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Abstract
The uniqueness of the inversive plane of order sixty-four, up to isomorphism, is established.
Equivalently, it is shown that every ovoid of PG(3, 64) is an elliptic quadric.
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1 Introduction

An inversive plane is an incidence structure of points and circles such that:

(i) (i) every three distinct points are incident with a unique circle;
(ii) (ii) given two points P, Q and a circle C on P (but not on Q), there is a unique circle
D incident with both P and Q whose only common point with C is P;
(iii) (iii) there are at least four points;
(iv) (iv) there is a non-incident point,circle pair; and
(v) (v) every circle is incident with a non-empty set of points. (See [12, pp. 252-253].)
When the inversive plane I is finite, there is an integer n > 2, called the order of I such
that I has n? + 1 points, I has n® +n circles and every circle of I is incident with n + 1 points
of I. In fact, a finite inversive plane of order # is exactly a 3 — n2+1,n+1, 1)-design ([12,
pp. 252-254]).
An ovoid of PG(3, ¢) is a set 2 of q2 + 1 points, no 3 collinear, if ¢ > 2;if g = 2, itis
a set of 5 points, no 4 coplanar. A secant plane to an ovoid €2 is a plane meeting €2 in more
than one point. (A tangent plane is a plane meeting €2 in a unique point.) The incidence
structure I(€2) of points of €2 and plane sections by secant planes is an inversive plane of
order g ([12, 6.1.2]). A finite inversive plane is egglike if it is isomorphic to I(£2), for some
ovoid 2 of PG(3, ¢). All known finite inversive planes are egglike. Moreover, given ovoids
Q1, Q2 of PG(3, ¢). I(21) is isomorphic to I(£2) if and only if there is a collineation g of
PG(3, ¢) with Q¢ = Q.
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In 1963, Dembowski proved that every inversive plane of even order is egglike [11], and
hence has order a power of two.

There are two known families of finite inversive planes: I(£2), where Q2 is an elliptic quadric
of PG(3, q), and I(£2), where 2 is a Tits ovoid of PG(3, 22et1y ¢ > 1[39] (and these are not
isomorphic). The inversive planes I(2), where 2 is an elliptic quadric of PG(3, ¢), are called
Miquelian for, by a result of van der Waerden and Smid [41], they are characterised by the
Theorem of Miquel [12, 6.1.5]. The bundle theorem is a similar configuration to Miquel’s
Theorem [12, pp. 255-256]. It is satisfied by every egglike inversive plane [12, 6.1.4]. In
1980, Kahn proved the converse, so: an inversive plane is egglike if and only if it satisfies
the bundle theorem [17].

Here we show that every inversive plane of order sixty-four is Miquelian (Corollary 2 in
Sect. 4). Previously known results along these lines are : uniqueness of the inversive planes
of orders 2, 3, 4 [42], 5 [8,13,37], 7 [14,37], 9 [35] and 16 [1,21,22] and classification of the
inversive planes of orders 8 [1,15,29] and 32 [23]. (For order 4, see also [34].)

Ovoids have been used to construct maximal arcs (and thereby partial geometries) [36],
unitals [7,19] and generalised quadrangles [12, p. 304], [25, 3.1.2]. Thus our results have
consequences for enumerating Buekenhout—-Metz unitals, Thas maximal arcs and Tits gen-
eralised quadrangles, which we will not dwell on here.

2 Background results

An oval of PG(2, g) is a set of g + 1 points, no three collinear. A line / is external, tangent,
secant to O accordingly as |/ N O] is 0, 1 or 2. An example of an oval is a nondegenerate
conic. Many other ovals are known in characteristic two; see [27] for the most recent survey.
A 1955 result of Segre shows that the situation in odd characteristic is in strong contrast to
that in characteristic two.

Theorem 1 [31] An oval of PG(2, q), q odd, is a conic.

Using this result, the same year, Barlotti and Panella independently classified ovoids of
PG(@3, g), g odd.

Theorem 2 [2,24] An ovoid of PG(3, q), q odd, is an elliptic quadric.

Barlotti proved a little more (and Segre proved a slightly stronger result four years later,
and gave a far more explicit statement).

Theorem 3 [2, Sect. 3] [33, Theorem V] An ovoid of PG(3, q), q even, is an elliptic quadric
if and only if every secant plane section is a conic.

The best result in this direction is that of Brown from 2000, although we will not need it
here.

Theorem 4 [4] An ovoid of PG(3, q), q even. is an elliptic quadric if and only if some secant
plane section is a conic.

Earlier, in 1963, Dembowski had shown that inversive planes of even order arise from
ovoids.

Theorem 5 [11] An inversive plane of even order is egglike, and so has order a power of two.
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3 Hyperovals in PG(2, 64)

Theorem 6 U.G. Mitchell 1910 [20] The tangent lines to a conic in PG(2, q), q even, are
concurrent.

So the union of a conic of PG(2, g), g even, and the point of concurrency of its tangent
lines is a hyperoval, which is called a regular hyperoval.

By 1957 [32], it had been shown that all hyperovals of PG(2, 2), PG(2, 4) and PG(2, 8)
are regular, and irregular hyperovals of PG(2, ¢) had been constructed for g = 2", h = 5
and i > 7. Segre raised the question of existence of irregular hyperovals in PG(2, 16) and
PG(2, 64). The next year, Lunelli and Sce [18] constructed irregular hyperovals in PG (2, 16).
Nearly four decades passed before the other question was settled [28] by the construction of
two irregular hyperovals in PG(2, 64), one with a group of order 60; the other with a group
of order 15. The last of the hyperovals in PG(2, 64) was constructed the following year [30];
it has a group of order 12. The hyperovals with groups of orders 60 and 15 were generalised
to the infinite families of Subiaco hyperovals in [10] in 1996. The hyperoval with a group
of order 12 was generalised to the infinite family of Adelaide hyperovals in [9] in 2003. In
2019 [40], hyperovals of PG(2, 64) were classified by Vandendriessche.

Theorem 7 There are four isomorphism classes of hyperovals in PG(2, 64).

The regular hyperoval gives rise to two ovals, the conic and the point conic. The Subiaco
hyperoval with a group of order 60 gives rise to 3 ovals; the Subiaco hyperoval with a group
of order 15 gives rise to 6 ovals and the Adelaide hyperoval gives rise to 8 ovals.

Corollary 1 There are nineteen isomorphism classes of ovals in PG(2, 64).

In more detail, the regular hyperoval contains representatives of two isomorphism classes
of ovals- the conic and the pointed conic; the Subiaco hyperoval with a group of order 60
contains representatives of three isomorphism classes of ovals, with groups of orders 60,
12 and 1; the Subiaco hyperoval with a group of order 15 contains representatives of six
isomorphism classes of ovals, one with a group of order 15, one with a group of order 3 and
four with a group of order 1; and the Adelaide hyperoval contains representatives of eight
isomorphism classes of ovals, two with a group of order 12, one with a group of order 3 and
five with a group of order 1.

4 Ovoids in PG(3, 64)
In order to prove this result, we follow the strategy established in [23].

The set of secant plane sections of an ovoid of PG(3, ¢) on a tangent line £ is a called a
pencil with carrier £.

Let O and O; be ovals of PG(2, ¢), ¢ even and let P be a point not on either oval, nor
equal to either nucleus. Then O and O, are compatible at P if they have the same nucleus,
they have a point Q in common, the line P Q is a tangent line to each oval and every secant
line to O on P is external to O> (and hence every external line to O on P is secant to O3).

In order to keep the treatment as synthetic as possible, we lift some of the ideas of [5].

An augmented fan of ovals of PG(2, ¢) is a set F of ovals with common nucleus N and
common point Q indexed by the points (other than P) of a conic C on P with nucleus N so
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that F = {Ox : X € C, X # P} such that Ox and Oy are compatible at XY N PN, for all
X #Y € C\ {P}. C is called the augmenting conic of F.

Using this terminology, we can restate the Plane Equivalent Theorem without using coor-
dinates.

Theorem 8 [Plane Equivalent Theorem] [23, Theorem 2.1] An ovoid 2 in PG(3, q), q even,
is equivalent to an augmented fan {Ox : X € C, X # Q} of ovals of PG(2, q). Moreover,
for every tangent line £ each pencil with carrier € gives rise to such a set and for each plane
7 of the pencil there is a parameterisation of the planes wg of the pencil, s € GF(q) such
that my = m, a parameterisation of the points Pg of the augmenting conic, other than the
common point, and there is a homography M; taking my N Q2 to Op, and the carrier line of
the pencil to the line QN.

We note that the Plane Equivalent Theorem [23, Theorem 2.1] was proved in [26] and
[16] (independently), and first published in [21]. (As it was applied, in [5,6,22,23], it was
(slightly) modified into a more useful form, and it is in that form that it is stated here, rather
than the original form of [26].)

Theorem 9 [23, Theorem 3.1] Let O be an oval of PG(2, q). If an oval equivalent to O
appears as a plane section of an ovoid of PG(3, q), then for every tangent line £ of O, there
is an augmented fan of ovals containing O. Furthermore, for every point P on £ off O, not
the nucleus of O, one of the ovals of this fan is compatible with O at P.

Lemma 1 [23, Lemma 3.2] Let (O1, P) and (O2, P>) be two oval-point pairs. If there is a
collineation g such that g Py = Py and g Oy is compatible with Oy at Py, then g maps the
lines through P> secant to O3 to the lines through P external to O, and the one line through
P, tangent to O to the one line through P tangent to Oj.

Now the lines through any point P can be parameterised by a single non-homogeneous
parameter in the following fashion: select two lines, say [ay, b1, c1] and [a3, b2, ¢2] and give
them parameters oo and O, respectively. Then the line [Laj+a2, Ab1+b2, Acy+c2] also passes
through P and will be labelled A. The lines through any point are thus parameterised with
G F(gq) U oo, in the same way as PG(1, g) is parameterised when (x, y) is given parameter
x/y (with 1/0 = o0).

Any collineation g such that g P, = P; maps the lines through P, to the lines through P;
and induces an element g’ € PTL(2, g) on the corresponding sets of parameters. Returning
to the situation of the two oval-point pairs (O, P;) and (O, P>) we can insist that the two
tangent lines involved both be assigned the parameter co. The stabiliser of coin PI"L(2, gq) is
the group AT'L(1, ¢). Therefore a collineation g such that g P, = P; and g O; is compatible
with O at Py induces an element g’ € AT L(1, ¢) that maps the set of parameters of the
external lines to O; through P, to the set of parameters of the secant lines to O through P;j.
The next theorem provides a converse to this result.

Theorem 10 [23, Theorem 3.3] Let (01, P)) and (O, P;) be two oval-point pairs, with the
lines through Py and P> parameterised in such a way that the tangent lines to the two ovals
receive the parameter oo. Let S1 and E» be the sets of parameters of the secant lines to
O through Py and the external lines to O» through P, respectively. Then there exists a
collineation g such that such that g Py = Pi and g O> is compatible with Oy at P if and
only if there is an element g’ € ATL(1, q) such that g'E; = S.
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Now itis straightforward to see which ovals can appear together in an ovoid. For every oval-
point pair (O, P), we parameterise the lines through P as described above and determine the
local secant parameter set L as the set of parameters of the secant lines. Then two oval-point
pairs (O1, P1) and (O>, P») with local secant parameter sets L1 and L, are said to match
provided that there is some element g’ € AT L(1, g) suchthatg’L; = {x € GF(q): x ¢ L,}.
Two ovals can only appear together in the same pencil of an ovoid if they both have points
at which the corresponding two oval-point pairs match.

5 The computational results

For each of the 19 ovals of PG(2, 64), the group stabilising each oval was computed, along
with the orbits of this stabiliser on non-nucleus points off the ovals, and a list of all possible
oval-point pairs was made.

The conic has a group of order 1,572,480 which has one orbit on points not on the hyperoval
containing the conic; the pointed conic has a group of order 24,192 which has two orbits on
points not on the hyperoval containing the pointed conic; the oval O with a group of order
60 has 76 orbits on points not on the hyperoval containing O; the oval O with a group of
order 15 has 275 orbits on points not on the hyperoval containing O; the three ovals O with
a group of order 12 have 351 orbits on points not on the hyperoval containing O; the two
ovals O with groups of order 3 have 1375 orbits on points not on the hyperoval containing
O; the ten ovals O with groups of order 1 have 4095 orbits on points not on the hyperoval
containing O.

After this computation, there remains a list of 45107 oval-point pairs. For each oval-point
pair, the local secant parameter set L was computed, and a canonical representative of the
orbit of L under AT'L(1, 64) was stored (the representative was the lexicographically least
local secant parameter set in the orbit). For each oval-point pair, a canonical representative of
the orbit of the complement in G F(64) of L was also stored. Two oval-point pairs match if
and only if the canonical representative of the local secant parameter set of the first is actually
equal to the canonical representative of the complement of the local secant parameter set of
the second. All possible matches between oval-point pairs were thus determined.

Of the 19 ovals, 18 had points at which they do not match with anything at all; hence,
none of these 18 ovals can be a secant plane section of an ovoid. The remaining oval is a
conic. Hence, every plane section of an ovoid of PG(3, 64) is a conic.

Theorem 11 Every ovoid of PG(3, 64) is an elliptic quadric.

Proof This follows from the results above and Theorem 3. ]

6 Consequences

Theorem 12 Every inversive plane of order 64 is Miquelian.
Proof This follows from Theorems 11 and 5. O
Corollary 2 There is a unique inversive plane of order 64.

Proof This follows from the result of van der Waerden and Smid mentioned in the introduction
and the fact that any two elliptic quadrics of PG(3, ¢) are equivalent under a collineation of
PG(3, q). O
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Corollary 3 There is a unique 3 — (4097, 65, 1) design.
Proof This is a reformulation of Corollary 2 in the language of design theory. O

Corollary 4 A symplectic translation plane of order 4096 with kernel containing G F (64) is
Desarguesian.

Proof By applying Theorem 11 and [33, Theorem III], it follows that a symplectic spread
of PG(3, 64) is regular, since the symplectic generalised quadrangle W (q) is self-dual [25,
3.2.1] in characteristic 2. ]

A point P of a generalised quadrangle of order (s, ¢) is 3-regular if
(P, Q Ry =5 +1,

whenever Q and R are points that are not collinear, and both not collinear with P. The
points and lines contained in an elliptic quadric of PG(5, ¢) form a generalised quadrangle
of order (g, qz), called Q (5, g) [25, Sect. 3.1]. Our work yields two characterisations of this
generalised quadrangle for g = 64.

Corollary 5 A generalised quadrangle of order (64, 4096) with a 3-regular point is isomor-
phic to Q(5, 64).

Proof This is a consequence of Theorem 11 and [25, 5.3.1,3.2.4]. O

Corollary 6 A generalised quadrangle of order (64, 4096)with a subquadrangle isomorphic
to W(64) is isomorphic to Q(5, 64).

Proof This is a consequence of Theorem 11 and [38, Theorem 7.1]. O

A generalised quadrangle has Property (G) at a pair { P, P’} of collinear points if, every
triple {P, Q, R} of points, with P, Q, R pairwise non-collinear and P’ € {P, Q, R}, is
3-regular.

Corollary 7 A generalised quadrangle of order (64,4096) that satisfies Property (G) at a
pair of distinct collinear points is the dual of a flock generalised quadrangle.

Proof This is a consequence of Theorem 11 and [3, Theorem 25]. O
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