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Abstract
Delandtsheer and Doyen bounded, in terms of the block size, the number of points of a point-
imprimitive, block-transitive 2-design. To do this they introduced two integer parameters
m, n, now called Delandtsheer–Doyen parameters, linking the block size with the parameters
of an associated imprimitivity system on points. We show that the Delandtsheer–Doyen
parameters provide upper bounds on the permutation ranks of the groups induced on the
imprimitivity system and on a class of the system. We explore extreme cases where these
bounds are attained, give a new construction for a family of designs achieving these bounds,
and pose several open questions concerning the Delandtsheer–Doyen parameters.
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1 Introduction

We study finite 2-designs admitting a great deal of symmetry, and explore several extreme
cases suggested by bounds on the so-called Delandtsheer–Doyen parameters. We consider
2-(v, k, λ) designs: these are structures D = (P,B) with two types of objects called points
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(elements of P) and blocks (elements of B). There are v = |P| points, and we require that
each block is a k-subset of P, and that each pair of distinct points lies in exactly λ blocks.
As a consequence of these conditions, the number r of blocks containing a given point is
also constant. The standard parameters associated with a 2-(v, k, λ) design are v, k, r , λ,
and the number b = |B| of blocks, and we note that v, k, λ determine b and r . Additional
Delandtsheer–Doyen parameters arise under certain symmetry conditions: automorphisms
ofD (permutations of P leavingB invariant) act on points, blocks, and flags (incident point-
block pairs), and the following implications hold for transitivity of a subgroup G ≤ Aut(D)

in these actions (the second implication follows from Block’s Lemma, see [8, (2.3.2)]):

flag-transitive ⇒ block-transitive ⇒ point-transitive.

A celebrated result from 1961 of Higman andMcLaughlin [11], for 2-designs with λ = 1,
shows that flag-transitivity impliespoint-primitivity for these designs.Generalising this result,
several other conditions on the parameters of a 2-(v, k, λ) design were given in the 1960s
by Dembowski [8, (2.3.7)] and Kantor [14, Theorems 4.7, 4.8] under which flag-transitivity
implies point-primitivity. On the other hand, examples were known of block-transitive groups
which were not point-primitive, such as the ones we present in Example 4.1. Nevertheless it
was hoped that (in some sense) most block-transitive groups on 2-designs would be point-
primitive (to allow use of the powerful theory for primitive permutation groups). This hope
was realised by Delandtsheer and Doyen [7] in 1989. Indeed a recent paper of Zhan et al
[21] shows how these two methods (the approach in [7] for point-imprimitive designs and
the theory of primitive permutation groups for the point-primitive ones) can be applied to
make very significant progress towards a complete classification of block-transitive 2-designs
with a fixed block size k, namely for k = 4 in [21]; see a brief discussion in Remark 4.5.
The theorem of Delandtsheer and Doyen, which we state below, implies that every block-
transitive group will be point-primitive provided that the number of points is large enough,

specifically v >
((k

2

) − 1
)2

is sufficient. For a block-transitive group preserving a non-

trivial point-partition, an unordered pair of points contained in the same class of the partition
is called an inner pair, and is called an outer pair if the two points lie in different classes.
Since the group is block-transitive, the numbers of inner pairs and outer pairs in a block B
are constants, independent of the choice of B ∈ B, and their sum is

(k
2

)
.

Theorem 1.1 [7, Theorem] Let D = (P,B) be a 2-(v, k, λ) design, let B ∈ B, and let
G ≤ Aut(D) be block-transitive. Suppose that v = cd for some integers c ≥ 2 and d ≥ 2,
and that G leaves invariant a partition C of P with d classes, each of size c. Then there exist
positive integers m and n such that

c =
(k
2

) − n

m
and d =

(k
2

) − m

n
. (1)

Moreover, n is the number of inner pairs contained in B and mc is the number of outer pairs
contained in B.

We call the integers (m, n) the Delandtsheer–Doyen parameters forD (relative to G and
C). A major open question regarding these numbers is:

Question 1 Which Delandtsheer–Doyen parameters (m, n) are possible?

While these numbers have combinatorial significance, as given by Theorem 1.1, the pur-
pose of this paper is to report on restrictions we discovered that the Delandtsheer–Doyen
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Block-transitive point-imprimitive designs 2207

parameters place on the action of the group G. Let K = GC denote the subgroup of Sym(C)

induced by G, and for C ∈ C, let H = GC
C denote the subgroup of Sym(C) induced on C by

its setwise stabiliser GC . By the Embedding Theorem [19, Theorem 5.5], we may assume
that G ≤ H � K ≤ Sym(C) � Sym(C) ∼= Sym(c) � Sym(d) in its imprimitive action on
P = Zc ×Zd . For a transitive subgroup X ≤ Sym(�), the rank of X is the number Rank(X)

of orbits in� of a point stabiliser Xα (for α ∈ �); and Rank(X) is also equal to the number of
X -orbits in � × �, see [19, Lemma 2.28]. Similarly we denote by PairRank(X) the number
of X -orbits on the unordered pairs of distinct points from �, and it is not difficult to see that
(Rank(X) − 1)/2 ≤ PairRank(X) ≤ Rank(X) − 1. A summary of the major restrictions we
obtain on the Delandtsheer–Doyen parameters is given by the following theorem.

Theorem 1.2 Let D, G, C, c, d, m, and n be as in Theorem 1.1. Let C ∈ C and H = GC
C,

K = GC. Then

Rank(H) − 1

2
≤ PairRank(H) ≤ n, and

Rank(K ) − 1

2
≤ PairRank(K ) ≤ m.

Theorem1.2 follows immediately fromProposition 3.2,which contains additional detailed
information about the permutation actions of the groups H and K . Refining Question 1 we
might ask:

Question 2 For what values of (m, n) can we have Rank(H) = 2n + 1 and Rank(K ) =
2m + 1? For what values of (m, n) can we have PairRank(H) = n and PairRank(K ) = m?

Some rather incomplete answers to Question 2 may be deduced from certain results and
examples of block-transitive designs in [6,16,17]. Examining these from the point of view
of the Delandtsheer–Doyen parameters, we obtain the next result.

Proposition 1.3 (a) For any N > 0, there exists an example in Theorem 1.2 with
Rank(H) = 2n + 1, Rank(K ) = 2m + 1, and with both n,m > N.

(b) For any k ≥ 3, there exist examples in Theorem 1.2 with m = n = PairRank(H) =
PairRank(K ) = 1, but with Rank(H) = Rank(K ) = 2.

(c) There exists a 2-(cd, k, λ) design D (for some λ) in Theorem 1.2 with n = m = 1, and
max{Rank(H),Rank(K )} = 3, if and only if k = 8 and c = d = 27. Moreover, in the
case λ = 1, there are up to isomorphism exactly 467 such designs.

We note that additional examples may be constructed of block-transitive, point-imprimit-
ive 2-(729, 8, λ) designs in Proposition 1.3(c) using the technique from [6, Proposition 1.1]
applied to a subgroup of Sym(c) � Sym(c) properly containing the group G of Theorem 1.2.
Such examples will have larger values of λ. Alsowe note that additional examples for the case
k = 4 in Proposition 1.3(b) may be found in [21]. Proposition 1.3 will be proved in Sect. 4.

In the final Sect. 5 we present a new design construction that yields additional pairs
(m, n) with the second property requested in Question 2. The construction is different from,
but was inspired by, the design construction in [6, Proposition 2.2]. We believe that our
construction produces an infinite family of examples, but justification for this relies on two
number theoretic conjectures which we comment on in Sect. 1.1. The construction in Sect. 5
requires integer pairs [n, c] with the following property.

Definition 1.4 An integer pair [n, c] is said to be useful if the following two conditions hold:
(1) n ≥ 2 and c is a prime power such that c ≡ 1 (mod 2n); and
(2) c + n = (k

2

)
for some integer k ≥ 2n.
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Table 1 Examples of useful pairs [n, c], together with the values for k and d

We show in Lemma 5.3 that for useful pairs [n, c], the value of k satisfies 2n + 2 ≤ k ≤
n + d , where d = 1 + (c − 1)/n. Table 1 gives a list of all useful pairs [n, c] such that
n ≤ 20 and c ≤ 1300, together with the corresponding values of k and d . In addition, for
n ∈ {11, 13, 16, 18}, the table contains the parameters c, k, d , for the smallest value of c
such that [n, c] is useful. We note that the only integers n in the range 2 ≤ n ≤ 20 which do
not appear in the table are n ∈ {6, 10, 15}, and we prove in Lemma 5.6 that for these three
values of n there is no c such that [n, c] is a useful pair.

We are principally interested in which values of n are possible since, in our design
Construction 5.4 based on a useful pair [n, c], the Delandtsheer–Doyen parameters turn
out to be (1, n). Moreover, these designs also satisfy the bounds PairRank(H) = n and
PairRank(K ) = 1 in Question 2 (see Theorem 5.5). The following theorem is an immediate
consequence of Theorem 5.5.

Theorem 1.5 Suppose that [n, c] is useful with c+ n = (k
2

)
, and let d = 1+ (c− 1)/n. Then

there exists a 2-(cd, k, λ) design (for some λ) admitting a block-transitive, point-imprimitive
group H � K with H ≤ Sym(c) and K = Sym(d), and with Delandtsheer–Doyen parameters
(1, n) such thatRank(H) = PairRank(H)+1 = n+1andRank(K ) = PairRank(K )+1 = 2.

Apart from the examples given to prove Proposition 1.3, Theorems 1.5, and 5.5, Ques-
tions 1 and 2 are in general wide open, and we would be very interested in knowing more
general answers. In particular, we note that Theorem 1.5 does not produce designs with
Delandtsheer–Doyen parameters (1, n) for n = 6, 10 or 15 (Lemma 5.6). Nevertheless there
might be alternative constructions with Delandtsheer–Doyen parameters (1, n) for such n.

Question 3 For which values of n do examples exist with Delandtsheer–Doyen parameters
(1, n), and with (PairRank(K ),PairRank(H)) = (1, n)? Are there examples for all n?

In particular, it would be good to know for which values of n there exists at least one useful
pair [n, c]. We finish this introductory section with some commentary on number theoretic
questions related to the existence of useful pairs.

1.1 Useful pairs and conjectures from number theory

By Dirichlet’s Theorem on arithmetic progressions (see [20, Chap. VIII.1]), for any positive
integer n, there exist infinitely many primes c such that c ≡ 1 (mod 2n). However it is
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unclear how many such pairs [n, c] sum to a triangular number
(k
2

)
. In the light of Dirichlet’s

Theorem and the relatively large number of useful pairs of the form [2, c] we found with
c < 1300, we asked, in an earlier version of this paper [3]:

Question 4 Are there infinitely many prime powers c such that [2, c] is a useful pair?
This question, and our discussion in [3] of its links with the Bunyakovsky Conjecture

in Number Theory, attracted the attention of Gareth Jones and Alexander Zvonkin who had
worked on a somewhat similar problem concerning projective primes [12]. They applied
their methods and heuristics to our questions and found 12, 357, 532 integers t ≤ 108 such
that c(t) := (8t+3

2

) − 2 is a prime and [2, c(t)] is a useful pair, and hence corresponds to a 2-
design in Theorem 5.5, see [13, Table 2]. This means that, for a uniformly distributed random
positive integer t ≤ 108, the probability that [2, c(t)] is a useful pair is approximately 0.12
- more that one chance in nine. We are excited by the extensive discussions which ensued
between Gareth, Alexander and the authors, and we present here a modified commentary
from the one given in [3]. In particular, although Question 4 remains open we feel optimistic
that the answer should be a resounding ‘yes’.

The conditions for [n, c] to be useful imply in particular that, if k ≡ r (mod 4n), then(k
2

) ≡ (r
2

) ≡ n + 1 (mod 2n). Thus, for fixed integers n, r such that n ≥ 2, 1 ≤ r < 4n, and(r
2

) ≡ n + 1 (mod 2n), we seek integers of the form k = 4nt + r , with k ≥ 2n, such that(k
2

) − n = c is a prime power. In other words, we seek non-negative integers t such that the
value of the following quadratic polynomial

f (t) = fn,r (t) = 8n2t2 + 2n(2r − 1)t +
(
r(r − 1)

2
− n

)
(2)

is equal to a prime power c. In summary, [n, c] is a useful pair if and only if c is a prime power
arising as fn,r (t) for some t . For example, if n = 2 and r = 3, then f2,3(t) = 32t2 +20t +1.
It was this polynomial, exhibited in our earlier draft, which Jones and Zvonkin first studied,
seeking integers t such that f2,3(t) is a prime. Although we are interested in the larger class
of integers which evaluate to prime powers, it is the primes which dominate: for example in
the range 1 ≤ t ≤ 107, there are 1, 405, 448 integers t for which f2,3(t) is a prime but only
eight integers giving proper prime powers [13, Sects. 11.1 and 13].

In 1857, the Russian mathematician Viktor Bunyakovsky (or Bouniakowsky) studied
integer polynomials f (t) for which the sequence f (1), f (2), f (3), . . . contains infinitely
many primes. He observed first that such polynomials f must satisfy the following three
conditions:

(i) The leading coefficient is positive;
(ii) The polynomial is irreducible over the integers; and
(iii) gcd( f (1), f (2), f (3), . . .) = 1 (or equivalently, f is not identically zero

modulo any prime p);

and then, in [5], he conjectured that these three conditions are also sufficient to ensure that
f (t) is a prime for infinitely many positive integers t . For example, the three conditions are
satisfied by the polynomial fn,r (t) if and only if n is not a triangular number

(a
2

)
, for some

integer a, see [13, Lemma 8.1]. In particular f2,3(t) satisfies all three conditions and hence
the Bunyakovsky Conjecture implies a positive answer to Question 4.

Unfortunately the Bunyakovsky Conjecture is still open, apart from the degree 1 case
which is Dirichlet’s Theorem. In 1962 the conjecture was refined by Bateman and Horn [4]
who proposed an approximation E(x) for the number of positive integers t ≤ x for which
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f (t) is prime. Then very recentlyLi [15] suggested an improved version of theBateman–Horn
estimate, namely

E(x) = C( f ) ·
∫ x

2

dt

ln( f (t))
, where C( f ) =

∏
p

(
1 − 1

p

)−1 (
1 − ω f (p)

p

)
,

the infinite product being over all primes p, and ω f (p) being the number of solutions of the
equation f (t) = 0 in the field of order p. A recent helpful discussion of links between the
Bateman–Horn and Bunyakovsky Conjectures (and other conjectures) may be found in [2].

In [13, Sects. 9–11], Jones and Zvonkin report on the very interesting and encouraging
results of their investigations. In particular they show that if fn,r (t) does not satisfy the three
Bunyakovsky conditions, then fn,r (t) is reducible [13, Lemma 8.1] and the only possible
prime power value fn,r (t), for t ≥ 0, is fn,r (0), [13, Proposition 13.2]; indeed this can
happen as seen in Table 1 above, for example f3,8(0) = 25. For the general case where the
three Bunyakovsky conditions hold, Jones and Zvonkin determine both the estimates E(x),
and also the exact numbers Q(x) of integers t ≤ x giving prime values f (t), for various
polynomials fn,r (t) as in (2) for 1 ≤ t ≤ 108, namely they study the pairs n, r suggested by
our examples in Table 1 with n ∈ {2, 4, 5, 7, 8, 9}. In all cases they found that the Bateman–
Horn–Li estimate E(x) is a very good predictor of the true number Q(x) of prime values,
for example,

for f = f2,3 and t ≤ 108, Q(x) = 12, 357, 532 and E(108) = 12, 362, 961.06.

Their data provides persuasive evidence for the truth of the Bunyakovsky Conjecture and
Bateman–Horn estimate. Moreover, their enumerations have produced more that 232 × 106

useful pairs [n, c] with n ∈ {2, 4, 5, 7, 8, 9} and c prime, and with this encouraging evidence
we ask:

Question 5 For which integers n do there exist infinitely many useful pairs [n, c]?

2 Permutation group concepts

Let X be a transitive permutation group on a set �. An X -orbital is an X -orbit in � × �.
Clearly, {(α, α) | α ∈ �} is an orbital and is called the trivial orbital; all other orbitals are
said to be non-trivial.

For any X -orbital � and any α ∈ �, the set �(α) = {β | (α, β) ∈ �} is an Xα-orbit, and
is called a suborbit of X . The set of X -orbitals is in one-to-one correspondence with the set
of all Xα-orbits in �, such that the orbital � corresponds to the Xα-orbit �(α). In particular,
the trivial orbital corresponds to the trivial suborbit {α}.

The cardinality |�(α)| is a subdegree of X , and the number of X -orbitals (including the
trivial orbital) is the rank of X , denoted Rank(X).

For each X -orbital �, the set �∗ = {(β, α) | (α, β) ∈ �} is also an X -orbital, called the
paired orbital of �. If � = �∗, then � is said to be self-paired. For any α ∈ �, the set
�(α) ∪ �∗(α) is therefore either a single suborbit, or the union of two suborbits of equal
lengths. We call the cardinality

u� := ∣∣�(α) ∪ �∗(α)
∣∣

the symmetrised subdegree corresponding to � (or to �∗). Note that u� = δ�|�(α)| where
δ� = 1 or 2 according as �(α) is self-paired or not. Let OX denote the set of all {�,�∗},
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where � is a non-trivial X -orbital. Then OX is in one-to-one correspondence with the set of
X -orbits on the unordered pairs of distinct points from �, and we call |OX | the pair-rank of
X , denoted PairRank(X). It follows from the definition that

PairRank(X) + 1 ≤ Rank(X) ≤ 2 PairRank(X) + 1. (3)

Given permutation groups H ≤ Sym(	) and K ≤ Sym(d), acting on sets 	 and Zd =
{1, . . . , d} respectively, the wreath product H �K = Hd

�K acts (imprimitively) on	 ×Zd

as follows (see [19, Lemma 5.4]):

(x, j)(h1,...,hd )σ =
(
xh j , jσ

)
, for (h1, . . . , hd) ∈ Hd , σ ∈ K , and (x, j) ∈ 	 × Zd . (4)

This action leaves invariant the partition C of 	 × Zd with classes C j = {(x, j) | x ∈ 	}
for j ∈ Zd . The direct product H × K also acts (in product action) on 	 × Zd as follows

(x, i)(h,σ ) =
(
xh, iσ

)
, for h ∈ H , σ ∈ K (5)

and leaves invariant both the partition C and also the partition with classes C ′
x = {(x, j) |

j ∈ Zd} for x ∈ 	.

3 Proof of Theorem 1.2

Let D = (P,B) be a 2-(v, k, λ) design, with v = cd for some integers c ≥ 2 and d ≥ 2.
Suppose that G ≤ Aut(D) is transitive on the block set B and leaves invariant a non-trivial
partition C of P with d classes C1, . . . ,Cd , each of size c. The following lemma establishes
useful identities between the parameters.

Lemma 3.1 Let D, C, c, d be as above. Let m and n satisfy Eq. (1). Then the following
identities hold.

(a) cd − 1 = (k
2

) · c−1
n = (k

2

) · d−1
m ;

(b) m(c − 1) = n(d − 1);
(c) The number of blocks is |B| = cd(c−1)λ

2n = cd(d−1)λ
2m .

Proof (a) By Eq. (1), we have

cd − 1 =
(k
2

) − n

m
·
(k
2

) − m

n
− 1 =

(k
2

) ((k
2

) − n − m
)

nm
=

(
k

2

)
· c − 1

n
=

(
k

2

)
· d − 1

m
.

(b) Part (b) follows immediately from Part (a).
(c) Note that λ(v − 1) = r(k − 1) and vr = bk (see for instance [8, (5) on p. 57]), and so

|B| = v(v−1)λ/(k(k−1)) = cd(cd−1)λ/(k(k−1)). Hence |B| = cd(c−1)λ/(2n) =
cd(d − 1)λ/(2m) using Part (a).

�
Let K = GC denote the induced action ofG on the set C = {C1, . . . ,Cd} of imprimitivity

classes, and for C ∈ C let H = GC
C denote the induced action on C of the setwise stabiliser

GC . Then by the Embedding Theorem for transitive permutation groups (see [19, Theorem
5.5]), we may assume that G ≤ H � K ≤ Sym(C) � Sym(C) ∼= Sym(c) � Sym(d) with the
action as in (4).

Let X = Hd = H1×· · ·×Hd be the base group of the wreath product H �K , such that for
each i ∈ {1, . . . , d}, Hi ∼= H and Hi induces H on Ci and fixes all other classes pointwise.
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Let 	 be a non-trivial H -orbital. Then for each i , there is a corresponding Hi -orbital 	i for
the action of Hi on Ci .

Proposition 3.2 LetD and G be as above and let B ∈ B. Let m and n be as in Theorem 1.1.

(a) For a non-trivial orbital� of K with symmetrised subdegree u�, the number nu�/(c−1)
is an integer and there are exactly cnu�/(c − 1) pairs {α, β} in B such that α ∈ Ci and
β ∈ C j for some (Ci ,C j ) ∈ �. Moreover, (Rank(K ) − 1)/2 ≤ PairRank(K ) ≤ m.

(b) For a non-trivial orbital	 of H with symmetrised subdegree u	 , the number nu	/(c−1)
is an integer and is equal to the number of pairs {α, β} in B such that (α, β) ∈ 	i for
some i ∈ {1, . . . , d}. Moreover, (Rank(H) − 1)/2 ≤ PairRank(H) ≤ n.

Part of (a) is proved in [17, Lemma 2.1], but with different notation so we give brief details
here (note that our parameter u� is equal to the expression 2u/δ in that reference).

Proof We first prove part (a). For � a non-trivial orbital of K , let

S(�) = {{α, β} | α ∈ Ci , β ∈ C j for some (Ci ,C j ) ∈ �
}
.

The number of choices of (Ci ,C j ) is |�| = d|�(Ci )| = du�/δ�, and for each choice, there
are c2 pairs {α, β} ∈ S(�) with α ∈ Ci , β ∈ C j . If � = �∗, that is, if δ� = 1, then we have
counted each unordered pair {α, β} ∈ S(�) twice so |S(�)| = c2du�/2, while if � �= �∗,
that is, if δ� = 2, then there is no double counting, and |S(�)| = c2du�/δ� = c2du�/2.
Hence |S(�)| = c2du�/2 in either case.

Since G leaves S(�) invariant and is transitive on B, each block B contains the same
number of pairs from S(�), say n� pairs. Thus, counting pairs ({α, β}, B) with {α, β} ∈
S(�), B ∈ B, and {α, β} ⊆ B, we obtain |B|n� = λ|S(�)| = λc2du�/2. Since |B| =
cd(c−1)λ/(2n) by Lemma 3.1(c), it follows that n� = cnu�/(c−1). In particular nu�/(c−
1) is an integer.

Note that S(�∗) = S(�), and that each outer pair in B lies in exactly one of the sets S(�).
Thus the number of outer pairs in B, namely mc by Theorem 1.1, is equal to the sum of the
n� over the set OK of all pairs {�,�∗} of non-trivial K -orbitals; that is,

mc =
∑

{�,�∗}∈OK

cnu�

c − 1
.

Since each nu�/(c− 1) is an integer, each term of the summation above is a positive integer
multiple of c. Hencem is greater than or equal to |OK |which, as we noted in Sect. 2, is equal
to PairRank(K ). Thus, using (3),

m ≥ |OK | = PairRank(K ) ≥ (Rank(K ) − 1)/2.

Now we prove part (b). Let 	 be a non-trivial orbital of H . Note that |	| = c|	(α)| =
cu	/δ	 and that, for each i ≤ d , there is a corresponding Hi -orbital 	i . Let

S′(	) = {{α, β} | (α, β) ∈ 	i for some i ∈ {1, . . . , d}}.
Since G is transitive on C, the set S′(	) contains equally many pairs from each class in C.
So for a fixed class C ∈ C, and viewing 	 as an H -orbital in C × C ,

|S′(	)| = d · ∣∣{{α, β} | α, β ∈ C; {α, β} ∈ S′(	)
}∣∣

= d · ∣∣{{α, β} | (α, β) ∈ 	
}∣∣.

If 	 = 	∗ then δ	 = 1 and each unordered pair {α, β} ∈ S′(	) from C is counted
twice (since both (α, β) and (β, α) lie in 	), so |S′(	)| = d|	|/2 = dcu	/2. On the
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other hand, if 	 �= 	∗, then δ	 = 2 and |S′(	)| = d|	| = dcu	/2. Hence in both
cases |S′(	)| = dcu	/2. SinceG leaves S′(	) invariant and is transitive onB, each block B
contains the same number of pairs from S′(	), say n	 pairs. Thus, counting pairs ({α, β}, B)

with {α, β} ∈ S′(	), B ∈ B, and {α, β} ⊆ B, we obtain |B|n	 = λ|S′(	)| = λdcu	/2.
Using Lemma 3.1(c) we obtain that n	 = nu	/(c − 1). In particular, nu	/(c − 1) is a
positive integer. Note that S′(	) = S′(	∗) for any non-trivial H -orbital 	, and that each
inner pair in B lies in exactly one of the sets S′(	). Thus the number of inner pairs in B
is equal to the sum of the numbers n	 over the set OH of all pairs {	,	∗} of non-trivial
H -orbitals. Hence

n =
∑

{	,	∗}∈OH

nu	

c − 1
. (6)

So, using (3), n ≥ |OH | = PairRank(H) ≥ (Rank(H)−1)/2, which completes the proof. �
Proposition 3.2 has the following corollary. It is easy to prove: the conditionm = 1 implies

by Proposition 3.2(a) that PairRank(K ) = 1, that is to say, K is transitive on unordered pairs
of distinct classes of C. This means in particular that K is primitive on C, see [19, Lemma
2.30]. Similarly, n = 1 implies that H is primitive on C . Part (b) of this corollary was proved
also in [17, Lemma 2.3].

Corollary 3.3 Let D, G, H, K , C, C, m, and n be as in Proposition 3.2.

(a) If m = 1 then K is primitive on C.
(b) If n = 1 then H is primitive on C.

Our last result of this section looks at caseswhere the upper boundonRank(K )orRank(H)

is sharp. A transitive permutation group is 3/2-transitive if all its non-trivial suborbits have
the same size.

Lemma 3.4 (a) Rank(H) = 2n + 1 implies that |H | is odd, and H is 3/2-transitive on C
with all Hα-orbits in C \ {α} of size (c − 1)/(2n);

(b) Rank(K ) = 2m + 1 implies that |K | is odd, and K is 3/2-transitive on C with all
KC-orbits in C \ {C} of size (d − 1)/(2m).

Proof Suppose first that Rank(H) = 2n+1. By Proposition 3.2, (Rank(H)−1)/2 ≤ |OH | =
PairRank(H) ≤ n. Our assumption that Rank(H) = 2n + 1 therefore implies that equality
holds, and hence 	 �= 	∗ for each non-trivial H -orbital 	. By a result on permutation
groups (see, for instance, [19, Lemma 2.27]), H has odd order. Also |OH | = n, and by
Proposition 3.2, each of the n summands in (6) is a positive integer. Hence each of these
summands is equal to 1, that is, u	 = (c − 1)/n for each non-trivial H -orbital 	. Thus, for
each such 	, we have |	(α)| = u	/2 = (c − 1)/(2n) since 	 �= 	∗, and in particular H
is 3/2-transitive on C . The proof of part (b) is similar. �

4 Exploring examples: Proof of Proposition 1.3

In this section we explore the examples required to prove Proposition 1.3, and we also discuss
the results of [21] in Remark 4.5. For the first part we investigate the class of projective plane
examples given in [17, Example on p. 232] and mentioned in [18, p. 312]. We show that
these examples satisfy all the conditions in Lemma 3.4 parts (a) and (b), and that in this
family there are designs for which the Delandtsheer–Doyen parameters are (simultaneously)
arbitrarily large. This therefore will prove Proposition 1.3(a).
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Example 4.1 Let q be a prime power such that q2 + q + 1 is not prime, say q2 + q + 1 = cd
where c, d ≥ 2. LetD = (P,B) where P and B are the points and lines, respectively, of the
Desarguesian projective plane PG2(q). Then v = |P| = q2 + q + 1 = cd and k = q + 1.
Let G be a Singer cycle, that is, a cyclic subgroup of automorphisms ofD of order cd acting
regularly on P. Then G is also transitive (in fact regular) onB (see [8, Result 1 of Sect. 2.3]).
Also G preserves a partition C of P into d classes of size c, namely the set of orbits in P of
the unique cyclic (normal) subgroup of G of order c.

The information given in Example 4.1 tells us thatD is a 2-(cd, q+1, 1) design admitting
G = Zcd as a point-imprimitive, block-transitive group of automorphisms. We now prove
the other assertions mentioned above.

Lemma 4.2 Let D, G, C be as in Example 4.1.

(a) The Delandtsheer–Doyen parameters (m, n) for D relative to G and C are

m = d − 1

2
and n = c − 1

2
.

(b) The group G is permutationally isomorphic to a subgroup of H � K where H = Zc, the
group induced on a class of C, and K = Zd , the group induced on C.

(c) Rank(H) = 2n + 1 and Rank(K ) = 2m + 1, the upper bounds of Theorem 1.2.
(d) For any N > 0 there exists q such that q2 + q + 1 = cd with both m > N and n > N.

Proof Since G = Zcd , the group induced on each class is H = Zc, and the group G
induced on C is K = Zd . By [19, Theorem 5.5], G is permutationally isomorphic to a
subgroup of H � K . Moreover, H and K are regular of degree c and d , respectively, and
hence in particular each is 3/2-transitive. Thus Rank(H) = c and Rank(K ) = d , and by

Theorem 1.1, the Delandtsheer–Doyen parameters (m, n) are such that c =
((k

2

) − n
)

/m

and d =
((k

2

) − m
)

/n. By Lemma 3.1(a)
(k
2

) = n · cd−1
c−1 = n · q2+q

c−1 . However, also
(k
2

) = q(q + 1)/2 since k = q + 1, and therefore c = 2n+ 1. From Lemma 3.1(b) we obtain
d = m(c−1)/n+1 = 2m+1. Thus Rank(H) = 2n+1 and Rank(K ) = 2m+1, which are
the maximum possible values by Proposition 3.2, and are the upper bounds of Theorem 1.2.
This proves parts (a)–(c).

To show that n and m can simultaneously be arbitrarily large, consider q = p2 f for a
prime p and an integer f . Then

cd = q2 + q + 1 = q3 − 1

q − 1
= p3 f − 1

p f − 1
· p3 f + 1

p f + 1
=

(
p2 f + p f + 1

) (
p2 f − p f + 1

)
.

Wemay take d = p2 f +p f +1 and c = p2 f −p f +1, so that by part (a),m = p f
(
p f + 1

)
/2

and n = p f
(
p f − 1

)
/2. For any fixed prime p and any given bound N , we can find f such

that p f
(
p f − 1

)
/2 > N , and then we will have m, n > N , so part (d) holds. �

Proposition 1.3(a) follows from Lemma 4.2. Now we establish the other parts of Proposi-
tion 1.3 using results from [6,16,17]. Namely, Lemma 4.4(a) proves Proposition 1.3(b), and

Lemma 4.4(b) proves Proposition 1.3(c). Note that m = n = 1 implies that c = d = (k
2

) − 1
by Theorem 1.1.

Remark 4.3 The three 2-designs referred to in Lemma 4.4(a) are described in the text follow-
ing [6, Theorem 5.1]. For the convenience of the reader we give a brief concrete, and fairly
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uniform, description of these designs. All three designs are based on a point set P = 	 ×	,
where 	 = {1, 2, . . . , c} and c = (k

2

) − 1; and all three designs admit a group of automor-
phisms preserving the partition C = {Ci | i ∈ 	} of P, where Ci = {(x, i) | x ∈ 	} for
i ∈ 	. The groups are either H � K = Hc

� K or H × K , where H ∼= K ∼= Sym(c), and
their actions are given by (4) or (5), respectively. For j = 1, 2, 3, the design D j = (P,B j )

has block set B j = {Bg
j | g ∈ G j } where G1 = H � K and G2 = G3 = H × K , and where

B1 = B2 = {(i, i) | 1 ≤ i ≤ k − 1} ∪ {(k − 2, k − 1)},
B3 = {(i, i) | 1 ≤ i ≤ k − 2} ∪ {(k − 2, k − 1), (k − 1, k − 3)}.

The block sets forD2 andD3 are viewed as edge sets for bipartite graphs in the analysis in [6,
Sect. 3], and these two designs admit a vertex-primitive group (H×K ).2 ∼= Sym(c)�Sym(2),
but we do not need these details here. The graph theoretic construction in these latter two
cases is explored more fully in a forthcoming paper [1] of the second and third authors,
together with Alavi and Daneshkhah. In particular graph theoretic criteria are given for the
existence of the additional symmetry needed for the designs to admit the point-primitive
group Sym(c) � Sym(2).

Lemma 4.4 Let k be an integer, k ≥ 3, and let c = (k
2

) − 1.

(a) There exist at least three pairwise non-isomorphic 2-(c2, k, λ) designs (for some values of
λ), the first admitting H �K and the others admitting H ×K, as a block-transitive, point-
imprimitive group of automorphisms with Delandtsheer–Doyen parameters (m, n) =
(1, 1), where H = K = Sym(c) and hence with Rank(X) = PairRank(X) + 1 = 2, for
X ∈ {H , K }.

(b) There exists a 2-(c2, k, λ) designD (for some λ) as in Theorem 1.2, with n = m = 1 and
max{Rank(H),Rank(K )} = 3, if and only if k = 8 and c = 27. Moreover, in the case
λ = 1, there are up to isomorphism exactly 467 such designs.

Proof (a) The three designs are the ones described above. They are pairwise non-isomorphic
and each has Delandtsheer–Doyen parameters (m, n) = (1, 1) (see [6, Proposition 3.5 and
Theorem 5.1]). Also the groups H = K = Sym(c) satisfy Rank(H) = Rank(K ) = 2 and
PairRank(H) = PairRank(K ) = m = n = 1.

(b) Suppose that, for some λ, there exists a 2-(c2, k, λ) design as in Theorem 1.2 with
n = m = 1 and max{Rank(H),Rank(K )} = 3. Then it follows from [6, Theorem 5.2] that
k = 3, 4, 5, or 8 (because otherwise Rank(H) = Rank(K ) = 2), and so c = 2, 5, 9, or 27,
respectively. By assumption some X ∈ {H , K } has rank 3, and hence PairRank(X) = 1 by
Theorem 1.2, that is to say, X is transitive on unordered pairs. However there is no transitive
rank 3 group of degree c = 2, and there is no transitive rank 3 group of degree c = 5 or c = 9
that is transitive on unordered pairs (by [14, Proposition 3.1], or see [10, Theorem 9.4B]).
Hence k = 8 and c = 27. In [16,17], it is proved that there are, up to isomorphism, exactly
467 examples of 2-(729, 8, 1) designs (linear spaces) with these properties. �

In Remark 4.5 below we make some comments on the classification results in [21] of
various families of block-transitive 2-designs with block size k = 4.We note that the number
of such designs with all the properties of Lemma 4.4(a) is exactly three.

Remark 4.5 In [21], Zhan et al classify two families of block-transitive 2− (v, 4, λ) designs.
The first family comprises all such designs which admit a point-imprimitive, block-transitive
subgroup of automorphisms, and the second family consists of those designs admitting a
block-transitive subgroup which is point-primitive of product type. We make several com-
ments about both the methods used and the examples arising in these classifications.
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(i) In [21, Theorem 1.1], it is shown that, up to isomorphism, there are exactly 57
2 − (v, 4, λ) designs admitting a point-imprimitive, block-transitive group; [21, Table
2] lists the value of λ for each of these designs, the number ‘Nr ’ of pairwise-non-
isomorphic designs with this value of λ and, for each of these Nr designs, a ‘base block’
and a block-transitive, point-imprimitive subgroup N [i] of automorphisms. (The group
N [i] in [21, Table 2] is the group TransitiveGroup(25,i) in the classification
of transitive groups of small degree in Magma.) An earlier table [21, Table 1] lists all
pairs (λ, i) for which there exists a 2 − (v, 4, λ) design admitting the group N [i] as a
point-imprimitive, block-transitive subgroup of automorphisms. Computing the auto-
morphism groups of these designs using Magma, we found that the second table [21,
Table 1] almost always lists the largest point-imprimitive, block-transitive subgroup for
each design. The exceptions are that, for λ = 2 the design listing G = N [9] has largest
point-imprimitive block-transitive subgroup N [19]; for λ = 10 two of the designs list-
ing G = N [34] have largest point-imprimitive block-transitive subgroup N [52]; and
for λ = 50 the design listing G = N [66] has largest point-imprimitive block-transitive
subgroup N [149].

(ii) If the authors of [21] had considered the Delandtsheer–Doyen parameters of these
designs, their proof would have been greatly simplified. Indeed for k = 4, Theorem 1.1
yields integers of the form c = 6−n

m ≥ 2 and d = 6−m
n ≥ 2, for some positive integers

m, n, and from this it follows easily that (c, d,m, n) is either (5, 5, 1, 1), or (2, 2, 2, 2).
The latter case corresponds to a trivial design with only one block. Thus the original
result [7, Theorem] from 1989 immediately yields, for a nontrivial design, that v =
cd = 25. It also implies that the Delandtsheer–Doyen parameters must be m = n = 1.
Our first result, Theorem 1.2, then shows that the design admits a point-imprimitive
group G ≤ H � K with H , K subgroups of S5 satisfying PairRank(H) = n = 1 and
PairRank(K ) = m = 1, that is to say, the groups H , K are transitive on unordered
pairs. The only such subgroups are AGL(1, 5), A5, S5, and each of these is 2-transitive,
so H and K have rank 2. Thus these 57 designs are precisely the designs satisfying the
conditions of Proposition 1.3(b) with k = 4.

(iii) In Lemma 4.4(a), the relevant designs are precisely those for which H = K = S5, with
H , K as in part (ii), and using Magma, we find that, of the 57 block-transitive point-
imprimitive 2-designs listed in [21, Table 2], exactly three of them have H = K = S5,
namely those lines in [21, Table 2] with (λ,G) one of (18, N [99]), (72, N [99]) or
(150, N [209]), using the names for groups as in part (i). We also observe that the
unique design with (λ,G) = (150, N [209]) is the Cameron–Praeger designD(5, 5; x)
with x = (2, 1, 1, 0, 0) and G = S5 � S5 of [6, Proposition 2.2]. It is also the design
D1 of Remark 4.3 for k = 4, while the other two designs, with (λ,G) = (18, N [99])
or (72, N [99]), are the designs D3,D2 of Remark 4.3 for k = 4, respectively. We
conclude that the three designs described in Remark 4.3 are the only examples for
Lemma 4.4(a) when k = 4.

(iv) For the 54 other designs listed in [21, Table 2], the block-transitive, point-imprimitive
subgroup of automorphisms G ≤ H � K listed in [21, Table 2] is such that at least
one of H , K is a proper subgroup of S5. It turns out, on examining the largest point-
imprimitive block-transitive groups for these designs using Magma, that each of H , K
is either AGL(1, 5) or S5, that is to say, whenever A5 is contained in one of these groups
it is in fact equal to S5. (For some of these designs there is a smaller block-transitive
point-imprimitive group for which H and/or K is A5.)

(v) While exploring the 57 designs of [21, Table 2] admitting a block-transitive, point-
imprimitive subgroup of automorphisms, we computed the full automorphism group of
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each design, usingMagma. It turns out that for ten of the designs the full automorphism
group is point-primitive: eight admit a primitive group of affine type, and the other two
admit a primitive group of product action type. The latter two designs (with a product
action primitive group) are equal to two of the three designs listed in [21, Theorem 2],
which the authors did not seem to notice. Namely the unique designs in [21, Table 2]
withλ = 18 andλ = 72, have point-primitive full automorphismgroup S5�S2, and these
two designs are the designsD3 andD2 fromRemark 4.3, respectively. They are also two
of the three designs we identified in part (iii) above. The third design in [21, Theorem
1.2] is a block-transitive, point-primitive 2 − (25, 4, 12) design with automorphism
group S5 � S2 (which has no block-transitive, point-imprimitive subgroup) and so is
different from the design with λ = 12 listed in [21, Table 2]. For a nice description of
this third design, take point set P = 	 × 	 as in Remark 4.3 with c = 5, and block set
B = {Bg|g ∈ S5 � S2} where B = {(1, 1), (1, 2), (2, 3), (2, 4)}.

Although the authors of [21] made significant progress towards classifying block-transitive
2 − (v, 4, λ) designs, they have only partially classified the point-primitive examples. We
know of at least two additional infinite families of examples: namely, the design of points and
lines of PGd(3), and the designD(S) obtained from [9, Construction 1.1] with input design S
being the design of points and lines of PGd(4). Both of these families have an almost simple
point-primitive automorphism group. It would be an interesting test case for the efficacy of
our approach to see a complete classification of block-transitive 2-designs with small block
size, such as block size k = 4.

5 New design construction

In this section, we will construct block-transitive imprimitive designs with m = 1 such that
Rank(H) = PairRank(H) + 1 = n + 1 and Rank(K ) = PairRank(K ) + 1 = m + 1 = 2,
for some fixed values of n and of c.

Let F be a field of order c = pa such that c ≡ 1 (mod 2n), and let ζ be a primitive
element of F. Let H = N � 〈ζ n〉 be the subgroup of the affine group AGL(1, c) acting on F,
where N is the group of translations, and we identify ζ n with multiplication by ζ n . Note that
〈ζ n〉 contains−1 since c ≡ 1 (mod 2n). We record some information about the permutation
action of H on F. The assertions are straightforward to check and details are left to the reader.

Lemma 5.1 Let F, c, ζ , N , and H be as above. Then the following hold:

(a) N is regular on F, and H0 = 〈ζ n〉 is the stabiliser in H of 0 ∈ F.
(b) The H0-orbits in F \ {0} are �i (0) = {

ζ i+ jn | 0 ≤ j < (c − 1)/n
}
with associated

H-orbital �i = (0, ζ i )H , for 0 ≤ i < n. Each �i is self-paired (since −1 ∈ H0).
(c) The H-orbits on 2-subsets of F are Oi = {{α, β} | (α, β) ∈ �i }, for 0 ≤ i < n, each of

which has size c(c − 1)/(2n). Moreover, the setwise stabiliser of each pair of points is
cyclic of order 2.

(d) Rank(H) = PairRank(H) + 1 = n + 1

We use this group H in the design construction. The point-imprimitive group of automor-
phisms will be G := H � K , where K = Sym(d) is the symmetric group on R = Zd . As in
(4), G acts imprimitively on F × R and leaves invariant the partition C of F × R with classes
C j = {(x, j) | x ∈ F} for j ∈ R. The proof of Lemma 5.2, which records various properties
of this action, is straightforward and details are left to the reader.
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Lemma 5.2 Let F, R, C, and G be as above. Then the following hold:

(a) The partition C of F × R is nontrivial and G-invariant.
(b) G is transitive on the set Oout of C-outer pairs from F × R, and |Oout | = c2d(d − 1)/2.
(c) G has exactly n orbits on the set of C-inner pairs from F × R, namely

Oinn,i = {{(x, j), (y, j)} | {x, y} ∈ Oi , j ∈ R}, for 0 ≤ i < n.

Moreover, for each i we have |Oinn,i | = dc(c − 1)/(2n).

For the construction below to work, we need some conditions on n and c which are
exactly the conditions described in Definition 1.4. Suppose now that [n, c] is a useful pair,
as in Definition 1.4. Then c = pa , for some odd prime p and a ≥ 1, and c ≡ 1 (mod 2n),
c + n = (k

2

)
for some integer k ≥ 2n, and n ≥ 2. First we derive an upper bound and an

improved lower bound for k.

Lemma 5.3 Let n, c, and k be as above and let d = 1+ (c−1)/n. Then 2n+2 ≤ k ≤ n+d.

Proof From Definition 1.4 we have c + n = k(k − 1)/2 ≥ n(k − 1). Suppose first, for a
contradiction, that k > n + d . Then

k > n + d = n + 1 + c − 1

n
= n − 1

n
+ c + n

n
≥ n − 1

n
+ (k − 1),

and hence n < 1 + 1/n which is not possible for any n ≥ 2. Hence k ≤ n + d . Finally, if
k = 2n or k = 2n + 1, then

c =
(
k

2

)
− n ∈ {2n(n − 1), 2n2},

and in either case c ≡ 0 (mod 2n), which is a contradiction. Hence k ≥ 2n + 2. �
Construction 5.4 Let [n, c] be a useful pair as in Definition 1.4, with c = pa for some odd
prime p and a ≥ 1, d = 1 + (c − 1)/n, and k, F, R, G, and C as above. Define the design
D = (P,B) to have point set P := F × R and block setB := BG , where B ⊆ P is given by

B = {(0, i), (ζ i , i) | 0 ≤ i ≤ n − 1} ∪ {(0, i) | n ≤ i ≤ k − n − 1}. (7)

Note that n + 1 ≤ k − n − 1 ≤ d − 1, by Lemma 5.3, so the second set in the union defining
B has size k − 2n ≥ 2, and B is a well defined k-subset of P.

Theorem 5.5 Let D and G be as in Construction 5.4. Then D = (P,B) is a 2-(cd, k, λ)

design, and G = H � K is a block-transitive, point-imprimitive group of automorphisms
leaving invariant the point-partition C, such that:

(a) The Delandtsheer–Doyen parameters ofD are (m, n) = (1, n);
(b) Rank(H) = PairRank(H)+1 = n+1 and Rank(K ) = PairRank(K )+1 = m+1 = 2;

and

(c) λ = ck−n−1
(
d − 1

2

)n−1
(d − 1)!

n!(k − 2n)!(d − k + n)! .

Proof By (7) and Lemma 5.2, for each i = 0, . . . , n − 1, the set B contains exactly ni = 1
inner pair from Oinn,i , namely {(0, i), (ζ i , i)}. Hence B contains exactly nout := (k

2

) − n
outer pairs. By [6, Proposition 1.3], D is a 2-design if and only if, for any G-orbit O in the
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set of 2-subsets of P, the ratio |{{x, y} | {x, y} ∈ O, {x, y} ⊆ B}|/|O| is independent of O,
that is to say,D is a 2-design if and only if

n0
|Oinn,0| = · · · = nn−1

|Oinn,n−1| = nout
|Oout | .

Hence, by Lemma 5.2,D is a 2-design if and only if

1

dc(c − 1)/(2n)
=

(k
2

) − n

c2d(d − 1)/2
,

or equivalently,
(
k

2

)
− n = nc(d − 1)

c − 1
.

From the definition of d , this is equivalent to
(k
2

) − n = c, and this equality holds by
Definition 1.4. Hence D is a 2-design with cd points and block size k, that is to say, a 2-
(cd, k, λ) design for some λ. By Definition 1.4 and Lemma 5.3, the class size is c = (k

2

) − n

and the number of classes is d = (n + c − 1)/n =
((k

2

) − 1
)

/n, and it follows from

Theorem 1.1 that the Delandtsheer–Doyen parameters are (m, n) = (1, n). This proves part
(a). The assertions in part (b) follow fromLemma 5.1(d) for H , and the fact that K = Sym(d)

has Rank(K ) = PairRank(K ) + 1 = 2 = m + 1.
By Lemma 3.1(c) and since m = 1, we have λ = 2|B|/cd(d − 1). Recall (from the

definition of H ) that a point stabiliser in H is cyclic of order (c − 1)/n = d − 1, and (from
Lemma 5.1(c)) that the stabiliser in H of each unordered pair of points is cyclic of order 2.
From these and the definition of B we see that the stabiliser

GB = (Z2 � Sym(n)) × (Zd−1 � Sym(k − 2n)) × (H � Sym(d − k + n)).

Hence

|B| = |G : GB | = |H |dd!
2n(d − 1)k−2n |H |d−k+nn!(k − 2n)!(d − k + n)!

= ck−n(d − 1)n

2n
· d!
n!(k − 2n)!(d − k + n)!

which yields

λ = 2

cd(d − 1)
· ck−n

(
d − 1

2

)n d!
n!(k − 2n)!(d − k + n)!

= ck−n−1
(
d − 1

2

)n−1
(d − 1)!

n!(k − 2n)!(d − k + n)! .

�
The smallest useful pair is [n, c] = [2, 13], and for this pair the value of λ is 197730.
Note there are many useful pairs, see Table 1, and the plentiful occurrence of such pairs

is discussed in Sect. 1.1, but they do not exist for every n, as proved in the following lemma.

Lemma 5.6 If [n, c] is a useful pair, then n /∈ {6, 10, 15}. Moreover, if n ∈ {6, 10, 15} and
[n, c] satisfies all the conditions of a useful pair except that k < 2n, then [n, c, k, d] is one
of [6, 49, 11, 9], [10, 81, 14, 9], or [15, 121, 17, 9].
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Table 2 Factorisations(k
2
) − n = (2nb + x)(4nb + y)

for k = 4nb + r

n 6 10 15

r 11 14 14 19 22 27 17 29 32 44

x 7 5 9 7 13 11 11 17 13 19

y 7 17 9 23 17 31 11 23 37 49

Proof Let n ∈ {6, 10, 15}, and let [n, c] satisfy all the conditions for a useful pair except
possibly k ≥ 2n. Then

(k
2

) − n ≡ 1 (mod 2n), so k(k − 1) ≡ 2n + 2 (mod 4n). This
implies that k ≡ r (mod 4n), with r as in Table 2. Thus k = 4nb+ r for some non-negative
integer b and, as a quadratic polynomial g(b), the expression

(k
2

) − n happens to factorise as
(2nb + x)(4nb + y) for some integers x, y satisfying 1 < x ≤ y, as in Table 2. Since g(b)
is a power of a prime p, each of the factors 2nb + x and 4nb + y is also a power of p, say
2nb+ x = pe and 4nb+ y = p f . A straightforward arithmetic analysis yields precisely the
parameter tuples in the statement. We give brief details for the case n = 6 only. For n = 6,
y − 2x = pe(p f −e − 2) = ±7, so p = 7, e = f = 1, and hence x = y = 7 which forces
b = 0. Thus [n, c, k, d] = [6, 49, 11, 9]. These values do not satisfy the condition k ≥ 2n
so [6, 49] is not a useful pair. �

Finally we observe that Construction 5.4 can be generalised to produce a larger family
of 2-designs with the Delandtsheer–Doyen parameter m ≥ 1. However we do not find any
designs in this larger family meeting the upper bounds of Theorem 1.2 on Rank or PairRank
when m > 1.

Remark 5.7 Consider the following relaxation of the conditions for a useful pair in Defini-
tion 1.4. We still ask that c = pa for some odd prime p and a ≥ 1, and that c ≡ 1 (mod 2n),
where n ≥ 2; but we relax Definition 1.4(2) to the condition mc+ n = (k

2

)
for some integers

m ≥ n, k ≥ 2n, andwe set d = 1+m(c−1)/n.We takeF, R,P = F×R,C, H , K = Sym(d),
G = H �K , as above, and we define a designD = (P,B) to have block setB := BG , with B
as in (7). Arguing as in the proof of Theorem 5.5, B contains n inner pairs and

(k
2

) − n outer

pairs, and D is a 2-design if and only if
(k
2

) − n = nc(d − 1)/(c − 1). This condition holds

by our new requirement on
(k
2

)
and new definition of d . Thus we obtain a block-transitive,

point-imprimitive 2-designwithDelandtsheer–Doyenparameters (m, n).However, the action
induced by G on C is K = Sym(d) with (Rank(K ) − 1)/2 = PairRank(K ) = 1, and this is
equal to the bound m only when m = 1.

We tried quite hard, but unsuccessfully, to find a construction having a ‘top group’ K
with PairRank(K ) = m, for some given m > 1, and meeting the bound of Theorem 1.2 on
PairRank(K ). It would be very interesting indeed to have examples with PairRank(K ) =
m > 1.
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