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Abstract
Kirkman triple systems (KTSs) are among the most popular combinatorial designs and their
existence has been settled a long time ago. Yet, in comparison with Steiner triple systems,
little is known about their automorphism groups. In particular, there is no known congruence
class representing the orders of a KTS with a number of automorphisms at least close to the
number of points. We partially fill this gap by proving that whenever v ≡ 39 (mod 72), or
v ≡ 4e48 + 3 (mod 4e96) and e ≥ 0, there exists a KTS on v points having at least v − 3
automorphisms. This is only one of the consequences of an investigation on the KTSs with
an automorphism groupG acting sharply transitively on all but three points. Our methods are
all constructive and yield KTSs which in many cases inherit some of the automorphisms of
G, thus increasing the total number of symmetries. To obtain these results it was necessary to
introduce new types of difference families (the doubly disjoint ones) and difference matrices
(the splittable ones) which we believe are interesting by themselves.

Keywords Steiner triple system · Kirkman triple system · Group action · Difference
family · Difference matrix
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1 Introduction

Steiner and Kirkman triple systems are undoubtedly amongst the most popular discrete
structures. A Steiner triple system of order v, briefly STS(v), is a pair (V , B) where V is
a set of v points and B is a set of 3-subsets (blocks) of V with the property that any two
distinct points are contained in exactly one block. A Kirkman triple system of order v, briefly
KTS(v), is an STS(v) together with a resolution R of its block-set B, that is a partition of B
into classes (parallel classes) each of which is, in its turn, a partition of the point-set V . It
has been known since the mid-nineteenth century that a STS(v) exists if and only if v ≡ 1 or
3 (mod 6) [40]. The analogous result for KTSs has been instead solved more than a century
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later: a KTS(v) exists if and only if v ≡ 3 (mod 6). The first published solution was by
Ray-Chauduri and Wilson [53] but the problem was solved at least 8 years earlier by Lu [43]
(see [17], p. 13).

An automorphism of a STS is a permutation of its points leaving the block-set invariant.
Analogously, an automorphism of a KTS is a permutation of its points leaving the resolu-
tion invariant. Thus an automorphism of a KTS is automatically an automorphism of the
underlying STS though the converse is not true in general.

For general background on these topics we refer to [18].
In the next section we will give a brief survey of the automorphism groups of STSs and

KTSs. Looking at the results it will be evident how little we know about KTSs in comparison
with STSs. For instance, it is has been known for close to a century that there is an STS(v)

with an automorphism group of order v for any admissible v. Yet, we are still quite far from
a similar result for KTSs. At the moment the existence of a KTS(v) with an automorphism
group of order v or v−1 is known only when v has a special prime factorization. In particular,
there is no known congruence v ≡ k (mod n) which guarantees the existence of a KTS(v)

with an automorphism group of order close to v.
Adopting the combinatorial-analog of the famous Erlangen program by Klein [34], we

believe that the interest of a discrete structure is proportional to the number of its automor-
phisms. Motivated by this and by the shortage of results mentioned above, in this paper we
deeply investigate Kirkman triple systems which are 3-pyramidal, i.e., admitting an auto-
morphism group acting sharply transitively on all but three points.

Now we make a short digression to explain why adopting this “philosophy" also brings
practical benefits. Given the definition of a discrete structure, the first natural target, which
could be very difficult, is to determine under which constraints it exists. The second is to give
an explicit construction for this structure; in some cases this could be even more difficult.
For instance, thanks to the recent seminal work of Keevash [39], it is known that a Steiner
t-design exists provided that the trivial necessary conditions are satisfied and that its order is
sufficiently large (the case t = 2, due to Wilson [58–60], dates back to the 70’s). This is an
outstanding achievement which seemed completely out of reach only a decade ago; yet, the
probabilistic methods used by Keevash are non-constructive, and do not provide an explicit
lower bound on the order of a t-design that guarantees its existence. On the contrary, the
request to have many symmetries, besides being in compliance with the Erlangen program,
allows to develop constructive algebraic methods. This paper gives the complete recipe to
construct, explicitly, a KTS(v) for any v as in (i), (ii), (iii) of our main result below.

Theorem 1.1 A necessary condition for the existence of a 3-pyramidal KTS(v) is that v =
24n + 9 or v = 24n + 15 or v = 48n + 3 for some n which, in the last case, must be of the
form 4em with m odd. This condition is also sufficient in each of the following cases:

(i) v = 24n + 9 and 4n + 1 is a sum of two squares;
(ii) v = 24n + 15 and either 2n + 1 ≡ 0 (mod 3) or the square-free part of 2n + 1 does

not have any prime p ≡ 11 (mod 12);
(iii) v = 48n + 3.

In particular, (ii) and (iii) allow us to reach our main target of getting some families of highly
symmetric KTSs whose orders fill a congruence class.

Corollary 1.2 There exists a 3-pyramidal KTS(v) for all v ≡ 39 (mod 72), and for all v ≡
4e48 + 3 (mod 4e96) whatever the non-negative integer e is.
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We point out that in many cases the constructed 3-pyramidal KTSs inherit some auto-
morphisms of the group G acting sharply transitively on all but three points. This permits to
increase their number of symmetries considerably (see Remarks 11.2, 11.4 and 11.6).

After the brief survey of Sect. 2 concerning some results on the automorphism groups
of Steiner and Kirkman triple systems, the article will be structured as follows. In Sect. 3
we provide the difference methods to construct a 3-pyramidal KTS and we prove that each
group having a 3-pyramidal action on a KTS fixes one parallel class and acts transitively on
the remaining ones. We also prove that such a group must have exactly three involutions, and
these involutions are pairwise conjugate. Groups with this property will be called pertinent.
Although in literature there is no lack of articles on groups with three involutions (see, for
example, [36,41]), none of them allows us to determine the set of “relevant” orders. We prove
(Theorem 3.9) that such orders are precisely those of the form 12n + 6 or 4α(24n + 12), and
from this we partially derive the necessary condition in Theorem 1.1. The proof of the “only
if" part of Theorem 3.9 is purely group theoretical and for this reason the whole Sect. 4 is
dedicated to it. However, its reading is not necessary for understanding the rest of the article,
whose nature is purely combinatorial.

The constructive part of Theorem 1.1 will be proven in Sect. 11 and it is the result of
numerous direct constructions (Sects. 6, 7 and the Appendix) and recursive constructions
(Sects. 8, 9, 10). These results are preceded by a brief section (Sect. 5) useful for understanding
thenotation and terminologyused throughout the rest of the paper. The recursive constructions
required the introduction of new concepts such as doubly disjoint difference family and
splittable difference matrix which we believe may be important by themselves.

The article concludes (Sect. 12) with a short list of open problems.

2 A brief survey of the automorphism groups of Steiner and Kirkman
triple systems

The literature on Steiner and Kirkman triple systems having an automorphism with a pre-
scribed property or an automorphism group with a prescribed action is quite extensive.

For instance the set of values of v for which there exists an STS(v) with an involutory
automorphism fixing exactly one point (reversed STS) has been established in [25,54,57]: it
exists if and only if v ≡ 1, 3, 9 or 19 (mod 24). Results concerning the full automorphism
group of a STS have been obtained by Mendelsohn [44] and Lovegrove [42].

Here, we just provide a brief survey of what is known on the existence of systems whose
number of automorphisms are at least close to the number of points.

Adopting a terminology coined byMendelsohn andRosa [45], we say that a combinatorial
design is f -pyramidal if it admits an automorphism group G fixing f points and acting
sharply transitively on the others. If f = 0 one usually speaks of a regular design and, more
specifically, of a cyclic design if the group G is cyclic. If f = 1 one usually speaks of a
1-rotational design.

It was proved a long time ago [51] that there exists a cyclic STS(v) for all admissible
values of v except v = 9. On the other hand the unique STS(9), that is the point-line design
associated with the affine plane of order 3, is clearly regular under the action of Z

2
3. Thus

there exists a regular STS(v) for all admissible values of v.
The analogous problemof determining the set of values of v forwhich there exists a regular

KTS(v) is almost completely open and it appears to be very difficult. The few known results
on this problem are the following. The parallel classes of the point-line design associated
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with the n-dimensional affine space over the field of order 3 clearly give a KTS(3n) that is
regular under the action of Z

n
3. A necessary condition given in [46] for the existence of a

cyclic KTS(6n+3) is that 2n+1 is not a prime power congruent to 5 (mod 6). This condition
is also sufficient up to n = 32 [46] and when all prime factors of n are congruent to 1 (mod
6) [31].

The existence of a 1-rotational STS(v) has been thoroughly investigated in [3,6,47,52]
leaving the problem open only for the orders v satisfying, simultaneously, the following
conditions: v = (p3 − p)n + 1 ≡ 1 (mod 96) with p a prime; n �≡ 0 (mod 4); the odd part
of v − 1 is square-free and without prime factors ≡ 1 (mod 6).

The 1-rotational KTSs have a very nice structure. Indeed a group with a 1-rotational
action on them (necessarily binary, i.e., admitting exactly one involution) is transitive on the
parallel classes. On the other hand, as in the regular case, very little is known about their
existence which has been proved only for orders v of the the following types: v is a power
of 3 (the already mentioned regular KTS(3n) is also 1-rotational); all prime factors of v−1

2
are congruent to 1 (mod 12) [13]; v = 8n + 1 with all the prime factors of n congruent to 1
(mod 6) [14].

An f -pyramidal STS(v) with f �= 0 may exist only for f ≡ 1 or 3 (mod 6) with
f < v/2 or f = v (see Lemma 1.1 in [12]). The existence problem for 3-pyramidal STSs
was completely settled in [12].

Theorem 2.1 There exists a 3-pyramidal STS(v) if and only if v ≡ 7, 9, 15 (mod 24) or
v ≡ 3, 19 (mod 48).

As an obvious consequence of Theorem 2.1, a 3-pyramidal KTS(v) may exist only when
v ≡ 9 (mod 24) or v ≡ 15 (mod 24) or v ≡ 3 (mod 48). The main result of this paper
(Theorem 1.1) provides, in particular, a complete answer in the last case v ≡ 3 (mod 48).

Finally, a STS(v) is called 1-transrotational if it has an automorphism group G that fixes
exactly one point, switches two points, and acts sharply transitively on the remaining v − 3.
This terminology was first used in [29] under the assumption that G is cyclic, though G
just need to be binary. One cannot fail to notice a certain kinship between 3-pyramidal and
1-transrotational STSs, but apart from the fact that their groups are deeply different, the
sets of orders for which they exist do not coincide. Indeed it was proved in [29] that a 1-
transrotational STS(v) under the cyclic group exists if and only if v ≡ 1, 7, 9 or 15 (mod
24). It is easy to check that the same holds if we remove the assumption that the group be
cyclic. As far as we are aware, nobody studied 1-transrotational KTS(v). Considering the
above, they might exist only for v ≡ 9 or 15 (mod 24) but it is not difficult to exclude the
case v ≡ 15 (mod 24). This will be shown in a paper in preparation [11] where we will deal
with the case v ≡ 9 (mod 24).

3 Difference families and 3-pyramidal Kirkman triple systems

In this section we show that the existence of a 3-pyramidal KTS over a group G is equivalent
to constructing a suitable difference family (DF) in G relative to a partial spread, a concept
introduced by the second author in [6]. We point out that throughout the paper, except for
Sect. 4, every group will be denoted additively.

A partial spread of a group G is a set � of subgroups of G whose mutual intersections are
trivial. If τ = {de11 , . . . , denn } is the multiset (written in “exponential" notation) of the orders
of all subgroups belonging to �, we say that � is of type τ or a τ -partial spread. A spread
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(or partition) of G is a partial spread whose members between them cover the whole group
G.

The list of differences of a triple B = {x, y, z} of elements of G is the multiset �B of size
6 defined by

�B = {±(x − y),±(x − z),±(y − z)}.
The list of differences of a family F of 3-subsets of G, denoted by �F, is the multiset union
of the lists of differences of all its triples. Also, the flatten of F , denoted by �(F), is the
multiset union of all the triples of F.

�F =
⋃

B∈F
�B; �(F) =

⋃

B∈F
B.

A (G, �, 3, 1) difference family (DF) is a familyF of 3-subsets of G (base blocks) whose
list of differences is the set of all elements of G not belonging to any member of the partial
spread �. If � = {H} we write (G, H , 3, 1)-DF or simply (G, 3, 1)-DF when H = {0}. If
� is a partial spread of type τ , we also use the notation (G, τ, 3, 1)-DF.

If F is a (G, H , 3, 1)-DF, then its size is clearly equal to |G\H |
6 and then its flatten �(F)

has size |G\H |
2 . Thus, if J is a subgroup of H of order 2, one can ask whether �(F) is a

complete system of representatives for the left cosets of J that are not contained in H . In the
affirmative case we say that F is J -resolvable.

Definition 3.1 Let F be a (G, H , 3, 1)-DF and let J be a subgroup of H of order 2. We say
that F is J -resolvable if its flatten is a complete system of representatives for the left cosets
of J in G that are not contained in H . So, equivalently, if we have �(F) + J = G \ H .

We note that the development of a J -resolvable (G, H , 3, 1)-DF is a Kirkman frame [56]
admitting G as a sharply point transitive automorphism group.

Amultiplier of a J -resolvable (G, H , 3, 1)-DF, say F , is an automorphismμ ofG leaving
F invariant. We say that μ is a strong multiplier if it fixes H element-wise.

The following fact is straightforward.

Proposition 3.2 Let G = Hn ≥ · · · ≥ H1 ≥ J be a chain of subgroups of G with J of
order 2. If there exists a J -resolvable (Hi+1, Hi , 3, 1)-DF, say Fi , for 1 ≤ i ≤ n − 1, then

F =
n−1⋃

i=1

Fi is a J -resolvable (G, H1, 3, 1)-DF.

Furthermore, F inherits the strong multipliers of Fn−1.

Difference families are a crucial topic in Design Theory [2,17]. In particular, as a special
case of Theorem 2.1 in [12], it is possible to characterize the 3-pyramidal STS(6n + 3) in
terms of difference families as follows.

Theorem 3.3 There exists a 3-pyramidal STS(6n + 3) if and only if there exists a (G,

{23, 3e}, 3, 1)-DF for a suitable group G of order 6n with exactly three involutions, and
a suitable integer e.

In the following lemma we recall what the 3-pyramidal STS(6n + 3) generated by a
(G, {23, 3e}, 3, 1)-DF looks like.

Lemma 3.4 Up to isomorphism, (V , B) is a STS(6n + 3) that is 3-pyramidal under G if and
only if the following facts hold:
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(i) V = G ∪ {∞1,∞2,∞3};
(ii) the action of G on V is the addition on the right with the rule that ∞i + g = ∞i for

each g ∈ G and for i = 1, 2, 3;
(iii) G has exactly three involutions, say j1, j2, j3;
(iv) a system of representatives for the G-orbits on B is of the form

{B∞, B1, B2, B3} ∪ H ∪ F

where:

B∞ = {∞1,∞2,∞3};
Bi = {∞i , 0, ji } for i = 1, 2, 3;
H is a set of e subgroups of G of order 3;
F is a (G, �, 3, 1)-DF with � = {{0, j1}, {0, j2}, {0, j3}} ∪ H.

Definition 3.5 Throughout this paper a finite group G will be called “pertinent” if it has
precisely three involutions, and the three of them are pairwise conjugate in G.

Obviously, a pertinent group is necessarily non-abelian. Up to isomorphism, the smallest
pertinent group is D6, i.e., the dihedral group of order 6. The next one is A4, the alternating
group of degree 4.

As already said, we prefer to write every group in additive notation. So, differently from
the mostly used representation, we prefer to see D6 as the additive group D with underlying
set Z2 ×Z3 and operation law +̂ defined by (a, b) +̂ (c, d) = (a+c, (−1)cb+d). Adopting
this representation, it is easy to see that the difference −̂ in D works as follows:

(a, b) −̂ (c, d) = (a − c, (−1)c(b − d)).

The three involutions of D are (1, 0), (1, 1) and (1, 2). The fact that

(1, 1) +̂ (1, 0) −̂ (1, 1) = (1, 2) and (1, 2) +̂ (1, 0) −̂ (1, 2) = (1, 1)

confirms that D is pertinent.
The alternating group A4 will be also represented additively as the first term of an infinite

series of pertinent additive groups that we will construct in the proof of the “if" part of
Theorem 3.9.

The crucial ingredient to characterize and construct the 3-pyramidalKTSs are some special
(G, {23, 3}, 3, 1)-DFs with G pertinent defined as follows.

Definition 3.6 Let F be a (G, {23, 3}, 3, 1)-DF with G pertinent and let J be a subgroup of
G of order 2. We say that F is J -resolvable if there exists a, b ∈ G such that

• J , a + J − a and b + J − b are the three subgroups of order 2 of G;
• �(F) ∪ {0, a, b} is a complete system of representatives for the left cosets of J in G.

The following fact is straightforward.

Proposition 3.7 Let J be a subgroup of order 2 of a pertinent group G and let H be a
pertintent subgroup of G containing J . If F0 is a J -resolvable (H , {23, 3}, 3, 1)-DF and F
is a J -resolvable (G, H , 3, 1)-DF, then F ∪ F0 is a J -resolvable (G, {23, 3}, 3, 1)-DF.

Speaking of a (G, {23, 3}, 3, 1)-RDF with G pertinent, we will mean a J -resolvable
(G, {23, 3}, 3, 1)-DF with J one of the three subgroups of G of order 2.

The following result gives a characterization of the 3-pyramidal KTSs and, more impor-
tantly, a way to construct them.
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Theorem 3.8 There exists a 3-pyramidal KTS(6n + 3) with n > 0, if and only if there exists
a (G, {23, 3}, 3, 1)-RDF for a suitable pertinent group G of order 6n.

Proof (	⇒). Let (V , B, R) be a KTS(6n + 3) that is 3-pyramidal under G. Thus (V , B)

is a STS(6n + 3) that is 3-pyramidal under G, hence we can assume that V and B satisfy the
conditions listed in Lemma 3.4.

Let P be the parallel class containing the block B∞. Obviously, we have P + g = P for
each g ∈ G. It follows that the distinct right translates of the block H of P through 0 form
a partition of G. This clearly implies that H is a subgroup of G and that the blocks of P are
B∞ and all the right cosets of H in G.

Now let Q be the parallel class of R containing the block B1 = {∞1, 0, j1}. Since G
fixes ∞1, we see that the G-stabilizer of Q coincides with the G-stabilizer of B1 that is
J := {0, j1}. Thus, for i = 2, 3, the block of Q through ∞i is of the form {∞i , gi , gi + j1}
for a suitable group element gi . This block necessarily belongs to the orbit of Bi , hence we
have {∞i , 0, ji } + ti = {∞i , gi , gi + j1} for a suitable ti . This equality implies that

either

{
ti = gi
ji + ti = gi + j1

or

{
ti = gi + j1
ji + ti = gi

In both cases we get ji = gi + j1 − gi , hence the three involutions j1, j2, j3 are pairwise
conjugate, i.e., G is pertinent.

The fact that the G-stabilizer of Q is J also implies that the 2n − 2 triples of Q not
containing the “points at infinity" can be grouped into pairs {Ai , Ai + j1}, 1 ≤ i ≤ n − 1,
and that the G-orbit Orb(Q) of Q has length |G|

2 = 3n. Then, given that the resolution of
a KTS(6n + 3) has size 3n + 1, we deduce that R = {P} ∪ Orb(Q). Also, if we set
F = {Ai | 1 ≤ i ≤ n − 1}, we can claim that a set of base blocks for B is given by

{B∞, B1, B2, B3, H} ∪ F .

It follows, by condition (iv) in Lemma 3.4, that F is a (G, {23, 3}, 3, 1)-DF.
Given that the blocks of Q partition V , we have (�(F) ∪ {0, g2, g3}) + J = G. This

means that �(F) ∪ {0, g2, g3} is a complete system of representatives for the left cosets of
J in G, i.e., F is J -resolvable.

(⇐	). LetG be a pertinent group of order 6nwhose involutions are j1, j2, j3, and assume
that F is a {0, j1}-resolvable (G, {23, 3}, 3, 1)-DF. There are suitable group elements g2, g3
such that ji = gi + j1 − gi , for i = 2, 3, and (�(F) ∪ {0, g2, g3}) + {0, j1} = G. Let H be
the subgroup of G of order 3 belonging to the partial spread associated with F . Two parallel
classes of the STS(6n + 3) generated by F are clearly the following:

P = {B∞} ∪ {right cosets of H in G};
Q = {{∞i , gi , gi + j1} | i = 1, 2, 3

} ∪ {
A, A + j1 | A ∈ F}

.

Their G-stabilizers are, respectively, G and {0, j1} so that their G-orbits have size 1 and 3n.
It easily follows that {P} ∪ Orb(Q) is aG-invariant resolution of the STS(6n+3) generated
by F , namely a 3-pyramidal KTS(6n + 3). �

In view of Theorem 3.8, it is important to determine the set of pertinent numbers, i.e., the
set of orders of the pertinent groups.

Theorem 3.9 There exists a pertinent group of order n if and only if n ≡ 6 (mod 12) or
n = 4αm with α > 0 and m ≡ 3 (mod 6).
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Proof The proof of the “only if" part is purely group theoretical and for convenience it is
postponed to Sect. 4. Here we prove the “if" part.

If n ≡ 6 (mod 12), we have n = 6m for a suitable odd integer m. Then, recalling that
the dihedral group D is pertinent, it is clear that D × H is a pertinent group of order 6m for
every group H of order m.

Now let n = 4αm with α > 0 andm ≡ 3 (mod 6). Consider the matrix� =
⎛

⎝
1 0 0
0 0 1
0 −1 −1

⎞

⎠

and let Gα be the group with underlying set Z3 × Z2α × Z2α and operation +̂ defined by the
rule

(a, b, c) +̂ (d, e, f ) = (a, b, c) · �d + (d, e, f ).

This is, up to isomorphism, the outer semidirect product of Z
2
2α and Z3 with respect to the

group homomorphism θ : Z3 −→ Aut(Z2
2α ) defined by the rule

θ(1)(x, y) = (−y, x − y) ∀(x, y) ∈ Z
2
2α .

The difference of two triples (a, b, c) and (d, e, f ) of the group has a convenient form; it is
the usual difference in the abelian group Z3 × Z

2
2α multiplied by the inverse of �d :

(a, b, c) −̂ (d, e, f ) = (a − d, b − e, c − f ) · �−d . (3.1)

More explicitly, we have

(a, b, c) −̂ (d, e, f ) =

⎧
⎪⎨

⎪⎩

(a − d, b − e, c − f ) if d = 0

(a − d, e − b + c − f , e − b) if d = 1

(a − d, f − c, b − e + f − c) if d = 2

It is a simple exercise to check that Gα has exactly three involutions that are

(0, 2α−1, 0), (0, 0, 2α−1), (0, 2α−1, 2α−1)

and that they are pairwise conjugate. Indeed we have:

(1, 0, 0) +̂ (0, 2α−1, 0) −̂ (1, 0, 0) = (0, 2α−1, 2α−1);
(2, 0, 0) +̂ (0, 0, 2α−1) −̂ (2, 0, 0) = (0, 2α−1, 2α−1)

Thus Gα is a pertinent group of order 4α3. Then, if H is any group of odd order m, it is
clear that the direct product Gα × H is a pertinent group of order 3 · 4αm whose involutions
are (0, 2α−1, 0, 0), (0, 0, 2α−1, 0) and (0, 2α−1, 2α−1, 0). �

The alternating group A4 can be seen, up to isomorphism, as the group G1.

4 Pertinent groups

Here we prove the “only if" part of Theorem 3.9. Considering that the arguments used are
purely group theoretical, the reading of this section can be postponed to a later time without
compromising the understanding of the rest of the article. Also, we point out that in this
section, unlike the rest of the paper, we prefer to denote groups in multiplicative notation.

In the following, let G be a pertinent group and denote by K the subgroup of G generated
by the three involutions i, j, k. Let CG(K ) be the centralizer of K in G, that is

CG(K ) = {g ∈ G : g−1kg = k for every k ∈ K },
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and setC = CG(K ). Clearly, K is a characteristic subgroup ofG, so both K andC are normal
in G. Since G acts on {i, j, k} by conjugation with kernel C , the quotient G/C is isomorphic
to a transitive subgroup of S3, so either G/C ∼= S3 or G/C ∼= A3 (here A3 denotes the
alternating group of degree 3). Observe in particular that G has an element of order a power
of 3 acting “cyclically” on the involutions (meaning that it sends i to j , j to k and k to i). Recall
that if H is a subgroup of G the “normalizer” of H in G is NG(H) = {g ∈ G : Hg = H},
where Hg = g−1Hg is a “conjugate” of H in G.

We will make use of the following well-known result in group theory.

Lemma 4.1 (Frattini’s Argument) If X is a normal subgroup of G and Q is a Sylow p-
subgroup of X, then G = XNG(Q).

Westart providing sufficient conditions for a pertinent group tohave subgroupsor quotients
that are pertinent.

Lemma 4.2 Let H be a subgroup of G. Then

(i) If H has even order and HC = G, then H is pertinent.
(ii) If Q is a Sylow p-subgroup of C and H = NG(Q), then H is pertinent.
(iii) If H has even order and contains a Sylow 3-subgroup of G, then H is pertinent.
(iv) Suppose the involutions of G commute pairwise. If H is normal in G and |H | is odd

then G/H is pertinent.

Proof (i) Since H has even order, it contains at least one involution. Considering that
HC = G, it follows that the action of H on the involutions is transitive. Therefore,
K ≤ H and H is pertinent.

(ii) By Lemma 4.1, we have that HC = G. Since Q ≤ C , it follows that K centralizes Q,
hence K ≤ H , therefore H has even order. By point (1), we obtain that H is pertinent.

(iii) Since |H | is even, H contains at least one involution. Since |G/C | is a multiple of 3,
a Sylow 3-subgroup S of G is not contained in C , hence S acts transitively on {i, j, k}.
Therefore, H contains all three involutions and then it is pertinent.

(iv) Suppose H is normal of odd order in G and the involutions commute pairwise. Denote
by i, j, k the involutions of G. Since i j = j i , the element i j is an involution distinct
from i and from j so i j = k and the elements i H , j H , kH ∈ G/H are involutions of
G/H and G/H acts transitively by conjugation on them (because G acts transitively by
conjugation on i, j, k), moreover they are pairwise distinct, for example i H �= j H
because i−1 j = i j = k /∈ H . We are left to show that G/H has precisely three
involutions. If xH is an involution of G/H then x2 ∈ H so x has order 2t with t
odd (being |H | odd), xt is an involution of G, and xH = (xH)t = xt H . This means
that the involutions of G/H are of the form yH with y an involution in G, so they are
precisely i H , j H , kH and we deduce that G/H is pertinent. �
For a pertinent group of order 2n ·d with d odd, the following two lemmas give us sufficient

or necessary conditions for n to be even or odd.

Lemma 4.3 Suppose G has a normal 2-subgroup H of order 2m. Then m is even.

Proof G has an element g of order a power of 3 acting cyclically on the three involutions.
We claim that g does not fix any non-trivial element of H . Indeed if 1 �= h ∈ H is fixed by g
then a suitable power of h is an involution fixed by g, but g does not fix any involution. This
implies that the 〈g〉-orbits of H distinct from {1} have size divisible by 3 so 2m = |H | ≡ 1
(mod 3) therefore m is even. �
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Lemma 4.4 Suppose 4 divides |G|. Then K is isomorphic to the Klein group Z2 × Z2.
Moreover writing |G| = 2n · d with d odd, if n is even then G/C ∼= A3, and if n is odd then
G/C ∼= S3.

Proof First, we show that i, j, k commute pairwise, so that K = {1, i, j, k} ∼= Z2 ×Z2. It is
enough to show that two involutions, say i and j , commute, because then i j has order 2 so
i j = k (it cannot be i j = i nor i j = j) therefore i and j commute with k. If this is not the
case, then C must have odd order (otherwise an involution in C should commute with the
others). But then the order of G/C is a multiple of 2n ≥ 4 contradicting the fact that G/C is
isomorphic to either A3 or S3.

Write |G| = 2n · d with d odd. We know that G/C is isomorphic to either A3 or S3.
Letting Q be a Sylow 2-subgroup of C , N = NG(Q) is pertinent by Lemma 4.2, so writing
|Q| = 2m , m is even by Lemma 4.3. If G/C ∼= A3 then Q is a Sylow 2-subgroup of G, so
n = m is even. Conversely if G/C ∼= S3 then n = m + 1 is odd. �

To prove the main result of this section, we need the following result.

Lemma 4.5 Suppose |G| = 2n ·d where n ≥ 3 is odd. Then G contains a pertinent subgroup
L of order 2n · 3s for some positive integer s.
Proof Let Q be a Sylow 2-subgroup of C and recall that |G/C | ∈ {3, 6}. Therefore, if
|Q| = 2m , then m = n or n − 1 according to whether |G/C | = 3 or 6. By Lemma 4.2,
we have that N = NG(Q) is a pertinent group, and since Q is normal in N , by Lemma 4.3
we have that m is even, hence m = n − 1 (since n is odd by assumption) and |G/C | = 6.
Considering that Q ≤ C ∩ N , and G = NC (by Lemma 4.1), it follows that |N/Q| is a
multiple of |N/(C ∩ N )| = |NC/C | = |G/C | = 6, hence 2n divides |N |.

We recall that every group of singly even order has a subgroup of index 2 (see, e.g.,
Theorem 1.35 in [35]). Thus, since |N/Q| ≡ 2 (mod 4), there exists a normal subgroup
D/Q of N/Q of index 2. In particular, all the Sylow 3-subgroups of N/Q are contained
in D/Q, so the number of Sylow 3-subgroups of N/Q is odd. Let P/Q be a subgroup of
N/Q of order 2. Since P/Q acts by conjugation on the family consisting of the Sylow 3-
subgroups of N/Q, there exists one of them, say H/Q, normalized by P/Q. This implies
that PH/Q = (P/Q)(H/Q) ≤ N/Q hence L = PH ≤ N . Moreover |L| = |Q| · |L/Q| =
|Q| · |P/Q| · |H/Q| = 2n · 3s where 3s = |H/Q|. Now L has even order and contains a
Sylow 3-subgroup of N , hence L is pertinent by Lemma 4.2. �

We are now ready to prove the “only if" part of Theorem 3.9.

Theorem 4.6 If G is a pertinent group of order 2nd with d odd and n ≥ 2, then n is even.

Proof We prove the result by contradiction. Let G be a counterexample of minimal order,
that is, assume that there exists a pertinent group G such that |G| = 2n · d is minimal with
respect to the property that both n and d are odd, and n ≥ 3. By Lemma 4.5, we have that G
has a pertinent subgroup of order 2n · 3s for some positive integer s, so by the minimality of
|G| we must have d = 3s . Recall that K ∼= C2 × C2 and G/C ∼= S3 by Lemma 4.4.

Let S be a Sylow 3-subgroup of C and note that |S| = 3s−1 since |G/C | = 6. Now,
by Lemma 4.2 we have that N = NG(S) is pertinent; in particular, K ≤ N hence 4 is a
divisor of |N |. Also, since CN = G (by Lemma 4.1) and C ∩ N = CN (K ), it follows
that N/CN (K ) = N/(C ∩ N ) ∼= NC/C = G/C ∼= S3. Considering that S is a Sylow
3-subgroup of CN (K ) of order 3s−1, we have that |N | = 2m · 3s , for some 2 ≤ m ≤ n. Also,
by Lemma 4.4, it follows that m is odd. Finally, since S is a normal subgroup of N of odd
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order, Lemma 4.2 guarantees that N/S is pertinent. Since |N/S| = 2m · 3 and m ≥ 3 is odd,
by the minimality of |G| we must have s = 1, hence |G| = 2n · 3.

We are reduced to the case |G| = 2n · 3. Let H := CG(i) be the centralizer of i in G.
We have |G : H | = 3 because i has 3 conjugates in G, in other words |H | = 2n and H is a
Sylow 2-subgroup of G. Let P be a Sylow 3-subgroup of G, then P = 〈g〉 is a cyclic group
of order 3. Clearly g /∈ H because |H | = 2n , so P acts transitively on the three involutions
of G. We prove that NG(P) = P . Suppose for a contradiction that NG(P) �= P , then there
is an involution, say i , normalizing P , hence 〈P, i〉 is a group of order 6 containing all three
involutions, hence K ≤ 〈P, i〉, which is a contradiction since |K | = 4. So NG(P) = P .
We now prove that H is normal in G. Since NG(P) = P , the subgroup P has precisely
|G : P| = 2n conjugates in G therefore G has precisely (|P| − 1) · 2n = 2 · 2n elements of
order 3. Since |G| = 3 · 2n we deduce that the number of elements of G of order not equal to
3 is 2n hence there is room in G for only one Sylow 2-subgroup. We deduce that the Sylow
2-subgroups are normal hence H � G, so n is even by Lemma 4.3. This is a contradiction
and the result is proved. �

5 Notation and terminology

A maximal prime power divisor of any integer n will be called a component of n. As it is
standard, given a prime power q , we denote byFq the field of order q . We extend this notation
to any integer n > 1 denoting by Fn the ring which is direct product of all the fields whose
orders are the components of n. Thus, for instance, F45 = F5 ×F9. The additive group of the
ring Fn will be denoted by Vn and we set V ∗

n := Vn \{0}. If n = 1, then Vn is the trivial group
with one element. If d is a divisor of n, any subgroup S of Vn of order d is clearly isomorphic
to Vd and therefore, by abuse of notation, such a subgroup S will be often denoted by Vd .

The group of units of Fn will be denoted by U(Fn) and its order by ψ(n). Obviously, in
the particular case that n = q is a prime power, U(Fn) is nothing but the multiplicative group
F

∗
q of the field Fq and ψ(n) = q − 1. Otherwise, if n has more than one component, say

q1, . . . , qω, then U(Fn) = F
∗
q1 × · · · × F

∗
qω

and ψ(n) = ∏ω
i=1(qi − 1). The set of non-zero

squares and of non-squares of the field Fq will be denoted by F
�
q and F

��
q , respectively.

If A, B are non-empty subsets ofFn , then AB will denote themultiset {ab | a ∈ A; b ∈ B}.
If A = {a} or B = {b}, then AB will be written as aB or Ab, respectively.

Let q1, …, qω be the components of an odd integer n. For every non-empty I belonging
to the power-set 2{1,...,ω}, choose an element c(I ) ∈ I and consider the subset S(I ) of V ∗

n
defined as follows:

S(I ) = S1(I ) × · · · × Sω(I ) with S j (I ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{0} if j /∈ I ;
F

�
q j

if j = c(I );
F

∗
q j

if j ∈ I \ {c(I )}.

Then define S :=
⋃

I∈2{1,...,ω}\{∅}
S(I ). Such a set S has size n−1

2 and then will be called a

halving of V ∗
n . It is easy to see that it has the following property:

x, y ∈ Fn and xi yi ∈ F
��
qi for 1 ≤ i ≤ ω 	⇒ {x, y}S = V ∗

n . (5.1)
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Given a group G and an element s of Fn , the endomorphism of G × Vn mapping (x, y)
to (x, ys) will be denoted by μs . It is evident that if s ∈ U(Fn), then μs is an automorphism
of G × Vn .

Given α ≥ 1, remember that throughout the paper Gα will denote the group defined in the
“if" part of Theorem 3.9. By canonical involution of Gα we will mean (0, 2α−1, 2α−1). Also,
the canonical involution of Gα × Vn will be (0, 2α−1, 2α−1, 0). Speaking of a (G, H , 3, 1)-
RDF with G = Gα or G = Gα × Vn , we will mean a {0, j}-resolvable (Gα, H , 3, 1)-DF
where j is the canonical involution of G.

6 The smallest examples

The five smallest pertinent values of n are 6, 12, 30, 36 and 48. In the following, for each of
these values, a 3-pyramidal KTS(n + 3) will be given by means of a (G, {23, 3}, 3, 1)-RDF
withG = D,G1, D×V5,G1×V3 andG2, respectively. Byway of illustration, in the first two
cases we follow the instructions of Theorem 3.8 and we concretely construct a 3-pyramidal
KTS(9) and a 3-pyramidal KTS(15).

The realizations of these five small KTSs allow us to state the following.

Proposition 6.1 Assume that F is a (G, H , 3, 1)-RDF with G pertinent of order n and H
isomorphic to one of the following groups: D, G1, D × V5, G1 × V3 and G2. Then there
exists a 3-pyramidal KTS(n + 3).

Furthermore, if M is a group of m strong multipliers of F, the obtained KTS(n+3) admits
at least mn automorphisms.

Proof The first assertion follows immediately from Proposition 3.7. For the second assertion,
it is enough to observe that the semidirect product G � M is a group of automophisms of the
obtained KTS(n + 3). �

Proposition 6.1 will enable us to construct infinite classes of 3-pyramidal KTSs in the
subsequent sections.

6.1 A 3-pyramidal KTS(9)

The set of all non-trivial subgroups of D is a spread of type {23, 3}. Thus the empty family
can be seen as a J -resolvable (D, {23, 3}, 3, 1)-DF with J any of the three subgroups of D
of order 2. Applying Theorem 3.8 with ( j1, j2, j3) = ((1, 0), (1, 1), (1, 2)) and (g2, g3) =
((1, 2), (1, 1)), we get a 3-pyramidal representation of the unique KTS(9) (that is the affine
plane of order 3) with point-set D ∪ {∞1,∞2,∞3} and the following parallel classes:

{∞1,∞2,∞3} {(0, 0), (0, 1), (0, 2)} {(1, 0), (1, 1), (1, 2)}
{∞1, (0, 0), (1, 0)} {∞2, (0, 1), (1, 2)} {∞3, (0, 2), (1, 1)}
{∞1, (0, 1), (1, 1)} {∞2, (0, 2), (1, 0)} {∞3, (0, 0), (1, 2)}
{∞1, (0, 2), (1, 2)} {∞2, (0, 0), (1, 1)} {∞3, (0, 1), (1, 0)}.

6.2 A 3-pyramidal KTS(15)

The set of all non-trivial subgroups of G1 is a spread of this group of type {23, 34}. Let
� be the {23, 3}-partial spread obtained from it by removing all the 3-subgroups except
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H = {(0, 0, 0), (1, 0, 0), (2, 0, 0)}. Consider the 3-subset B = {(0, 0, 1), (1, 1, 0), (2, 1, 1)}
of G1. Looking at its “difference table"

−̂ (0, 0, 1) (1, 1, 0) (2, 1, 1)

(0, 0, 1) • (2, 0, 1) (1, 0, 1)
(1, 1, 0) (1, 1, 1) • (2, 1, 1)
(2, 1, 1) (2, 1, 0) (1, 1, 0) •

we see that�B is the set of all the 3-elements ofG1 not belonging to H . Thus the singleton
F = {B} is a (G1, �, 3, 1)-DF.

Now consider the subgroup J = {(0, 0, 0), (0, 1, 1)} of G1. The other two subgroups of
order 2 are a + J − a and b + J − b with a = (1, 1, 1) and b = (2, 0, 1). Now partition G1

into the left cosets of J indicating in boldface the elements of B ∪ {0, a, b}:

{(0, 0, 0), (0, 1, 1)}, {(0, 0, 1), (0, 1, 0)}, {(1, 0, 0), (1, 1, 1)}},
{(1, 0, 1), (1, 1, 0)}, {(2, 0, 0), (2, 1, 1)}, {(2, 0, 1), (2, 1, 0)}.

We see that B ∪ {0, a, b} is a system of representatives for the left cosets of J in G1, i.e.,
F is J -resolvable. Following the instructions given in the proof of the “if" part of Theorem
3.8, we obtain the following 3-pyramidal representation of a KTS(15) where, to save space,
each element (a, b, c) ∈ G1 is written as abc.

{∞1, ∞2, ∞3} {000, 100, 200} {001, 101, 201} {010, 110, 210} {011, 111, 211}
{∞1, 000, 011} {∞2, 111, 100} {∞3, 201, 210} {001, 110, 211} {010, 101, 200}
{∞1, 001, 010} {∞2, 110, 101} {∞3, 200, 211} {000, 111, 210} {011, 100, 201}
{∞1, 100, 110} {∞2, 210, 200} {∞3, 011, 001} {111, 201, 010} {101, 211, 000}
{∞1, 101, 111} {∞2, 211, 201} {∞3, 010, 000} {110, 200, 011} {100, 210, 001}
{∞1, 200, 201} {∞2, 001, 000} {∞3, 110, 111} {210, 011, 101} {211, 010, 100}
{∞1, 211, 210} {∞2, 010, 011} {∞3, 101, 100} {201, 000, 110} {200, 001, 111}

It is known that, up to isomorphism, there exist exactly seven KTS(15), i.e., there are seven
non-isomorphic solutions to the well-knownKirkman fifteen schoolgirls problem. It is possi-
ble to show, applying the proposition on page 894 of [27], that the solution above is necessarily
isomorphic to the original solution given by Kirkman, that is the solution denoted by 1a in
[17] Table 1.28, p. 30.

6.3 A 3-pyramidal KTS(33)

Let G = D × V5 and consider the following four 3-subsets of G:

{(0, 0, 3), (0, 0, 2), (0, 2, 4)}, {(0, 0, 1), (0, 1, 3), (1, 2, 2)},
{(0, 0, 4), (0, 2, 3), (1, 1, 1)}, {(0, 1, 1), (0, 1, 4), (1, 1, 2)}.

One can check that they form a (G, �, 3, 1)-DF where � is the unique {23, 3}-partial spread
of G, that is the set of all non-trivial subgroups of D. Then check that this difference family
is J -resolvable with J = {(0, 0, 0), (1, 0, 0)}; two elements a, b as in Definition 3.6 are
(1, 1, 0) and (1, 2, 0).
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6.4 A 3-pyramidal KTS(39)

Let G = G1 × V3 and consider the following five 3-subsets of G:

{(0, 0, 0, 2), (0, 1, 1, 1), (1, 0, 0, 1)},
{(0, 0, 1, 2), (2, 0, 1, 2), (2, 1, 0, 1)},
{(0, 1, 0, 0), (1, 0, 1, 2), (2, 0, 1, 0)},
{(0, 1, 0, 1), (1, 1, 1, 0), (2, 0, 0, 0)},
{(1, 0, 1, 1), (1, 1, 0, 0), (2, 1, 1, 2)}.

One can check that they form a (G, �, 3, 1)-DF where � is the {23, 3}-partial spread whose
subgroup of order 3 is {0, x,−x}with x = (0, 0, 0, 1). Then check that this difference family
is J -resolvable with J = {(0, 0, 0, 0), (0, 1, 1, 0)}; two elements a, b as in Definition 3.6 are
(1, 0, 0, 2) and (2, 0, 0, 1).

6.5 A 3-pyramidal KTS(51)

One can check that the following six 3-subsets of G2:

B1 = {(0, 0, 1), (2, 3, 0), (2, 3, 1)}, B2 = {(0, 1, 1), (0, 1, 2), (0, 2, 1)},
B3 = {(1, 1, 0), (1, 0, 1), (2, 1, 1)}, B4 = {(1, 1, 2), (2, 0, 3), (1, 3, 1)},
B5 = {(2, 1, 0), (1, 0, 3), (0, 3, 1)}, B6 = {(0, 1, 0), (2, 2, 3), (1, 3, 3)},

forma (G2, H , 3, 1)-RDFwhere H is the subgroupofG2 with underlying-setZ3×2Z4×2Z4.
The map (a, b, c) ∈ G1 −→ (a, 2b, 2c) ∈ H is clearly an isomorphism between G1 and H .
Hence the singleton {B7}with B7 = {(0, 0, 2), (1, 2, 0), (2, 2, 2)} is a (H , {23, 3}, 3, 1)-RDF
for what we have seen in Subsect. 6.2. We conclude that {B1, . . . , B6, B7} is a (G2, �, 3, 1)-
RDF where � is the {23, 3}-partial spread whose subgroup of order 3 is {0, x,−x} with
x = (1, 0, 0).

7 Three direct constructions

The action of a group U on a set V is said to be semiregular if the non-identity elements of
U do not fix any element of V . The following fact is straightforward.

Proposition 7.1 If U is a group of units of Fn whose action by multiplication on V ∗
n is

semiregular and S is a complete system of representatives for the orbits of U on V ∗
n , then we

have U S = V ∗
n .

We need the following lemma.

Lemma 7.2 Let n > 1 be an integer whose components are all congruent to 1 (mod λ). Then
there exist a unit u of Fn of order λ and a subgroup T of U(Fn) such that

(i) u j − 1 is a unit for 1 ≤ j ≤ λ − 1 and the group U generated by u acts semiregularly
on V ∗

n ;
(ii) the order of T is the greatest divisor of ψ(n) coprime with λ;
(iii) T leaves invariant a suitable complete system S of representatives for the orbits of U

on V ∗
n .
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Proof Let q1, …, qω be the components of n. For 1 ≤ i ≤ ω, let ui be a generator of the
subgroup Ui of F

∗
qi of order λ, and set u = (u1, . . . , uω). It is very easy to prove that u

satisfies (i) (see Corollary 3.3 and Lemma 3.2 in [7], in this order). Let Ti be the subgroup of
F

∗
qi whose order is the greatest divisor of qi − 1 coprime with λ, set T = T1 × · · · × Tω, and

let �i be a complete system of representatives for the cosets of TiUi in F
∗
qi . Now, for every

non-empty I belonging to the power-set 2{1,...,ω}, choose an element c(I ) ∈ I and consider
the subset S(I ) of V ∗

n defined as follows:

S(I ) = S1(I ) × · · · × Sω(I ) with S j (I ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{0} if j /∈ I ;
� j Tj if j = c(I );
F

∗
q j

if j ∈ I \ {c(I )}.
Then set S =

⋃

I∈2{1,...,ω}\{∅}
S(I ). It is not difficult to check that S is a complete system of

representatives for the orbits of U on V ∗
n and that T leaves S invariant. �

In this section we give three direct constructions which can be understood without any
further explanation. Anyway, to be more informative, we emphasize that, in each case, a
suitable strong difference family satisfying a special resolvability property has been used.
These concepts are defined as follows.

Definition 7.3 Given a group G and an even integer λ, a (G, 3, λ) strong difference family
(SDF) is a collection of triples of elements ofG whose list of differences covers each element
of G, 0 included, exactly λ times.

If J is a subgroup of G of order 2, then we say that a (G, 3, λ)-SDF is J -resolvable if its
flatten contains exactly λ elements of each left coset of J in G.

Although the notion of a SDF was implicitly used in the literature for a long time, the
formal definition has been given in [5]. Since then, SDFs have been crucial for the construction
of various combinatorial designs in several papers such as [9,10,15,19,20,48,61]. As far as
we are aware, the notion of a J -resolvable SDF is new.

Theorem 7.4 If all the components of 4n + 1 are congruent to 1 (mod 4), then there exists a
(D×V4n+1, D×V1, 3, 1)-RDFwith a group of strong multipliers whose order is the greatest
odd divisor of ψ(4n + 1).

Proof Take u, T and S as in the statement of Lemma 7.2 applied with λ = 4. Thus u is a
unit of order 4 such that u − 1 is a also a unit and U := 〈u〉 acts semiregularly on V ∗

4n+1.
Note that we necessarily have u2 = −1, hence U = {±1,±u}. Also note that we have
(u − 1)U = {±(u − 1),±(u + 1)}.

Let us consider the set B consisting of the following triples of D × V4n+1 (recall that the
underlying set of D is Z2 × Z3; see Sect. 3):

{(0, 0, u), (0, 0,−u), (0, 2,−1)}, {(0, 0, 1), (0, 1, u), (1, 2,−u)},
{(0, 0,−1), (0, 2, u), (1, 1, 1)}, {(0, 1, 1), (0, 1,−1), (1, 1,−u)}.

It is straightforward to check that we have �B = ⋃
g∈D{g} × �g with

�g =
⎧
⎨

⎩
2U if g = (0, 0) or g = (1, 1);
(u − 1)U otherwise.
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It is also readily seen that
⋃

B∈B
B + J =

⋃

g∈D
{g} × �g

with J = {(0, 0, 0), (1, 0, 0)} and �g = U for every g ∈ D. Now set

F = {μs(B) | s ∈ S; B ∈ B}.
Given that S is a complete system of representatives for the orbits of U on V ∗

4n+1, we have
US = V ∗

4n+1 by Proposition 7.1 and then, taking into account the previous identities, we
easily obtain

�F = (D × V4n+1) \ (D × V1) = �(F) + J

which means that F is a (D × V4n+1, D × V1, 3, 1)-RDF.
Finally, given that T is a subgroup of U(Fn) which leaves S invariant, we infer that

{μt | t ∈ T } is a group of strong multipliers of F . The assertion follows by observing that
this group is clearly isomorphic to T and recalling that the order of T is the greatest odd
divisor of ψ(4n + 1). �

Observe that the set of initial base blocks B considered in Theorem 7.4 is a lifting of a
J -resolvable (D, 3, 4)-SDF.

If we apply Theorem 7.4 with n = 1 we are forced to take u = 3 and one can see that the
resultant RDF is exactly the one given in Subsect. 6.3.

Theorem 7.5 If all the components of n are congruent to 1 (mod 4), then there exists a
(G1 ×Vn,G1 ×V1, 3, 1)-RDF with a group of strong multipliers whose order is the greatest
odd divisor of ψ(n).

Proof Again, as in Theorem 7.4, take u, T and S as in the statement of Lemma 7.2 applied
with λ = 4. Consider the set B consisting of the following eight 3-subsets of G1 ×Vn (recall
that the underlying set of G1 is Z3 × Z2 × Z2; see Sect. 3):

{(0, 0, 0,−1), (0, 0, 0, 1), (2, 1, 0,−u)}, {(0, 0, 0,−u), (0, 0, 0, u), (2, 1, 1, 1)},
{(0, 0, 1, 1), (0, 1, 0,−1), (1, 1, 0,−u)}, {(0, 0, 1, u), (0, 1, 0,−u), (1, 1, 0, 1)},
{(1, 0, 0,−1), (1, 1, 1, 1), (2, 0, 1, u)}, {(1, 0, 0, u), (1, 1, 1,−u), (2, 1, 1,−1)},
{(1, 0, 1,−1), (2, 0, 0,−u), (2, 1, 1, u)}, {(1, 0, 1, u), (2, 0, 1,−1), (2, 1, 0, 1)}.
One can check that �B = ⋃

g∈G1
{g} × �g with �g = 2U or �g = (u − 1)U according

to whether g belongs or does not belong to the Klein subgroup of G1, respectively.
Also, we have

⋃
B∈B B + J = ⋃

g∈G1
{g} × �g with J = {(0, 0, 0, 0), (0, 1, 1, 0)} and

�g = U for every g ∈ G1.
Reasoning as in Theorem 7.4, we can see that

F = {μs(B) | s ∈ S; B ∈ B}
is a (G1 × Vn,G1 × V1, 3, 1)-RDF admitting {μt | t ∈ T } as a group of strong multipliers
of order the greatest odd divisor of ψ(n). �

Analogously to Theorem 7.4 the set of initial base blocks B considered above is a lifting
of a J -resolvable (G1, 3, 4)-SDF.
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Theorem 7.6 If all the components of n are congruent to 1 (mod 6), then there exists a
(G1 ×Vn,G1 ×V1, 3, 1)-RDF with a group of strong multipliers whose order is the greatest
divisor of ψ(n) coprime with 6.

Proof Take u, T and S as in the statement of Lemma 7.2 applied with λ = 6. Thus u is a unit
of U(Fn) of order 6 such that ui − 1 is a unit for 1 ≤ i ≤ 5 and U := 〈u〉 acts semiregularly
on V ∗

n . Note that we necessarily have u
3 = −1 so thatU = {±1,±u,±u2}, and the identity

u2 − u + 1 = 0 holds.1 Consider the set B consisting of the following twelve 3-subsets of
G1 × Vn :

{(0, 0, 0, 1), (0, 0, 0,−u), (0, 0, 0, u2)};
{(0, 0, 0, u), (0, 1, 0,−u2), (1, 1, 0,−1)};
{(0, 0, 1,−u), (1, 0, 0, u2), (2, 0, 1, 1)};
{(0, 0, 1, u2), (1, 0, 1, 1), (1, 1, 1,−u)};
{(0, 0, 1, 1), (1, 1, 0, u2), (2, 0, 0,−u)};
{(0, 1, 0, u), (0, 1, 1,−u2), (2, 0, 1,−1)};
{(0, 1, 0,−1), (1, 1, 1, u), (2, 0, 0,−u2)};
{(0, 1, 1,−1), (1, 0, 0,−u2), (2, 0, 1, u)};
{(1, 0, 0, 1), (1, 0, 1,−u), (2, 0, 1, u2)};
{(1, 0, 1,−u2), (1, 1, 1,−1), (2, 1, 1, u)};
{(1, 0, 1, u), (2, 0, 1,−u2), (2, 1, 1,−1)};
{(2, 0, 0, u2), (2, 0, 1,−u), (2, 1, 1, 1)}.

With a little bit of patience, taking into account the identity u2 = u − 1, it is not difficult
to check that we have:

�B =
⋃

g∈G1

{g} × (u + 1)U and
⋃

B∈B
B + J =

⋃

g∈G1

{g} ×U (7.1)

where J = {(0, 0, 0, 0), (0, 1, 1, 0)}. We can write u + 1 = −(u4 − 1), hence u + 1 is a unit
of Fn by assumption on u. Now set

F = {μs(B) | s ∈ S; B ∈ B}.
Given that S is a complete system of representatives for the orbits of U on V ∗

4n+1, we have
US = V ∗

n by Proposition 7.1 and then, taking into account (7.1), we easily obtain

�F = �(F) + J = (G1 × Vn) \ (G1 × V1)

which means that F is a (G1 × Vn,G1 × V1, 3, 1)-RDF.
Finally, given that T is a subgroup of U(Fn) which leaves S invariant, we infer that

{μt | t ∈ T } is a group of strong multipliers of F . The assertion follows observing that this
group is clearly isomorphic to T whose order is the greatest divisor of ψ(n) coprime with 6.

�
This time the set of initial base blocks B considered above is a lifting of a J -resolvable

(G1, 3, 6)-SDF.

1 By definition, we have u6 − 1 = 0, hence (u3 − 1)(u + 1)(u2 − u + 1) = 0. It cannot be u3 − 1 = 0 or
u + 1 = 0 otherwise u would have order 3 or 2, respectively. It follows that u2 − u + 1 = 0.
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8 A composition construction via pseudo-resolvable difference families

Now we define a class of (G, {23, 3}, 3, 1)-DFs, that we call pseudo-resolvable, that will be
crucial for the construction of a 3-pyramidal KTS(v) with v = 36n + 3 or v = 48n + 3 or
v = 108n + 3 with all the components of n congruent to 7 or 11 (mod 12).

Definition 8.1 LetG be a pertinent group of doubly even order and let F be a (G, �, 3, 1)-DF
with � = {{0, j1}, {0, j2}, {0, j3}, {0, x,−x}}. We say that F is pseudo-resolvable (PRDF
for short) if �(F) ∪ {0, jα, x} is a complete system of representatives for the left cosets of
{0, jβ} in G for suitable involutions jα , jβ .

Even though the definitions of resolvable and pseudo-resolvable difference families are
very similar, they are independent. For instance, in spite of the fact that there exists a
(G1, {23, 3}, 3, 1)-RDF (see Subsect. 6.2), there is no (G1, {23, 3}, 3, 1)-PRDF. Certainly, a
(G, {23, 3}, 3, 1)-DF cannot be resolvable and pseudo-resolvable at the same time. Here is a
useful example in the groups G1 × V3.

Example 8.2 Let � be the {23, 3}-partial spread of G1 × V3 whose member of order 3 is
{0, x,−x} with x = (1, 0, 0, 0). One can check that the following five 3-subsets of G1 ×V3

B1 = {(0, 0, 1, 2), (0, 1, 1, 1), (1, 0, 0, 2)},
B2 = {(0, 1, 0, 1), (1, 0, 0, 1), (2, 1, 0, 0)},
B3 = {(0, 1, 1, 2), (2, 0, 0, 0), (2, 0, 0, 1)},
B4 = {(1, 0, 1, 1), (1, 1, 0, 0), (2, 1, 0, 2)},
B5 = {(1, 1, 0, 2), (2, 0, 0, 2), (2, 0, 1, 1)},

form a (G1 × V3, �, 3, 1)-PRDF.

The following Theorem 8.3 explains why pseudo-resolvable DFs can be helpful in the
construction of some resolvable DFs.

Theorem 8.3 Assume that all the components of n are congruent to 3 (mod 4) but distinct
from 3, and that there exists a (G, �, 3, 1)-PRDF with G pertinent of doubly even order.
Then there exists a (G × Vn,G × V1, 3, 1)-RDF with a group of strong multipliers of order
the greatest odd divisor of ψ(n).

Proof The fact that G is pertinent of doubly even order implies that its three involutions j1,
j2, j3, together with zero, form the Klein group Z2 × Z2 (see Lemma 4.4). Thus we have
jα + jβ = jγ for every permutation (α, β, γ ) of (1, 2, 3).

Let F be a (G, �, 3, 1)-PRDF and let H be the union of the members of �. Thus H =
{0, j1, j2, j3, x,−x} for a suitable element x of order 3. By definition, up to a reordering of
{ j1, j2, j3}, we have

�F = G \ H and �(F) + {0, j1} = G \ L (8.1)

where L = {0, j1, j2, j3, x, x + j1}.
Let n = q1 . . . qω be the prime power factorization of n. By assumption we have qi ≡ 3

(mod 4), hence −1 ∈ F
��
qi for 1 ≤ i ≤ ω. Take any element σi of F

�
qi \ {1} and set yi = σi+1

σi−1 .
Set y = (y1, . . . , yω) and consider the following two 3-subsets of G × Fn :

A1 = {(0, 1), (x, y), (x,−y)}, A2 = {(0,−1), ( j2, y), ( j3,−y)}.
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Note that we have �{A1, A2} =
⋃

h∈H
{h} × �h with

�0 = � j1 = {2y,−2y};
� j2 = {y + 1,−(y + 1)}; � j3 = {y − 1,−(y − 1)};
�x = {y − 1,−(y + 1)}; �−x = {y + 1,−(y − 1)}.

We have yi+1
yi−1 = σi ∈ F

�
qi , thus yi − 1 and yi + 1 are both squares or both non-squares

of Fqi . Also, we have qi ≡ 3 (mod 4) for each i so that −1 ∈ F
��
qi . On the basis of these

facts it is evident that the projection of each �h on Fqi consists of a non-zero square and
a non-square of Fqi . As a consequence, if S is any halving of V ∗

n , we have S�h = V ∗
n for

every h ∈ H . Thus, the set of triples A =: {μs(Ai ) | i = 1, 2; s ∈ S} has list of differences
�A = H × V ∗

n , i.e.,
�A = (H × Vn) \ (H × V1) (8.2)

Now note that we have

(A1 ∪ A2) + {(0, 0), ( j1, 0)} =
⋃

�∈L
{�} × {φ�,−φ�}

with φ0 = φ j1 = 1, and φ� = y for � ∈ L \ {0, j1}. We clearly have {φ�,−φ�} · S = V ∗
n for

each � ∈ L and then

�(A) + {(0, 0), ( j1, 0)} = (L × Vn) \ (L × V1). (8.3)

Take a triple {u1, u2, u3} of units of Fn with the property that the elements of its list of dif-
ferences �{u1, u2, u3} are also units. For instance, one could take {u1, u2, u3} = {1,−1, y}.
Now lift each triple B = {b1, b2, b3} ∈ F to the triple B+ = {(b1, u1), (b2, u2), (b3, u3)}
and set

F+ = {μz(B
+) | B ∈ F; z ∈ V ∗

n }.
We note that the contribution of a single B ∈ F to �F+ and �(F+) is (�B) × V ∗

n and
B × V ∗

n , respectively. Thus that the two equalities in (8.1) imply that we have:

�F+ = (G \ H) × (Vn \ V1); (8.4)

�(F+) + {(0, 0), ( j1, 0)} = (G \ L) × (Vn \ V1). (8.5)

It is clear that A ∪ F+ is a (G × Vn,G × V1, 3, 1)-RDF. Indeed (8.2) and (8.4) imply that
�(A ∪ F+) = (G × Vn) \ (G × V1). Also, (8.3) and (8.5) imply that �(A ∪ F+) +
{(0, 0), ( j1, 0)} = (G × Vn) \ (G × V1).

Letting q1, . . . , qω be the components of n, we finally note that

{μs | s ∈ F
�
q1 × · · · × F

�
qω

}
is a group of strong multipliers of F+ and its order is the greatest odd divisor of ψ(n) since
each qi ≡ 3 (mod 4). The assertion follows. �

Letting G = G1 × V3 and applying Theorem 8.3 to the (G, �, 3, 1)-PRDF given in
Example 8.2, we obtain the following important result.

Corollary 8.4 If all the components of n are greater than 3 and congruent to 3modulo 4, then
there exists a (G1 × V3n,G1 × V3, 3, 1)-RDF with a group of strong multipliers of order the
greatest odd divisor of ψ(n).
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In Appendices A and B we will give an example of a (G, {23, 3}, 3, 1)-PRDF with both
G = G1 × V9 and G = G2. Thus, as another important application of Theorem 8.3 we get
the following.

Corollary 8.5 If all the components of n are greater than 3 and congruent to 3modulo 4, then
there exists a (G1 × V9n,G1 × V9, 3, 1)-RDF with a group of strong multipliers of order the
greatest odd divisor of ψ(n).

Corollary 8.6 If all the components of n are greater than 3 and congruent to 3modulo 4, then
there exists a (G2 × Vn,G2 × V1, 3, 1)-RDF with a group of strong multipliers of order the
greatest odd divisor of ψ(n).

9 Doubly disjoint difference families

A (G, H , 3, 1)-DF is said to be disjoint if its blocks are pairwise disjoint and do not meet
the subgroup H . It is well known that there exists a disjoint (Z6n+1, 3, 1)-DF and a disjoint
(Z6n+3, {0, 2n+1, 4n+2}, 3, 1)-DF for every positive integer n (see [8,22,23]). There is an
intriguing conjecture byNovák [49] according towhich every cyclic STS(6n+1) is generated
by a suitable disjoint (Z6n+1, 3, 1)-DF. In a very recent paper [28] it has been proved that
this conjecture is true with the possible exception of finitely many composite orders 6n + 1.

Let us say that two difference families are strongly equivalent if each block of the first is
a suitable translate of a block of the second.2

Definition 9.1 A (G, H , 3, 1)-DF is doubly disjoint if its blocks tile G \ H together with the
blocks of another DF strongly equivalent to it.

Note how Definition 9.1 reminds a bit of the notion introduced in [21] of a (v, k, λ) tiling
of a group G, that is a set of mutually disjoint (v, k, λ) difference sets in G partitioning
G \ {0}. Needless to say, however, that two distinct members of a (v, k, λ) tiling of G cannot
be strongly equivalent.

Note that any {0, j}-resolvable (G, H , 3, 1)-DF, say F = {B1, . . . , Bn}, is doubly disjoint.
Indeed, setting B ′

i = Bi + j for i = 1, . . . , n, it is clear that F and F ′ := {B ′
1, . . . , B

′
n}

are strongly equivalent. Also, by definition, we have �(F) + {0, j} = G \ H and this is
equivalent to say that the blocks of F and F ′ form a partition of G \ H .

In the next section we will give a composition construction for RDFs where doubly
disjoint difference families play a crucial role. For this reason, it is worth studying their
possible existence. In particular, we are interested in (Z3 × V2n+1, Z3 × V1, 3, 1)-DFs. We
are going to prove their existence in the case that all the components of 2n+ 1 are congruent
to 1 (mod 4).

Theorem 9.2 If the components of n are all congruent to 1 (mod 4), then there exists a doubly
disjoint (Z3 × Vn, Z3 × V1, 3, 1)-DF.

Proof First observe that if q ≡ 1 (mod 4) is a prime power, then the set X = {x ∈ F
��
q :

x − 2 ∈ F
�
q } is not empty. For instance, using the cyclotomic numbers of order 2 (see, e.g.,

2 We cannot simply say that they are equivalent since two difference families in a group G, say F =
{B1, . . . , Bn} and F ′ = {B′

1, . . . , B
′
n}, are usually said to be equivalent if, up to the order, we have

B′
i = α(Bi ) + ti for a suitable α ∈ Aut(G) and suitable t1, . . . , tn ∈ G.
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[24]) one can see that X has size q−1
4 . More elementarily and constructively, an element of

X can be found as follows. Take any y of F
��
q \ {2} and check that the set

X ′ = {y, y + 1, 1 − y, 4 − 2y,
2

y + 1
,

2y

y − 1
}

has at least one element in common with X .
Thus, if n = q1 . . . qω with qi ≡ 1 (mod 4) is a prime power for 1 ≤ i ≤ ω, we can

construct an element x = (x1, . . . , xω) ∈ Fn with the property that xi ∈ F
��
qi and xi −2 ∈ F

�
qi

for 1 ≤ i ≤ ω. Consider the 3-subsets A and B of Z3 × Vn defined as follows:

A = {(0, 1), (1, x), (1, 2 − x)}; B = {(0, x), (2, x2), (2, 2x − x2)}.
We have

�A ∪ �B =
2⋃

h=0

{h} × {1,−1} · �h

with �0 = {2(x − 1), 2x(x − 1)} and �1 = �2 = 1
2�0. Also, we have

A ∪ B =
2⋃

h=0

{h} × �h

with �0 = {1, x}, �1 = {x, 2 − x}, and �2 = {x2, x(2 − x)}.
Now take a halving S of V ∗

n (see Sect. 5). In view of the choice of the element x , we see
that the projection of each �h and each �h on Fqi consists of a square and a non-square.
Thus, by (5.1), we have �h S = �h S = V ∗

n for h = 0, 1, 2.
For each s ∈ S set As = μs(A), Bs = μs(B), and consider the family F = {As, Bs | s ∈

S}. We obviously have �As = μs(�A) and �Bs = μs(�B). Thus we have

�F =
2⋃

h=0

{h} × ({1,−1} · �h · S) =
2⋃

h=0

{h} × ({1,−1} · V ∗
n )

that is two times (Z3 × Vn) \ (Z3 × V1).
We also have:

�(F) =
2⋃

h=0

{h} × (�h · S) =
2⋃

h=0

{h} × V ∗
n = (Z3 × Vn) \ (Z3 × V1).

Note that the chosen halving S is symmetric, i.e., we have −S = S. Then there exists a
subset T of S for which we have S = T ∪ (−T ) so that F is splittable in the two families

F+ = {At , Bt | t ∈ T }, F− = {A−t , B−t | t ∈ T }.
Now note that A−t is a translate of At and that B−t is a translate of Bt for every t ∈ T .
Indeed it is readily seen that we have:

At + (0,−2t) = A−t ; Bt + (0,−2xt) = B−t .

We deduce, in particular, that �At = �A−t and �Bt = �B−t for every t ∈ T . It follows
that �F+ = �F−. Thus, considering that �F is twice Z3 × V ∗

n , we necessarily have
�F+ = �F− = Z3 × V ∗

n . This means that both F+ and F− are (Z3 × Vn, Z3 × V1, 3, 1)-
DFs.
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Considering that each block of F− is a translate of a block of F+ and that�(F+ ∪ F−) =
�(F) = (Z3 × Vn) \ (Z3 × V1), we conclude that F+ is doubly disjoint and the assertion
follows. �

10 Composition constructions via differencematrices

We recall that a (h, k, 1) difference matrix in a group H of order h, briefly denoted by
(H , k, 1)-DM, is a k × h matrix with elements from H in which the difference of any two
distinct rows is a permutation of H .

In particular, an (H , 3, 1)-DM is equivalent to a complete mapping of H . There is a large
literature on complete mappings starting with the famous conjecture of Hall and Paige [32]
according to which a group H of even order admits a complete mapping if and only if it is
admissible, i.e., if and only if its 2-Sylow subgroups are not cyclic. The conjecture has been
finally proved in [26].

Definition 10.1 A (H , k, 1) difference matrix is homogeneous if each row is also a permu-
tation of H .

It is quite evident that there exists a homogeneous (H , k, 1)-DM if and only if there exists
an (H , k + 1, 1)-DM. Indeed, adding a null-row to a homogeneous (H , k, 1)-DM one gets
an (H , k +1, 1)-DM. Conversely, if M is a (H , k +1, 1)-DM with rows M1, …, Mk+1, then
one gets a homogeneous (H , k, 1)-DM whose rows are M2 − M1, …, Mk+1 − M1.

Thus, as immediate consequence of the main results on (H , 4, 1)-DM (see [30,50]), we
have the following.

Theorem 10.2 There exists a homogeneous (H , 3, 1)-DMwith H abelian of odd order if and
only if |H | > 3, except possibly when H is cyclic and |H | ≡ 9 (mod 27) (the exception is
definite when H � Z9).

There exists a homogeneous (H , 3, 1)-DM with H abelian of even order if and only if the
2-Sylow subgroup of H is not cyclic.

Corollary 10.3 There exists a homogeneous (Vn, 3, 1)-DM if and only if 3 < n �≡ 2 (mod 4).

Difference matrices are also a crucial topic of Design Theory [2,17]. They have been
used explicitly or implicitly in a lot of papers especially for the composition constructions
of designs with a regular automorphism group starting from some early work by Jungnickel
[37] and by Colbourn and Colbourn [16]. Homogeneous difference matrices have been used
later for the composition constructions of several kinds of resolvable designs (see, e.g., [1]).
As far as we are aware the quite appropriate term homogeneous was coined in [38] when
other authors choose other terms as good [13] about the same time.

We need to devise a new type of difference matrix that we call splittable.

Definition 10.4 Let J be a subgroup of order 2 of a group H and let M be a (H , 3, 1)-DM.
We say that M is J -splittable if the first half and the second half of each row of M is a
complete system of representatives for the left cosets of J in H .

We give three examples of splittable difference matrices that will be crucial for the con-
struction of some classes of resolvable difference families.
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Example 10.5 Consider the following matrix M with elements in G1

⎛

⎝
000 010 100 110 200 210 011 001 111 101 211 201
000 100 210 010 110 200 000 101 010 210 200 100
010 200 210 100 000 110 101 001 200 011 201 111

⎞

⎠

where, to save space, each element (a, b, c) has been denoted by abc. It is straightforward
to check that M is a J-splittable (G1, 3, 1)-DM with J = {(0, 0, 0), (0, 1, 1)}.
Example 10.6 Consider the following matrix M with elements in Z2 × Z6

⎛

⎝
00 01 02 03 04 05 10 11 12 13 14 15
00 12 15 04 01 03 00 13 11 05 02 04
03 01 15 12 00 04 11 05 04 03 12 00

⎞

⎠

where, to save space, each element (a, b) has been denoted by ab. It is straightforward to
check that M is a J-splittable (Z2 × Z6, 3, 1)-DM with J = {(0, 0), (1, 0)}.
Example 10.7 Consider the following matrix M with elements in Z4 × Z4

⎛

⎝
00 30 11 20 01 10 31 21 22 12 33 02 23 32 13 03
22 11 30 10 21 23 02 31 13 20 32 00 12 33 01 03
22 31 03 01 10 30 20 33 32 12 00 21 13 23 11 02

⎞

⎠

where, to save space, each element (a, b) has been denoted by ab. It is straightforward to
check that M is a J-splittable (Z4 × Z4, 3, 1)-DM with J = {(0, 0), (2, 2)}.

The matrix of the third example is also homogeneous. The following Theorem 10.8
explains how doubly disjoint or resolvable difference families in a quotient group G/H can
be combined with homogeneous or splittable difference matrices in H for the construction
of resolvable difference families in G.

Theorem 10.8 Let H be a normal subgroup of a pertinent group G and let L be a subgroup
of G containing H. Assume that F is a (G/H , L/H , 3, 1)-DF and M is a (H , 3, 1)-DM.
Then there exists a (G, L, 3, 1)-DF.

Moreover, let j be an involution of G and assume that one of the following additional
hypotheses holds.

(i) j /∈ H, F is {H , j + H}-resolvable, and M is homogeneous;
(ii) j ∈ H, F is doubly disjoint, and M is {0, j}-splittable.

Then there exists a {0, j}-resolvable (G, L, 3, 1)-DF.

Proof The first part of the statement has been already proved in [4] (see Corollary 5.8). It is
convenient, however, to recall how the (G, L, 3, 1)-DFcanbe constructed.Let− : g ∈ G −→
g = g+H ∈ G/H , be the canonical epimorphism fromG toG/H , let F = {Bi | i ∈ I }with
Bi = {bi,1, bi,2, bi,3}, and let M = (mr ,c). For every block Bi of F and for every column
Mc = (m1,c,m2,c,m3,c) of M , set Bi ◦ Mc = {bi,1 +m1,c, bi,2 +m2,c, bi,3 +m3,c}. Then

F ◦ M := {Bi ◦ Mc | i ∈ I ; 1 ≤ c ≤ |H |}
is a (G, L, 3, 1)-DF.

Assume that condition (i) holds.
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If two elements φ1 = bi1,r1 + mr1,c1 and φ2 = bi2,r2 + mr2,c2 of �(F ◦ M) are in the same
left coset of {0, j} in G, then we have

−mr1,c1 − bi1,r1 + bi2,r2 + mr2,c2 ∈ {0, j}.
Reducing modulo H we get −bi1,r1 + bi2,r2 ∈ {0, j}. This necessarily implies that (i1, r1) =
(i2, r2) because F is {0, j}-resolvable. Thus, setting r1 = r2 = r , we have −mr ,c1 +mr ,c2 ∈
{0, j}. It cannot be−mr ,c1 +mr ,c2 = j since j does not belong to H , hence−mr ,c1 +mr ,c2 =
0, i.e., mr ,c1 = mr ,c2 . This implies that c1 = c2 because M is homogeneous. We conclude
that the two triples (i1, r1, c1) and (i2, r2, c2) coincide, i.e., F ◦ M is {0, j}-resolvable.

Now assume that condition (ii) holds.
For each i ∈ I there is a suitable translate of Bi , say B ′

i = Bi + τi , such that F and F ′ =
{B ′

i | i ∈ I } are (G/H , L/H , 3, 1)-DFs with �(F) ∪ �(F ′) a partition of (G/H) \ (L/H).

Note that we can rewrite each B ′
i in the form B ′

i = Bi + ti for a suitable ti which commutes
with j . Indeed we have τi + j−τi = ji with ji one of the three involutions ofG. The fact that
j ∈ H � G implies that H is pertinent so that there exists hi ∈ H such that hi + ji −hi = j .
Then, setting ti = hi + τi , it is easy to see that B ′

i = Bi + ti and that ti + j = j + ti .
Set

F �� M = {Bi ◦ Mc | i ∈ I ; 1 ≤ c ≤ |H |
2

} ∪

{Bi ◦ Mc + ti | i ∈ I ; |H |
2

< c ≤ |H |}.

Of course F �� M is a (G, H , k, 1)-DF which is strongly equivalent to F ◦ M . Let us show
that it is {0, j}-resolvable. We have:

�(F �� M) = {φi,r ,c | i ∈ I ; 1 ≤ r ≤ 3; 1 ≤ c ≤ |H |}
with

φi,r ,c =
⎧
⎨

⎩
bi,r + mr ,c if c ≤ |H |/2;
bi,r + mr ,c + ti if c > |H |/2.

Assume that we have
− φi1,r1,c1 + φi2,r2,c2 ∈ {0, j} (10.1)

for suitable triples (i1, r1, c1) and (i2, r2, c2). We have to prove that these triples are neces-
sarily equal.Without loss of generality we can assume that c1 ≤ c2. So we have the following
three possible cases.

1st case: c1 ≤ c2 ≤ |H |/2.
Here (10.1) implies that −mr1,c1 − bi1,r1 + bi2,r2 + mr2,c2 ∈ {0, j}. Reducing modulo

H we get bi1,r1 = bi2,r2 and then (i1, r1) = (i2, r2) because F is disjoint. Thus, setting
r1 = r2 = r , we have −mr ,c1 + mr ,c2 ∈ {0, j} that is possible only for c1 = c2 because M
is {0, j}-splittable. We conclude that (i1, r1, c1) = (i2, r2, c2).

2nd case: |H |/2 < c1 ≤ c2 ≤ |H |.
Here (10.1) implies that −ti1 − mr1,c1 − bi1,r1 + bi2,r2 + mr2,c2 + ti2 ∈ {0, j}. Reducing

modulo H we get bi1,r1 + ti1 = bi2,r2 + ti2 and then (i1, r1) = (i2, r2) because F ′ is disjoint.
Thus, setting i1 = i2 = i and r1 = r2 = r , we have−mr ,c1 +mr ,c2 ∈ {0, ti + j−ti } = {0, j},
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the last equality being true since ti commuteswith j . This is possible only for c1 = c2 because
M is {0, j}-splittable. We conclude that (i1, r1, c1) = (i2, r2, c2).

3rd case: c1 ≤ |H |/2; c2 > |H |/2.
Here (10.1) gives −mr1,c1 − bi1,r1 + bi2,r2 +mr2,c2 + ti ∈ {0, j}. Reducing modulo H we

get bi1,r1 = bi2,r2 + ti . On the other hand bi2,r2 and bi1,r1 + ti belong to �(F) and �(F ′),
respectively. This is absurd since �(F) and �(F ′) are disjoint. �

As an important consequence of Theorem 10.8 we get the following corollaries.

Corollary 10.9 If the components of n are all congruent to 1 (mod 4), then there exists a
(G1 × V3n,G1 × V3, 3, 1)-RDF.

Proof Consider the groupG = G1×V3n and its subgroups L = G1×V3, and H = G1×V1.
WehaveG/H � V3n and L/H � V3, hence there exists a doubly disjoint (G/H , L/H , 3, 1)-
DF by Theorem 9.2. There also exists a splittable (H , 3, 1)-DM by Example 10.5. Thus, by
Theorem 10.8(ii), there exists a (G, L, 3, 1)-RDF, i.e., a (G1 × V3n,G1 × V3, 3, 1)-RDF. �

Corollary 10.10 If the components of n are all congruent to 1 (mod 4), then there exists a
(G2 × Vn,G1 × V1, 3, 1)-RDF.

Proof Consider the group G = G2 ×Vn and its subgroups L = G1×Vn , and H = {0}×Vn .
WehaveG/H � G2 and L/H � G1, hence there exists a doubly disjoint (G/H , L/H , 3, 1)-
DF (see Subsect. 6.5). There also exists a homogeneous (H , 3, 1)-DMbyTheorem10.2. Thus
there exists a (G, L, 3, 1)-RDF, i.e., a (G2 × Vn,G1 × Vn, 3, 1)-RDF by Theorem 10.8(i).
Now recall that there exists a (G1 × Vn,G1 × V1, 3, 1)-RDF by Theorem 7.5. We get the
assertion by applying Proposition 3.2 with the chain G2 × Vn ≥ G1 × Vn ≥ G1 × V1. �

11 Main results

We are finally able to prove the sufficient conditions given by the main Theorem 1.1.

11.1 3-pyramidal KTS(24n+ 9)

Recall that Theorem 7.4 says that there exists a (D × V4n+1, D × V1, 3, 1)-RDF whenever
the prime decomposition of 4n + 1 does not contain primes p ≡ 3 (mod 4) raised to an
odd power. Equivalently, whenever 4n + 1 is a sum of two squares (see, e.g., [55]). Thus,
considering that 24n + 9 = 6(4n + 1) + 3 and that D × V4n+1 is a pertinent group of order
6(4n + 1), we get Theorem 1.1(i) by applying Proposition 6.1.

Theorem 11.1 If 4n+1 is a sum of two squares, then there exists a 3-pyramidal KTS(24n+9).

Remark 11.2 Recall that Theorem 7.4 assures a group of strong multipliers of order the
greatest odd divisor of ψ(4n + 1). Therefore, Proposition 6.1 guarantees that the number of
symmetries of eachKTS(24n+9) obtainable via Theorem11.1 is at least equal to (24n+6)m,
where m is the greatest odd divisor of ψ(4n + 1).
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11.2 3-pyramidal KTS(24n+ 15)

Here we prove Theorem 1.1(ii), that is our main result on 3-pyramidal KT S(24n + 15).

Theorem 11.3 There exists a 3-pyramidal KTS(24n + 15) whenever one of the following
conditions holds:

(1) 2n + 1 is divisible by 3;
(2) the square-free part of 2n + 1 does not contain primes congruent to 11 (mod 12).

Proof We have 24n + 15 = 12(2n + 1) + 3 and G1 × V2n+1 is a pertinent group of order
12(2n + 1). Hence, by Proposition 6.1, it is enough to prove the existence of a (G1 ×
V2n+1,G1 × Vi , 3, 1)-RDF with i = 1 or 3.

Case 1): 2n + 1 ≡ 0 (mod 3).

Set e = 2 if 9 is a component of 2n + 1, otherwise set e = 1. Now let (2n + 1)/3e = PQ
where P and Q are the product of all the components of (2n + 1)/3e congruent to 3 and 1

(mod 4), respectively. Note that 3 is not a component of P , otherwise 3e+1 =
{
9 if e = 1

27 if e = 2
would be a component of 2n + 1, contradicting the definition of the integer e.

Consider the group G = G1 × V2n+1 and its subgroups L = G1 × V3eQ and H =
{0} × VQ . Since G/H � G1 × V3e P and L/H � G1 × V3e , by Corollaries 8.4 and 8.5,
there exists a (G/H , L/H , 3, 1)-RDF. Also, there exists a homogeneous (H , 3, 1)-DM by
Theorem 10.2. Thus, by Theorem 10.8(i), there exists a (G, L, 3, 1)-RDF. There is also an
(L,G1 × V32−e , 3, 1)-RDF by Theorem 7.5 (when e = 2) and Corollary 10.9 (when e = 1).
Therefore, by applying Proposition 3.2 with the chain G ≥ L ≥ G1 × V32−e we get a
(G,G1 × V32−e , 3, 1)-RDF.

Case 2): the square-free part of 2n+ 1 does not contain any prime congruent to 11 (mod 12).
We can assume that 2n + 1 is not divisible by 3 in view of Case 1). Thus, by assumption,
we can write 2n + 1 = PQ where P is the product of all components of 2n + 1 that are
congruent to 7 modulo 12 and Q is the product of all components of n that are congruent
to 1 modulo 4. Of course it is understood that P and/or Q may be equal to 1 in the case
that the components of the respective kinds do not exist. If P = 1 or Q = 1, we have a
(G1 × V2n+1,G1 × V1, 3, 1)-RDF by Theorem 7.5 or Theorem 7.6, respectively. If both P
and Q are greater than 1, consider the groupG = G1×V2n+1 and its subgroups L = G1×VP

and H = {0} × VP . We have G/H � G1 × VQ and L/H � G1 × V1. Thus there exists a
(G/H , L/H , 3, 1)-RDF by Theorem 7.5. Also, there exists a homogeneous (H , 3, 1)-DM
by Theorem 10.2. It follows, by Theorem 10.8(i), that there exists a (G, L, 3, 1)-RDF, i.e.
a (G1 × V2n+1,G1 × VP , 3, 1)-RDF. We also have a (G1 × VP ,G1 × V1, 3, 1)-RDF by
Theorem 7.6. Applying Proposition 3.2 with the chain G1 × V2n+1 ≥ G1 × VP ≥ G1 × V1
we get a (G1 × V2n+1,G1 × V1, 3, 1)-RDF. �
Remark 11.4 We recall that Theorems 7.5 and 7.6, and Corollaries 8.4 and 8.5 show the exis-
tence of a group of strong multipliers. Therefore, it is not difficult to check that Propositions
3.2 and 6.1 guarantee that
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1. the number of symmetries of each KTS(72n′ + 39) obtainable via Theorem 11.3.(1) is
at least equal tom(72n′ + 39), where m is the greatest odd divisor of ψ(P) and P > 1
is the product of all the components of 2n′ + 1 congruent to 7 or 11 (mod 12);

2. the number of symmetries of each KTS(24n+ 15) built in Theorem 11.3.(2) is at least
equal to m(24n + 15) where m is defined as follows:

(a) if Q > 1 is the product of all the components of 2n + 1 congruent to 1 (mod 4),
then m is the greatest odd divisor of ψ(Q);

(b) if all the components of 2n + 1 are congruent to 7 (mod 12), then m is the greatest
odd divisor of ψ(2n + 1) coprime with 6.

11.3 3-pyramidal KTS(48n+ 3)

In this subsection we will prove that the necessary condition for the existence of a KTS(v)

is also sufficient when v ≡ 3 (mod 48), that is Theorem 1.1(iii).
We recall that {Gα : α ≥ 1} is the series of pertinent groups considered in Sect. 3. For

0 ≤ i ≤ α −1, the subgroup of Gα with underlying-set Z3 ×2iZ2α ×2iZ2α is isomorphic to
Gα−i . Hence, by abuse of notation, this subgroup will be denoted by Gα−i in the following.

Theorem 11.5 There exists a KTS(4e48n + 3) for every non-negative integer e and every
positive odd integer n.

Proof Set α = e + 2 and note that Gα × Vn is a pertinent group of order 4e48n. Hence, by
Proposition 6.1, it is enough to prove the existence of a (Gα × Vn,G1 × Vi , 3, 1)-RDF with
i = 1 or 3 for any α ≥ 2 and any odd n ≥ 1.

We distinguish five cases.

1st case: n = 1.
Let us prove the existence of a (Gα,G1, 3, 1)-RDF for every α ≥ 2. A (G2,G1, 3, 1)-
RDF has been given in Subsect. 6.5 and a (G3,G2, 3, 1)-RDF can be found in Appendix
D. Now let α ≥ 4 and assume, by induction, that there exists a (Gβ,Gβ−1, 3, 1)-RDF for
2 ≤ β < α. Set G = Gα , L = Gα−1, and let H be the subgroup of G with underlying set
{0}×2α−2

Z2α ×2α−2
Z2α . Note that H is isomorphic toZ4×Z4 so that there exists a splittable

(H , 3, 1)-DM by Example 10.7. The quotient groupsG/H and L/H are isomorphic toGα−2

and Gα−3, respectively. Thus, by the induction hypothesis, there exists a (G/H , L/H , 3, 1)-
RDF. Applying Theorem 10.8(ii) we get a (G, L, 3, 1)-RDF, i.e., a (Gα,Gα−1, 3, 1)-RDF.
Applying Proposition 3.2 with the chain Gα ≥ Gα−1 ≥ · · · ≥ G2 ≥ G1 we get a
(Gα,G1, 3, 1)-RDF.

2nd case: n = 3.
A (G2 × V3,G1 × V3, 3, 1)-RDF will be given in Appendix C. Let α ≥ 3 and let β be any
integer of the closed interval [3, α]. Consider the group G = Gβ × V3 and its subgroups
L = Gβ−1 × V3 and H = K × V3 where K is the Klein subgroup of Gβ . We have
G/H � Gβ−1 and L/H � Gβ−2 so that there exists a (G/H , L/H , 3, 1)-RDF (see 1st
case). Also, H � Z2 × Z6 so that there exists a splittable (H , 3, 1)-DM by Example 10.6.
Thus, by Theorem10.8(ii), there exists a (G, L, 3, 1)-RDF, i.e., a (Gβ×V3,Gβ−1×V3, 3, 1)-
RDF.

Applying Proposition 3.2 with the chain

Gα × V3 ≥ Gα−1 × V3 ≥ · · · ≥ G2 × V3 ≥ G1 × V3

we get a (Gα × V3,G1 × V3, 3, 1)-RDF.
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3rd case: 3 < n ≡ 0 (mod 3).
Consider the group G = Gα × Vn and its subgroups L = G1 × Vn and H = {0} × Vn . We
have G/H � Gα and L/H � G1 so that there exists a (G/H , L/H , 3, 1)-RDF (see first
case). There also exists a homogeneous (H , 3, 1)-DM by Theorem 10.2. It follows that there
exists a (G, L, 3, 1)-RDF, i.e., a (Gα × Vn,G1 × Vn, 3, 1)-RDF by Theorem 10.8(i). From
the proof of Case 1) of Theorem 11.3 we also have a (G1 × Vn,G1 × Vi , 3, 1)-RDF with
i = 1 or 3. Thus we have a (Gα × Vn,G1 × Vi , 3, 1)-RDF by Proposition 3.2.

4th case: 1 < n �≡ 0 (mod 3) and α = 2.
Write n = PQ where P is the product of all the components of n congruent to 3 (mod 4)
and Q is the product of all the components of n congruent to 1 (mod 4). If Q = 1, we get the
required (G2 × Vn,G2 × V1, 3, 1)-RDF from Corollary 8.6. If Q > 1, consider the group
G = G2×Vn and its subgroups L = G2×VQ and H = {0}×VQ .We haveG/H � G2×VP

and L/H � G2 so that there exists a (G/H , L/H , 3, 1)-RDF either trivially if P = 1, or by
Corollary 8.6 if P > 1. There also exists a homogeneous (H , 3, 1)-DM by Theorem 10.2. It
follows that there exists a (G, L, 3, 1)-RDF, i.e., a (G2×Vn,G2×VQ, 3, 1)-RDFbyTheorem
10.8(i). We also have a (G2 ×VQ,G2 ×V1, 3, 1)-RDF because of Corollary 10.10 and, from
the first case, a (G2 ×V1,G1 ×V1, 3, 1)-RDF. Thus, applying Proposition 3.2 with the chain
G2 ×Vn ≥ G2 ×VQ ≥ G2 ×V1 ≥ G1 ×V1 we finally get a (G2 ×Vn,G1 ×V1, 3, 1)-RDF.

5th case: n > 3 and α > 2.
Let α ≥ 3 and let 2 ≤ β ≤ α. Consider the group G = Gβ × Vn and its subgroups L =
Gβ−1 ×Vn and H = {0}×Vn . We have G/H � Gβ and L/H � Gβ−1 so that there exists a
(G/H , L/H , 3, 1)-RDF (see 1st case). Also, there exists a homogeneous (H , 3, 1)-DM by
Theorem 10.2. Thus there exists a (G, L, 3, 1)-RDF, i.e., a (Gβ ×Vn,Gβ−1×Vn, 3, 1)-RDF
by Theorem 10.8(i). Applying Proposition 3.2 with the chain

Gα × Vn ≥ Gα−1 × Vn ≥ · · · ≥ G2 × Vn

we get a (Gα × Vn,G2 × Vn, 3, 1)-RDF. From either the third or the fourth case we also
have a (G2 × Vn,G1 × Vi , 3, 1)-RDF with i = 1 or 3. Then, by Proposition 3.2 again, we
have a (Gα × Vn,G1 × Vi , 3, 1)-RDF with i = 1 or 3. �
Remark 11.6 We recall that Corollary 8.6 shows the existence of a group of strongmultipliers.
Therefore, it is not difficult to check that Propositions 3.2 and 6.1 guarantee that the number
of symmetries of each KTS(48n + 3) obtainable via Theorem 11.5, when n is not divisible
by 3, is at least equal to m(48n + 3), where m is the greatest odd divisor of ψ(P) and P > 1
is the product of all the components of n congruent to 3 (mod 4).

12 Open problems

The problem of classifying the 3-pyramidal KTS(v) remains open in the following cases.

• v − 3 = 24n + 6 and 4n + 1 is not a sum of two squares;
• v − 3 = 72n ± 12 and its prime decomposition contains a prime factor p ≡ 11 (mod

12) raised to an odd power;

The open cases above could be closed if one solves the following problems, respectively.

Problem 12.1 Determine a (D × Vpq , D × V1, 3, 1)-RDF for every pair (p, q) of distinct
primes congruent to 3 modulo 4.
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Problem 12.2 Determine a (G1 × Vp,G1 × V1, 3, 1)-RDF for every prime p ≡ 11 modulo
12.

Our research naturally leads to consider also the following collateral problems which, in
our opinion, are interesting on their own.

Problem 12.3 Determine the admissible groups H forwhich there exists a splittable (H , 3, 1)
difference matrix.

Problem 12.4 Determine the set of all values of n for which there exists a doubly disjoint
(Z3 × V2n+1, Z3 × V1, 3, 1) difference family.
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Appendix

A: Pseudo-resolvable (G1 × V9, {23, 3}, 3, 1)-DF

Let � be the {23, 3}-partial spread of G1 × V9 whose member of order 3 is {0, x,−x} with
x = (1, 0, 0, 0, 0). The following seventeen 3-subsets of G1 × V9

{(0, 0, 0, 0, 1), (0, 1, 1, 2, 0), (1, 0, 1, 1, 1)}, {(0, 0, 0, 0, 2), (2, 0, 0, 2, 0), (2, 1, 0, 0, 0)},
{(0, 0, 0, 1, 0), (0, 1, 0, 2, 0), (1, 0, 0, 1, 2)}, {(0, 0, 0, 1, 1), (2, 0, 0, 2, 1), (2, 0, 1, 2, 0)},
{(0, 0, 0, 1, 2), (0, 1, 0, 1, 0), (2, 0, 1, 1, 0)} {(0, 0, 0, 2, 1), (0, 1, 0, 0, 2), (1, 0, 1, 1, 2)},
{(0, 0, 0, 2, 2), (0, 0, 1, 0, 1), (2, 0, 0, 1, 2)}, {(0, 0, 1, 1, 2), (1, 1, 1, 2, 0), (2, 1, 0, 2, 2)},
{(0, 0, 1, 2, 2), (1, 0, 1, 1, 0), (2, 0, 0, 2, 2)}, {(0, 1, 0, 1, 1), (2, 0, 1, 0, 1), (2, 1, 1, 0, 0)},
{(0, 1, 0, 2, 1), (1, 1, 1, 2, 2), (2, 0, 0, 0, 1)}, {(1, 0, 1, 0, 0), (1, 1, 1, 1, 0), (2, 1, 0, 1, 1)},
{(1, 0, 1, 0, 1), (1, 0, 1, 2, 1), (1, 0, 1, 2, 2)}, {(1, 1, 0, 0, 2), (2, 0, 0, 1, 1), (2, 0, 1, 0, 2)},
{(1, 1, 0, 2, 0), (1, 1, 1, 1, 1), (2, 0, 1, 1, 2)}, {(1, 1, 1, 0, 1), (2, 0, 1, 2, 1), (2, 1, 1, 0, 2)},
{(1, 1, 1, 0, 2), (1, 1, 1, 2, 1), (2, 1, 1, 1, 0)}

are the blocks of a (G1 × V9, �, 3, 1)-PRDF.
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B: Pseudo-resolvable (G2, {23, 3}, 3, 1)-DF

Let � be the {23, 3}-partial spread of G2 whose member of order 3 is {0, x,−x} with
x = (1, 0, 0). The following seven 3-subsets of G2

{(0, 0, 1), (0, 3, 1), (2, 1, 2)}, {(0, 1, 0), (1, 0, 3), (2, 3, 2)},
{(0, 1, 1), (1, 3, 3), (2, 0, 2)}, {(0, 1, 2), (1, 0, 2), (2, 1, 3)},
{(0, 2, 1), (2, 0, 0), (2, 0, 1)}, {(1, 1, 0), (1, 2, 3), (1, 3, 1)},
{(1, 1, 2), (2, 0, 3), (2, 3, 3)},

are the blocks of a pseudo-resolvable (G2, �, 3, 1)-DF.

C: (G2 × V3,G1 × V3, 3, 1)-RDF

The following eighteen 3-subsets of G2 × V3

{(0, 0, 1, 0), (1, 3, 1, 2), (2, 1, 0, 1)}, {(0, 0, 1, 1), (0, 1, 0, 2), (1, 3, 3, 2)},
{(0, 0, 1, 2), (0, 3, 3, 1), (1, 1, 2, 0)}, {(0, 0, 3, 0), (2, 3, 1, 2), (2, 3, 2, 0)},
{(0, 0, 3, 1), (0, 1, 3, 0), (1, 1, 0, 0)}, {(0, 1, 0, 0), (1, 3, 1, 1), (2, 0, 1, 0)},
{(0, 1, 0, 1), (1, 0, 3, 1), (2, 3, 1, 1)}, {(0, 1, 1, 0), (2, 2, 1, 2), (2, 3, 0, 1)},
{(0, 1, 2, 0), (0, 2, 1, 2), (1, 3, 3, 0)}, {(0, 1, 2, 2), (0, 3, 1, 1), (2, 0, 1, 1)},
{(0, 1, 3, 2), (1, 0, 1, 2), (2, 3, 0, 0)}, {(0, 3, 0, 1), (1, 0, 3, 2), (2, 1, 3, 0)},
{(0, 3, 3, 2), (1, 0, 3, 0), (2, 3, 0, 2)}, {(1, 0, 1, 0), (1, 1, 2, 2), (1, 1, 3, 0)},
{(1, 0, 1, 1), (1, 1, 1, 1), (1, 1, 2, 1)}, {(1, 1, 0, 1), (2, 0, 3, 0), (2, 1, 1, 0)},
{(1, 1, 0, 2), (2, 1, 1, 2), (2, 2, 1, 1)}, {(2, 1, 0, 2), (2, 1, 1, 1), (2, 2, 3, 2)}

are the blocks of a (G2 × V3,G1 × V3, 3, 1)-RDF.

D: (G3,G2, 3, 1)-RDF

The following twentyfour 3-subsets of G3

{(0, 0, 1), (0, 5, 2), (0, 7, 5)}, {(0, 0, 3), (2, 1, 1), (2, 5, 2)},
{(0, 0, 5), (2, 1, 7), (2, 3, 6)}, {(0, 0, 7), (0, 1, 1), (2, 7, 0)},
{(0, 1, 0), (0, 7, 3), (2, 6, 1)}, {(0, 1, 4), (1, 4, 7), (2, 7, 5)},
{(0, 1, 5), (0, 5, 6), (2, 6, 7)}, {(0, 1, 7), (1, 3, 2), (2, 4, 5)},
{(0, 2, 1), (2, 3, 5), (2, 5, 0)}, {(0, 2, 5), (1, 1, 4), (1, 1, 5)},
{(0, 3, 0), (1, 1, 1), (1, 6, 1)}, {(0, 3, 3), (2, 0, 3), (2, 1, 0)},
{(0, 3, 5), (1, 3, 6), (2, 2, 1)}, {(0, 3, 6), (1, 2, 3), (1, 3, 5)},
{(0, 5, 7), (0, 7, 0), (1, 4, 5)}, {(0, 6, 3), (1, 1, 2), (2, 3, 7)},
{(0, 6, 7), (1, 3, 3), (1, 5, 2)}, {(0, 7, 6), (2, 6, 3), (2, 7, 7)},
{(1, 1, 0), (1, 4, 3), (2, 1, 5)}, {(1, 1, 3), (1, 4, 1), (2, 7, 4)},
{(1, 1, 7), (2, 1, 2), (2, 4, 3)}, {(1, 3, 7), (2, 4, 1), (2, 7, 6)},
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{(1, 6, 3), (1, 7, 4), (2, 5, 7)}, {(1, 6, 5), (1, 7, 0), (1, 7, 5)}

are the blocks of a (G3,G2, 3, 1)-RDF.
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