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Abstract
Functional encryption for set intersection (FE-SI) in the multi-client environment is that each
client i encrypts a set Xi associated with time T by using its own encryption key and uploads
it to a cloud server, and then the cloud server which receives a function key of the client
indexes i, j from a trusted center can compute the intersection Xi ∩ X j of the two client
ciphertexts. In this paper, we first newly define the concept of FE-SI suitable for the multi-
client setting. Then, we propose an efficient FE-SI scheme in asymmetric bilinear groups and
prove the static security of our scheme under newly introduced assumptions. In our FE-SI
scheme, a ciphertext consists of O(�) group elements, a function key consists of a single
group element, and the decryption algorithm has O(�2) complexity where � is the size of
a set in the ciphertext. Next, we propose another FE-SI scheme with time-constrained keys
that limits the ability of function keys to be valid only for a specified time period T , and
proves the static security of our scheme. Finally, we prove that the two assumptions hold in
the general group model to provide confidence in the two newly introduced assumptions.

Keywords Functional encryption · Private set intersection · Multi-client setting · Bilinear
maps · Contact tracing

Mathematics Subject Classification 94A60

1 Introduction

Functional encryption (FE) is a new extension of public-key encryption [11]. In FE, a cipher-
text is associated with a message x and a private key is associated with a function f , and the
decryption algorithm reveals the result of function calculation f (x) [10]. An FE scheme that
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supports an arbitrary function f can be constructed by using indistinguishability obfuscation
[21]. However, to date, designing an efficient construction for indistinguishability obfusca-
tion is a difficult problem. Another way to implement an efficient FE scheme is to limit the
expressiveness of the functions supported by FE. Recently, a new FE scheme that supports
the inner product operations of ciphertexts and private keys was introduced [3,5]. By using
the FE scheme for inner-products, it is possible to build an efficient FE scheme that performs
statistical operations such as average and weighted sum.

It is an interesting research direction to devise other efficient FE scheme that provides
new functions that cannot be expressed using inner products. In this paper, we pay attention
to a function that calculate the intersection of two sets. Many studies have been conducted
on private set intersection (PSI) that computes the intersection of two sets without revealing
anything else [16,18,19,26]. Basically, PSI is a two-party protocol in which two parties with
sets X and Y exchange encrypted messages multiple times with each other to compute the
intersection X ∩ Y . At this time, the two parties cannot obtain information on the other’s set
items except the intersection items. Many PSI protocols have been proposed, but fundamen-
tally it has a disadvantage that requires interactions between parties. In an environment where
a large number of users stores their encrypted data in a cloud server and do not access the
cloud server afterwards, an FE scheme for set intersection that does not require interactions is
more suitable than a PSI protocol that requires interactions between users. An FE scheme for
set intersection can be constructed by using a multi-input FE scheme for arbitrary functions,
but this approach is still ineffective because this FE scheme requires indistinguishability
obfuscation [24].

Recently, FE schemes that support set intersection operations was proposed by Kamp et
al. [35]. They defined the concept of multi-client FE for set intersection by extending the
concept of multi-client FE introduced in [24]. In addition, they proposed a two-client FE
scheme for set intersection that operates between two clients and a multi-client FE scheme
for set intersection that operates betweenmultiple clients. However, their FE definition for set
intersection has a problem of lacking the flexibility to control the set intersection operation
because only one function key is set at the setup stage. For this reason, their FE scheme has
a problem that the setup algorithm needs to be performed for each pair of clients to perform
the set intersection. For example, if there are n clients, a maximum of n2 setups is required
for the set intersection between two clients and each client has to store n2 encryption keys.

A better FE scheme for set intersection is that only one setup is performed even if there
are n clients, and each client must own only one encryption key. In addition, this FE scheme
can issue many function keys for set intersection, and an entity with a function key must be
able to freely calculate the set intersection on two ciphertexts of the corresponding clients.
In this paper, we ask whether it is possible to efficiently construct this better FE scheme for
set intersection.

1.1 Our contributions

In this paper, we define FE that supports the set intersection operation and propose two FE
schemes for set intersection in bilinear groups.

Definition First, we define functional encryption for set intersection (FE-SI) that supports
basic intersection operation. In FE-SI, a trusted center provides an independent encryption
key EKi for each client i and generates a function key SKi, j for the intersection operation on
two clients i, j . Each client with an index i creates a ciphertext Ci on time T by encrypting
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a set Xi by using its encryption key. After that, a third party with a function key SKi, j can
compute the intersection Xi ∩ X j from two ciphertexts Ci and C j of two clients i, j by
running the decryption algorithm when the ciphertexts are generated at the same time T . We
modify the definition of FE-SI to define functional encryption for set intersection with time-
constrained keys (FE-SI-TCK) that issues a function key that is valid only for a limited time
period T . The function key of FE-SI-TCK can limit the life-time of the function key because
the function key is additionally associated with time and it is valid only for ciphertexts of the
same time.

FE for set intersection In order to design an FE-SI scheme in asymmetric bilinear groups,
we devise a method to derive a temporal key T K to be used for encryption and decryption
when the ciphertext elements of two clients encrypt the same set item x . That is, when the
encryption keys of clients i and j are given as (αi , βi ) and (α j , β j ) respectively, the ciphertext
elements of two clients i, j are formed as H(T ‖x)αi , H(T ‖x)α j where H is a hash function
and x is a set item, and a function key for indexes i, j is provided as SKi, j = ĝβi /(αi+α j ).
Then a temporal key is derived as e(H(T ‖x)αi · H(T ‖x)α j , SKi, j ) = e(H(T ‖x), ĝ)βi by
using a pairing operation. In our FE-SI scheme, a function key is composed of a single group
element and the size of a ciphertext is proportional to the number of set items. The decryption
algorithm requires O(�2) complexity where � is the size of a set because it needs to try all
possible pairs of ciphertext elements of two clients. In order to prove the security of our
FE-SI scheme, we define a static-IND security model such that an attacker initially submits
all corrupted clients, challenge sets, and all function key queries. To prove the static-IND
security of our FE-SI scheme, we newly introduce two dynamic assumptions derived from the
FE-SI scheme and show that these assumptions hold in the generic group model. In addition,
we present the extensions of our FE-SI scheme that support associated data encryption, set
intersection cardinality, and multi-party set intersection.

FE-SI with time-constrained keys The function key for indexes i, j of our FE-SI scheme is
very powerful because it can be used to compute the set intersection of all ciphertexts of two
clients i, j . Away to provide additional control to the FE-SI scheme is to limit the availability
of the function key to a specific time period. By modifying our FE-SI scheme, we propose
an FE-SI-TCK scheme that has the ability to issue a function key that is only valid for a time
period T . In order to limit the function key for the time T , we derive a time encryption key
(αi,T , βi,T ) for each individual time period T from an original encryption key EKi and use
this key for ciphertext encryption on time T . That is, by using the pseudo-random function
PRF , we calculate αi,T = PRF(z, 1‖T ) and βi,T = PRF(z, 2‖T ) where z is the original
encryption key. In this case, the function key is generated as SKi, j,T = ĝβi,T /(αi,T +α j,T ) for
the time T , which is only valid for the time T . In order to prove security of our FE-SI-TCK
scheme, we argue that our FE-SI-TCK scheme is static-IND secure if our FE-SI scheme is
also static-IND secure. In addition, the FE-SI-TCK scheme can be easily extended to support
a time-range function key that is valid from time TL to time TR , and to provide forward
secrecy that protects past ciphertexts even when the encryption key of a client is exposed.

1.2 Application

Privacy-preserving contact tracing Due to the worldwide spread of infectious diseases
such as the coronavirus, there is a need for a way to trace people who have come into contact
with a confirmed patient for public health [1]. To this end, people want to check whether
a common location exists between their visited locations and the visited locations of the
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confirmed patient while hiding their locations. One method is to use the existing private
set intersection (PSI) protocol to calculate the set intersection. However, this method is
difficult to directly apply since additional interactions between users are needed to calculate
the intersection and the load of client computation is relatively high. Recently, private set
intersection cardinality (PSI-CA) protocols for contact tracing has been proposed [17,34].
Another way is to use an MCFE scheme for set intersection. To this end, a hospital cloud
server stores the encrypted data of the visited locations of the confirmed patient. Then, when
a user encrypts his visited locations and uploads them to the cloud server, the hospital cloud
server receives a function key for set intersection cardinality and calculates the set intersection
cardinality between the user and the confirmed person. If the cardinality of the set intersection
is positive, then the cloud server notifies the user that there is a possibility of contact. After
that, the user may additionally receive a function key for set intersection and decrypts the
exact intersection locations. Another advantage of using the MCFE scheme is that the set
intersection operation of ciphertexts corresponding to the same time period is allowed, but
the set intersection operation of ciphertexts in different time periods is not allowed.

1.3 Related work

Functional encryption The concept of functional encryption (FE) was introduced by Boneh
et al. [10,11]. Identity-based encryption, hierarchical identity-based encryption, attribute-
based encryption, and predicate encryption, which are widely known, can all be viewed as
special forms of FE [9,23,25,29]. In terms of performing computation on encrypted data, FE
is similar to homomorphic encryption (HE), but there is a difference that unlike the ciphertext
of the computation f (x) is the output of the evaluation algorithm in HE, the computation
f (x) itself is the output of the decryption algorithm in FE [22]. It is known that an FE
scheme that supports all polynomial-size circuits can be designed by using indistinguisha-
bility obfuscation [21]. By expanding the concept of FE, the concepts of multi-input FE
(MI-FE) and multi-client FE (MC-FE) were introduced, and MI-FE and MC-FE schemes
can be also designed with indistinguishability obfuscation [24]. For efficient FE schemes,
functional encryption for inner-products (FE-IP) was introduced and many FE-IP schemes
were proposed [3,5]. Since then, the FE-IP scheme has been extended to the multi-input FE-
IP and multi-client FE-IP schemes [4,15,31]. An efficient FE scheme for quadratic functions
has also been proposed, which has more expressive power than inner product operations [6].
Recently, an MC-FE scheme that supports conjunctive equality and range queries has been
proposed [30].

Private set intersection The private set intersection (PSI) protocol was introduced by Freed-
man et al. [18]. The PSI protocol is a protocol that calculates the intersection X ∩Y when two
parties A, B each own sets X , Y respectively, and does not expose other set information other
than the set intersection of X and Y . Secure PSI protocols can be designed by using various
cryptographic tools such as Diffie-Hellman key exchange [27], oblivious polynomial evalu-
ation [18], oblivious pseudo-random functions [19], garbled circuits [26], oblivious transfer
protocols [16], and fully homomorphic encryption [14]. Basically, the PSI protocol is an
interactive one that exchanges multiple messages between two parties. An interesting variant
of the PSI protocol is the outsourced PSI protocol using a cloud server [28]. In the outsourcing
PSI protocol, since the cloud server performs the operations performed by individual clients
instead, it is possible to reduce conversations and operations between clients. However, this
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outsourcing PSI protocol also requires interactions between clients during initial setup or at
some stage.

Public-key searchable encryption Public-key encryption with keyword search (PEKS) is
a kind of public-key encryption that allows to search keywords in ciphertexts by using a
trapdoor generated by a trusted party [8]. In PEKS, ciphertext and trapdoor are associated
with each keyword, and the test algorithm can check whether the ciphertext keyword and the
trapdoor keyword are the same or not. By using a PEKS scheme, we can construct a special
kind of the set intersection protocol [12]. That is, one client generates ciphertexts by using a
public key where each ciphertext is associated with a keyword x ∈ X , and the other client
receives trapdoors for a set Y from the trusted party where each keyword is associated with
a keyword y ∈ Y . In this case, the client who has trapdoors can calculate the intersection
X ∩ Y by running the test algorithm for each pair of ciphertexts and trapdoors. In general, a
PEKS scheme can be constructed by using an anonymous IBE scheme [2].

2 Preliminaries

In this section, we define functional encryption, symmetric-key encryption, and pseudo-
random function. We also introduce complexity assumptions to prove the security of our
FE-SI schemes proposed in this paper.

2.1 Notation

Let n be a positive integer. The notation [n] is defined as a set {1, . . . , n}, and the notation
[n1, n2] is defined as a set {n1, . . . , n2}. Given two strings a and b, a‖b is the concatenation
of the two strings.

2.2 Functional encryption

Functional encryption is an extension of public key encryption that outputs the computa-
tion on encrypted data f (x) instead of outputting the original message x in the decryption
process in which a ciphertext is associated with a message x , and a private key is associ-
ated with a function f [10]. Functional encryption can be modified in various ways and can
be extended to multiple-input functional encryption that processes multiple ciphertexts, and
multi-client functional encryption that processes ciphertext generated bymultiple clients that
have independent encryption keys [24]. The following is the syntax of public key functional
encryption.

Definition 2.1 (Functional Encryption) A functional encryption (FE) scheme consists of
four algorithms Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ) The setup algorithm takes as input a security parameter λ. It outputs a master key
MK and public parameters PP .
GenKey( f , MK , PP) The key generation algorithm takes as input a function f , the master
key MK , and the public parameters PP . It outputs a secret key SK f .
Encrypt(x, PP) The encryption algorithm takes as input a message x and the public param-
eters PP . It outputs a ciphertext CT .

123



22 K. Lee, M. Seo

Decrypt(CT , SK f , PP) Thedecryption algorithm takes as input a ciphertextCT encrypting
a message x , a secret key SK f corresponding to a function f , and the public parameters
PP . It outputs a value f (x).

The correctness property of FE is defined as follows: For all (MK , PP) ← Setup(1λ),
SK f ← GenKey( f , MK , PP) for any function f ∈ F , and CT ← Encrypt(x, PP) for
any x ∈ X , it is required that Decrypt(CT , SK f , PP) = f (x).

2.3 Symmetric key encryption

Symmetric-key encryption is encryption that uses the same secret key for encryption and
decryption algorithms. The detailed syntax of the symmetric-key encryption is described as
follows.

Definition 2.2 (Symmetric Key Encryption) A symmetric key encryption (SKE) scheme
consists of three algorithms GenKey, Encrypt, and Decrypt, which are defined as follows:

GenKey(1λ) The key generation algorithm takes as input a security parameter λ. It outputs
a symmetric key K .
Encrypt(M, K ) The encryption algorithm takes as input a message M ∈ M and the sym-
metric key K . It outputs a ciphertext C .
Decrypt(C, K ) The decryption algorithm takes as input a ciphertext CT and the symmetric
key K . It outputs a message M or a symbol ⊥.

The correctness property of SKE is defined as follows: For all K generated by GenKey and
any message M ∈ M, it is required that Decrypt(Encrypt(M, K ), K ) = M .

The standard security model of symmetric-key encryption is indistinguishability security
against chosen-plaintext attacks (IND-CPA), but we define one-message security as a weaker
form of security. One-message security is to provide only one challenge ciphertext to an
attacker, and the IND-CPA security guarantees one-message security.

Definition 2.3 (One-Message Security) The one-message security of SKE is defined in the
following experiment EXPSK E

A (1λ) between a challenger C and a PPT adversary A:

1. Setup: C generates a secret key K by running GenKey(1λ). It keeps K to itself.
2. Challenge:A submits challengemessagesM∗

0 , M∗
1 where |M∗

0 | = |M∗
1 |.C flips a random

coinμ ∈ {0, 1} and gives a challenge ciphertextCT ∗ toA by running Encrypt(M∗
μ, K ).

3. Guess: A outputs a guess μ′ ∈ {0, 1} of μ. C outputs 1 if μ = μ′ or 0 otherwise.

The advantage of A is defined as AdvSK E
A (λ) = ∣

∣Pr[EXPSK E
A (1λ) = 1] − 1

2

∣
∣. An SKE

scheme is one-message secure if for all PPT adversary A, the advantage of A is negligible
in the security parameter λ.

2.4 Pseudo-random function

A pseudo-random function (PRF) is a function F : K × X → Y where K is a key space, X
is a domain, and Y is a codomain. Let F(k, ·) be an oracle for a uniformly chosen k ∈ K and
f (·) be an oracle for a uniformly chosen function f : X → Y . We say that a PRF F is secure
if for all efficient adversariesA, the advantage ofA defined asAdvPRF

A (λ) = ∣
∣Pr[AF(k,·) =

1] − Pr[A f (·) = 1]∣∣ is negligible in the security parameter λ.
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2.5 Bilinear groups

A bilinear group generator G takes as input a security parameter λ and outputs a tuple
(p,G, Ĝ,GT , e) where p is a random prime and G, Ĝ, and GT are three cyclic groups
of prime order p. Let g and ĝ be generators of G and Ĝ, respectively. The bilinear map
e : G × Ĝ → GT has the following properties:

1. Bilinearity: ∀u ∈ G,∀v̂ ∈ Ĝ and ∀a, b ∈ Zp , e(ua, v̂b) = e(u, v̂)ab.
2. Non-degeneracy: ∃g ∈ G, ĝ ∈ Ĝ such that e(g, ĝ) has order p in GT .

We say that G, Ĝ,GT are asymmetric bilinear groups with no efficiently computable iso-
morphisms if the group operations in G, Ĝ, and GT as well as the bilinear map e are all
efficiently computable, but there are no efficiently computable isomorphisms betweenG and
Ĝ.

2.6 Complexity assumptions

In order to prove the security of the proposed FE-SI schemes, we introduce two new complex-
ity assumptions. These two assumptions are not static assumptions that are composed of fixed
group elements, but dynamic assumptions in which the group elements of the assumptions
change by given parameters.

The first assumption is an assumption derived from our FE-SI scheme. This is a modifica-
tion of the widely known external Diffie-Hellman (XDH) assumption, and this assumption
says that it is difficult to distinguish theDiffie-Hellman tuple even if additional group elements
related to Q and J parameters are provided. The second assumption is also an assumption
derived from our FE-SI scheme.

Let n be a positive integer, ρ be a target index such that ρ ∈ [n], and Q = {(i, j)} be a
set of index pairs such that i, j ∈ [n] and i < j . From n, ρ, and Q, we define an index set
J = {k : 1 ≤ k = ρ ≤ n such that (k, ρ) /∈ Q if k < ρ and (ρ, k) /∈ Q if k > ρ}. This set
can be computed by using the function ComputeJ which is described as follows:

ComputeJ (n, ρ, Q) where Q = {(i, j)}
1. Initialize J as the empty set.
2. For each k ∈ {1, . . . , n} \ {ρ}:

If k < ρ and (k, ρ) /∈ Q, then add k to J .
If k > ρ and (ρ, k) /∈ Q, then add k to J .

3. Output J .

For example, if we let n = 4, ρ = 2, and Q = {(1, 4), (2, 3), (2, 4)}, then we obtain J = {1}
since (1, 2) /∈ Q, (2, 3) ∈ Q, and (2, 4) ∈ Q.

Assumption 2.4 Let (p,G, Ĝ,GT , e) be a bilinear group randomly generated by G(1λ).
Let g, ĝ be random generators of G, Ĝ respectively. Let n, ρ, Q, J be defined above. The
Assumption 1 for (n, ρ, Q, J ) is that if the challenge tuple

D = (

(p,G, Ĝ,GT , e), g, ga, {gbi }ni=1, {gabk }k∈J , ĝ, {ĝ1/(bi+b j )}(i, j)∈Q
)

and Z

are given, no probabilistic polynomial-time (PPT) algorithm A can distinguish Z = Z0 =
gabρ from Z = Z1 = gd with more than a negligible advantage. The advantage of A is
defined as AdvA1-(n,ρ,Q,J )

A (λ) = ∣
∣Pr[A(D, Z0) = 0] − Pr[A(D, Z1) = 0]∣∣ where the

probability is taken over random choices of a, b1, . . . , bn, d ∈ Zp .
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Assumption 2.5 Let (p,G, Ĝ,GT , e) be a bilinear group randomly generated by G(1λ).
Let g, ĝ be random generators of G, Ĝ respectively. Let n, ρ, Q be defined above. The
Assumption 2 for (n, ρ, Q) is that if the challenge tuple

D = (

(p,G, Ĝ,GT , e), g, ga, {gbi }ni=1, {gabk }1≤k =ρ≤n,

ĝ, {ĝci }1≤i =ρ≤n, e(g, ĝ)cρ , {ĝci /(bi+b j )}(i, j)∈Q
)

and Z

are given, no probabilistic polynomial-time (PPT) algorithm A can distinguish Z = Z0 =
e(g, ĝ)acρ from Z = Z1 = e(g, ĝ)d with more than a negligible advantage. The advantage
of A is defined as AdvA2-(n,ρ,Q)

A (λ) = ∣
∣Pr[A(D, Z0) = 0] − Pr[A(D, Z1) = 0]∣∣ where the

probability is taken over random choices of a, b1, . . . , bn, c1, . . . , cn, d ∈ Zp .

We analyzed that both of these new assumptions hold in the generic groupmodel proposed
by Shoup [33] in Sect. 5.

3 Functional encryption for set intersection

In this section, we first introduce functional encryption for set intersection (FE-SI) and define
the security model of FE-SI. Next, we construct an FE-SI scheme using a bilinear map and
analyze the security of our FE-SI scheme using the cryptographic assumptions of the previous
section.

3.1 Definition

To define functional encryption for set intersection, we modify the definition of public key
functional encryption to consider a multi-client setting in which individual clients own indi-
vidual encryption keys [24]. First, a trusted center creates a master key, an encryption key
for each client, and public parameters by running the setup algorithm, and the individual
encryption keys are delivered securely to clients. After that, a client generates a ciphertext
for a set Xi associated with time T by using their own encryption key. If a third party who
wants to perform the set intersection operation obtains a function key for client indexes i, j
from the trusted center, and computes the set intersection of the ciphertexts generated by two
clients i and j at time T by running the decryption algorithm. A more detailed syntax of
FE-SI is given as follows.

Definition 3.1 (Functional encryption for set intersection) A functional encryption for
set intersection (FE-SI) scheme for D and T consists of four algorithms Setup, GenKey,
Encrypt, and Decrypt, which are defined as follows:

Setup(1λ, n) The setup algorithm takes as input a security parameter λ and the number of
clientsn. It outputs amaster keyMK , client encryption keys {EKi }ni=1, and public parameters
PP .
GenKey(i, j, MK , PP) The key generation algorithm takes as input two client indexes
i, j ∈ [n] such that i < j , the master key MK , and public parameters PP . It outputs a
function key SKi, j .
Encrypt(Xi , T , EKi , PP)The encryption algorithm takes as input a set Xi = {xi,1, . . . , xi,�i }
where xi, j ∈ D, a time period T ∈ T , the client encryption key EKi , and the public param-
eters PP . It outputs a ciphertext CTi,T .
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Decrypt(CTi,T ,CTj,T , SKi, j , PP) The decryption algorithm takes as input two ciphertexts
CTi,T and CTj,T for the same time T , a function key SKi, j , and the public parameters PP .
It outputs a set Xi ∩ X j where Xi and X j are associated with CTi,T and CTj,T respectively.

The correctness property of FE-SI is defined as follows: For all MK , {EKi }, PP ←
Setup(1λ, n), any SKi, j ← GenKey(i, j, MK , PP), and all CTi,T ← Encrypt
(Xi , T , EKi , PP) and CTj,T ← Encrypt(X j , T , EK j , PP) for any Xi , X j and the same
time T , it is required that

– Decrypt(CTi,T ,CTj,T , SKi, j , PP) = Xi ∩ X j except with negligible probability.

To define the security model of FE-SI, we modify the security model of multi-client
functional encryption (MC-FE) defined by Goldwasser et al. [24]. For the security model
of FE-SI, we consider a static security model in which an attacker pre-specifies information
related to the attack target and function key queries. Initially, the attacker specifies the list of
corrupted clients, the challenge target sets, the challenge time period, and the set of function
key queries.At this time, the challenge target sets and the set of function key queries submitted
by the attacker are restricted so that the challenge target sets cannot be easily identified by
using the function keys in order to prevent trivial attacks. After that, the attacker obtains the
encryption keys of the corrupted clients and the challenge ciphertexts for the challenge sets.
Additionally, the attacker can request the previously specified function keys and ciphertexts
for a time period other than the challenge time period. Finally, the attacker identifies the
challenge set of the challenge ciphertexts. A more detailed definition of the static security
model of FE-SI is defined as follows.

We first define a function C I Q({Xk}, Q) for a group of item sets {Xk} and a set Q =
{(i, j)} that computes the collected intersection of Xi and X j for each (i, j) ∈ Q as follows:

C I Q({Xk}k∈I , Q) where Q = {(i, j)}
1. For each i ∈ I , initialize Ei as the empty set.
2. For each (i, j) ∈ Q,

calculate Y = Xi ∩ X j and add Y to Ei and E j respectively.
3. Output {Ei }i∈I .

Definition 3.2 (Static-IND Security) The static-IND security of FE-SI with corruptions is
defined in the following experiment EXPST -I N D

FE-SI ,A(1λ) between a challenger C and a PPT
adversary A:

1. Init:A initially submits an index set I ⊂ [n] of corrupted clients. Let I = {1, . . . , n} \ I
be the index set of uncorrupted clients. A also submits two challenge sets of item sets
{X∗

0,k}k∈I , {X∗
1,k}k∈I , a challenge time period T ∗, and a set Q = {(i, j)} of function key

queries with the restriction that i, j ∈ I for each (i, j) ∈ Q and C I Q({X∗
0,k}k∈I , Q) =

C I Q({X∗
1,k}k∈I , Q).

2. Setup: C generates a master key MK , encryption keys {EKi }ni=1, and public parameters
PP by running Setup(1λ, n). It keeps MK and {EKi }i∈I to itself and gives {EKi }i∈I
and PP to A.

3. Challenge: C flips a random coin μ ∈ {0, 1} and obtains a ciphertext CTi,T ∗ by run-
ning Encrypt(X∗

μ,i , T
∗, EKi , PP) for each i ∈ I . C gives the challenge ciphertexts

{CTi,T ∗ }i∈I to A
4. Query: A requests function keys and ciphertexts. C handles these queries as follows:

– If this is a function key query for indexes i, j ∈ I with the restriction that (i, j) ∈ Q,
then C gives a function key SKi, j to A by running GenKey(i, j, MK , PP).
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– If this is a ciphertext query for a client index k, an item set Xk , and a time period T
with the restriction that k ∈ I and T = T ∗, then C gives a ciphertext CTk,T to A by
running Encrypt(Xk, T , EKk, PP).

5. Guess: A outputs a guess μ′ ∈ {0, 1} of μ. C outputs 1 if μ = μ′ or 0 otherwise.

An FE-SI scheme is static-IND secure with corruptions if for all PPT adversary A, the
advantage of A defined as AdvST -I N D

FE-SI ,A(λ) = ∣
∣Pr[EXPST -I N D

FE-SI ,A(1λ) = 1] − 1
2

∣
∣ is negligible

in the security parameter λ.

3.2 Design principle

The basic idea of supporting set intersection operations is to implement a private equality
test. If a hash function H : {0, 1}∗ → G is modeled as a random oracle, a function H(x)α

with a secret α can play the role of pseudo-random function because the output of this
function is indistinguishable from a completely random value by the DDH assumption [32].
Additionally, this function supports the private equality test because the output of the function
is same if the same input is given. If multiple interactions are allowed between clients, the two
clients can compute the set intersection of the two sets X and Y by exchanging {H(x)α}x∈X ,
{H(y)α

′ }y∈Y in the first round and exchanging {H(x)αα′ }x∈X , {H(y)α
′α}y∈Y in the second

round [27].
However, we cannot design a functional encryption scheme for set intersection with the

above method because clients are non-interactive in which messages cannot be exchanged
between clients in functional encryption. In order to devise a functional encryption scheme
that supports the set intersection operation, we have to solve two problems. First, we need to
implement a private equality test that non-interactively checks whether the items of two sets
are the same. Second, if the items of two sets are the same, we need to implement a method
of decrypting the ciphertext of the corresponding item. To this end, we devise an equal-then-
derive method in which the correct message decryption key is derived by combining with a
function key if the equality of set items is satisfied.

The equal-then-derive method we devised is as follows. The first client generates a cipher-
text element H(x)α1 for a set item x using its encryption key α1. And the second client also
generates a ciphertext element H(y)α2 for a set item y using its encryption key α2. At this
time, if the two set items are identical such as x = y, we have H(x)α1 ·H(y)α2 = H(x)α1+α2

from the ciphertext elements. Here, if the trusted center provides a function key ĝβ1/(α1+α2),
it is possible to derives a temporal key T K = e(H(x)α1+α2 , ĝβ1/(α1+α2)) = e(H(x), g)β1

which can be used to encrypt or decrypt a message. To do this, the encryption key of the first
client should contain an additional secret β1, and the first client uses the temporary key T K
to create another ciphertext element on a message x by using symmetric-key encryption.

The function H(x)α previously used for set intersection is pseudo-random function. There-
fore, if a client re-encrypts the previously encrypted set item x , then some information of
the set item is exposed because the output of this function is the same when the input is the
same. To prevent such information leakage, we set a client to encrypt the set associated with a
specific time period T , and the set intersection operation to be performed on the ciphertexts of
two clients having the same time T . To do this, we use a modified function H(T ‖x)α , which
contains additional time. In this case, even if the same x is encrypted, the value H(T ‖x)α
appears to be a random value when the time T is different. Thus this function is secure since
there is no information leakage.
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3.3 Construction

Let SKE = (GenKey, Encrypt,Decrypt) be an SKE scheme. An FE-SI scheme is described
as follows.

Setup(1λ, n) Let n be the maximum number of clients.

1. It first generates a bilinear group (p,G, Ĝ,GT , e) of prime order p with random
generators g ∈ G and ĝ ∈ Ĝ. It chooses two hash functions H1 : {0, 1}∗ → G and
H2 : GT → {0, 1}λ.

2. Next, it selects a random PRF key z ∈ {0, 1}λ and computes αi = PRF(z, 1‖i),
βi = PRF(z, 2‖i)) for each index i ∈ [n].

3. It outputs a master key MK = z, encryption keys {EKi = (αi , βi )}ni=1 for clients,

and public parameters PP = (

(p,G, Ĝ,GT , e), g, ĝ, H1, H2
)

.

GenKey(i, j, MK , PP) Let i < j and MK = z. It first computes αi = PRF(z, 1‖i),
α j = PRF(z, 1‖ j), and βi = PRF(z, 2‖i). It outputs a function key SKi, j = ĝβi /(αi+α j )

by implicitly including i, j .
Encrypt(Xi , T , EKi , PP) Let Xi = {xi,1, . . . , xi,�i }where |Xi | = �i and EKi = (αi , βi ).

1. For each index k ∈ [�i ], it proceed as follows: It computes Ci,k = H1(T ‖xi,k)αi
and derives a temporal key T Ki,k = e(H1(T ‖xi,k), ĝ)βi . It obtains Di,k by running
SKE.Encrypt(T ‖xi,k, H2(T Ki,k)).

2. It chooses a random permutation π and outputs a ciphertext
CTi,T = {

(Ci,π(k), Di,π(k))
}�i
k=1 by implicitly including i, T .

Decrypt(CTi,T ,CTj,T ′ , SKi, j , PP) Let CTi,T = {(Ci,k, Di,k)}�ik=1 and CTj,T ′ =
{(C j,k, Dj,k)}� j

k=1 be ciphertexts such that i < j and T = T ′. It first initializes a set
Y = ∅.

1. For each index ki ∈ [�i ] and k j ∈ [� j ], it proceeds as follows: It com-
putes T Ki,ki = e(Ci,ki · C j,k j , SKi, j ) and obtains a message A‖x by running
SKE.Decrypt(Di,ki , H2(T Ki,ki )). It adds an item x into Y if A = T .

2. It outputs the set Y .

3.4 Correctness

For the correctness of our FE-SI scheme,we need to show that the set intersection of two client
ciphertexts can be calculated through the decryption process. Let CTi,T = {(Ci,k, Di,k)} be
the ciphertext of a client i , CTj,T = {(C j,k, Dj,k)} be the ciphertext of a client j , and SKi, j

be a function key. For the correctness of the decryption process, it is only necessary to show
that the correct temporal key T K is derived by combiningwith a function key if the ciphertext
elements from two clients are the encryption on the same item x and these are related to the
same time T . The reason is that if the correct temporary key is derived, the message can be
decrypted by running the decryption algorithm of symmetric key encryption. If the set items
of the two ciphertexts are the same, we can confirm that a temporal key is correctly derived
through the following equation

e(Ci,ki · C j,k j , SKi, j ) = e(H1(T ‖xi,ki )αi+α j , ĝβi /(αi+α j )) = e(H1(T ‖xi,ki ), ĝ)βi .
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3.5 Security analysis

To prove the security of the FE-SI scheme, we analyze the security by dividing the case where
there is no corrupted client and the case where there are corrupted clients.

In order to prove the static security without corrupted clients of the FE-SI scheme, we
devise additional hybrid games that an attacker cannot distinguish between the two chal-
lenge sets {X∗

0,k} and {X∗
1,k}. In the definition of the static security model, the constraint

C I Q({X∗
0,k}, Q) = C I Q({X∗

1,k}, Q)must be satisfied because the attacker can compute the
set intersection operation on the challenge set by using function keys. This means that the set
items related to the common set {E∗

k } = C I Q({X∗
μ,k}, Q) can be computed by the attacker,

but the remaining items that do not related to {E∗
k } are not revealed to the attacker. Thus even

if these ciphertext elements not related to {E∗
k } are changed to random values, the attacker

can not distinguish this change. Therefore, we define additional hybrid games and change
the challenge ciphertext elements that do not related to {E∗

k } to random values one by one.
To do this, in the first game, we change the pseudo-random function into a truly random

function. In the second game, the ciphertext elements {Cμ,k} that do not related to {E∗
k } are

changed to random values. In the third game the temporal keys {T Kμ,k} that do not related
to {E∗

k } are changed to random. After that, in the last game, the ciphertext elements {Dμ,k}
that do not related to {E∗

k } are changed to random values. In this last game, the ciphertext
elements related to {E∗

k } are the same as the original ciphertext, but all other ciphertext
elements not related to {E∗

k } are changed to random values. Thus the attacker can’t tell
whether the challenge ciphertext of the last game is related to {X∗

0,k} or {X∗
1,k}. The details

of the security are given as follows.

Theorem 3.3 The aboveFE-SI scheme is static-IND securewith no corruptions in the random
oracle model if the PRF scheme is secure, the SKE scheme is one-message secure, and the
Assumptions 1 and 2 hold.

Proof Suppose there exists an adversary that breaks the static-IND security of the FE-
SI scheme with no corruptions. We can assu me that I = {1, . . . , n} and I = ∅. Let
{X∗

0,1, . . . , X
∗
0,n} and {X∗

1,1, . . . , X
∗
1,n} be the challenge sets of item sets where X∗

b,i =
{x∗

b,i,1, . . . , x
∗
b,i,�i

} and |X∗
b,i | = �i . Let Q = {(i, j)} be the set of index pairs related

to function key queries. We can derive a set of common sets {E∗
1 , . . . , E

∗
n } by calling

C I Q({X∗
0,k}, Q) since C I Q({X∗

0,k}, Q) = C I Q({X∗
1,k}, Q) by the restriction of the secu-

rity model. To argue that the adversary cannot win this game, we define a sequence of hybrid
games G0,G1,G2,G3, and G4. The game Gi is defined as follows:

Game G0 The first game G0 is the original security game defined in Definition 3.2.
Game G1 In this game G1, the PRF which is used to generate encryption keys is changed
to be truly random function.
Game G2 This game G2 is similar to the game G1 except that the challenge ciphertext
components {Ci,k} are generated as random for all x∗

μ,i,k /∈ E∗
i .

Game G3 This game G3 is slightly changed from the game G2. That is, the challenge
temporal keys {T Ki,k} are generated as random for all x∗

μ,i,k /∈ E∗
i .

GameG4 In the final gameG4, we change the generation of challenge ciphertext components
{Di,k}. That is, the challenge ciphertext components {Di,k} are the encryption of random
values for all x∗

μ,i,k /∈ E∗
i . Note that the advantage of the adversary in this game is zero

since challenge ciphertext components {Ci,k} are random and {Di,k} are the encryption of
random values for all x∗

μ,i,k /∈ E∗
i .
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Let SGi
A be the event that an adversary wins in a game Gi . From the following Lemmas

3.4, 3.5, 3.6, and 3.7, we obtain the following result

AdvST -I N D
FE-SI ,A(λ) ≤

∣
∣
∣Pr[SG0

A ] − Pr[SG4
A ]

∣
∣
∣ + Pr[SG4

A ] ≤
4

∑

i=1

∣
∣
∣Pr[SGi−1

A ] − Pr[SGi
A ]

∣
∣
∣ + Pr[SG4

A ]

≤ AdvPRF
B (λ) + n�AdvA1-(n,ρ,Q,J )

B (λ) + n�AdvA2-(n,ρ,Q)

B (λ) + n�AdvSK E
B (λ)

where n is the number of clients, � is the maximum size of the challenge item set. This
completes our proof. ��
Lemma 3.4 If the PRF is secure, then no polynomial-time adversary can distinguish between
G0 and G1 with a non-negligible advantage.

Proof The proof of this lemma is relatively easy from the security of PRF. That is, we simply
change a PRF to a truly random function since there is only one PRF in the FE-SI scheme.
We omit the details of this proof. ��
Lemma 3.5 If the Assumption 1 for (n, ρ, Q, J ) holds, then no polynomial-time adversary
can distinguish between G1 and G2 with a non-negligible advantage.

Proof To prove this lemma, we additionally define hybrid games H1,0,H1,1, . . . ,

H1,�1 ,H2,1, . . . ,Hi,k, . . . ,Hn,�n where H1,0 = G0 and Hn,�n = G1. The game Hρ,δ is
defined as follows:

Game Hρ,δ This game Hρ,δ is almost identical to the game G1 except the generation of the
components {Ci,k} in the challenge ciphertexts.

– Case (i < ρ) or (i = ρ ∧ k ≤ δ): If x∗
μ,i,k ∈ E∗

i , then the component Ci,k is generated
as normal. Otherwise (x∗

μ,i,k /∈ E∗
i ), the component Ci,k is generated as random.

– Case (i = ρ ∧ k > δ) or (i > ρ): The component Ci,k is generated as normal.

Suppose there exists an adversary A that distinguishes between Hρ,δ−1 and Hρ,δ with
a non-negligible advantage. Without loss of generality, we assume that x∗

μ,ρ,δ /∈ E∗
ρ since

Hρ,δ−1 and Hρ,δ are equal if x∗
μ,ρ,δ ∈ E∗

ρ . A simulator B that solves the Assumption 1 for
(n, ρ, Q, J ) which will be defined later is described as follows:
Init A submits challenge sets {X∗

0,1, . . . , X
∗
0,n}, {X∗

1,1, . . . , X
∗
1,n}, a challenge time period

T ∗, and a set Q = {(i, j)} of function key queries. B proceeds as follows:

1. From n, ρ, Q, it derives an index set J by calling ComputeJ (n, ρ, Q).
2. It receives D = ((p,G, Ĝ,GT , e), g, ga, {gbi }ni=1, {gabk }k∈J , ĝ, {ĝ1/(bi+b j )}(i, j)∈Q)

and Z of the Assumption 1 for (n, ρ, Q, J ) where Z = gabρ or Z = R ∈ G.
3. It flips a random coinμ ∈ {0, 1} internally and derives a set of common sets {E∗

1 , . . . , E
∗
n }

by calling C I Q({X∗
μ,k}, Q).

Setup B first chooses random exponents β1, . . . , βn ∈ Zp . Next, it sets PP =
((p,G, Ĝ,GT , e), g, ĝ, H1, H2). It prepares a hash table H -list for the H1 hash function
as follows:

1. For each i ∈ [n] and k ∈ [�i ], it proceeds as follows: If i = ρ or k = δ, then it selects a
random exponent fi,k ∈ Zp and adds (T ∗‖x∗

μ,i,k, fi,k, g fi,k ) to the H -list.
Otherwise, it adds (T ∗‖x∗

μ,ρ,δ,−, ga) to the H -list.

Challenge B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:
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1. For each i and k, it generates ciphertext elements Ci,k and T Ki,k depending on the
following cases:

– Case i < ρ:
– If x∗

μ,i,k ∈ E∗
i and x∗

μ,i,k = x∗
μ,ρ,δ , it retrieves (T ∗‖x∗

μ,i,k,−, ga) from the

H -list, and sets Ci,k = gabi and creates T Ki,k = e(ga, ĝ)βi . For this case, we
show that gabi is given in the assumption. If a function key with an index pair
(i, ρ) was queried, we have x∗

μ,ρ,δ ∈ E∗
ρ by the definition of C I Q. However,

we assumed that x∗
μ,ρ,δ /∈ E∗

ρ for this game. Thus a function key with (i, ρ) was
not queried and it means that i ∈ J by the definition of J .

– If x∗
μ,i,k ∈ E∗

i and x∗
μ,i,k = x∗

μ,ρ,δ , it retrieves (T ∗‖x∗
μ,i,k, fi,k, g fi,k ) from the

H -list, and creates Ci,k = (gbi ) fi,k and T Ki,k = e(g fi,k , ĝ)βi .
– If x∗

μ,i,k /∈ E∗
i , it retrieves (T ∗‖x∗

μ,i,k, fi,k, g fi,k ) from the H -list, and chooses

a random Ci,k ∈ G and creates T Ki,k = e(g fi,k , ĝ)βi .
– Case i = ρ:

– If k < δ and x∗
μ,ρ,k ∈ E∗

ρ , it retrieves (T ∗‖x∗
μ,ρ,k, fρ,k, g fρ,k ) from the H -list,

and creates Cρ,k = (gbρ ) fρ,k and T Kρ,k = e(g fρ,k , ĝ)βρ since x∗
μ,ρ,k = x∗

μ,ρ,δ .

– If k < δ and x∗
μ,ρ,k /∈ E∗

ρ , then it retrieves (T ∗‖x∗
μ,ρ,k, fρ,k, g fρ,k ) from the

H -list, and chooses a random Cρ,k ∈ G and creates T Kρ,k = e(g fρ,k , ĝ)βρ .
– If k = δ, it sets Cρ,δ = Z and creates T Kρ,δ = e(ga, ĝ)βρ since we assumed

that x∗
μ,ρ,δ /∈ E∗

ρ .

– If k > δ, it retrieves (T ∗‖x∗
μ,ρ,k, fρ,k, g fρ,k ) from the H -list, and createsCρ,k =

(gbρ ) fρ,k and T Kρ,k = e(g fρ,k , ĝ)βρ since x∗
μ,ρ,k = x∗

μ,ρ,δ .
– Case i > ρ:

– If x∗
μ,i,k = x∗

μ,ρ,δ , it retrieves (T ∗‖x∗
μ,i,k,−, ga) from the H -list, and setsCi,k =

gabi and creates T Ki,k = e(ga, ĝ)βi . For this case, we show that gabi is given in
the assumption. If a function key with an index pair (ρ, i) was queried, we have
x∗
μ,ρ,δ ∈ E∗

ρ by the definition of C I Q. However, we assumed that x∗
μ,ρ,δ /∈ E∗

ρ

for this game. Thus a function key with (ρ, i) was not queried and it means that
i ∈ J by the definition of J .

– If x∗
μ,i,k = x∗

μ,ρ,δ , it retrieves (T ∗‖x∗
μ,i,k, fi,k, g fi,k ) from the H -list, and creates

Ci,k = (gbi ) fi,k and T Ki,k = e(g fi,k , ĝ)βi .

Next, it generates a ciphertext element Di,k by running SKE.Encrypt(T ∗‖x∗
μ,i,k, T Ki,k)

2. It chooses a random permutation πi and sets a challenge ciphertext CTi,T ∗ =
{(Ci,πi (k), Di,πi (k))}�ik=1 for each client i .

Query A adaptively requests hash, function key, and ciphertext queries. B handles these
queries as follows:

– If this is a hash query for a time period T and an item x , then B proceeds as follows:
If T ‖x exists in the H -list, then it retrieves (T ‖x,−, h) from H -list and gives h to A.
Otherwise, it selects a random exponent f ∈ Zp and adds (T ‖x, f , g f ) to the H -list,
and then it gives the hash value g f to A.

– If this is a function key query for indexes i, j such that (i, j) ∈ Q, then B generates a
function key SKi, j = (ĝ1/(bi+b j ))βi since ĝ1/(bi+b j ) is given in the assumption.

– If this is a ciphertext query for a client index i , a set Xi = {xi,1, . . . , xi,�}, and a time
period T = T ∗, then B generates a ciphertext as follows:
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1. For each k ∈ [�i ], it proceeds as follows: It retrieves (T ‖xi,k, fk, g fk ) from the
H -list, and sets Ci,k = (gbi ) fk and T Ki,k = e(g fk , ĝ)βi . Next, it obtains Di,k by
running SKE.Encrypt(T ‖xi,k, T Ki,k).

2. It chooses a random permutation π and creates CTi,T = {(Ci,π(k), Di,π(k))}�ik=1.

Guess A outputs a guess μ′. If μ = μ′, it outputs 1. Otherwise, it outputs 0.
To complete the proof, we need to analyze the correctness of the simulation. In the case of

the challenge ciphertext, ciphertext elements with indexes i = ρ or k = δ are all generated
correctly by using the values given in the assumption. The challenge ciphertext elements
with indexes i = ρ and k = δ are generated by using the challenge Z of the assumption. If
Z = Z0 = gabρ , then it is the same as the game Hρ,δ−1. Otherwise (Z = Z1), it is the same
as the game Hρ,δ . The function keys provided to the attacker are easily processed by using
the values given in the assumption because function key queries are pre-specified in Q. In
the case of ciphertext such as T = T ∗, all ciphertexts are correctly processed by using the
hash table and the values given in the assumption. ��
Lemma 3.6 If the Assumption 2 for (n, ρ, Q) holds, then no polynomial-time adversary can
distinguish between G2 and G3 with a non-negligible advantage.

Proof To prove this lemma, we additionally define hybrid games H′
1,0,H

′
1,1, . . . ,

H′
1,�1

, . . . ,H′
i,k, . . . ,H

′
n,�n

where H′
1,0 = G2 and H′

n,�n
= G3. The game H′

ρ,δ is defined as
follows:

Game H′
ρ,δ This game H′

ρ,δ is almost identical to the game G2 except the generation of
temporal keys {T Ki,k} in the challenge ciphertexts.

– Case (i < ρ) or (i = ρ ∧ k ≤ δ): If x∗
μ,i,k ∈ E∗

i , then the temporal key T Ki,k is
generated as normal. Otherwise (x∗

μ,i,k /∈ E∗
i ), the temporal key T Ki,k is generated as

random.
– Case (i = ρ ∧ k > δ) or (i > ρ): The temporal key T Ki,k is generated as normal.

Suppose there exists an adversary A that distinguishes between H′
ρ,δ−1 and H′

ρ,δ with
a non-negligible advantage. Without loss of generality, we assume that x∗

μ,ρ,δ /∈ E∗
ρ since

H′
ρ,δ−1 and H′

ρ,δ are equal if x∗
μ,ρ,δ ∈ E∗

ρ . A simulator B that solves the Assumption 2 for
(n, ρ, Q) which will be defined later is described as follows:

Init A submits challenge sets of item sets {X∗
0,1, . . . , X

∗
0,n}, {X∗

1,1, . . . , X
∗
1,n}, a challenge

time period T ∗, and a set Q = {(i, j)} of function key queries. B proceeds as follows:

1. It receives D = ((p,G, Ĝ,GT , e), g, ga, {gbi }ni=1, {gabk }1≤k =ρ≤n, ĝ, {ĝci }1≤i =ρ≤n,

e(g, ĝ)cρ , {ĝci /(bi+b j )}(i, j)∈Q) and Z of the Assumption 2 for (n, ρ, Q) where Z =
e(g, ĝ)acρ or Z = R ∈ GT .

2. It flips a random coinμ ∈ {0, 1} internally and derives a set of common sets {E∗
1 , . . . , E

∗
n }

by calling C I Q({X∗
μ,k}, Q).

Setup B sets PP = ((p,G, Ĝ,GT , e), g, ĝ, H1, H2). It prepares a hash table H -list for the
H1 hash function as follows:

1. For each i ∈ [n] and k ∈ [�i ], it proceeds as follows: If i = ρ or k = δ, then it selects a
random exponent fi,k ∈ Zp and adds (T ∗‖x∗

μ,i,k, fi,k, g fi,k ) to the H -list.
Otherwise (i = ρ ∧ k = δ), it adds (T ∗‖x∗

μ,ρ,δ,−, ga) to the H -list.

Challenge B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:
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1. For each i and k, it generates ciphertext elements Ci,k and T Ki,k depending on the
following cases:

– Case i < ρ:
– If x∗

μ,i,k ∈ E∗
i and x∗

μ,i,k = x∗
μ,ρ,δ , it retrieves (T ∗‖x∗

μ,i,k,−, ga) from the H -

list, and sets Ci,k = gabi and T Ki,k = e(ga, ĝci ). In this case, gabi is given in
the assumption since i = ρ.

– If x∗
μ,i,k ∈ E∗

i and x∗
μ,i,k = x∗

μ,ρ,δ , it retrieves (T ∗‖x∗
μ,i,k, fi,k, g fi,k ) from the

H -list, and sets Ci,k = (gbi ) fi,k and T Ki,k = e(g fi,k , ĝci ).
– If x∗

μ,i,k /∈ E∗
i , then it retrieves (T ∗‖x∗

μ,i,k, fi,k, g fi,k ) from the H -list, and
selects random Ci,k ∈ G and T Ki,k ∈ GT .

– Case i = ρ:
– If k < δ and x∗

μ,ρ,k ∈ E∗
ρ , it retrieves (T ∗‖x∗

μ,ρ,k, fρ,k, g fρ,k ) from the H -list,

and sets Cρ,k = (gbρ ) fρ,k and T Kρ,k = (e(g, ĝ)cρ ) fρ,k since x∗
μ,ρ,k = x∗

μ,ρ,δ .

– If k < δ and x∗
μ,ρ,k /∈ E∗

ρ , then it retrieves (T ∗‖x∗
μ,ρ,k, fρ,k, g fρ,k ) from the

H -list, and selects random Cρ,k ∈ G and random T Kρ,k ∈ GT .
– If k = δ, it chooses a random Cρ,δ ∈ G and sets T Kρ,δ = Z since we assumed

that x∗
μ,ρ,δ /∈ E∗

ρ .

– If k > δ and x∗
μ,ρ,k ∈ E∗

ρ , then it retrieves (T ∗‖x∗
μ,ρ,k, fρ,k, g fρ,k ) from the

H -list, and sets Cρ,k = (gbρ ) fρ,k and T Kρ,k = (e(g, ĝ)cρ ) fρ,k since x∗
μ,ρ,k =

x∗
μ,ρ,δ .

– If k > δ and x∗
μ,ρ,k /∈ E∗

ρ , then it retrieves (T ∗‖x∗
μ,ρ,k, fρ,k, g fρ,k ) from the

H -list, and selects a random Cρ,k ∈ G and creates T Kρ,k = (e(g, ĝ)cρ ) fρ,k .
– Case i > ρ:

– If x∗
μ,i,k ∈ E∗

i and x∗
μ,i,k = x∗

μ,ρ,δ , it retrieves (T ∗‖x∗
μ,i,k,−, ga) from the H -

list, and sets Ci,k = gabi and T Ki,k = e(ga, ĝci ). In this case, gabi is given in
the assumption since i = ρ.

– If x∗
μ,i,k ∈ E∗

i and x∗
μ,i,k = x∗

μ,ρ,δ , it retrieves (T ∗‖x∗
μ,i,k, fi,k, g fi,k ) from the

H -list, and sets Ci,k = (gbi ) fi,k and T Ki,k = e(g fi,k , ĝci ).
– If x∗

μ,i,k /∈ E∗
i , it retrieves (T ∗‖x∗

μ,i,k, fi,k, g fi,k ) from the H -list, and selects a

random Ci,k ∈ G and creates T Ki,k = e(g fi,k , ĝci ).

Next, it generates a ciphertext element Di,k by running SKE.Encrypt(T ∗‖x∗
μ,i,k, T Ki,k)

2. It chooses a random permutation πi and sets a challenge ciphertext CTi,T ∗ =
{(Ci,πi (k), Di,πi (k))}�ik=1 for each client i .

Query A adaptively requests hash, token, and ciphertext queries. B handles these queries as
follows:

– If this is a hash query for a time period T and an item x , then B proceeds as follows:
If T ‖x exists in the H -list, then it retrieves (T ‖x,−, h) from H -list and gives h to A.
Otherwise, it selects a random exponent f ∈ Zp and adds (T ‖x, f , g f ) to the H -list,
and then it gives the hash value g f to A.

– If this is a function key query for indexes i, j such that (i, j) ∈ Q, then B generates a
function key SKi, j = ĝci /(bi+b j ) since it is given in the assumption.

– If this is a ciphertext query for a client index i , a set Xi = {xi,1, . . . , xi,�}, and a time
period T = T ∗, then B generates a ciphertext as follows:
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1. For each k ∈ [�i ], it proceeds as follows: It retrieves (T ‖xi,k, fk, g fk ) from
the H -list and sets Ci,k = (gbi ) fk . Next, it sets T Ki,k = (e(g, ĝ)cρ ) fk if
i = ρ, and it sets T Ki,k = e(g fk , ĝci ) if i = ρ. It obtains Di,k by running
SKE.Encrypt(T ‖xi,k, T Ki,k).

2. It chooses a random permutation π and creates CTi,T = {(Ci,π(k), Di,π(k))}�ik=1.

Guess A outputs a guess μ′. If μ = μ′, it outputs 1. Otherwise, it outputs 0.

Lemma 3.7 If the SKE scheme is one-message secure, then no polynomial-time adversary
can distinguish between G3 and G4 with a non-negligible advantage.

Proof To prove this lemma, we additionally define hybrid games H′′
1,0,H

′′
1,1, . . . ,

H′′
1,�1

,H′′
1,1, . . . ,H

′′
i,k, . . . ,H

′′
n,�n

where H′′
1,0 = G3 and H′′

n,�n
= G4. The game H′′

ρ,δ is
defined as follows:

Game H′′
ρ,δ This game H′′

ρ,δ is almost identical to the game G3 except the generation of
components {Di,k} in the challenge ciphertexts.

– Case (i < ρ) or (i = ρ ∧ k ≤ δ): If x∗
μ,i,k ∈ E∗

i , then the component Di,k is generated
as normal. Otherwise (x∗

μ,i,k /∈ E∗
i ), the component Di,k is generated as the encryption

of a random value.
– Case (i = ρ ∧ k > δ) or (i > ρ): The component Di,k is generated as normal.

Suppose there exists an adversaryA that distinguishes betweenH′′
ρ,δ−1 andH

′′
ρ,δ with a non-

negligible advantage. Without loss of generality, we assume that x∗
μ,ρ,δ /∈ E∗

ρ since H′′
ρ,δ−1

and H′′
ρ,δ are equal if x

∗
μ,ρ,δ ∈ E∗

ρ . Then B that interacts with A is described as follows:
Init A submits challenge sets of item sets {X∗

0,1, . . . , X
∗
0,n}, {X∗

1,1, . . . , X
∗
1,n}, a challenge

time period T ∗, and a set Q = {(i, j)} of function key queries.B then flips a random coinμ ∈
{0, 1} internally and derives a set {E∗

1 , . . . , E
∗
n } of common sets by callingC I Q({X∗

μ,k}, Q).
Setup B first chooses random exponents α1, . . . , αn , β1, . . . , βn ∈ Zp . Next, it sets PP =
((p,G, Ĝ,GT , e), g, ĝ, H1, H2). It prepares a hash table H -list for the H1 hash function as
follows:

1. For each i ∈ [n] and k ∈ [�i ], it selects a random exponent fi,k ∈ Zp and adds
(T ∗‖x∗

μ,i,k, fi,k, g fi,k ) to the H -list.

Challenge B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i and k, it generates ciphertext elements Ci,k and T Ki,k depending on the
following cases:

– Case x∗
μ,i,k ∈ Ei : It retrieves (T ∗‖x∗

μ,i,k, fi,k, g fi,k ) from the H -list, and creates

Ci,k = g fi,kαi and T Ki,k = e(g fi,k , ĝ)βi .
– Case x∗

μ,i,k /∈ Ei : It selects random Ci,k ∈ G and random T Ki,k ∈ GT .

Next, it also generates a ciphertext element Di,k depending on the following cases:

– Case (i < ρ) or (i = ρ ∧ k < δ): If x∗
μ,i,k ∈ E∗

i , it creates Di,k by running
SKE.Encrypt(T ∗‖x∗

μ,i,k, T Ki,k). Otherwise (x∗
μ,i,k /∈ E∗

i ), it selects a random y ∈
D and creates Di,k by running SKE.Encrypt(T ∗‖y, T Ki,k).

– Case (i = ρ ∧ k = δ): It selects a random y ∈ D and submits challenge message
x∗
μ,ρ,δ and y to the encryption oracle of SKE. Next, it receives a challenge ciphertext

CT ∗
SK E from SKE and sets Dρ,δ = CT ∗

SK E . Recall that we assumed x∗
μ,ρ,δ /∈ E∗

ρ .
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– Case (i = ρ ∧ k > δ) or (i > ρ): It creates Di,k by running
SKE.Encrypt(T ∗‖x∗

μ,i,k, T Ki,k).

2. It chooses a random permutation πi and sets a challenge ciphertext CTi,T ∗ =
{(Ci,πi (k), Di,πi (k))}�ik=1 for each client i .

Query A adaptively requests hash, function key, and ciphertext queries. B handles these
queries as follows:

– If this is a hash query for a time period T and an item x , then B proceeds as follows:
If T ‖x exists in the H -list, then it retrieves (T ‖x,−, h) from H -list and gives h to A.
Otherwise, it selects a random exponent f ∈ Zp and adds (T ‖x, f , g f ) to the H -list,
and then it gives the hash value g f to A.

– If this is a function key query for indexes i, j , then B simply generates a function key
SKi, j by using αi , α j , βi .

– If this is a ciphertext query for a client index i , a set Xi , and a time period T = T ∗, then
B simply generates a ciphertext CT by using αi , βi .

Guess A outputs a guess μ′. If μ = μ′, it outputs 1. Otherwise, it outputs 0. ��
Now, we analyze the static security with corrupted clients of the FE-SI scheme. In the

definition of the static security model, two indexes of a function key must be associated with
corrupted clients, or two indexes of the function key must be associated with non-corrupted
clients. Therefore, we can process this proof by selecting encryption keys for corrupted clients
and using the static security proof of the FE-SI scheme analyzed earlier for non-corrupted
clients.

Theorem 3.8 The above FE-SI scheme is static-IND secure with corruptions in the random
oracle model if the FE-SI scheme is static-IND secure with no corruptions.

Proof Suppose there exists an adversary A that breaks the static-IND security with corrup-
tions. By using A, a simulator B try to break the static-IND security with no corruptions
played by a challenger C. The simulator B is described as follows:

Init A submits the set of corrupted client indexes I = ∅. Let I = {1, . . . , n} \ I be
the set of uncorrupted client indexes where |I | = n′. A also submits two challenge sets
{X∗

0,k}k∈I , {X∗
1,k}k∈I , a challenge time period T ∗, and a set Q = {(i, j)} of function key

queries.

1. It first define a one-to-one mapping φ from I to I ′ = {1, . . . , n′} such that φ(i) < φ( j)
if i < j for any i, j ∈ I . It also define φ−1 as the inverse mapping of φ.

2. Next, it derives a new set Q′ = {(φ(i), φ( j)) : (i, j) ∈ Q} from the set Q.
3. B submits two challenge sets {X∗

0,φ(k)}φ(k)∈I ′ , {X∗
1,φ(k)}φ(k)∈I ′ , the challenge time period

T ∗, and the set Q′ to C. Note that C plays the static-IND security gamewith no corruptions
for the set I ′.

SetupB receives PP from C. It chooses random exponents {αi , βi }i∈I . Next, it gives {EKi =
(αi , βi )}i∈I and PP to A.
ChallengeB receives challenge ciphertexts {CTi ′,T ∗ }i ′∈I ′ fromC andgives {CTφ−1(i ′),T ∗ }φ−1(i ′)∈I
to A.
Query A requests hash, function key, and ciphertext queries. B relays these queries to C and
gives the response of C to A by using the mappings φ and φ−1 to change the indexes of sets
I ′ and I .
Guess A outputs a guess μ′. B also outputs μ′. ��
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3.6 Discussions

Efficiency analysis We analyze the efficiency of our FE-SI scheme. First, the encryption
algorithm requires 2� exponentiation operations and 2� symmetric key encryption operations
since it computes Ci,k, T Ki,k , and Di,k for each item of the set where � is the size of the
set. The size of the ciphertext is proportional to the size of the set. The key generation
algorithm is efficient because it only requires a PRF computation and a single exponentiation
operation, and the function key is composed of one group element. The slowest part of
the FE-SI scheme is the decryption algorithm. Since the decryption algorithm processes
two possible combination of ciphertext elements of two clients, it requires O(�2) pairing
operations and O(�2) symmetric-key decryptions. Therefore, the decryption algorithm has
O(�2) time complexity when � is the size of the set.

Hiding the set sizes In our FE-SI scheme, the ciphertext exposes the set size information
because the size of a ciphertext is proportional to the size of the set. A simple way to hide the
size of a set is to include additional dummy items in the ciphertext. That is, a dummy element
C̃i,k is generated by computing H(r)αi with a random string r such that prefix(r) = T , and
a dummy element D̃i,k is generated by running a symmetric-key encryption on a message
r . In this case, the probability that the two clients select the same random string r is very
low, and even if the two clients select the same r , the time string T is not decoded from the
decryption of the dummy D̃i,k . Thus the intersection of ciphertexts with dummy elements
works correctly.

Encryption with associated data The FE-SI scheme encrypts only the set information
during encryption. One natural way to extend the FE-SI scheme is to encrypt a set with
additional associated data. This associated data can be easily encrypted by using symmetric-
key encryption. In this case, the entity with a function key can decrypt not only the set
intersection of two clients but also associated data encrypted by individual clients. Since the
function key of our FE-SI scheme only provides ĝβi /(αi+α j ) for client indexes i, j , only the
associated data of the client index i is decrypted. If only the set is encrypted, this is not a
problem, but if associated data is included, it is necessary to decrypt the ciphertext elements
of the client j as well as the client i . Therefore, for this purpose, the key generation algorithm
must provide two group elements, ĝβi /(αi+α j ) and ĝβ j /(αi+α j ) as function keys.

Set intersection cardinality An interesting variant of the functional encryption for set inter-
section is functional encryption for set intersection cardinality (FE-SIC) that reveals the
cardinality of the set intersection instead of revealing the set intersection of two sets. The
simplest way to devise an FE-SIC scheme is to modify our FE-SI scheme to encrypt the
string T instead of the concatenated string T ‖x when generating the ciphertext element Di,k .
In this case, if the correct string T is derived during decryption, the same item exists, so the
number of intersections can be calculated by counting these cases. However, this method has
the disadvantage of preserving the decryption complexity O(�2) of the FE-SI scheme and
requiring to create a new ciphertext.

Multi-party set intersection The FE-SI scheme we devised calculates the set intersection
of two clients. It is possible to modify the FE-SI scheme to calculate the set intersection of
three clients. The basic idea is for the key generation algorithm to receive the indexes of three
clients (i, j, k) as an input and to create a function key SKi, j,k = ĝβi /(αi+α j+αk ). In this case,
if the ciphertexts generated by the clients of indexes i, j , and k are on the same item x , then the
decryption algorithm first derives H(T ‖x)αi ·H(T ‖x)α j ·H(T ‖x)αk = H(T ‖x)αi+α j+αk . If
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the pairing operation is performed with the function key, the temporary key e(H(T ‖x), ĝ)βi
can be derived for symmetric-key decryption. The decryption algorithm requires O(�3) pair-
ing operations since all possible combination of ciphertext elements should be considered.
The static security of this scheme with no corruptions can be easily proven by extending
the constraints of the security model and using modified assumptions that include additional
group elements for key queries. If this method is extended, it is possible to process the set
intersection of n clients, but it is inefficient because the decryption algorithm has O(�n) time
complexity.

4 FE for set intersection with time-constrained keys

In this section, we define the syntax and the security model of FE-SI that supports time-
constrained keys (FE-SI-TCK). In addition, we propose an FE-SI-TCK scheme bymodifying
the previous FE-SI scheme and prove the security of the scheme.

4.1 Definition

The syntax of FE-SI-TCK is almost similar to that of FE-SI. The key difference in the syntax
of FE-SI-TCK is that a function key is only valid at time T because the function key is
associated with client indexes i, j and additional time T . For this reason, the decryption
algorithm of FE-SI-TCK correctly proceeds the decryption process only when the time T
of the two client’s ciphertexts and the time T of the function key are the same. That is, the
function key of the FE-SI-TCK scheme does not always compute the set intersection of the
two client’s ciphertexts for any time, but only computes the set intersection of the two client’s
ciphertexts corresponding to the limited time T . A more detailed syntax of FE-SI-TCK is
defined as follows.

Definition 4.1 (FE-SI with time-constrained keys) An FE-SI with time-constrained keys
(FE-SI-TCK) scheme for D and T consists of four algorithms Setup, GenKey, Encrypt,
and Decrypt, which are defined as follows:

Setup(1λ, n) The setup algorithm takes as input a security parameter λ and the number
of clients n. It outputs a master key MK , encryption keys {EKi } for clients, and public
parameters PP .
GenKey(i, j, T , MK , PP) The key generation algorithm takes as input two client indexes
i, j such that i < j , a time period T , the master key MK , and public parameters PP . It
outputs a time-constrained function key SKi, j,T .
Encrypt(Xi , T , EKi , PP)The encryption algorithm takes as input a set Xi = (xi,1, . . . , xi,�i )
where xi, j ∈ D, a time period T ∈ T , an encryption key EKi , and the public parameters
PP . It outputs a ciphertext CTi,T .
Decrypt(CTi,T ,CTj,T , SKi, j,T , PP) The decryption algorithm takes as input two cipher-
texts CTi,T and CTj,T , a function key SKi, j,T , and the public parameters PP . It outputs a
set Xi ∩ X j where Xi and X j are associated with CTi,T and CTj,T respectively.

The correctness property of FE-SI-TCK is defined as follows: For all MK , {EKi }, PP ←
Setup(1λ, n), any SKi, j,T ← GenKey(i, j, T , MK , PP) for any i, j, T such that i <

j , CTi,T ← Encrypt(Xi , T , EKi , PP), and CTj,T ← Encrypt(X j , T , EK j , PP), it is
required that

– Decrypt(CTi,T ,CTj,T , SKi, j,T , PP) = Xi ∩ X j except with negligible probability.
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The static security model of FE-SI-TCK is almost similar to the previous defined static
security model of FE-SI. An important difference is that the attacker of FE-SI-TCK initially
submits a set QT ∗ of function key queries related to a challenge time T ∗ instead of submitting
all function key queries. Afterwards, when the attacker queries a function key for time T ,
the function key query must be specified in QT ∗ if T = T ∗, but the function key query can
be any query if T = T ∗. A more detailed static security model of FE-SI-TCK is defined as
follows.

Definition 4.2 (Static-IND Security) The static-IND security of FE-SI-TCK with corrup-
tions is defined in the following experiment EXPST -I N D

FE-SI -TCK ,A(1λ) between a challenger C
and a PPT adversary A:

1. Init:A initially submits an index set I ⊂ [n] of corrupted clients. Let I = {1, . . . , n} \ I
be the index set of uncorrupted clients. A also submits two challenge sets of item sets
{X∗

0,k}k∈I , {X∗
1,k}k∈I , a challenge time period T ∗, and a set QT ∗ = {(i, j)} of function

key queries on the time period T ∗ with the restriction that i, j ∈ I for each (i, j) ∈ Q
and C I Q({X∗

0,k}k∈I , QT ∗) = C I Q({X∗
1,k}k∈I , QT ∗).

2. Setup: C generates a master key MK , encryption keys {EKi }ni=1 and public parameters
PP by running Setup(1λ, n). It keeps MK and {EKi }i∈I to itself and gives {EKi }i∈I
and PP to A.

3. Challenge: C flips a random coin μ ∈ {0, 1} and obtains a ciphertext CTi,T ∗ by run-
ning Encrypt(X∗

μ,i , T
∗, EKi , PP) for each i ∈ I . C gives the challenge ciphertexts

{CTi,T ∗ }i∈I to A
4. Query: A requests function keys and ciphertexts. C handles these queries as follows:

– If this is a function key query for indexes i, j ∈ I and a time period T with the
restriction that (i, j) ∈ QT ∗ if T = T ∗, then C gives a function key SKi, j,T to A by
running GenKey(i, j, T , MK , PP).

– If this is a ciphertext query for a client index k, a set Xk , and a time period T
with the restriction that k ∈ I and T = T ∗, then C gives CTk,T to A by running
Encrypt(Xk, T , EKk, PP).

5. Guess: A outputs a guess μ′ ∈ {0, 1} of μ. C outputs 1 if μ = μ′ or 0 otherwise.

An FE-SI-TCK scheme is static-IND secure with corruptions if for all PPT adversary A,
the advantage of A defined as AdvST -I N D

A (λ) = ∣
∣ Pr[EXPST -I N D

FE-SI -TCK ,A(1λ) = 1] − 1
2

∣
∣ is

negligible in the security parameter λ.

4.2 Construction

The idea of devising a function key limited to time T is to derive an independent encryp-
tion key for each time T from an original client encryption key by slightly modifying our
FE-SI scheme. In other words, the client encryption key of the FE-SI-TCK scheme is a
PRF key z and two exponents (αT = PRF(z, 1‖T ), βT = PRF(z, 2‖T )) are derived for
a specific time period T , whereas the client encryption key of the FE-SI scheme is just
(α, β). The encryption and decryption algorithms are almost the same as those of the FE-SI
scheme. An FE-SI-TCK scheme that supports time-constrained function keys is described as
follows.

Setup(1λ, n) Let n be the maximum number of clients.
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1. It first generates a bilinear group (p,G, Ĝ,GT , e) of prime order p with two random
generators g ∈ G and ĝ ∈ Ĝ. It chooses two hash functions H1 : {0, 1}∗ → G and
H2 : GT → {0, 1}λ.

2. Next, it selects a random PRF key z ∈ {0, 1}λ and computes zi = PRF(z, 0‖i) for
each index i ∈ [n].

3. Finally, it outputs a master key MK = z, encryption keys {EKi = zi }ni=1 for clients,

and public parameters PP = (

(p,G, Ĝ,GT , e), g, ĝ, H1, H2
)

.

GenKey(i, j, T , MK , PP) Let i, j be indexes such that i < j and T be a time period.

1. It first derives zi = PRF(z, 0‖i) and z j = PRF(z, 0‖ j) from MK = z. It also cal-
culates αi,T = PRF(zi , 1‖T ), α j,T = PRF(z j , 1‖T ), and βi,T = PRF(zi , 2‖T ).

2. Finally, it outputs a time-constrained function key SKi, j,T = ĝβi,T /(αi,T +α j,T ) by
implicitly including i, j, T .

Encrypt(Xi , T , EKi , PP) Let Xi = {xi,1, . . . , xi,�i } be a set of items where |Xi | = �i and
EKi = zi .

1. It calculates αi,T = PRF(zi , 1‖T ) and βi,T = PRF(zi , 2‖T ).
2. For each index k ∈ [�i ], it proceed as follows: It computes a component Ci,k =

H1(xi,k)αi,T and then derives a temporal key T Ki,k = e(H1(xi,k), ĝ)βi,T . Next, it
obtains an encrypted data Di,k by running SKE.Encrypt(T ‖xi,k, H2(T Ki,k)).

3. Finally, it chooses a random permutation π and outputs a ciphertext CTi,T =
{

(Ci,π(k), Di,π(k))
}�i
k=1 by implicitly including i, T .

Decrypt(CTi,T ,CTj,T , SKi, j,T , PP) Let CTi,T = {(Ci,k, Di,k)}�ik=1 and CTj,T =
{(C j,k, Dj,k)}� j

k=1 be ciphertexts such that i < j with the same time T . It first initializes
a set Y = ∅.

1. For each index ki ∈ [�i ] and k j ∈ [� j ], it proceeds as follows: It com-
putes T Ki,ki = e(Ci,ki · C j,k j , SKi, j,T ) and obtains a message A‖x by running
SKE.Decrypt(Di,ki , H2(T Ki,ki )). It adds an item x into Y if A = T .

2. Finally, it outputs the set Y .

4.3 Correctness

The FE-SI-TCK scheme is almost the same as the previous FE-SI scheme except that the
encryption key for a specific time period T is derived by using the PRF. Therefore, the
correctness of the FE-SI-TCK scheme is easily guaranteed by the correctness of the PRF and
the correctness of the FE-SI scheme.

4.4 Security analysis

In order to prove the static security of the FE-SI-TCK scheme, we also analyze by dividing
into two cases, the case where there is no corrupted client and the case where there are
corrupted clients. Similar to the proof of the FE-SI scheme, we can also prove the static
security of the scheme with corrupted clients by using the static security proof of the scheme
with non-corrupted clients.

We can show that the FE-SI-TCK scheme without corrupted clients is static secure by
using the static security of the FE-SI scheme without corrupted clients. The basic idea of
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this proof is that ciphertext and function key queries for T = T ∗ are all handled by the
challenger of the FE-SI scheme, and ciphertext and function key queries for T = T ∗ are
handled by a simulator itself with randomly selected encryption keys. The security theorem
of the FE-SI-TCK scheme is described as follows.

Theorem 4.3 The above FE-SI-TCK scheme is static-IND secure with no corruptions in the
random oracle model if the PRF scheme is secure and the FE-SI scheme is static-IND secure
with no corruptions.

Proof To argue that the adversary cannot win this game, we define a sequence of hybrid
games G0,G1. The game Gi is defined as follows:

Game G0 The first game G0 is the original security game defined in Definition 4.2.
GameG1 In this gameG1, the PRFs which are used to generate encryption keys are changed
to be truly random functions.

Let SGi
A be the event that an adversary wins in a game Gi . From the following Lemmas

4.4 and 4.5, we obtain the following result

AdvST -I N D
FE-SI -TCK ,A(λ) ≤

∣
∣
∣Pr[SG0

A ] − Pr[SG1
A ]

∣
∣
∣ + Pr[SG1

A ] ≤ (n + 1)AdvPRF
B (λ) + AdvST -I N D

FE-SI ,B(λ)

where n is the number of clients, � is the size of the challenge attribute. This completes our
proof. ��
Lemma 4.4 If the PRF is secure, then no polynomial-time adversary can distinguish between
G0 and G1 with a non-negligible advantage.

Proof The proof of this lemma is relatively easy from the security of PRF. That is, we simply
change a PRF to a truly random function one by one by defining additional hybrid games.
Note that there are at most n + 1 PRFs are used in the FE-SI-TCK scheme. We omit the
details of this proof. ��
Lemma 4.5 If the FE-SI scheme is static-IND secure, then no polynomial-time adversary can
win G1 with a non-negligible advantage.

Proof Suppose there exists an adversary A that wins the game G1 with a non-negligible
advantage. Then B that interacts with A is described as follows:

Init A submits challenge sets of item sets {X∗
0,1, . . . , X

∗
0,n}, {X∗

1,1, . . . , X
∗
1,n}, a challenge

time period T ∗, and a set QT ∗ of function key queries. B also submits {X∗
0,i }, {X∗

1,i }, T ∗, and
QT ∗ to the FE-SI scheme.
Setup B receives ˜PP from the FE-SI scheme and sets PP = ˜PP . B prepares an EK -list as
the empty set that stores a tuple (i, T , αi,T , βi,T ).
Challenge B receives ˜CT 1,T ∗ , . . . , ˜CT n,T ∗ of the FE-SI scheme and sets challenge cipher-
texts CTi,T ∗ = ˜CT i,T ∗ for each i . It gives the challenge ciphertexts to A.
Query A adaptively requests hash, function key, and ciphertext queries. B handles these
queries as follows:

– If this is a hash query for an item x , then B proceeds as follows: It requests a hash query
to the FE-SI scheme on the time period T ∗ and the item x and receives a hash value h̃. It
sets h = h̃ and gives h to A. Note that it implicitly sets H1(x) = H̃1(T ∗‖x) where H̃1

is the hash function of the FE-SI scheme.
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– If this is a time-constrained function key query for indexes i, j and a time period T , then
B generates a function key as follows:

– Case T = T ∗: It requests a ciphertext query to the FE-SI scheme on input i, j
and receives a function key ˜SK i, j since (i, j) ∈ QT ∗ . It creates a time-constrained
function key SKi, j,T = ˜SK i, j .

– Case T = T ∗:
1. If a tuple (i, T , αi,T , βi,T ) already exists in the EK -list, then it retrieves

(i, T , αi,T , βi,T ) from the EK -list.Otherwise, it selects randomαi,T , βi,T ∈ Zp

and adds (i, T , αi,T , βi,T ) to the EK -list.
2. If a tuple ( j, T , α j,T , β j,T ) already exists in the EK -list, then it retrieves

( j, T , α j,T , β j,T ) from the EK -list. Otherwise, it selects random α j,T , β j,T ∈
Zp and adds ( j, T , α j,T , β j,T ) to the EK -list.

3. Next, it creates a time-constrained function key SKi, j,T = ĝβi,T /(αi,T +α j,T ).

– If this is a ciphertext query for a client index i , a set Xi = {xi,1, . . . , xi,�i }, and a time
period T = T ∗, then B generates a ciphertext as follows:

1. If a tuple (i, T , αi,T , βi,T ) already exists in the EK -list, then it retrieves (i, T , αi,T ,

βi,T ) from the EK -list. Otherwise, it selects random αi,T , βi,T ∈ Zp and adds
(i, T , αi,T , βi,T ) to the EK -list.

2. For each index k ∈ [�i ], it obtains h from hash query on input xi,k and creates Ci,k =
hαi,T , T Ki,k = e(h, ĝ)βi,T , and Di,k by running SKE.Encrypt(T ‖xi,k, H2(T Ki,k)).

3. It chooses a random permutation π and generates a ciphertext CTi,T =
{(Ci,π(k), Di,π(k))}�ik=1.

Guess A outputs a guess μ′. B also outputs μ′. ��
Theorem 4.6 The above FE-SI-TCK scheme is static-IND secure with corruptions in the
random oracle model if the FE-SI-TCK scheme is static-IND secure with no corruptions.

The proof of Theorem 4.6 is almost identical to that of Theorem 3.8.

4.5 Discussions

Time range function key In our FE-SI-TCK scheme, a function key is only valid for a
specified time period T . If a third party performing the set intersection operation needs a
function key that is valid for time range periods from TL to TR , the trusted center generates
a time range function key which consists of individual function keys for each time period
T ∈ [TL , TR]. In this case, the size of the time range function key increases in proportion
to the size of the time range. We can reduce the size of the time range function key by
using a binary tree. That is, if the leaf nodes in the binary tree are related to time periods, a
ciphertext is related to the path of the binary tree, and a time range function key is related
to the minimum set of internal nodes which include all leaf nodes corresponding to the time
range. In this case, the ciphertext is composed of 2� log(Tmax ) group elements, and the time
range function key can also be composed of 2 log(Tmax ) group elements where Tmax is the
maximum time period of the binary tree.

Forward secrecy A forward-secure encryption scheme does not expose information on
ciphertexts generated in the past time periods if a long-term key is exposed to an attacker
[13]. In our FE-SI-TCK scheme, if the encryption key of an corrupted client, which is the
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client’s long-term key, is exposed, the attacker can obtain information on the past ciphertexts
of another uncorrupted client by using the function key of the past time and the encryption key
of the corrupted client. Note that the security model of FE-SI-TCK is not considered forward
secrecy because corrupt clients are fixed in advance. We can modify our FE-SI-TCK scheme
to provide forward secrecy. First, each client is initially given an encryption key (α0, β0), and
the encryption key evolves over time through αT = PRG(αT−1) and βT = PRG(βT−1). The
encryption algorithm uses the evolved encryption key (αT , βT ) to generate a ciphertext as the
same as that of our FE-SI-TCK scheme. If an attacker obtains an encryption key (αT , βT ) on
time T , the attacker can generate a future ciphertext on time T ′′ ≥ T , but he cannot generate
a past ciphertext on time T ′ < T due to the one-wayness of pseudo-random generators.

5 Our assumptions in generic groupmodels

In this section, we prove that our assumptions we introduced earlier hold in the generic group
model [33]. To do this, we use the master theorem in [7,20] to analyze our assumptions in
asymmetric bilinear groups.

5.1 Generic groupmodels

The generic group model is an abstract model for analyzing generic algorithms that oper-
ate independently of the representation of group elements. For this reason, just because an
assumption is analyzed to be secure in the generic group model does not guarantee that the
assumption is secure in the real environment. The reason is that there may be a non-generic
algorithm that breaks the assumption.

A generic group model is defined as a game between a challenger algorithm B and an
attacker algorithmA. In this case,A does not directly access the actual representation of group
elements, but instead uses unique handles to these elements to access these group elements.
That is, A can query group multiplication, division, exponentiation, and pairing operations
by using handles of group elements, and can compare the equality of group elements by
directly comparing the handles. Initially, A is given the handles of group elements with the
specified distribution. The processing of the handling the query ofA is described as follows:

– Multiplication: A queries the multiplication operation by submitting two handles h1
and h2 associated with group elements u1 = gx1 and u2 = gx2 . To answer this query,
B computes u3 = u1u2 = gx1+x2 and returns a new handle h3 if the element u3 has
not already been assigned to a handle. If u3 already has a handle, it returns the existing
handle. The multiplication operation is processed in a similar way for each group G, Ĝ,
and GT respectively.

– Division:A queries the division operation by submitting twohandles h1 and h2 associated
with group elements u1 = gx1 and u2 = gx2 . To answer this query, B computes the
element u3 = u1/u2 = gx1−x2 and returns a new handle h3 if u3 has not already been
assigned a handle. If u3 already has a handle, it returns the existing handle. The division
operation is processed in a similar way for each group G, Ĝ, and GT respectively.

– Exponentiation:A queries the exponentiation operation by submitting a handle h1 asso-
ciated with a group element u1 = gx1 and an integer γ . To answer this query,B computes
the element u2 = uγ

1 = gx1γ and returns a new handle h2 if u2 has not already been
assigned to a handle. If u2 already has a handle, it returns the existing handle. The
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exponentiation operation is processed in a similar way for each group G, Ĝ, and GT

respectively.
– Pairing:A queries the pairing operation by submitting two handles h1 and h2 associated

with group elements u1 = gx and û2 = ĝy . To answer this query,B computes the element
uT = e(u1, û2) = e(g, ĝ)xy and returns a new handle h3 if uT is not already assigned to
a handle in the group GT . If uT already has a handle, it returns the existing handle.

Let G, Ĝ, and GT be asymmetric bilinear groups of prime order p with the bilinear map
e : G× Ĝ → GT . A group element u ∈ G can be represented as a multi-variate polynomial,
which indicates the exponent of u relative to some fixed generator g. We can also represent
group elements in Ĝ and GT as similar way. For instance, the general Diffie-Hellman tuple
is represented as the tuple (1, X , Y , XY ) where X and Y are random variables.

The generalized dependence and independence of variables is defined by Freeman [20]
as follows:

Definition 5.1 ([20], Definition D.1) Let P = (p1, . . . , pu), R = (r1, . . . , rw), T =
(t1, . . . , tv), S = (s1, . . . , st ) be tuples of multi-variate polynomials in Fp[X1, . . . , Xn]
where Xi is a random variable. Let f be a multi-variate polynomial in Fp[X1, . . . , Xn]. We
say that f · S is dependent on (P, R, T ) if there exist integers {αi, j }, {βk}, {γ�} such that

u
∑

i=1

w
∑

j=1

αi, j · pir j +
v

∑

k=1

βk · tk +
t

∑

�=1

γ� · Ys�

is nonzero in Fp[X1, . . . , Xn, Y ] but becomes zero when we set Y = f . We say that f · S is
independent of (P, R, T ) if f ·S is not dependent on (P, R, T ). We say that f is independent
of (P, R, T ) if f · {1} is not dependent on (P, R, T ).

In this definition, the multi-variate polynomials pi , r j , tk represent the exponents of group
elements in G, Ĝ,GT respectively, and the polynomial f represents the exponent of the
challenge element in complexity assumptions. Additionally, the polynomials s� represent the
exponents of group elements in which the challenge element can be paired.

By extending the (P, R, T , f )-DDH problem of Boneh et al. [7], Freeman defined the
(P, R, T , f )-DDH problem in G and GT as follows:

Definition 5.2 [20], Definition D.2 Let (p,G, Ĝ,GT , e) be a bilinear group randomly gen-
erated by G(1λ). Let g, ĝ be random generators of G, Ĝ respectively. Let P, R, T , f be as

in Definition 5.1. We select x
R← F

n
p and define the following distribution:

D = (

(p,G, Ĝ,GT , e), gp1(x), . . . , gpu(x), ĝr1(x), . . . , ĝrw(x),

e(g, ĝ)t1(x), . . . , e(g, ĝ)tv(x)), Z0 ← g f (x), Z1
R← G

Wedefine the advantage of an algorithmA that outputs b ∈ {0, 1} in solving the (P, R, T , f )-
decision Diffie-Hellman problem in G to be

Adv(P,R,T , f )-DDH
A (λ) = |Pr[A(D, Z0) = 1] − Pr[A(D, Z1) = 1]|

We define the analogous problem in GT by taking Z0 ← e(g, ĝ) f (x), Z1
R← GT .

The master theorem of Boneh et al. [7] gives the complexity lower bound of the
(P, R, T , f )-DDH problem in GT , but the same argument also works for the (P, R, T , f )-
DDH problem in G as indicated by Freeman [20] using the generalized definition of
independence in Definition 5.1.
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Theorem 5.3 ([7,20]) Let P = (p1, . . . , pu), R = (r1, . . . , rw), T = (t1, . . . , tv) be tuples
of polynomials in Fp[X1, . . . , Xn]. Let f be a polynomial in Fp[X1, . . . , Xn]. Let d =
2 · max(dP , dR, dT , d f ) where d f is the total degree of f and dX = max{d f | f ∈ X} for a
set X. If f is independent of (P, R, T ), then any algorithm A that solves the (P, R, T , f )-
DDH problem in GT with advantage 1/2 must take at least �(

√
p/d − n). If f · R is

independent of (P, R, T ), then the same statement holds for the (P, R, T , f )-DDH problem
in G.

5.2 Analysis of Assumption 1 for (n,�,Q, J)

We analyze the Assumption 1 for (n, ρ, Q, J ) in the generic group model by using The-
orem 5.3. However, we cannot directly apply the theorem to this assumption because the
assumption contains negative exponents. To solve this negative exponent problem, we set
ĥ = ĝ

∏

(i, j)∈Q (bi+b j ) and use ĥ instead of ĝ. In this case, the Assumption 1 is described as
follows:

D = (

g, ga, {gbk }nk=1, {gabk }k∈J , ĥ, {ĥ1/(bi+b j )}(i, j)∈Q
)

, Z0 = gabρ , Z1 = gd .

Let η = ∏

(i, j)∈Q(Bi + Bj ) be a random variable where the maximum degree of η is
n(n − 1)/2. The Assumption 1 is described again as the following sets of multi-variate
polynomials:

P = {1, A} ∪ {Bk}nk=1 ∪ {ABk}k∈J , R = {η} ∪ {η/(Bi + Bj )}(i, j)∈Q, T = {},
f0 = ABρ, f1 = D.

To apply the master theorem, we must show that f0 · R and f1 · R are independent of
(P, R, T ) by following Definition 5.1. We can easily show that f1 · R is independent of
(P, R, T ) by using the fact that the random variable D in f1 does not exist in P, R, T . To
show that f0 · R is independent of (P, R, T ), we derive two sets f0 · R and P · R as follows:

f0 · R = {ηABρ} ∪ {ηABρ/(Bi + Bj )}(i, j)∈Q,

P · R = {η, ηA} ∪ {ηBk}1≤k≤n ∪ {ηABk}k∈J∪
{η/(Bi + Bj )}(i, j)∈Q ∪ {ηA/(Bi + Bj )}(i, j)∈Q∪
{ηBk/(Bi + Bj )}(i, j)∈Q,1≤k≤n ∪ {ηABk/(Bi + Bj )}(i, j)∈Q,k∈J .

The set f0 · R consists of two component types: ηABρ and ηABρ/(Bi + Bj ). Since ηABρ

additionally includes (Bi + Bj ) compared to ηABρ/(Bi + Bj ), these component types are
independent of each other. Thus, we can analyze ηABρ and ηABρ/(Bi + Bj ) separately.

– First, we show that ηABρ is independent of P · R. At this time, since ηABρ includes
random variables A and Bρ , only {ηABk} and {ηABk/(Bi +Bj )} in {e(Pi , R j )} can have
a dependency. However, ηABρ is independent because of ρ /∈ J .

– Next, we show that ηABρ/(Bi + Bj ) is independent of P · R. The subsets of P · R that
contain the random variable A are {ηA}, {ηABk}, {ηA/(Bi + Bj )}, and {ηABk/(Bi +
Bj )}. Here, the subset {ηABk} need not be considered because of ρ /∈ J . The subset
{ηA/(Bi + Bj )} does not need to be considered because it does not contain Bρ . Now
using the remaining subsets {ηA = ηA(Bi + Bj )/(Bi + Bj )} and {ηABk/(Bi + Bj )}, we
may try to compose a linear equation with ηABρ/(Bi + Bj ). Here, the index k cannot be
the index ρ because of ρ /∈ J . Thus the only way to create a linear equation is to derive

ηABρ

(Bρ + Bk)
= ηA(Bρ + Bk)

(Bρ + Bk)
− ηABk

(Bρ + Bk)
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when (ρ, k) ∈ Q. To satisfy the above equation, it is required that k ∈ J when (ρ, k) ∈
Q. However, if (ρ, k) ∈ Q, we have k /∈ J according to the definition of J . Thus
ηABρ/(Bi + Bj ) is independent because ABk /∈ P when (ρ, k) ∈ Q.

Therefore, we have that f0 · R is independent of (P, R, T ).

5.3 Analysis of Assumption 2 for (n,�,Q)

We analyze the Assumption 2 for (n, ρ, Q) in the generic group model by using Theo-
rem 5.3. However, we cannot directly apply the theorem to the assumption because the
assumption contains negative exponents. To solve this negative exponent problem, we set
ĥ = ĝ

∏

(i, j)∈Q (bi+b j ) and use ĥ instead of ĝ. In this case, the Assumption 2 is described as
follows:

D = (

g, ga, {gbi }ni=1, {gabk }1≤k =ρ≤n, ĥ, {ĥci }1≤i =ρ≤n, e(g, ĥ)cρ , {ĥci /(bi+b j )}(i, j)∈Q
)

,

Z0 = e(g, ĥ)acρ , Z1 = e(g, ĥ)d .

Let η = ∏

(i, j)∈Q(Bi + Bj ) be a random variable where the maximum degree of η is
n(n − 1)/2. The Assumption 2 is described again as the following sets of multi-variate
polynomials:

P = {1, A} ∪ {Bk}nk=1 ∪ {ABk}1≤k =ρ≤n,

R = {η} ∪ {ηCi }1≤i =ρ≤n ∪ {ηCi/(Bi + Bj )}(i, j)∈Q, T = {ηCρ},
f0 = ηACρ, f1 = ηD.

To apply the master theorem, we must show that the random variables f0 and f1 are inde-
pendent of (P, R, T ) by following Definition 5.1. We can easily show that f1 is independent
of (P, R, T ) by using the fact that the random variable D in f1 does not exist in P, R, T . To
show that f0 is independent of (P, R, T ), we derive the set P · R as follows:

P · R = {η, ηA} ∪ {ηBk}ni=k ∪ {ηABk}1≤k =ρ≤n ∪ {ηCi , ηACi }1≤i =ρ≤n∪
{ηBkCi }1≤i =ρ≤n,1≤k≤n ∪ {ηABkCi }1≤i =ρ≤n,1≤k≤n∪
{ηCi/(Bi + Bj )}(i, j)∈Q ∪ {ηACi/(Bi + Bj )}(i, j)∈Q∪
{ηBkCi/(Bi + Bj )}(i, j)∈Q,1≤k =ρ≤n ∪ {ηABkCi/(Bi + Bj )}(i, j)∈Q,1≤k =ρ≤n .

We show that f0 = ηACρ is independent of P · R and T . The subsets of P · R that
contain the random variables A,Cρ are {ηACi/(Bi + Bj )} and {ηABkCi/(Bi + Bj )}. Here,
the subset {ηACi/(Bi + Bj )} does not need to be considered because it lacks (Bi + Bj ). By
using the remaining subset {ηABkCi/(Bi + Bj )}, we may try to compose a linear equation
with ηACρ . The only way to create a linear equation is to derive

ηACρ = ηABk1Cρ

(Bρ + Bj )
+ ηABk2Cρ

(Bρ + Bj )

when (ρ, j) ∈ Q, k1 = ρ, and k2 = j . To satisfy the above equation, it is required that
k1 = ρ where k1 is an index for {ABk}. However, we have k1 = ρ from the restriction of the
Assumption 2. Therefore, f0 is independent of (P, R, T ).
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6 Conclusion

From the practical point of view, designing an efficient FE scheme that provides practical
functionality is an important issue. In this paper, we newly defined the concept of FE for set
intersection (FE-SI) in the multi-client setting and proposed two efficient FE-SI schemes in
bilinear groups. The FE-SI scheme issues encryption keys for all clients with a single setup
and issues a function key for two client indexes to a third party that wants to perform the set
intersection. And we also proposed another FE-SI scheme to add additional control to the
function key by limiting the validity of the function key for a specified time period. In addition
to this, we have shown that our FE-SI schemes can be extended to provide functionality such
as associated message encryption, set intersection cardinality, multi-party set intersection,
and forward secrecy.

Because of this research, we have identified interesting problems. The first problem is to
prove the security of our FE-SI schemes under simple assumptions. Since the assumptions
we have introduced are dynamic assumptions that depend on the function key queries of
an attacker, it is necessary to change them to simpler assumptions. The second problem is
to prove our FE-SI schemes in a stronger security model than the static security model. In
particular, it is necessary to prove the security of FE-SI schemes in a security model that does
not requires all function key queries of an attacker in the initial stage. The third problem is
to improve the performance of the decryption algorithm of our FE-SI schemes.
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