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Abstract
If an Fq -linear set LU in a projective space is defined by a vector subspaceU which is linear
over a proper superfield of Fq , then all of its points have weight at least 2. It is known that
the converse of this statement holds for linear sets of rank h in PG(1, qh) but for linear sets
of rank k < h the converse of this statement is in general no longer true. The first part of
this paper studies the relation between the weights of points and the size of a linear set, and
introduces the concept of the geometric field of linearity of a linear set. This notion will allow
us to show the main theorem, stating that for particular linear sets without points of weight
1, the converse of the above statement still holds as long as we take the geometric field of
linearity into account.
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Mathematics Subject Classification 51E20

1 Sets and their linearity

1.1 Linear sets

Linear sets in finite projective spaces are a generalization of subgeometries. They have
attracted a lot of attention in the last few years. Their applications include construction
of other mathematical objects like blocking sets [17], translation ovoids [15], KM-arcs [7]
and caps [2]. They have also proven useful in the study of semifields [12] and rank metric
codes [14, 19, 21, 24]. More details about linear sets can be found in [13, 18].
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780 D. Jena and G. Van de Voorde

More formally, let Fqh denote the finite field of order q
h , where q is a prime power, and let

V be an r dimensional vector space over Fqh . The vector space V can also be seen as an rh
dimensional vector space over Fq . An Fq -linear set L of rank k in PG(V ) = PG(r − 1, qh)
is the set of points defined by a k-dimensional Fq -subspace U of V in the following way:

L = LU = {〈u〉qh | u ∈ U\{0}}.
Here 〈u〉qh denotes the point of PG(r −1, qh) determined by the vector u (where u is seen as
a vector in V ). If W is an Fqh -vector subspace of dimension s of V , then 〈W 〉qh denotes the
projective (s − 1)-dimensional subspace corresponding toU in PG(V ). To avoid confusion,
the subspace spanned by two subspaces, say S1, S2, of PG(r − 1, qh) will be denoted by
span(S1, S2), and likewise, the vector subspace spanned by two vector spaces V1, V2 will be
denoted by span(V1, V2).

The Fq -weight of a point P = 〈uP 〉qh in a linear set LU is defined to be the vector space
dimension of the Fq -subspace UP of all the vectors determining P , i.e.

UP = {0} ∪ {u | u ∈ U , 〈u〉qh = 〈uP 〉qh }.
We will simply use the term weight of a point if the underlying field is clear. Note that we

need to specify the underlying vector spaceU in the definition of the rank of a linear set and
in the definition of the weight of a point in a linear set LU ; this will become more clear later
in this paper.

The isomorphism between V = F
r
qh

and V = F
rh
q induces a natural map φ, called the

field reduction map, from PG(r −1, qh) to PG(rh−1, q). The map φ takes points to (h−1)-
dimensional subspaces, and in general (n − 1)-dimensional subspaces in PG(r − 1, qh) to
(nh − 1)-dimensional subspaces of PG(rh − 1, q). The images of points under φ form a
Desarguesian (h− 1)-spreadD of PG(rh− 1, q), and every subfield Fqs of Fqh gives rise to
a unique Desarguesian (s − 1)-spread partitioning the elements of D. Rank-k linear sets LU

can be viewed geometrically as the pre-image under φ of sets of elements of D intersecting
a fixed (k − 1)-dimensional projective subspace 〈U 〉q of PG(rh − 1, q). The Fq -weight of
a point P , from this point of view, is one more than the dimension of φ(P) ∩ 〈U 〉q . It is
well known (and it follows easily from the above point of view) that a Desarguesian spread
is normal: if M, N ∈ D, then the subspace 〈M, N 〉 is partitioned by elements of D.

The original point of view on linear sets was given by [15] using projections. Let �∗ =
PG(k−1, qh),� = PG(k−1, q) be a canonical subgeometry of�∗, and� = PG(r−1, qh)
be an (r − 1)-dimensional subspace of �∗. For a (k − r − 1)-dimensional subspace � of
�∗ disjoint from � and �, the projection map P�,� : � → � is defined by P�,�(x) =
〈x,�〉∩�. The image of� underP�,� is the projection of� from� onto�. It was proven
in [15,Theorems 1 and 2] that any linear set L of rank k in � = PG(r − 1, qh) is either a
canonical subgeometry of � or equivalent to a projection of � = PG(k − 1, q), a canonical
subgeometry of �∗ = PG(r − 1, qh), from � to �, where � is a (k − r − 1)-dimensional
subspace of �∗ disjoint from � and �. From this point of view, the Fq -weight of a point
P is one more than the dimension of the pre-image of P under the projection map (see also
[21,Proposition 2.7]).

1.2 The geometric field of linearity of a linear set

In this paper, we will distinguish between sets being Fqs -linear sets, and having geometric
field of linearity Fqs . We will explain the reason for this distinction in detail but start with
the definitions as used in this paper.
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The geometric field of linearity of linear sets 781

Definition 1.1 AnFq -linear set LU , defined by anFq -vector spaceU , is anFqs -linear set ifU
is anFqs -vector space (i.e. if the set of vectors inU is also closed under takingFqs -multiples.)

Definition 1.2 A strictly Fqs -linear set is an Fqs -linear set that is not an Fqi -linear set for any
i > s.

We also say (as defined in [5]) that the maximum field of linearity of a strictly Fqs -linear set
LU is Fqs .

We introduce the following definitions in this paper:

Definition 1.3 An Fq -linear set LU has geometric field of linearity Fqs if there exists an
Fqs -linear set LW with LU = LW .

Definition 1.4 An Fq -linear set LU has maximum geometric field of linearity Fqs if s is the
largest integer such that LU has geometric field of linearity Fqs .

It follows from the definitions that the order of the maximum geometric field of linearity is
at least the order of themaximumfield of linearity of that set. The following example describes
a strictly Fq -linear set with a geometric field of linearity different from Fq , showing that the
notions of beingFqs -linear and having geometric field of linearityFqs do not always coincide.

Example 1.5 Consider the set S of points of the subline PG(1, q3) contained in PG(1, q6).
The set S equals LU whereU = {(a, b) | a, b ∈ Fq3} and as such, we see that S = LU is an
Fq3 -linear set of rank 2 over Fq3 and an Fq -linear set of rank 6.

Now consider any vector subspace V of U of dimension 5. Then LU = LV and LV is an
Fq -linear set of rank 5.

Now V is not Fqi -linear for any i > 1, and hence, LV is a strictly Fq -linear set. But it is
clear that LV behaves as an Fq3 -linear set (as it is in fact simply a subline PG(1, q3)). And
indeed, according to our definition, LV has geometric field of linearity Fq3 .

In many of the well-studied cases, there is no distinction between linear sets being Fqs -
linear and having geometric field of linearity Fqs . In particular, we will see in Proposition
1.10 that this is the case for linear sets of rank h in PG(1, qh). For simple linear sets, the
same holds true as seen in the following Remark.

Remark 1.6 A simple Fq -linear set LU in PG(1, qh) (or an Fq -linear set of class 1 as intro-
duced in [5]) has the property that if LU = LV , then U = λV for some λ ∈ F

∗
qh
. Since U

is Fqs -linear if and only if λU is Fqs -linear, it immediately follows from the definition that
for simple Fq -linear sets, the maximum field of linearity and the maximum geometric field
of linearity coincide.

The proof of Proposition 1.10 is essentially a corollary of the following theorem which
discusses the number of directions determined by a function over a finite field. Note that
the graph of a function f is defined as the subspace {(x, f (x)) | x ∈ Fqh } of (Fqh )

2 ∼=
AG(2, qh).

Theorem 1.7 ([1, 4]) Let f : Fq0 → Fq0 be a function, q0 a power of the prime p. Let N be
the number of directions determined by f . Let r = ps be maximal such that any line with a
direction determined by f that is incident with a point of the graph of f is incident with a
multiple of r points of the graph of f . Then one of the following holds:

1. r = 1 and q0+3
2 ≤ N ≤ q0 + 1;
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782 D. Jena and G. Van de Voorde

2. Fr is a subfield of Fq0 and
q0
r + 1 ≤ N ≤ q0−1

r−1 ;
3. r = q0 and N = 1.

Moreover, if r > 2, then the graph of f is Fr -linear.

Remark 1.8 The previous theorem says that if r > 2, the point set of the graph of f is
Fr -linear, which the authors show by proving that f is an Fr -linear map. It is clear that
{(x, f (x)) | x ∈ Fqh } is indeed Fr -linear if and only if f is an Fr -linear map.

In Proposition 2.3 of [5], the following is shown, using Theorem 1.7:

Result 1.9 Let LU be an Fq -linear set of PG(W , qh) = PG(1, qh) of rank h. The maximum
field of linearity of LU is Fqs where s = min{wLU (P) : P ∈ LU }.

If the maximum field of linearity is Fq , then the rank of LU as an Fq -linear set is uniquely
defined, i.e. for each Fq -subspace V of W, if LV = LW , then dimq(V ) = h.

The proof of the following proposition goes along the same lines as the proof of
Result 1.9.

Proposition 1.10 Let LU be an Fq -linear set of rank h in PG(1, qh). Then LU is a strictly
Fqs -linear set if and only if LU has maximum geometric field of linearity Fqs .

Proof Let LU be an Fq -linear set of rank h in PG(1, qh), where U is strictly Fqs -linear.
Every Fq -linear set of rank h in PG(1, qh) can be mapped by an element of PGL(1, qh) to
a linear set not containing the point 〈(0, 1)〉qh , and hence, be written as a set of points LU

with U = {(x, f (x)) | x ∈ Fqh } for some Fq -linear map f which is strictly Fqs -linear.
Since U is strictly Fqs -linear we have that every vector line through two vectors of U

contains a multiple of qs points ofU but there is no i > s such that every vector line through
two vectors of U contains a multiple of qi points of U . By Theorem 1.7 we have that the
number of directions determined by f , and hence, the number of points in LU is contained

in [qh−s + 1, qh−1
qs−1 ]. Assume that there exists an LV = LU such that V is Fqs′ -linear for

some s′ > s.
If the rank of V is h, then LV = {〈(x, g(x))〉qh | x ∈ Fqh } for some Fqs′ -linear map g.

Similarly, by Theorem 1.7 the number of points in LV is then contained in [qh−s′ +1, qh−1
qs′−1

].
It follows that s = s′, a contradiction. If the rank of V is larger than h, then LV is the entire
line PG(1, qh), a contradiction. Now assume that V has rank smaller than h. Since V is
Fqs′ -linear, the rank of V is a multiple of s′, so it follows that the rank of V is at most h − s′.

This means that LV has at most qh−s′−1
q−1 points, and we know that the number of points in LU

is contained in [qh−s + 1, qh−1
qs−1 ]. Since s′ > s, this is a contradiction. This argument shows

that if an Fq -linear set LU of rank h is strictly Fqs -linear, its maximum field of linearity is
Fqs .

Vice versa, suppose that LU is an Fq -linear set of rank h with maximum field of linearity
Fqs , that is, such that there exists some LV = LU where V is Fqs -linear. The above argument
shows that if LV has rank h, thenU is indeed Fqs -linear. So suppose that LV has rank smaller
than h, then we know that the rank of V is at most h − s and the number of points in LV ,

and hence, in LU is at most qh−s−1
q−1 . Since U has rank h, this implies, as above, that U is

(at least) Fqs -linear. Since the maximum field of linearity of LU is Fqs it follows that U is
strictly Fqs -linear. �
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The geometric field of linearity of linear sets 783

Remark 1.11 Care needs to be taken when using the terminology on the linearity of linear
sets as used by Sziklai in [22]: we believe that the maximum field of linearity as used by
the author should correspond to our definition of maximum geometric field of linearity. In
particular, the author conjectures in [22] that a linear set with rank t + 1 in PG(2, ph) with
“maximum field of linearity Fpe” (between quotation marks) has at least (pe)t + (pe)t−1 +1
points.

Now consider, similar to Example 1.5, the point set LU in PG(2, q4) defined by the Fq2 -
vector space U = {(a, b, c) | a, b, c ∈ Fq2}. We see that LU determines a Baer subplane
PG(2, q2) and has q4 + q2 + 1 points. Now LU = LV with V = {(a, b, c) | a ∈ Fq , b, c ∈
Fq2} where LV has rank 5 and has maximum field of linearity Fq . Since q4 +q2 + 1 < q4 +
q3+1 this example violates the lower bound predicted by the above conjecture. However, this
linear set has geometric field of linearity Fq2 , and we believe this is what the author intended
when writing the “maximum field of linearity”. Elsewhere in the paper, the (geometric)
exponent of a point P (in a blocking set B in PG(2, ph)) is defined as the maximum integer
e such that all lines through P meet the set B in 1 (mod pe) points. Furthermore, it is
shown that for a blocking set where all points have exponent e, Fpe is a subfield of Fph

and conjectured that the set B is an Fpe -linear set. Note that in our example above, every
line through a point P of LV meets LV in 1 (mod p2) points, again indicating that Fp2

is the intended “maximum field of linearity”, rather than the field Fq that follows from the
definition. We choose the terminology for geometric field of linearity for its similarity with
the distinction Sziklai makes between the algebraic and geometric exponent of a point set.

1.3 Theminimum size of a linear set and points of weight at least two

We now link the field of linearity of a linear set with the weights of its points. The following
lemma is easy to see.

Lemma 1.12 Let LU be an Fqs -linear set, then all points have Fq -weight at least s.

Proof The weight of P = 〈uP 〉qh is the Fq -dimension of the space

UP = {0} ∪ {u | u ∈ U , 〈u〉qh = 〈uP 〉qh }.
Since U is closed under Fqs -multiplication, for any u ∈ U , also βu ∈ U where β ∈ Fqs ,

and since 〈u〉qh = 〈βu〉qh , we see that UP is at least s-dimensional. �

The converse of Lemma 1.12 is not true as seen from the example below.

Example 1.13 Consider again Example 1.5. We see that S = LU is an Fq3 -linear set of rank
2 over Fq3 and an Fq -linear set of rank 6. Every point of LU has weight 3, as predicted by

Lemma 1.12. Every point of LV still has weight at least 2, but LV is not an Fq2 -linear, nor
Fq3 -linear set (since V is a strictly Fq -linear vector space of dimension 5). However LV has
geometric field of linearity Fq3 . The main theorem of this paper will show that this behaviour
is not a coincidence.

The research of this paper was originally motivated by the link with the minimum size of
a linear set, which we will now introduce.

First note that the following lower bound immediately follows from Result 1.7.

Corollary 1.14 A strictly Fq -linear set of rank h in PG(1, qh) has at least qh−1 + 1 points.
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784 D. Jena and G. Van de Voorde

Recently, in [6,Theorem 3.7], the lower bound qh−1 + 1 for linear sets of rank h in
PG(1, qh) was generalised as follows:

Result 1.15 A linear set of rank k in PG(1, qh) containing at least one point of weight one
has at least qk−1 + 1 points.

Example 1.16 Consider again the linear set S from Example 1.5. We see that S is a set of
q3 + 1 points, but when considering S as LU , then it is a linear set of rank 6 all its points
having weight at least 3. When considering S as LV , where V = {(a, b) | a ∈ Fq , b ∈ Fq3},
then LV is a linear set of rank 4 with one point of weight 3 (namely 〈(0, 1)〉q6 ) and q3 points
of weight one. We see that LV indeed reaches the lower bound for linear sets of rank 4
containing at least one point of weight 1. This example also shows that we cannot simply
remove the hypothesis that there is a point of weight one in Result 1.15.

Even though every linear set LV can be written as a linear set LU containing at least one
point of weight 1 (by taking a subspace U of V of the correct dimension), the statement of
Result 1.15 makes clear why we are interested in linear sets without points of weight one.

We also see that for a rank-k ≤ h linear set in PG(1, qh) to have a size lower than qk−1+1,
all the points in it must have weight at least 2. Up to our knowledge, the only constructions
of Fq -linear sets with all points of weight at least 2 are obtained by considering linear sets
that have geometric field of linearity Fqs (as done in Example 1.5).

It follows from Result 1.9 that for linear sets of rank k = h in PG(1, qh) this is the only
way to obtain sets with only points of weight at least 2.

But we have seen in Example 1.13 that we cannot hope that the converse of Lemma 1.12
holds true in general. We will show that the following weaker version holds for a particular
class of examples: if all their points have weight more than 1, then they have geometric field
of linearity Fqs for some s > 1.

More precisely, we will show the following (see Theorem 3.12).

Main Theorem If L is an Fq -linear set of rank k, 4 ≤ k ≤ h, in PG(1, qh) with one point P
of weight w ≥ 2 and all other points of the same weight k − w ≥ 2 then L has geometric
field of linearity Fqs with s | w, s > 1, s | h and s ≥ k − w.

Note that we are not claiming that Fqs is the maximum geometric field of linearity of the
set, see Remark 3.10.

2 Linear sets as projections

2.1 5-lines and their type

Recall that a rank-k linear set L in � = PG(r − 1, qh) can be viewed as a projection of
� = PG(k − 1, q), a canonical subgeometry of �∗ = PG(k − 1, qh), from a subspace
� = PG(k − r − 1, qh) disjoint from � and �. From now on, the notations L, �,�∗,�
and � will refer to these unless stated otherwise.

Furthermore, when we consider a point P ∈ PG(s, q) we will assume P = 〈v〉qh =
〈(λ1, λ2, . . . , λs+1)〉qh where λ1, . . . , λs+1 ∈ Fq , i.e. the vector v representing the point P
in the subgeometry � must have all coordinates in Fq . In what follows, all points will be
considered as points in �∗ so we will drop the subscript qh if there is no ambiguity.

The following definitions will be helpful in providing more structure to the linear sets that
we are going to explore.
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The geometric field of linearity of linear sets 785

Definition 2.1 A line � of � is said to be a �-line if its extension in �∗ intersects �. A point
of � lying on the extension of a �-line is a point of rank 2.

Definition 2.2 (see also [8]) Let Q be a point of� of rank 2 lying on the extension of a�-line
� containing two points P1 = 〈v1〉 and P2 = 〈v2〉, where P1, P2 ∈ �, then Q = 〈v1 − αv2〉
for some α ∈ Fqh \ Fq . We say that Q has type Sα , where

Sα:=
{
aα + b

cα + d
| a, b, c, d ∈ Fq , ad �= bc

}
.

We also say that the line � is of type Sα .

It follows from [8,Lemma 2.2] that the above notion of type is well-defined: for a point Q

of rank 2, if Q = 〈v1 − αv2〉 = 〈v′
1 − α′v′

2〉, then α′ = aα + b

cα + d
for some a, b, c, d ∈

Fq , ad �= bc. Vice versa, if Q = 〈v1 − α′v2〉 with α′ ∈ Sα , then there exist v′
1, v

′
2 such that

Q = 〈v′
1 − αv′

2〉.
Note that the set Sα is simply the orbit of α under the natural action of PGL(2, q) on the

elements of Fqh \ Fq . The following lemma then easily follows.

Lemma 2.3 If [Fq(α) : Fq ] = 2, then |Sα| = q2−q. If [Fq(α) : Fq ] > 2, then |Sα| = q3−q.

Proof Let α ∈ Fqh with [Fq(α) : Fq ] = 2 and let α′ be in Fq(α) \Fq . Note that, since Fq(α)

is 2-dimensional over Fq , |Fq(α) \ Fq | = q2 − q and α′ = aα + b, for some a �= 0 ∈ Fq ,
b ∈ Fq . Hence, α′ = aα+b

cα+d for c = 0, d = 1. Since ad − bc �= 0, α′ ∈ Sα , the first statement
follows.

Secondly, let α ∈ Fqh with [Fq(α) : Fq ] > 2. Since |PGL(2, q)| = q3 − q , Sα has

at most q3 − q elements. It is easy to see that if aα+b
cα+d = a′α+b′

c′α+d ′ for different elements of

PGL(2, q) defined by

[
a b
c d

]
,

[
a′ b′
c′ d ′

]
, then α satisfies a non-vanishing quadratic equation

with coefficients in Fq , a contradiction. Hence, |Sα| = q3 − q . �

Note that since the sets Sα are orbits of elements in Fqh \Fq , the different sets Sβ partition

Fqh \ Fq . We also see that if α′ ∈ Sα , then λα′ ∈ Sα for all λ ∈ F
∗
q . In what follows, we will

consider the elements of Sα up to scalar multiples in F
∗
q .

Definition 2.4 Consider the cosets of F∗
q in the set Sα and let S̄α denote this set of cosets:

S̄α = {{λα′ | λ ∈ F
∗
q} | α′ ∈ Sα}.

It follows from Lemma 2.3 that |S̄α| = q if [Fq(α) : Fq ] = 2, and |S̄α| = q2 + q otherwise.

2.2 5-lines and points of weight at least 2

Recall that every �-line in � extends to a line in �∗ containing precisely one point of rank
2 in �. Vice versa, a rank-2 point lies on the extension of a unique �-line: since �-lines
are contained in the subgeometry �, we see that if (the extensions in �∗ of) two �-lines
intersect, they do so in �. We conclude that there is a bijection between the set of rank-2
points in � and the set of �-lines in �.

Furthermore, every �-line � gives rise to a unique point of weight at least 2 in the linear
set L: all the points of � are projected from � onto the same point, say P , of �. We also say
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786 D. Jena and G. Van de Voorde

that � corresponds to the point P . More generally, a point of weight w in the linear set that is
obtained from the projection of � corresponds to a (w − 1)-dimensional subspace H of �;
all the lines in H are clearly �-lines, but we will see that not all of them have the same type.

We conclude that there is a surjective mapping from the set of �-lines to the set of points
in L of weight more than 1. For more details about relation between rank-2 points and points
of weight at least 2, see e.g. [21].

Finally, ifα′ ∈ Sα , thenα′ can be expressed as a rational function ofα, soFq(α) = Fq(α
′).

This ensures that the statement of the following lemma is well-defined.

Lemma 2.5 Let P = 〈v〉 ∈ � be a point lying on a �-line � of type Sα . If [Fq(α) : Fq ] = 2,
then � is the unique �-line through P of type Sα . If [Fq(α) : Fq ] > 2, then there are at most
q + 1 �-lines of type Sα through P. Moreover, if there are q + 1 �-lines of type Sα through
P then for each γ ∈ Sα there is precisely one point 〈uγ 〉 ∈ � such that 〈v − γuγ 〉 ∈ �.

Proof We first show that every point different from P on a �-line through P gives rise to
a unique element of S̄α , that is, to a unique coset of F∗

q in Sα . Consider a point Q = 〈u〉,
Q �= P , in� lying on a�-line of type Sα through P , then by definition there is some α1 ∈ Sα

such R = 〈v − α1u〉 is a point of �. Now α1 ∈ Sα lies in a unique element of S̄α . In order
to see that the map sending Q to the coset of α1 is well-defined, note that the only vectors
u′ such that Q = 〈u′〉 = 〈u〉 are of the form u′ = λu for some λ ∈ F

∗
q . The point R is the

unique point of � on the line PQ. We see that R = 〈v − α2u′〉, with α2 = 1
λ
α1 and hence,

α1 and α2 indeed define the same element of S̄α .
We will now show that the above mapping takes different points on �-lines of type Sα

through P to different elements of S̄α . To this end, consider two different points, say 〈u1〉
and 〈u2〉 in � and suppose that R1 = 〈v − α′u1〉 and R2 = 〈v − λα′u2〉 are points of
�. If R1 = R2, then it easily follows that 〈u1〉 = 〈u2〉, a contradiction since we started
with different points in �. If R1 �= R2, we see that the line R1R2 intersects � in the point
〈u1 − λu2〉, again a contradiction since � and � are disjoint.

It follows that the number of points on�-lines of type Sα through P is at most |S̄α|. Since
every line through P contains q points, different from P , it follows from Definition 2.4 that
the number of�-lines is at most 1 if [Fq(α) : Fq ] = 2 and at most q+1 if [Fq(α) : Fq ] > 2.

Now assume that there are precisely q + 1 �-lines with type contained in Sα through P .
Let β1, . . . , β|S̄α | be a set of representatives of each coset in S̄α . It follows from the above
reasoning and the pigeonhole principle that each of the points on �-lines through P is of the
form 〈v − βiu〉 and moreover, all βi occur when describing these points. Now consider an
element γ ∈ Sα and let β j be the coset representative of γ , then γ = λβ j for some λ ∈ F

∗
q .

The statement now follows from the observation that 〈v − γu′〉 with u′ = 1
λ
u is the same

point as 〈v − βiu〉. �

Lemma 2.6 Let H be a (w − 1)-dimensional subspace of � corresponding to a point of
weight w ≥ 3 in � = PG(r − 1, qh). If H contains at least qw−1 + qw−2 + · · · + 1 �-lines
of type Sα then the following hold:

(i) H contains precisely qw−1 + qw−2 + · · · + 1 �-lines of type Sα

(ii) [Fq(α) : Fq ] = s > 2 and s | w.

Proof (i) We count pairs (P, L)where P is a point of H and L is a�-line of type Sα through
P . Let a be the average number of �-lines of type Sα through a point of H and b be the
number of �-lines of type Sα . Then

(q + 1)b = a|H |.
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Now |H | = qw−1 + qw−2 + · · · + 1 and by Lemma 2.5, a ≤ q + 1, and hence, b ≤
qw−1 + qw−2 + · · · + 1. It follows that if b ≥ qw−1 + qw−2 + · · · + 1, then indeed
b = qw−1 + qw−2 + · · · + 1 and every point of H lies on exactly q + 1 �-lines of type Sα .

(ii) Lemma 2.5 confirms that if every point of H lies on exactly q + 1 �-lines of type Sα ,
we have that [Fq(α) : Fq ] = s > 2, and moreover, that for any point P = 〈v〉 in H and any
β ∈ Sα , there exists a unique point 〈uβ〉 ∈ H such that 〈v − βuβ〉 ∈ �.

Now let Q = 〈v1〉 be an arbitrary point in H . Then, since α ∈ Sα , there exists a unique
point 〈v2〉 ∈ H such that 〈v1 − αv2〉 ∈ �. Similarly, given 〈v2〉, there exists a unique point
〈v3〉 ∈ H such that 〈v2 − αv3〉 ∈ � and so on. Thus, the point Q = 〈v1〉 gives rise in a
unique way to an ordered set of points 〈v2〉, 〈v3〉, . . . such that 〈vi − αvi+1〉 in �. We will
show that the points 〈v1〉, 〈v2〉, . . . obtained in this way are precisely the qs−1

q−1 points forming
an (s − 1)-dimensional subspace of H .

First note that the extension of H to �∗ intersects � in a (w − 2)-dimensional subspace
H ′ of�. As the points 〈v1−αv2〉, 〈v2−αv3〉, . . . lie in H ′, there can be amaximum ofw−1
such points whose corresponding vectors are linearly independent over Fq . Suppose that the
vectors v1 −αv2, v2 −αv3, . . . , vt−1 −αvt are independent but that vt −αvt+1 is dependent
of the previous vectors. This implies that the points 〈v1−αv2〉, 〈v2−αv3〉, . . . , 〈vt−1−αvt 〉
span a (t − 2)-dimensional subspace of H ′ containing the point 〈vt − αvt+1〉.

We find that

vt − αvt+1 = ξ1(v1 − αv2) + · · · + ξt−1(vt−1 − αvt ) (1)

for some ξ1, . . . , ξt−1 ∈ Fqh . It follows that vt+1 is an Fqh -linear combination of
v1, v2, . . . , vt but since these vectors have all have entries in Fq , we have that vt+1 =
λ1v1 + λ2v2 + · · · + λtvt for some λ1, . . . , λt ∈ Fq . Note that the vectors v1, . . . , vt
are linearly independent: if they were dependent, the points 〈v1〉, . . . , 〈vt 〉 would be con-
tained in a subspace of dimension t − 2 of H , which in turns yields that the points
v1 − αv2, v2 − αv3, . . . , vt−1 − αvt are contained in a (t − 3)-dimensional subspace of
H ′, a contradiction.

From (1) we find that

−αλ1 = ξ1

−αλ2 = ξ2 − αξ1

−αλ3 = ξ3 − αξ2

...

−αλt−1 = ξt−1 − αξt−2

1 − αλt = −αξt−1.

Eliminating ξ1, . . . , ξt−1 from the above system of equations yields that α must satisfy the
equation

αtλ1 + αt−1λ2 + · · · + αλt = 1.

As Fq(α) = Fqs is a subfield of Fqh , and as α satisfies a degree-t polynomial, we must have
s ≤ t ≤ w and s | h.

We now show that s = t . In order to do so, let the minimal polynomial of α ∈ Fqh be

αsν1 + αs−1ν2 + · · · + ανs = 1. (2)
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Consider a point Q = 〈w1〉 of H , then we have seen before that there are unique points
〈w2〉, . . . , 〈ws〉 such that 〈w1 − αw2〉, 〈w2 − αw3〉, . . . , 〈ws−1 − αws〉 are points of H ′.
Furthermore, the above argument shows that 〈w1〉, . . . , 〈ws〉 span an (s − 1)-dimensional
subspace of H . Denote this (s − 1)-space by HQ .

Note that

〈w1 − αw2 + α(w2 − αw3) + α2(w3 − αw4) + . . . + αs−2(ws−1 − αws)〉
=〈w1 − αs−1ws〉

is a point of H ′. Similarly, it easily follows that the points 〈w2−αs−2ws〉, . . . , 〈ws−1−αws〉
also lie in H ′. This implies that the point

〈ws − α(ν1w1 + ν2w2 + · · · + νsws)〉
=〈(αsν1 + αs−1ν2 + · · · + ανs)ws − α(ν1w1 + ν2w2 + · · · + νsws)〉
=〈αν1(α

s−1ws − w1) + αν2(α
s−2ws − w2) + · · · + ανs−1(αws − ws−1)〉

is also contained in H ′, where we have used (2) in the first equality. Since

〈ws − α(ν1w1 + ν2w2 + · · · + νsws)〉 ∈ H ′

and the point 〈ws+1〉 such that 〈ws − αws+1〉 ∈ � is unique, we obtain that

〈ws+1〉 = 〈ν1w1 + ν2w2 + · · · + νsws〉,
which is clearly contained in HQ .

Recall thatw1,w2, . . . ,ws formabasis for the s-dimensionalFq -vector space determining
HQ . Hence, there is a unique Fq -linear map φ which satisfies φ(wi ) = wi+1 for i =
1, . . . , s − 1 and φ(ws) = ν1w1 + ν2w2 + · · · + νsws . With respect to the basis w1, . . . ,ws ,
this map is represented by the matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 ν1
1 0 · · · 0 ν2
0 1 · · · 0 ν3
...

...
. . .

...
...

0 0 · · · 1 νs

⎤
⎥⎥⎥⎥⎥⎦

.

From the definition of φ, we see that for 1 ≤ i ≤ s, 〈wi − φ(wi )〉 is a point of �. But
since φ is an Fq -linear map, we have that for a pointw = μ1w1 +· · ·+μsws , with μi ∈ Fq ,

〈w − φ(w)〉 = 〈μ1w1 + · · · + μsws − φ(μ1w1 + · · · + μsws)〉
= 〈μ1w1 + · · · + μsws − μ1φ(w1) − · · · − μsφ(ws))〉
= 〈μ1(w1 − φ(w1)) + . . . + μs(ws − φ(ws))〉

is a point of � too. In other words, for each point 〈w〉 ∈ HQ , 〈φ(w)〉 is the unique point w′
such that 〈w − αw′〉 in �. Since φ(HQ) = HQ we are done. (In fact, A is the companion
matrix of the minimal polynomial for 1/α and the map φ generates a Singer cycle on the
points of HQ).

It is clear from the construction that if for two points Q, R ∈ H , the spaces HQ and HR

have a point in common, then HQ and HR coincide.Moreover, since every point S determines
a subspace HS , we find that H is partitioned by the (s−1)-spaces HP , P ∈ H . The existence
of this (s − 1)-spread in the (w − 1)-space H shows that s | w. �
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The geometric field of linearity of linear sets 789

Remark 2.7 It follows from the construction of Desarguesian spreads from Singer cycles that
the (s − 1)-spread of H , constructed in Lemma 2.6, is a Desarguesian spread (see e.g. [9,
23]). The fact that the spread is normal (which also implies Desarguesian if w > 2s) is
easy to see geometrically: the extension of two different (s − 1)-spread elements HP and
HQ of H intersect � in two disjoint (s − 2)-subspaces, say H ′

P and H ′
Q . As for any point

R ∈ span(HP , HQ) the space H ′
R in � is a subspace of span(H ′

P , H ′
Q), the spread element

HR must be in span(HP , HQ).

2.3 Constructing5-lines

Lemma2.6 tells uswhat happenswhen there aremany�-lines of the same type.The following
lemma provides a way to find such lines. The first part of this lemma was already proven for
linear sets in PG(1, q5) in [8].

Lemma 2.8 If there are three disjoint �-lines �1, �2 and �3 in a 3-dimensional subspace H
of �, whose extensions in �∗ intersect � in collinear points, contained in a line M of �,
then all the lines in the unique regulus R defined by �1, �2, �3 are �-lines of the same type.

Moreover if there exists one more line � in H, disjoint from all the lines of R, whose
extension in �∗ is contained in M, then H is partitioned by �-lines of the same type Sα with
[Fq(α) : Fq ] = 2.

Vice versa, if a 3-space H contains 3 disjoint �-lines �1, �2, �3 of the same type Sα whose
extensions in �∗ are collinear, and [Fq(α) : Fq ] = 2, then the space H is partitioned by
�-lines of type Sα .

Proof Let �1, . . . , �q+1 be the q+1 lines of the regulusR in H defined by �1, �2, �3. Assume
that the extensions of �1, �2, �3, say �̄1, �̄2, �̄3, are contained in some line M of �. Let R′
be the qh + 1 lines of the regulus defined by �̄1, �̄2, �̄3 and let m1,m2,m3 be transversals
to R. We then see that m̄1, m̄2, m̄3 are transversals to R′ in �. Furthermore, M intersects
�̄1, �̄2, �̄3 so M is a transversal to R′ too. Since �i , 1 ≤ i ≤ q + 1 intersects m1,m2,m3 we
have that �̄i intersects m̄1, m̄2, m̄3, so �̄i is an element ofR′. Since M is a transversal toR′,
we conclude that all lines �̄i intersect the line M .

Now consider the points �i ∩m1 = Pi , �i ∩m2 = Qi and �̄i ∩ M = Si , i = 1, . . . , q + 1.
Let P1 = 〈u1〉, Q1 = 〈v1〉, P2 = 〈u2〉, Q2 = 〈v2〉. Note that u1,u2, v1, v2 are linearly

independent over Fqh . Without loss of generality (since PGL(4, q) acts transitively on the
frames of H ), we may assume that the point 〈u1 + u2 + v1 + v2〉 is a point of �3. It then
follows that the points Pi , i = 3, . . . , q + 1 are of the form 〈u1 + λiu2〉 and Qi of the form
〈v1 + λiv2〉 where λi ∈ F

∗
q . We have that S1 = 〈u1 − αv1〉 for some α ∈ Fqh \ Fq and

S2 = 〈u2 −α′v2〉 for some α′ ∈ Fqh \Fq . Expressing that �̄i intersects m1,m2 and M yields
that there are ξ1, ξ2, ψ ∈ Fqh such that

ξ1(u1 − αv1) + ξ2(u2 − α′v2) = u1 + λiu2 − ψi (v1 + λiv2).

Since u1,u2,u3,u4 are linearly independent over Fqh , it follows that ξ1 = 1, ξ2 = λi ,
ψi = α and α′ = α. It follows that ψi = α′ = α. So all lines �i are of the same type Sα .

Now assume that there is an additional line � in �, not contained inR, whose extension �̄

contains a point ofM ; it follows from the first part that � is a�-line of type Sα . Thus there exist
points 〈u〉 and 〈v〉 in �with u = λ1u1+λ2v1+λ3u2+λ4v2, v = μ1u1+μ2v1+μ3u2+μ4v2
such that 〈u − αv〉 ∈ M i.e.

u − αv = ξ1(u1 − αv1) + ξ2(u2 − αv2). (3)
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Solving (3) by equating the coefficients of u1,u2, v1 and v2, we get

μ1α
2 + (μ2 − λ1)α − λ2 = 0 (4)

and

μ3α
2 + (μ4 − λ3)α − λ4 = 0. (5)

As α /∈ Fq , α satisfies a degree-2 equation given by (4) or (5). Thus [Fq(α) : Fq ] = 2.
Now let the minimal polynomial of α over Fq be

aα2 + bα − 1 = 0. (6)

As the Eqs. (4), (5) and (6) are multiples of each other, we must have μ1 = aλ2, μ2 =
bλ2 + λ1, μ3 = aλ4 and μ4 = bλ4 + λ3.

We now see that a point 〈u′〉 with u′ = ν1u1 + ν2v1 + ν3u2 + ν4v2 in H lies on a line of
type Sα: consider the point 〈v′〉 with v′ = aν2u1 + (bν2 + ν1)v1 + aν4u2 + (bν4 + ν3)v2,
then

〈u′ − αv′〉 =〈ν1(u1 − αv1) + ν2((1 − bα)v1 − aαu1)

+ ν3(u2 − αv2) + ν4((1 − bα)v2 − aαu2)〉
=〈ν1(u1 − αv1) + ν2(aα2v1 − aαu1)

+ ν3(u2 − αv2) + ν4(aα2v2 − aαu2)〉
=〈(ν1 − aαν2)(u1 − αv1) + (ν3 − aαν4)(u2 − αv2)〉 ∈ M .

Hence every point in H is contained in a �-line of type Sα . By Lemma 2.5 every point can
lie on at most one �-line of type Sα . Therefore H must be partitioned by �-lines of type Sα .

Vice versa, suppose now that the 3-space H contains 3 disjoint �-lines �1, �2, �3 of the
same type Sα with [Fq(α) : Fq ] = 2 such that their extension meets � in M . It follows
from the first part of the proof that we can take points 〈u1〉, 〈v1〉 on �1 and 〈u2〉, 〈v2〉 on
�2 such that the line M contains the points S1 = 〈u1 − αv〉 and S2 = 〈u1 − αv2〉. Writing
the minimal polynomial for α as aα2 + bα − 1 = 0, we find again (as above) that for
any point 〈u′〉 with u′ = ν1u1 + ν2v1 + ν3u2 + ν4v2 we have that the point 〈v′〉 with
v′ = aν2u1 + (bν2 + ν1)v1 + aν4u2 + (bν4 + ν3)v2 satisfies 〈u′ − αv′〉 ∈ M . And hence,
the space H is indeed partitioned by �-lines of type Sα . �


3 Linear sets on a line with all points of weight at least two

3.1 Finding a subfield

We now turn our attention towards linear sets contained in a line, i.e. � = PG(1, qh) when
the linear set L of rank k, 4 ≤ k ≤ h, in � has one point of weight k − 2 and all others of
weight 2. In Lemma 3.1 and Theorem 3.3 we prove the existence of a proper subfield of Fqh

and later, we will prove that L has this field as geometric field of linearity.

Lemma 3.1 If L is a rank-4 linear set in PG(1, qh), h ≥ 4, with all points of weight 2, then
Fqh contains the subfield Fq2 (i.e. h is even).

Proof Arank-4 linear set L in� = PG(1, qh) can be viewed as a projection of� = PG(3, q),
a canonical subgeometry of �∗ = PG(3, qh), from � = PG(1, qh) onto �, where � and
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� are in �∗ with � disjoint from � and �. In this case all the q2 + 1 weight-2 points in L
correspond to different �-lines of rank 2 each meeting the line � in a point. Using Lemma
2.8 we see that all �-lines are of type Sα with [Fq(α) : Fq ] = 2. �

Remark 3.2 It will follow from our more general approach that the linear sets considered
in Lemma 3.1 have geometric field of linearity Fq2 (see Main Theorem). In this particular
case however, it is not too hard to see that the set L is in fact Fq2 -linear and isomorphic to
PG(1, q2). A different way to deduce this fact is to use a characterization of sublines (e.g.
given in [20,Theorem 1.5]): a set of q2 + 1 points in PG(1, qh) is a subline PG(1, q2) if and
only if it is closed under taking Fq -sublines determined by any three points of the set.

Theorem 3.3 If L is a linear set of rank k, 5 ≤ k ≤ h, in PG(1, qh) with one point of weight
k − 2 and all other points of weight 2 then Fqh must contain a proper subfield Fqs with
s | k − 2, s > 1.

Proof Recall that L can be viewed as a projection of � = PG(k − 1, q), a canonical sub-
geometry of �∗ = PG(k − 1, qh), from � = PG(k − 3, qh) onto � = PG(1, qh), where
� and � are subspaces of �∗, with � disjoint from � and �. We have seen that each of
the weight-2 points determines a unique �-line and the weight-(k − 2) point corresponds
to a (k − 3)-dimensional subspace H of �. Denote the set of �-lines corresponding to the
weight-2 points by S. Note that the �-lines in S partition the set of points in � \ H . Also
note that the extension of H to �∗ intersects � in a hyperplane H ′ of �.

Let �1 and �2 be different lines from S and let J = span(�1, �2) be the 3-dimensional
subspace of � spanned by �1 and �2. Since �1 and �2 are �-lines, the extension J̄ =
span(�1, �2) of J in �∗ contains the points �̄1 ∩ � and �̄2 ∩ �. If dim( J̄ ∩ �) > 1, then all
the points in J would be projected onto a single point in �, a contradiction since �1 and �2
correspond to different points of L . We conclude that J̄ ∩ � is a line M . Since dim(�) ≥ 5,
dim(J ) = 3 and span(J , H) = �, J ∩ H is a line �. The lines �1, �2 and � define a unique
regulus R in J . Note that � is contained in the (k − 3)-space H , and hence, its extension �̄

meets the (k − 4)-space H ′ in a point which then necessarily lies on M .
By Lemma 2.8 all the �-lines in R are of the same type, say Sα . Repeating the same

argument for any pair �1, �
′
2 of lines in S, we see that all the �-lines in S are of type Sα .

Now fix a �-line � ∈ S of type Sα . Consider the set of lines T = {span(�, �′) ∩ H | �′ ∈
S \{�}}. First suppose that each of the spaces span(�, �′), �′ ∈ S \{�}, contains at most q−1
lines of S \ {�}, then T is a set of at least qk−3 + qk−4 + · · · + 1 different �-lines of type Sα

in H . By Lemma 2.6 Fqh must have a subfield Fqs with s > 2, s | k − 2 and we are done.
So suppose that there is a line �′ ∈ S \ {�} such that span(�, �′) contains more than q − 1

lines of S \ {�}. Then by Lemma 2.8 we will have [Fq(α) : Fq ] = 2, and hence, Fq2 is a
subfield of Fqh . We also find that span(�, �′)\ (H ∩ span(�, �′)) is partitioned by lines of S.
Furthermore, again invoking Lemma 2.8, since [Fq(α) : Fq ] = 2, we find that each 3-space
spanned by � and a line �′′ of S \ {�} is partitioned into q2 + 1 �-lines of type Sα , one of
which is � and one of which is the intersection of span(�, �′′) with H . Hence, we find that
q2 − 1 needs to divide qk−2 − 1, which in turn implies that 2 | k − 2. �

Remark 3.4 If s = 2 in Theorem 3.3 and � is of type Sα , then [Fq(α) : Fq ] = 2 and all the
�-lines in T are of type Sα . By Lemma 2.5, every point in H lies in at most one �-line
of type Sα , and it is easy follows that each of the points in H lies on exactly one �-line of
type Sα . The line spread determined by �-lines of type Sα of H is a normal spread. This
follows easily from the construction: for m1,m2 ∈ T , � ∈ S, the subspace span(�,m1,m2)

is partitioned by elements of S ∪ T .
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3.2 (Re)constructing linear sets

In the following construction we use the projection point of view to construct an Fq -linear set
which will later prove to be the unique way of describing linear sets satisfying the hypotheses
used in Lemma 3.1 and Theorem 3.3. We show that these linear sets have geometric field of
linearity Fqs .

We use the standard vectors {ei | i = 1, . . . , k}, where ei = (0, . . . , 0, 1, 0, . . . , 0)
is a vector of length k with 1 in the ith position and 0 elsewhere, as the basis of V , the
k-dimensional vector space over Fq defining � = PG(V ) = PG(k − 1, q). We use the
same set of vectors as the basis of V ′, a k-dimensional vector space over Fqh defining
�∗ = PG(V ′) = PG(k − 1, qh), thus � is a canonical subgeometry of �∗.

Construction 3.5 Let �∗ = PG(k − 1, qh) = spanqh (〈e1〉, . . . , 〈ek〉), 4 ≤ k ≤ h. Let
� be the canonical subgeometry embedded in �∗, given by all points 〈u〉qh , where u ∈
spanq(e1, . . . , ek). Suppose that k = rs+2 and s | h. Partition the ordered set {e1, . . . , ek} =
{e1, . . . , ers, ers+1, ers+2} into r + 1 parts, r of which have size s ≥ 2 and are called
A1, . . . , Ar , and are given by the ordered sets

Ai ={e(i−1)s+1, . . . , eis} = {ei,1, . . . , ei,s}
and the last part is of size 2 given by the set

B = {ers+1, ers+2}.
Consider α ∈ Fqh\Fq generating a degree-s extension of Fq (i.e. [Fq(α) : Fq ] = s). With

each Ai , i = 1, . . . , r , we associate the (s − 2)-dimensional subspace �i of �∗ given by

�i = span(〈ei,1 − αei,2〉, 〈ei,2 − αei,3〉, . . . , 〈ei,s−1 − αei,s〉).
Let � = PG(k − 3, qh) be the subspace

� := span(�1,�2, . . . , �r , 〈e1,s − β1e2,s〉, 〈e2,s − β2e3,s〉, . . . , 〈er−1,s − βr−1er ,s〉,
〈ers+1 − αers+2〉)

with β1, . . . , βr−1 ∈ Fqh\Fqs such that � is a (k − 3)-space disjoint from � and �.
Finally, let � = PG(1, qh) be the subspace

�:=span(〈er ,s〉, 〈ers+2〉).
The projection of � from � onto � in Construction 3.5 is an Fq -linear set, and we will

show now that it has geometric field of linearity Fqs .

Lemma 3.6 The linear set L obtained from Construction 3.5 has geometric field of linearity
Fqs .

Proof By the construction any point 〈(λ1, . . . , λk)〉qh = 〈(λ1,1, . . . , λr ,s, λrs+1, λrs+2)〉qh
in � is projected onto the point 〈(0, . . . , 0, χ1, 0, χ2)〉qh in � where

χ1 = β1β2 . . . βr−1(α
s−1λ1,1 + αs−2λ1,2 + · · · + λ1,s)

+ β2β3 . . . βr−1(α
s−1λ2,1 + αs−2λ2,2 + · · · + λ2,s)

+ . . .

+ βr−1(α
s−1λr−1,1 + αs−2λr−1,2 + · · · + λr−1,s)

+ (αs−1λr ,1 + αs−2λr ,2 + · · · + λr ,s)
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and

χ2 = λrs+2 + αλrs+1.

Thus the linear set L consists of all points 〈χ1er ,s + χ2ers+2〉qh with

(χ1, χ2) = (β1β2 . . . βr−1 f1(α) + β2β3 . . . βr−1 f2(α) + · · · + fr (α), λrs+2 + αλrs+1),

where fi (α) is an arbitrary polynomial with degree at most s − 1 and coefficients in Fq and
λrs+1, λrs+2 ∈ Fq . Recall that any element of Fqs can be represented as a polynomial in α

with coefficients in Fq and degree at most s−1 and vice versa, each such polynomial defines
an elements of Fqs . It follows that

(χ1, χ2) = (β1β2 . . . βr−1γ1 + β2β3 . . . βr−1γ2 + · · · + γr , λrs+2 + αλrs+1)

where γi , 1 ≤ i ≤ r , is an arbitrary element of Fqs and λrs+1, λrs+2 ∈ Fq . Now consider
the set of points M of the form 〈χ ′

1er ,s + χ ′
2ers+2〉qh where

(χ ′
1, χ

′
2) = (β1β2 . . . βr−1γ1 + β2β3 . . . βr−1γ2 + · · · + γr , γr+1),

where γi ∈ Fqs , 1 ≤ i ≤ r + 1. Since the set of vectors of the form (χ ′
1, χ

′
2) is closed under

addition and Fqs -multiplication, the set M is an Fqs -linear set of Fqs -rank r + 1 (and an
Fq -linear set of rank rs+ s). Note that, as an Fqs -linear set, M contains points of Fqs -weight
1, and hence, M is not an F

qsi
-linear set for any i > 1. It is clear that every point in L also

belongs to M , so L ⊆ M . Moreover, if P is a point of M , then either P = 〈er ,s〉qh which
also belongs to L , or P = 〈(β1β2 . . . βr−1γ

′
1 + β2β3 . . . βr−1γ

′
2 + · · · + γ ′

r )er ,s + 1ers+2〉qh ,
where γ ′

i = γi/γr+1, which then clearly belongs to L too. We conclude that L = M , and
since M is an Fqs -linear set, L has geometric field of linearity Fqs . �


Remark 3.7 The linear set L in Lemma 3.6 contains qrs + 1 points: one corresponds to
〈er ,s〉 and the other qrs correspond to the different choices of the polynomials f1, . . . , fr
(or equivalently, the choice of elements γ1, . . . , γr ). The Fq -weight of the point 〈er ,s〉 is
ls = k − 2 and every point other point in L is of weight 2. We have shown that L = M ,
where M is an Fqs -linear set, forming an l-club: it has (qs)r points of Fqs -weight 1 and 1
point of Fqs -weight l. We also see that if l = 1 and r = 1, then L is a set of qs + 1 points
(with s = k − 2) which is the set of points of an Fqs -subline of PG(1, qh).

Remark 3.8 Recall from the introduction that every Fq -linear set can be described as the set
of spread elements of the Desarguesian spread D in PG(2h − 1, q) intersecting some fixed
subspace. On the one hand, the Fq -linear set L of Construction 3.5 can be seen as those
elements of D meeting a fixed (k − 1)-space π , where there is one element, say σP , of D
meeting π in a (k − 3)-space μ and the other elements of D meet π in a line or are disjoint
from π . On the other hand, we have shown in Lemma 3.6 that L can be seen as the set of
elements of the Desarguesian spread D which meet a fixed (k + s − 3)-space π ′, where π ′
contains π and such that σP ∩π = σP ∩π ′. Hence, there is one element, σP meeting π ′ in a
(k−3)-space and all other elements ofD either meetπ ′ in an (s−1)-dimensional space or are
disjoint from π ′. The set of (s−1)-dimensional subspaces of π ′ obtained as the intersections
of elements of D with π ′ are contained in the unique Desarguesian (s − 1)-subspread of D
(see also [23]).
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3.3 The proof of themain theorem

The following proposition forms the base case for our main theorem.

Proposition 3.9 If L is a rank-4 Fq -linear set in PG(1, qh), h ≥ 4, with all points of weight
2, then L is an Fq2 -linear set ∼= PG(1, q2). If L is a linear set of rank k, 5 ≤ k ≤ h, in

PG(1, qh) with one point of weight k − 2 and all other points of weight 2 then L must have
geometric field of linearity Fqs with s | k − 2, s > 1, and s | h.
Proof We prove the statement by showing that any linear set satisfying the conditions of
Lemma 3.1 or Theorem 3.3 admits a choice of basis vectors so that it can be obtained from
Construction 3.5.

If a linear set satisfies the conditions of Theorem 3.1 then similarly to Lemma 2.8 we
can take � = 〈span(u1, v1,u2, v2)〉q such that � = span(〈u1 − αv1〉, 〈u2 − αv2〉). Now
mapping the basis vectors u1, v1,u2, v2 to e1, e2, e3, e4 respectively we immediately see that
L is obtained from Construction 3.5 with k = 4, p = 1, s = 2. Thus by Lemma 3.6 this
set has geometric field of linearity Fq2 , and since it can be written as an Fq2 -linear set with
q2 + 1 points, we find that it is indeed an Fq2 -subline.

If a linear set satisfies the conditions of Theorem 3.3 then we have � = span(H , �),
where � is a �-line corresponding to a point of weight 2, so there exist vectors wk−1 and wk

and an element α ∈ Fqh \Fq such that � = span(〈wk−1〉, 〈wk〉) and 〈wk−1 −αwk〉 ∈ �. Let
[Fq(α) : Fq ] = s. If s > 2 then it follows from Remark 2.7 and Lemma 2.6, that H can be
partitioned by (s−1)-dimensional subspaces which form a Desarguesian spread and that we
can write H = span(H1, . . . , Hr ) where Hi = span(〈wi,1〉, 〈wi,2〉, . . . , 〈wi,s〉) such that
〈wi,1 − αwi,2〉, 〈wi,2 − αwi,3〉, . . . , 〈wi,s−1 − αwi,s〉 ∈ �.

By possibly relabeling the vectors wi,1,wi,2,wi,s whose corresponding points span each
Hi , we can make sure that the set of r vectors w j,s , j = 1, . . . , r are linearly independent.
The line joining 〈wi,s〉 and 〈wi+1,s〉, i = 1, . . . , r − 1 is a � line, say of type βi such
that 〈wi,s − βiwi+1,s〉 ∈ �. It follows that H ∩ � equals span(�1,�2, . . . , �r , 〈w1,s −
β1w2,s〉, 〈w2,s − β2w3,s〉, . . . , 〈wr−1,s − βr−1wr ,s〉). It follows that

� = span(�1,�2, . . . , �r , 〈w1,s − β1w2,s〉, 〈w2,s − β2w3,s〉, . . . ,
〈wr−1,s − βr−1wr ,s〉, 〈ers+1 − αers+2〉).

Now mapping the basis vectors w1,1, . . . ,wr ,s,wk−1,wk to e1, . . . , ek we see that � and
� are as in Construction 3.5. Finally, we know that � can be taken arbitrarily but disjoint
from �, so we may take � to be �:=span(〈er ,s〉, 〈ers+2〉). Note that the points 〈er ,s〉 and
〈ers+2〉 lie in subspaces that are projected onto different points which means that � is indeed
disjoint from �.

By Lemma 3.6 this set has geometric field of linearity Fqs .
If s = 2 in Theorem 3.3, then by Remark 3.4, H is partitioned by �-lines of type

Sα into a Desarguesian spread. Thus we can write H = span(�1, . . . , �r ), with �i =
span(〈wi,1〉, 〈wi,2〉) and 〈wi,1 −αwi,2〉 ∈ �. Arguing as above, the linear set is obtained by
Construction 3.5.

By Lemma 3.6 this set has geometric field of linearity Fq2 . �

Remark 3.10 It remains to indicate why we do not draw the conclusion that our set has
maximum geometric field of linearity Fqs . First note that the parameter s we find in the proof
is determined by the type Sα of the lines corresponding to the points of weight 2 in LU .

When we take a subline L = PG(1, qk−2) in PG(1, qh), then the maximum geometric
field of linearity is clearly Fqk−2 . We can write this set as LU where U is an Fq -vector space

123



The geometric field of linearity of linear sets 795

of rank 2k − 4 which is an Fqk−2 -linear vector space. Then μ = 〈U 〉 is a (2k − 5)-dimension
projective subspace of PG(2h − 1, q), partitioned by (k − 3)-spaces, each corresponding to
a point of LU . This forms a Desarguesian (k − 3)-spread, say D′, of μ. Let H be one of
the (k − 3)-dimensional spread elements of D′. Now for every proper divisor s of k − 2, we
find a unique (s − 1)-subspread of D′ (see e.g. [9, 23]), and the �-lines of type Sα where
[Fq(α) : Fq ] = s through a point of H are entirely contained in an element of this (s − 1)-
subspread D′. Vice versa, every line contained in a spread element of D′ is a �-line of type
Sβ where [Fq(β) : Fq ] = s.

This means that if we take a subspace V of U spanned by H and a line contained in one
of the induced elements of the (s − 1)-subspread in μ, we will obtain that LU = LV where
LV satisfies the hypothesis of our theorem. But we will draw the conclusion that LV has
geometric field of linearity Fqs , whereas the maximum field of linearity is Fqk−2 . If we start
however from a subspace V ′ determined by H and any line in a spread element of D′ which
is not contained in any of the induced subspreads, then the corresponding field element α

generates Fqk−2 and our theorem will lead to the conclusion that L ′
V has geometric field of

linearity Fqk−2 .
Finally note that if ls = k − 2 | h, an Fqs -linear set of size qk−2 + 1 does not necessarily

havemaximumgeometric field of linearityFqk−2 . If a linear set of size qk−2+1 hasmaximum
geometric field of linearity Fqk−2 , then it is necessarily a subline PG(1, qk−2); but not all
Fqs -linear sets of size qls + 1 are Fqk−2 -sublines. The easiest case to see this is for Fq -linear
sets of size q2 + 1 in PG(1, q4): some of those are PG(1, q2)-sublines while others are not
(see also [11,page 9]).

Corollary 3.11 Let LU be an Fq -linear (k − 2)-club of rank k − 1 in PG(1, qh), that is, LU

has one point of weight k − 2 and all others of weight 1. If LU = LV for some V such that
U is a proper subspace of V , then LU has maximum field of linearity Fqs for some s > 1.

Proof Weswitch to the representation of linear sets in terms ofDesarguesian spreads. Letφ be
the field reduction map φ : PG(1, qh) → PG(2h− 1, q) and letD denote the (h− 1)-spread
determined by φ.

Then LU corresponds to the set of elements of D meeting the (k − 2)-dimensional pro-
jective subspace π = 〈U 〉 in at least a point. There is one element, say S, of D intersecting
π in a (k − 3)-dimensional subspace while qk−2 other elements of D intersect π in a point.
Our hypothesis is that there is a projective subspace μ = 〈V 〉 containing π intersecting
exactly the same elements of D which intersect π . Let ν = 〈W 〉 be a subspace of projective
dimension k − 1 such thatU < W ≤ V . Since LU = LV this implies that LU = LW = LV .
If S would intersect ν in a subspace of dimension k − 2, then LW would have size qk−1 + 1,
a contradiction since LU has size qk−2 + 1. Hence, S meets ν in π ∩ S, which is a subspace
of dimension k − 3. Since LW has size qk−2 + 1, it follows that every element of D inter-
secting π , necessarily intersects ν in a line: the projective dimension of the intersection of
a spread element with the (k − 1)-dimensional space ν cannot exceed 1 since S meets ν in

a subspace of dimension k − 3, and qk−2(q + 1) + qk−2−1
q−1 is the number of points in the

(k − 1)-dimensional projective subspace ν. Hence, we have that LU = LW , where LW is
a linear set of rank k containing one point of weight k − 2 and all others of weight 2; the
conclusion now follows from Proposition 3.9. �
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We are now ready to prove the main theorem.

Theorem 3.12 If L is a linear set of rank k, 4 ≤ k ≤ h, in PG(1, qh) with one point P of
weight k − w ≥ 2 and all other points of the same weight w ≥ 2 then L has geometric field
of linearity Fqs with s | k − w, s > 1, s | h, and s ≥ w.

Proof We again switch to the representation of linear sets in terms of Desarguesian spreads,
where φ denotes the field reduction map.

Let L = LU be the linear set defined by the (k − 1)-dimensional projective subspace
σ = 〈U 〉 of PG(2h − 1, q) and let P be the point of weight k − w. Then φ(P) ∩ σ = σP ,
where σP is a (k − w − 1)-dimensional subspace of PG(2h − 1, q). Let Q �= P be a point
of LU , then φ(Q) ∩ σ = σQ is (w − 1)-dimensional since Q has weight w. Now consider
a (k − w + 1)-dimensional subspace σ ′ of σ containing σP (which exists since w ≥ 2),
then σ ′ = 〈V 〉 with V < U . This implies that LV ⊆ LU . Let R �= P be a point of LU ,
then σR = φ(R) ∩ σ is a (w − 1)-dimensional subspace disjoint from σP . Since σ ′ is a
(k − w + 1)-dimensional subspace containing σP , it follows that φ(R) meets σ ′ in a line,
say �R , and hence, LU ⊆ LV . We conclude that LU = LV and that all points, different from
P , have weight 2 in LV .

This implies that LV is an Fq -linear set of rank k −w + 2 with one point of weight k −w

and all other points of weight 2. Hence by Proposition 3.9 we see that LV , and hence also
LU , has geometric field of linearity Fqs with s | k − w.

The only thing left to prove is that LU has geometric field of linearityFqs′ for some s′ ≥ w.
In the proof of Proposition 3.9, we have deduced that LV = LW , where W is Fqs -linear, has
Fq -dimension k − w + s and 〈W 〉 is spanned by σP and an (s − 1)-dimensional subspace τ

of φ(R) containing the line �R . Recall that σR is (w − 1)-dimensional. Hence, if τ contains
σR , then s − 1 ≥ w − 1 and we are done.

So suppose that there is a point of σR , say S, not contained in τ . Consider a linem through
S and a point, say T , of �R .Note that span(σP , T ) is a (k − w)-dimensional projective
subspace 〈U ′〉 with U ′ ≤ U such that LU = LU ′ , in fact, LU ′ is a (k − w)-club of rank
k − w + 1.

Let V ′ be a (k−w+2)-dimensional vector subspace such that 〈V ′〉 = span(σP ,m). Since
V ′ < U , by the same reasoning as above for LU and LV , we again obtain that LU = LV ′ ,
and that LV ′ has one point of weight k − w and all others of weight 2. It follows that LV ′
has geometric field of linearity Fqs′ for some s′ | k − w. Furthermore, again as before, m
is contained in an (s′ − 1)-dimensional subspace τ ′ of φ(R) such that there exists an Fqs′ -
linear subspace W ′ of Fq -dimension k − w + s′ with 〈W ′〉 = span(σP , τ ′). It follows that
LV ′ = LW ′ .

The (s−1)-space τ through T is an element of the unique Desarguesian (s−1)-subspread
ofD while the (s′ −1)-space τ ′ through T is an element of the unique Desarguesian (s′ −1)-
subspread ofD. Since τ �= τ ′, we have that s �= s′, and furthermore, span(τ, τ ′) is contained
in an element of the unique Desarguesian (t − 1)-spread of D where t = lcm(s, s′). Let τ ′′
be this (t −1)-space and consider the subspace X = span(σP , τ ′′). Since σP = φ(P)∩〈W 〉
and W is Fqs -linear, we see that the subspace σP is partitioned by (s − 1)-dimensional
subspaces of the (s−1)-subspread and similarly, by elements of the (s′ −1)-subspread. This
implies that σP is partitioned by elements of the (t − 1)-subspread too, and it follows from
the construction of 〈X〉 that X is Fqt -linear. This implies that 〈X〉 meets every element of D
in (at least) a (t − 1)-space, and since 〈X〉 is (k − w + t − 1)-dimensional and contains the
(k−w −1)-space σP , LX contains precisely qk−w +1 points. Since X containsU ′, we have
that LU ′ ⊆ LX , and as both have the same size, LU ′ = LX . We conclude that LU ′ = LU

has geometric field of linearity Fqt .
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If t < w, then there is a point R′ of σP , not contained in span(τ, τ ′) and we can repeat
the reasoning above to find that R′ lies in an element of the Desarguesian (s′′ −1)-subspread
τ ′′ with s′′ �= t , LU can be written as LX ′ where X ′ is Fqt ′ -linear with t ′ = lcm(t, s′′).
Eventually, we will find that all points of σP are contained in an element τ ′′ of a Desarguesian
(t ′′ − 1)-spread and that LU = LX ′′ where X ′′ is Fqt ′′ -linear. Since σP is contained in τ ′′,
we find that so t ′′ − 1 ≥ w − 1 and we are done. �


4 Conclusion

In this paper we have shown that if a rank-k Fq -linear set on a line PG(1, qh), k ≤ h, has
one point of weight k − w and all others of weight w, then L has geometric field of linearity
Fqs for some 1 < s, s | k − w, s ≥ w. As indicated in Remark 3.7, these linear sets can
be viewed as Fqs -linear clubs or Fqs -sublines, which are in some sense the ‘easiest’ types of
linear sets.

Main open problem The larger question of whether the same conclusion can be obtained
for all linear sets without points of weight one, remains unsolved. Although we believe that
this should indeed be the case, the methods developed in this paper are insufficient to tackle
this question.

The case that we have studied in this paper has the advantage that the field of linearity we
are looking for (say Fqs ) necessarily has s dividing k − w, where k − w is the weight of the
unique point, different from all the ones of weight w appearing in the set. In general, if we
take an Fqs -linear set LU , whereU has rank ls and consider a subspace V ofU of dimension
at least ls − s + 2, all points of LV will have weight at least 2. However, there is no longer
an obvious way to deduce the value of s from the weights of the points in LV .

A geometric point of view using subspreads Geometrically speaking, the belief we
expressed above is equivalent to the following: whenever a subspace μ meets all elements of
a Desarguesian spread D in either 0 points or in at least a line, the partition of μ induced by
the elements of D consists of parts, each of which are contained in some fixed Desarguesian
subspread ofD (induced by a subfield). We have shown in this paper that the above statement
indeed holds true if the partition consists of one (k − w − 1)-space and all other parts are
(w − 1)-spaces.

The rank of the linear setWe have given examples of linear sets whose rank is not uniquely
defined, in the sense that such a linear set can be written as LU and LV withU , V subspaces
of different dimensions. If LU = LV with k = dim(U ) < l = dim(V ), then all points of LV

will have weight at least 2: if not, then LV has a point of weight 1 and hence, |LV | ≥ ql−1+1

by Result 1.15. But since |LU | ≤ qk−1
q−1 < ql−1 + 1 this cannot happen. As indicated above,

we believe that the fact that LV has only points of weight at least 2 should imply that LU has
maximum geometric field of linearity Fqs for some s > 1.

A polynomial point of view Considerable effort has been done in recent years to investigate
linear sets from a (linearised) polynomial point of view – every rank-h linear set in PG(1, qh)
can be described through such a polynomial as a set determined by the points 〈(x, f (x))〉,
where x ranges in Fqh . For a recent result linking linearised polynomials with the weights of
the point sets they define, see [3].

As indicated in the introduction (see Results 1.9), for linear sets of rank h in PG(1, qh),
it is not only known that if they contain only points of weight at least 2, the linear set have
geometric field of linearity Fqs . They are, in fact, already Fqs -linear themselves. While it
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is possible to describe a linear set of rank k < h as a set 〈(x, f (x))〉 where x ranges in
a subspace of Fqh , it seems that the fact that x does not range in the entire field makes a
polynomial approach (much) more complicated.

In [10], the authors study the direction problem for point sets of size less than q and
prove a statement which resembles Theorem 1.7. However, we have seen that we cannot
hope to extend the result of Proposition 1.9 to all linear sets. This is in part indicated by
the fact that in the more general theorem of [10], the authors have to take into account two
different parameters, s and t . These parameters will essentially correspond to the algebraic
and geometric field of linearity of the point sets if we look at the directions determined by
an Fq -linear map defined on a subspace of Fqh .

Linear sets with complementary weights Recently (after the current paper was submitted),
the paper [16] appeared in which the authors study a general form for linear sets with com-
plementary weights: those are linear sets of rank s + t containing a point of weight s and
a point of weight t . The linear sets discussed in our current paper belong to this category.
Their most explicit, polynomial based, general form of linear sets is for the case h = s + t
in PG(1, qh), which is precisely the case for which we know our conjecture is true. It is
however conceivable that the methods of that paper allow us to say something about linear
sets with complementary weights of rank < h, all whose points have weight more than one.
In particular, in [16,Theorem 4.1], the authors give equivalent conditions for a linear set
with complementary weights to have two points with weight more than one and all others
of weight one; the conditions depend on the (algebraic) behaviour of two Fq -subspaces S
and T of Fqh spanning the subspace underlying the linear set. It may be possible to derive a
similar algebraic condition on S and T such that the linear set defined by the span of S and
T has only points of weight more than one. If our conjecture is correct, the conditions on S
and T would have to be boil down to the existence of some s > 1 and Fqs -linear subspaces
S′, T ′ of Fqh such that S ⊆ S′ and T ⊆ T ′.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ball S.: The number of directions determined by a function over a finite field. J. Combin. Theory Ser. A
104, 341–350 (2003).

2. Bartoli D., Giulietti M., Marino G., Polverino O.: Maximum scattered linear sets and complete caps in
Galois spaces. Combinatorica 38, 255–278 (2018).

3. Bartoli D.,Micheli G., Zini G., Zullo F.: r -fat linearized polynomials over finite fields. arXiv: 2012.15357.
4. Blokhuis A., Ball S., Brouwer A.E., Storme L., Szőnyi T.: On the number of slopes of the graph of a
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