ety (P(p).Ifi = s—1, thenwty (P (2)) = p-p*~' = p*.
Ifi e {1,. -2}, thenth@(z)) =p . (p—1Dp° 2 = p»~i=2(p—1). However, the
minimum dlstance of H; is p*~2(p — 1)p*t1=1 = pZ~i=1(p — 1). Therefore, ®(z) ¢ H;,
fori e {1,...,s —1}.

Finally, in general, for H = @ (H), where H = H'!>+! we prove that if H is nonlinear,
then H; is nonlinear for any i € {1, ..., s}. Assume that H; is linear. Then, by the iterative
construction (5), foranyu, v € H, we have that (u, ..., u), (v, ..., v) € H;. Moreover, since
H; is linear, @ ((u, ..., W) + ®((v,...,v)) = Dd((a,...,a)+1-pi~10,1,..., p*~itl -
1)) € H;, where a € H and A € Zs. Therefore, ®(u) + @(v) = @ (a) € H, and we have
that H is linear and the result follows. ]

Example 8 Considering all non-negative integer solutions with #; > 1 of the equation 4 =
311 4+ 2t» + t3 — 1, we have that the Z s-linear GH codes of length p4 are the following:

H1 2 and H1 1.0 . By Theorem 3, we have that H1 0.2 4 linear, so ker(H1 -0, 2) = 5. By the

1,1,0 .

same theorem, we also have that H," " is nonlinear, so ker(H,’ 1.1, 0) =3<5.
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Example 9 Considering all non-negative integer solutions with #; > 1 of the equation 5 =
3t +2tp+1t3 — 1, we have that the sz -linear GH codes of length p5 are the following: H;’0’3,

H,l,’l’1 and Hi’o’o. By Theorem 3, we have that H;’O’3 is linear, so ker(H,E’O'S) = 6. By the

same theorem, we also have that H,i’l’l and H,%’O’O are nonlinear, so ker(le’l’l) =4<6

and ker(HI%‘O’O) =2<6.

5 Kernel of Zps-linear GH codes

For Z4-linear Hadamard codes and Z,s-linear Hadamard codes with s > 2, the kernel and
its dimension are given in [18, 21] and [11], respectively. In this section, we generalize these
results for Z,s-linear GH codes with p > 3 prime and s > 2. First, we establish a lower
bound on the dimension of the kernel, and then we construct a basis of the kernel and give its
exact dimension. We see that all the basis vectors of the kernel for p > 3 are the generalized
forms of the nonlinear ones for p = 2 except @(Zf;g pY), which does not belong to the
kernel, and so the dimension of the kernel is decreased by one for p > 3 prime.

Let A'>-'s be the generator matrix of 71>’ and let w; be the i-th row vector of A’l>'s,

By construction, w; = land o(w;) < o(w;)ifi > j. Wedefineo € {1, ..., s} as the integer
such that o(wp) = ps"']_“. For H!"0+0 we define ¢ = 5. Note that 0 = 1 if 7; > 1, and
o=min{i : 4 > 0,i € {2,...,s}}if f; = 1. In the case 0 = s, the code is H 001
which is linear.

Letu= (uy,...,u,) € Z;@S and [uj 0, uj1,...,ujs1]p be the p-ary expansion of u,
where j € {1, ..., n}. Leti be an integer such thati € {0, ..., s — 1}. Then, we denote by

u® the vector having in the j-th coordinate the i-th element of the p-ary expansion of u js
that is, u® = M1,y Uni) € ZZ.

Proposition5 Let H = H'' be the Zs-additive GH code of type (n; 11, ..., t5) with
p > 3 prime. Let H, be the subcode of H which contains all the codewords of order p. Let
M ={p™° 3 ifo >2 and M =B ifo = 1. Then,

(@(Hp), D(M)) € K(P(H))
and ker(®(H)) = O j_ti) +o — L.

Proof Let H = ®(H)andt = > j_ 1. Let 0 = {(o(wr)/ p)Wi};_,- Since H, contains
all the elements of H of order p, we have that the set @ (Q) is a basis for the linear subcode
H, = ®(Hp) of H over Z,. By Corollary 5, for all b € H, and u € H, we have that
®(b) + @ (u) = (b +u) € H and, therefore, H, C K(H).

Assume o > 2. Now, we prove that @(p™) € K(H) forall m € {0,...,0 — 2}.
Equivalently, we show that @(p™) + @®(u) € H for all u € H. If u € H, then
u=Lr-1+u,where A € Zy and o(w) < o(wa) = p*"'77. Letu = (uy,...,u,) €
Zﬁx and [ujo,uj1,...,ujs 1], be the p-ary expansion of u;, j € {l,...,n}. Let
[A0, A1, ..., As—1]p be the p-ary expansion of A € Zps. Note that if v € Z,s is of order
pi, then its p-ary expansion is of the form [0, ..., 0, vs—;, Us—it1, ..., Vs-1]p. Since m €
{0,...,0—2}ando(w’) < p*T179 wehave that u”™ = (Ui, ..., tnm) = R o » Am)-
By Corollary 4, we have that @ (p™) + @ (u) = @ (p™ + u — p"+ty), where tn, = 1 or
tm = 0 depending on whether ,, = p — 1 or not, respectively. Therefore, p"* !ty is 0 or
p™*1. In both cases, p”" 'ty € H, 50 @ (p™) + @) = P(P™ +u— p"Hty) € H.

Finally, we have to see that the elements of the set {® (Q), @ (M)} are linearly independent.
Clearly, the elements of @ (Q), and also the elements of @ (M), are linearly independent. By
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construction, the generator matrix A’~% is a block upper triangular matrix, so it is easy to
see that the codewords of @ (Q) are linearly independent of the ones of @ (M). Therefore,
we have that the dimension of the linear span of this setist+o0 — 1,soker(H) > 7 +o0 — 1.
O

Lemma2 Let v, A € Zys. Then, v ®p A = Zf;é(v Op Aiph), where [ho, M, ..., hs—1]p is
the p-ary expansion of A.

Proof Letv € Zps and let [vo, vy, ..., vs—1], beits p-ary expansion. By definition, we have
that v Op A = v Op > i g ! k,p = ZS:(; t;p', where t; is 1 if v; + A; > p, and 0 otherwise.
Note that 1; p' = v ©, A;ip', 50V Q) Y520 hip! = Y320 (v ©p Aiph). o

Lemma3 Let H = H!'b be the L ps-additive GH code of type (n; ty, ..., t;) with p > 3
prime. Let N' = {Zf;g_l aptc o€ Zpyifo <s—1, and N = {0}, otherwise. Then,
SN)NK(@(H)) = {0}.
Proof Let H = ®(H). Assume 0 < s — 1 and let u = Zf;g_l Aip' € N such that
@ (u) € K(H). We want to prove that u = 0. Assume that there exists u # 0, so there exists
ip € {o —1,...,s — 2} such that A;, # 0.

By construction, the second row w, of A+ is a p'~2T9_fold replication of
v=p""10,1,..., p'=% — 1), and o(w2) = p*t1=. By Corollary 2, we have that
D(wy) + P(m) = @(W2 +u — p(wz ©p w). Since @(u) € K(H), p(wa ©pu) € H.

Let wp = (wy, w2, ..., wy) and [wj 0, wj 1,..., w;s—1]p be the p-ary expansion of w,
Jj €{l, ..., n}.Notethat,by Lemma2, we have that p(w,Ou) = pi;g_l(WZQI,Aipi) =
pi;§71 T,'pi € H, where T; = (t1;, 124, ..., 1), and tii = 1 if wii+A >p and
tji = 0 otherwise.

Lett = Y t.Sinceo <s— 1,7 > 2. If t = 2, then H has length m = p**!~°
and the only rows in A"’ are 1 and w,. Note that, in this case, wp = v. If T > 3, for
k € {3,..., 1)}, the k-th row wy of A"’ contains zeros in the first p*+1=¢ coordinates by
construction. Hence, for > 2, any element of H restricted to the first p* +1-0 coordinates
is of the form w1 4 upv for some wy, uy € Z . We have that p Zf_g 1 Ti p* restricted

to the first m = p*+1=7 coordinates is p Zl o 1T/p’ where T, = (tris 12,05 - tm,i)-
Therefore, we have to find j11, 2 € Zps suchthat py 1_2 T; pl= il + pov.
Since the first coordinate of v is 0, the first coordinate of v is 0 for all i € {0,...,s—1}.
Then, we have that u; = 0, so
s—2
p Y, Tip'=puav. ©6)
i=o—1

Note that v = Y32 v@pi = Y971 v pi Letx = p Y72 | T)pi andy = pav. On
the one hand, we assume that u» € A = {0, p* =t ... (p — Dp* ot} and then y = 0.
Moreover, since there exists A;, # 0, we have that T;O has at least a nonzero coordinate, so
x # 0 and we get a contradiction. On the other hand, we assume that iy € Zps \ A. Let
x = (x14, X2, ..., %mi),0 <i <s—1.Note thatx;; € {0, 1} forall j € {I,2,...,m}
and i € {o0,...,s — 1}. However, since v = p°~1(0,1,..., p’T1= — 1), there exists
i1 € {o,...,s — 1} such that the coordinates of y(i') are not in {0, 1}, and hence we obtain a
contradiction. Therefore, if u # 0, then p(w2 ©p u) # 11+ pov and hence u = 0. O
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Lemma4 Let H = H™ ' be the Z ps-additive GH code of type (n; t1, ..., ty) with p > 3
prime. Let Wi be the k-th row of A" and v = Y ]_, t;. Let M = {v = Z;;g AW
M € Zps, o(v) > pL, N = {Zf;i—l P A € ZpYifo <s—1,and N = {0}, otherwise.

Let M4+N = {Vp+Va i Vg € MU{OY, vor € N} Then, ® (M + N)NK (P (H)) = {0}.

Proof Let H = & (H), which has length N = n - p*~!. By Lemma 3, we already know that
DdN)NK(H) = {0}.

Now, we prove that ® (M) N K (H) = (. Letv = Z,E;;‘ AMwr = (V1, V2, ..., V) € M.
Since o(v) > pando(wy) < p*+1=7 o(v) = p? forsome2 < g < s+1—o. By the iterative
construction (5) of A’*~%  we know that all the elements of Z ps of order equal to or less than
p? appear as a coordinate of v. Let [vj 0, vj1,..., v} s—1], be the p-ary expansion of v;,
j €{l,...,n}.ByCorollary 4, we have that ® (v)+ @ (p*~ %) = cD(v—l—ps_q—ps_q"'lTs,q),
where Ts_q = (ll,(s,q), D (s—q)s > Zn’(s,q)), and for j € {1,...,n}, tj(s—q) = 1if
Vj (s—g) = P — 1 and 0 otherwise. Again, it is enough to see that ps‘q“Ts_q ¢ 'H to prove
that @(v) ¢ K(H). Since, v = Z,ﬁ;g MW = (v1,v2,...,v,) and o(v) = p? for some
2 < g < s+ 1— o, we have that, by construction, v contains every element of p‘V*IZ P
exactly o times, o > 0, and the remaining n — pa coordinates are from Zs \ p* -1z ps- S0,
wig (P (p* 1M Ty y) < (n—pa)-(p—1)p 2 <n-(p—1)p* 2 = N(p—1)/p = d(H).
Therefore, @(v) ¢ K(H) and ®(M) N K(H) = 0.

Now, we prove that @ (M + N) N K(H) = {0}. Let v = va + vy € (M + AN)\{0},
where v € M and var € M. We just proved that @ (v) ¢ K(H) if vapy = 0or vy = 0.
Therefore, we can assume that vaq # 0 and vpr # 0. We know that var = (v, ..., v).
Let [vo, v1, ..., vs—1]p be the p-ary expansion of v. Let va; and v, be the elements of
Zps having p-ary expansion [0, ...,0,v5_g4, ..., vs—1]p and [vo, ..., Vs—g—1,0,...,0]p,
respectively. Then, var = Vaq + Vap,, where v = (v, ..., va;) for i € {1, 2}. Since
o(vap) = p? with2 < g < s+ 1—o0, the p-ary expansion of each one of its coordinates is of
the form [0, ..., 0, (War)s—g, - - - » (VA1)s—1]p. Note that we also have that o(va,) < o(vaq)
by construction.

It is easy to see that p(va, ©p p*~9) = 0. Therefore, wtgy (@ (p(v ©p, p* 1)) =
wtg (@ (p((vam + Vap) ©p PP79)). Since o(vpn,) =< o(vaq), it is easy to see that
there exists a permutation of coordinates m such that w(vas + vaq) = vaq. Thus,
Wt (@(p((Vam + Var) ©p PPD)) = Wiy (@(p(var ©p PP 1)), and since o(vag) = p?
with 2 < g < s + 1 — o, we get a contradiction as above. Therefore, @(v) ¢ K(H) and
DSM+N)NK(H) = {0} O

Theorem4 Let H = H"-' be the ZLpys-additive GH code of type (n;ti, ..., 1) with
p > 3 prime. Let H, be the subcode of H which contains all the codewords of order p. Let
M ={p™)° 3 ifo >2 and M =B ifo = 1. Then,

(@(Hp), 2(M)) = K(@(H))
and ker(®(H)) = Qi 1) +o — 1.
Proof The result follows by Proposition 5 and Lemma 4. O

Corollary 6 Let H = H"""s be the Zps-additive GH code of type (n; t1, ..., t;) with p > 3
prime. Let Wy be the k-th row of A" and v = Y";_, t;. Let Q = {(o(Wy)/p)Wi}i_, and
M = {pm}:;_:% ifo >2,and M =@ ifo = 1. Then, {®(Q), D(M)} is a basis of K (D (H)).

@ Springer



1050 D.K.Bhunia et al.

Example 10 Let H31‘ 10 be the Zy7-linear GH code. By Theorem 4, we have that ker(H31 o1 ’0) =

3 since o = 2. Moreover, we can construct K (H3l ’1’0) from a basis by Corollary 6. We have
that 0 = {9, (0,9, 18,0,9, 18,0, 9, 18)} and M = {1}. Thus,

K(H'% = (@(9), #((0,9, 18,0,9, 18,0,9, 18)), ®(1)).

More generally, if H ,1,’1’0 is a Z 3-linear GH code with p an odd prime, then we have that

K(HY"") = (@(p*), 2(u), 2 (1)),

where u is the p-fold replication of (0, P2 2p%, ..., (p—Dp3), so ker(H;’l'O) = 3. Note
that ker(H, %) = 5 since H,*"% is linear [11].

Example 11 Let H32’0’0 be the Zj7-linear GH code considered in Example 7. By Theorem 4,
we have that ker(H32’0’0) = 2 since o = 1. Moreover, we can construct K (H32’0’0) from a
basis by Corollary 6. We have that Q = {9, u = (0,9, 18,0,9, 18,0,9, 18,0, 9, 18, 0, 9, 18,

0,9,18,0,9,18,0,9,18,0,9,18)} and M = @. Thus,
K(H; ") = (@(9), p(w).

In the general case of the Z p3-linear GH codes H, ,%’0’0 with p an odd prime, we have that
K(HY*0) = (@ (p?), 2 (w)),

where u is the pz—fold replication of (0, pz, 2p2, o (p— 1)p2), SO ker(Hg’O’O) = 2. Note
that ker(H,"*%) = 3 [11].

6 Classification of Zps-linear GH codes

The classification of the Z4-linear Hadamard codes of length 2°, for any r > 3, using the rank
or the dimension of the kernel is shown in [18, 21]. In [11], it is shown that the dimension of
the kernel can not be used to establish a complete classification of the Zjs-linear Hadamard
codes of length 2/, in general, for any ¢ > 3 and s > 2. However, it is also shown that this
invariant allows us to obtain some partial results on the classification of these codes, through
some examples. In this section, we obtain these results for Z s -linear GH codes of length P,
witht > 1, s > 2 and p an odd prime, which do not coincide exactly with the case p = 2.
Moreover, we also establish for which parameters ¢ and s the dimension of the kernel gives
a full classification, and give the exact number of non-equivalent codes in these cases.

By Theorem 3, forany r > 1, s > 2, and p > 3 prime, there is exactly one Z s -linear GH
code of length p’, H'0-0% that is linear. Moreover, the following result implies that we
can focuson? > 5and 2 < s <t — 2 to classify the nonlinear ones.

Theorem 5 Let A; ;. , be the number of non-equivalent Zps-linear GH codes of length p',
and p > 3 prime. Then,

Oift>3ands >t + 2,
lift >3ands € {t,t + 1},
2ift>3ands =t — 1,
2ift=4ands =2,

At,s.ﬂ =

and the Z,s-linear GH code is linear when A; s , = 1. Moreover, ift > 5and2 < s <t -2,
then A; s, p > 2, and there is one which is linear and at least one which is nonlinear.
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Proof First,if t > 3 and s > ¢ + 2, then the equation

t=<2s:(s—i+1)-t,-)—1, )
i=1

with #; > 1, does not have any non-negative integer solution, so A; s , = 0.If # > 3 and
s =t + 1, then (7) has only one solution (¢1,...,%) = (1,0,...,0).Ifr > 3 and s =1,
(7) has only the solution (1,0, ...,0,1). By Theorem 3, for all the above solutions, we
obtain exactly one linear code H'!*-~% . Note that, when t = 3 and s = 2, the solutions are
(1,2) and (2,0); whenr > 4 and s = ¢ — 1, the only two solutions are (1,0, ..., 0, 2) and
(1,0,...,0,1,0); and when t = 4 and s = 2, the solutions are (1, 3) and (2, 1). By Theorem 3,
for these cases, we obtain exactly one linear code and one nonlinear code, so A, ;5 , = 2.
Finally, whent > 5and s = 2, (7) always has at least the solutions (1, ;) = (1,14+1—2)
and (2, t+1—4);andwhent > Sand2 < s < r—2, atleastthe solutions (1,0, ...,0,r—s+1)
and (1,0,...,0,1,¢# —s — 1). By Theorem 3, there is exactly one linear code and at least
one nonlinear code, so A; 5 , > 2. O

The following example shows that the dimension of the kernel can not be used, in general,
to classify completely all nonlinear Z,s-linear GH codes of length p’, once r > 5 and
2 <s <t —2are fixed.

Example 12 The Z ,3-linear GH codes of length pd (t = 8 and s = 3) are the following:
H},’O’6, H;’M, H11,’2’2, H;’3’0, H§’0’3, H,%’l’] and HS’O"O. When p is an odd prime, their
kernels are of dimension 9,7,6,5,5,4 and 3, respectively, by Theorem 4. Therefore, by
using this invariant, we can say that all of them are non-equivalent except H 11’3’0 and H 1% ’0’3,
which have the same dimension of the kernel. Note that, as shown in [11], for p = 2, the
codes H2l 14 and H2] 0.6 are linear, and hence equivalent, whereas H 11,’1’4 is nonlinear when
p=3

By using the computer algebra system Magma [6], when p = 3, we have that
rank(H31’3’0) = 22 and rank(H32‘0’3) = 16, so they are non-equivalent. Actually, all these
Zn3-linear GH codes have ranks 9, 14, 22, 16, 26, 48 and 10, respectively, so we can use the
rank instead of the dimension of the kernel to classify completely the Zs3-linear GH codes
of length 3% = 6561.

As shown in the next example, for some values of t > Sand 2 < s <t — 2, it is indeed
possible to establish a complete classification by using just the dimension of the kernel.
Actually, in Theorem 6, we show some infinite families of parameters for which this is also
true.

Example 13 By Theorem 4, it is possible to check that, forany 5 <t < 7,2 <s <t —2and
p an odd prime, all nonlinear Z ps-linear GH codes of length p' have a different dimension
of the kernel, so this invariant allows us to classify them. Forr = 8,7 = 9 and t = 10, it
also works, except when s € {3}, s € {3,4} and s € {3, 4, 5}, respectively. For these given
values of 7 and s, we can just obtain a partial classification by using the kernel.

By using Magma, we have also computed the rank of the nonlinear Zss-linear GH codes
of length 3%, forany 4 < ¢t < 10and2 < s < t — 1. Indeed, Tables 4 and 5 show the values of
(t1, ..., ty) and the pair (r, k), where r is the rank and & the dimension of the kernel, for all
these codes. Note that the values of (71, . . ., #;) and k do not depend on p, so they are the same
for any p > 3 prime. Therefore, the results given in Examples 12 and 13 can also be checked
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Table2 Number A; 3 of

non-equivalent Zs3s -linear GH ! } M > 6 ! s i 10
codes of length 37 Zy 2 2 3 3 4 4 5 5
Z:%3 1 2 3 4 5 7 8 10
Zsas 1 1 2 3 5 6 9 11
Z35 0 1 1 2 3 5 7 10
Z36 0 0 1 1 2 3 5 7
Zy1 0 0 0 1 1 2 3 5
Zy 0 0 0 0 1 1 2 3
Z39 0 0 0 0 0 1 1 2

by looking at these tables. They also show that all nonlinear Zzs-linear GH codes of length
3! have different values of the rank, once 5 < t < 10and 2 < s < ¢ — 2 are fixed. Therefore,
for these cases, as in Example 12, we have that the codes are pairwise non-equivalent. This
gives us a complete classification, by using the rank, and the number A; ; 3 of non-equivalent
Z3s-linear GH codes of length 37, as shown in Table 2 forany 3 <t < 10and2 < s < ¢+ 1.
The cases where the dimension of the kernel is not enough to classify them are shown in bold

type.

Theorem 6 Let A, s , be the number of non-equivalent Z ,s-linear GH codes of length p'.
Then, foranyt > 3,2 <s <t — 1 and p > 3 prime,

N

Avsp <ot €N = (Y —i+ D on) =1 n = 1),

i=1
Moreover, this bound is tight in the following cases:

1. foranyt >3 ands =2,

2. forany3 <t <T7and2 <s <t+1,

3. foranyt >T7ands =t — 2,

4. foranyt>Tands =t —3,

5. foranyt >9ands =t —4,

6. fort =8 ands =4,

7. forp=3,any3 <t <10and2 <s <t + 1.

Proof Item 2 is given by Example 13. Item 7 is true by Tables 4 and 5, since given any
possible ¢ and s, all the codes have a different value of the rank.

For Item 1, since ¢t > 3 and s = 2, the solutions of (7) are (¢1,t — 2t + 1), where t; > 1
andt + 1 > 2¢,. If t{ = 1, the solution is (1, 7 — 1), and then the dimension of the kernel of
the corresponding codeis 1 +¢ — 142 — 1 =1+ 1. If f; > 2, then the dimension of the
kernelist —#;+1+1—1 = t+1—1t; by Theorem 4, which gives different values for distinct
values of 1. Therefore, in this case, we see that there are exactly L%J non-equivalent codes.

ForItem 3, sincet > 7and s =t — 2, then s > 5. Therefore, we have at least five terms in
the addition part of equationt +1 = (t =2)t; + (t = 3)t2 + - - - + 24,3+ t;_2, with 11 > 1,
and hence we have exactly three solutions, which are (1,0, ...,0, 3), (1,0,...,0,1, 1),
and (1,0,...,0,1,0,0). The dimensions of the kernel for the corresponding codes are
441t—2—-1=t+1,34+t—-3—-1=¢t—1land2+1¢—4—1=1r— 3, respectively. Since
all these values are different, in this case, we have exactly three non-equivalent codes.
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For Item 4, if t = 7 and s = 4, then we already know that there are exactly five non-
equivalent codes by Item 2. If + > 8 and s = ¢ — 3, then by applying the same argument
as in Item 3, we have exactly five solutions: (1,0,...,0,1,0,0,0), (1,0,...,0,1,0, 1),
(1,0,...,0,2,0), (1,0,...,0,4) and (1,0, ..., 0, 1, 2). The dimensions of the kernel for
the corresponding codes are t —5, ¢t —3,t —2, ¢+ 1 and t — 1, respectively. Again, since these
values are different for a given ¢, in this case, we have exactly five non-equivalent codes.

Forltem5,ift = 9ands = 5, we have exactly seven solutions: (1, 0, 0, 0, 5), (1, 0, 0, 2, 1),
(1,0,1,0,2),(1,0,1,1,0),(1,1,0,0,1),(2,0,0,0,0) and (1,0, 0, 1, 3), and the dimen-
sions of the kernel for the corresponding codes are 10, 7, 6, 5, 4, 2 and 8, respectively.
If + > 9 and s = t — 4, then by applying the same argument as in Item 3,
we have exactly seven solutions: (1,0,...,0,5),(1,0,...,0,2,1),(1,0,...,0,1,0,2),
1,0,...,0,1,1,0), (1,0,...,0,1,0,0, 1), (1,0,...,0,1,0,0,0,0) and (1,0,...,0,0,
1, 3), and the dimensions of the kernel for the corresponding codesare t + 1,7 —2,¢ —3, ¢ —
4,t—5,t—"7andt — 1, respectively. Finally, since these values are different, we have exactly
seven non-equivalent codes.

For Item 6, since + = 8 and s = 4, we have exactly six solutions: (1,0,0,5),
(1,0,2,1),(1,1,0,2),(1,1,1,0),(2,0,0, 1) and (1, 0, 1, 3) and the dimensions of the ker-
nel for the corresponding codes are 9, 6, 5, 4, 3 and 7, respectively. Again, since these values
are different, we have exactly six non-equivalent codes. O

Corollary 7 Let A, ., be the number of non-equivalent Z,s-linear GH codes of length p’,
and p > 3 prime. Then,

L Asp =13 ift =3 ands =2,

2. ArspasinTable2if3 <t <Tand2 <s <t+1,

3 Arsp=3ift=>Tands =t -2,

4 Arsp=5ift>Tands =t -3,

5. Aisp=Tift >9%ands =1t —4,

6. Ai5,p =6ift =8ands =4,

7. AispasinTable2if p=3,3<t<10and2 <s <t + 1.

Proof Tt follows by the proof of Theorem 6. ]

Corollary 8 Let A; 52 be the number of non-equivalent Zys-linear GH codes of length 2'.
Then,

-At,s,2=L#J_ll'le3ands=2,
AisoasinTable2 givenin [11]if3 <t <1land2 <s <t+1,
Aiso=21ift>Tands =t — 2,

Aiso=4ift >Tands =t —3,

Aisp=06ift >9ands =1t —4,

Ais2=5ift =8ands = 4.

AN W~

Proof Recall that Item 1 is proved in [18, 21]. The proof of the other items follows by the
same arguments as in the proof of Theorem 6, but using previous results given in Theorems
2,3,4 and 5, and Table 2 from [11]. O

Note that Theorem 5 gives Ay ;, , for the extreme cases when there are only one or two
non-equivalent codes, and together with the results given by Corollary 7, we conjecture that
they cover all cases when the kernel allows us to classify Z s-linear GH codes of length p’
with p > 3 prime. Indeed, they do cover all cases that are not in bold type in Table 2. We
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Table 3 Bounds for the number
Ay, p of non-equivalent

Zps -linear GH codes of length lower bound K 2 2 4 4 6 6 8 8

t
P lowerboundRK (p=3) 2 2 4 4 7 8§ 12 14
upper bound 2 3 6 9 15 22 33 46

also give A, ; » for the same cases in Corollary 8, since they were not included in [11]. Note
that the values of Ay ; > are different from A, ; , with p > 3 prime, but they just differ by
one unit, because two of the codes are linear, instead of just one.

Next, we focus on Zps-linear GH codes, once only the length p’ is fixed. First, Example
14 shows that there are Zs-linear GH codes with s > 2, which are not equivalent to any
Z»-linear GH code of the same length p'. Then, Example 15 also shows that there are
Z>-linear GH codes which are not equivalent to any Zs-linear GH codes with s > 2.

Example 14 Let H 5’0’0 be the Z ,3-linear GH code of length p> with p an odd prime. Recall

that ker(Hg’O’O) = 2 by Theorem 4, and hence HI%’O’O is nonlinear. By Corollary 7, there are
three sz -linear GH codes of length p5, H1’4, Hg,z and HS’O. The first one is linear, and the
last two have ker(H,%’z) = 4 and ker(H 3’0) = 3 by Theorem 4. Hence, there is no Z I -linear
GH code equivalent to the Z ,3-linear GH code H 2.0.0 of length p°.

Example 15 By Theorem 3 or Table 4, we have that there are five nonlinear Zs-linear GH
codes of length p5 (t=5): H2‘2, HS’O, HI%’O’O, H;'l’l and le,o,l,o. Recall that the values of
(t1, ..., t5) and k do not depend on the value of p. It is easy to see that H S'O is not equivalent
to any Zps-linear GH codes with s > 2, by considering just the dimension of the kernel.
Other examples like this one can be found when ¢ is odd, and at least for p = 3. For example,
by Tables 4 and 5, for t = 7 and t = 9 there are Zs>-linear GH codes, H;LO and HSS’O,
respectively, which are not equivalent to any Zss-linear GH codes with s > 2 of the same
length, by using both invariants: the rank and dimension of the kernel.

Finally, we establish some lower and upper bounds on the number of non-equivalent Z s -
linear GH codes of length p’, when only the length p’ is fixed, for some values of . By
Theorem 4, we can determine a lower bound (K) taking into account just the dimension of
the kernel. This lower bound can be improved (RK) if we consider both invariants, the rank
and the dimension of the kernel, at least for p = 3 and ¢+ < 10. Note that there are codes
having the same dimension of the kernel with different ranks (for p =3 and¢ =7, 8,9, 10),
and codes having the same rank with different dimensions of the kernel (for p = 3 and
t =9, 10). An upper bound can be given easily by considering all non-equivalent Z s -linear
GH codes of length p’, once ¢ and s are fixed, as it is shown in the next theorem.

Theorem7 Let A; ;. , be the number of non-equivalent Zps-linear GH codes of length p',
and p > 3 prime. Let A, ,, be the number of non-equivalent 7 s -linear GH codes of length

pl, forany s = 2. Then, A; , < Zi;lz(flt,s,p -+ 1

The results related to the upper and lower bound of the value A; , are summarized in
Table 3, where we give these bounds for all 3 < ¢ < 10.
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Table 4 Rank and kernel for all nonlinear Z3s -linear GH codes of length 3

t=4 t=5 t=6 t=17
1y ..nts)  (ryk)  (t, .. ts)  (r k) (f1,...,t5) (r k)  (t1,...,t5) (r, k)
Z32 2,1 (6,3) 2,2) (7,4) A3, 12,4) (3,2) (13,5)
3,0) a3 (2,3) (8,5) 4,0) (21,4)
2,4) 9,6)
Zyz  (1,1,0) 6,3 (2,0,0) (13,2) (1,2,0) (12,4) (1,2, 1) (13,5)
(1,1, 1) (7,4) 2,0,1) (14,3)  (2,0,2) (15,4)
(1,1,2) (8.5) (2,1,0) (25,3)
(1,1,3) (9,6)
L (1,0,1,00 (74 (1,1,0,0) (14,3)  (1,0,2,0) (13,5)
(1,0, 1, 1) (8,5) (1,1,0, 1) (15,4)
(2,0,0,0) (14,2)
(1,0,1,2) 9,6)
Zss (1,0,0,1,0) (8,5 (1,0,1,0,0) (15,4)
(1,0,0,1, 1) 9,6)
Zse (1,0,0,0,1,0)  (9,6)

7 Conclusions and further research

In this paper, we establish the classification of the Z s -linear GH codes of length p’ once 1, s,
and p are fixed, giving the exact number A, s , of non-equivalent such codes for all possible
parameters, except for + > 8 and 3 < s < t — 5. For these values, at least if p = 3 and
t=28,9,10(and p =2andr =8, 9, 10, 11 [11]), there are codes with the same dimension
of the kernel, so this invariant can not be used to fully classify. However, in these cases, we
have checked that the rank classifies. We conjecture that, even though there are some cases
when the dimension of the kernel does not classify, the rank always does, and thus A
coincides with the upper bound given in Theorem 6 if p is an odd prime, and the one given
in [11,Theorem 5] if p = 2.

On the other hand, when only ¢ and p are fixed, at least if p = 2 and p = 3, we have
Zps-linear GH codes of length p’ (with different values of s) which have the same values
for the rank and dimension of the kernel. For p = 2, these codes are equivalent as shown
in [12]. Another further research on this topic would be to determine whether they are also
equivalent for any odd prime p.

The Zps-linear GH codes studied in this paper are the ones obtained by using Carlet’s
Gray map. As mentioned in the introduction, there are other Gray maps, which could be
used to generate GH codes from the Z js-additive codes Hg """ " constructed in Sect. 3 for
p > 2 prime or in [11] for p = 2. However, the results about the linearity, kernel, rank, and
classification would be different. For example, the Zg-linear Hadamard code @(Hé’l’ ’0)
has rank » = 9 and kernel of dimension k = 4 [11]. By using other Gray maps ¢’ such that
S aid' (21 # ¢/ (3 Ai2%), the parameters (r, k) become (9, 2), (11, 3), (11, 2), and (13, 2),
so we could obtain new non-equivalent GH codes.
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Table 5 Rank and kernel for all nonlinear Z3s -linear GH codes of length 3

t=38 t=9 t =10

(1. t5) (r, k) (G (r, k) (G (r, k)
Z3z 3,3) (14,6) (3,4) (15,7) 3,5) (16,8)
4, 1) (22,5) 4,2) (23,6) 4,3) (24,7)
2,5) (10,7) (5,0) (36,5) G, 1) (37,6)
2,6) (11,8) 2,7 (12,9)
Z33 (1,2,2) (14,6) (1,2,3) (15,7) (1,2,4) (16,8)
(1,3,0) (22,5) (1,3, 1) (23,6) (1,3,2) (24,7)
2,0,3) (16,5) 2,0,4) (17,6) (1,4,0) (37,6)
2,1,1) (26,4) 2,1,2) (27,5) (2,0,5) (18,7)
(3,0,0) (48,3) (2,2,0) (43,4) 2,1,3) (28,6)
(1,1,4) (10,7) (3,0, 1) (49,4) 2,2,1) (44,5)
(1,1,5) (11,8) (3,0,2) (50,5)
(3,1,0) (82,4)
(1,1,6) (12,9)
Z34 (1,0,2,1) (14,6) (1,0,2,2) (15,7) (1,0,2,3) (16,8)
(1,1,0,2) (16,5) (1,0,3,0) (23,6) (1,0,3,1) (24,7)
(1,1,1,0) (26,4) (1,2,0,0) (49,4) 1,1,0,4) (18,7)
(2,0,0,1) (35,3) (1,1,0,3) (17,6) 1,1,1,2) (28,6)
(1,0,1,3) (10,7) (1,1,1,1) (27,5) (1,1,2,0) (44,5)
(2,0,0,2) (36,4) (1,2,0,1) (50,5)
(2,0,1,0) (64,3) (2,0,0,3) (37,5)
(1,0,1,4) (11,8) (2,0,1,1) (65,4)

(2,1,0,0) (121,3)
(1,0,1,5) (12,9)
Z35 (1,0,0,2,0) (14,6) (1,0,0,2, 1) (15,7) (1,0,0,2,2) (16,8)
(1,0, 1,0, 1) (16,5) (1,0,1,0,2) (17,6) (1,0,0,3,0) (24,7)
(1,1,0,0,0) (35,3) (1,0,1,1,0) (27,5) (1,0,1,0,3) (18,7)
(1,0,0,1,2) (10,7) (1,1,0,0, 1) (36,4) (1,0,1,1,1) (28,6)
(2,0,0,0,0) (96,2) (1,0,2,0,0) (50,5)
(1,0,0,1,3) (11,8) (1,1,0,0,2) (37,5)
(1,1,0,1,0) (65,4)
(2,0,0,0,1) (97,3)
(1,0,0,1,4) (12,9)
Zn6 (1,0,0,1,0,0) (16,5) (1,0,0,0,2,0) (15,7) (1,0,0,0,2, 1) (16,8)
(1,0,0,0,1,1) (10,7) (1,0,0,1,0,1) (17,6) (1,0,0,1,0,2) (18,7)
(1,0,1,0,0,0) (36,4) (1,0,0,1,1,0) (28,6)
(1,0,0,0,1,2) (11,8) (1,0,1,0,0,1) (37,5)
(1,1,0,0,0,0) (97,3)
(1,0,0,0,1,3) (12,9)
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Table 5 continued

t=238 t=9 t=10
(11, t5) (r k) (1, 15) (r k) (1,0 15) (r,k)
Zy7  (1,0,0,0,0,1,00  (10,7)  (1,0,0,0,1,0,0) (17,6)  (1,0,0,0,0,2,0) (16,8)
(1,0,0,0,0,1,1) (11,8)  (1,0,0,0,1,0,1) (18,7)
(1,0,0,1,0,0,0) (37,5)
(1,0,0,0,0,1,2) (12,9
Zsg (1,0,0,0,0,0,1,0) (1L,8) (1,0,0,0,0,1,0,0) (18,7)
(1,0,0,0,0,0,1, 1) (12,9)
Zy9 (1,0,0,0,0,0,0,1,0) (12,9
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