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Abstract
In this article, constant dimension subspace codes whose codewords have subspace distance
in a prescribed set of integers, are considered. The easiest example of such an object is a
junta (Combin Probab Comput 18(1–2):107–122, 2009); i.e. a subspace code in which all
codewords go through a common subspace. We focus on the case when only two intersection
values for the codewords, are assigned. In such a case we determine an upper bound for the
dimension of the vector space spanned by the elements of a non-junta code. In addition, if
the two intersection values are consecutive, we prove that such a bound is tight, and classify
the examples attaining the largest possible dimension as one of four infinite families.
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1 Introduction and preliminaries

Let V = V (F) be a finite dimensional vector space over a (possibly finite) field F, and let
k ∈ Z

+ be a positive integer and � ∈ N, such that � < k. A (k; �)-SCID (Subspaces with
Constant Intersection Dimension) in V, is a set of k-dimensional subspaces of V (k-spaces
in the following) pairwise intersecting in an �-dimensional space [1]. The easiest way of
constructing such an object is by considering a so-called �-sun f lower . Precisely, by taking
a family S of k-spaces ofV containing an �-space V ′ and having no points in common outside
of V

′. In the following, we will refer to V ′ as the center of the sunflower, and will call the
elements of S, the petals of S.

Of course, not all �-sunflowers with the same number of petals span a subspace of the same
dimension in V. A sunflower S is said to be of maximal dimension if among all sunflowers
with the same number of petals, it spans a subspace of V of largest dimension.

In this article we focus on a natural generalization of the concept of (k; �)-SCID. More
precisely, let �1, �2, ..., �v ∈ N be non-negative integers such that �1, �2, ..., �v < k. We give
the following definition.

Definition 1.1 A set S of k-spaces of V is a (k; �1, �2, ..., �v)-SPID (Subspaces with Pre-
assigned Intersection Dimensions) if for each pair of distinct subspaces πi , π j ∈ S, we have
dim(πi ∩π j ) ∈ {�1, �2, ..., �v}, and for each integer �m ∈ {�1, �2, ..., �v}, there exist at least
two k-spaces in S such that dim(πi ∩ π j ) = �m .

For our purposes, we always suppose that the dimension of V to be large enough in order
to assure the existence of such an object. Clearly, in the case when v = 1, we get back the
definition of a (k; �)-SCID in V.

The notion of �-sunflower in V can also be naturally generalized. We say that a
(k; �1, �2, ..., �v)-SPID S is an �-junta in V, if all elements of S pass through a common
�-space of V.

These geometric objects arise from a more general problem stated in [2,4,6], and recently
gained a particular interest due to the fact that they provide constant subspace codes, which
are a main tool in random network coding [7–9].
In this paper, we elaborate on finite (k; �1, �2, ..., �v)-SPIDs, mainly focusing on the case
when only two intersection values are assigned. Moreover, if �̃ = min{�1, �2, ..., �v}, we
will assume that dim(V) ≥ |S|(k − �̃) + �̃. Under this hypothesis, it is easy to see that S
is an �̃-sunflower of V of maximal dimension if any element π ∈ S meets the subspace
generated by all others precisely in the center. In this case, we determine an upper bound for
the dimension of the vector space spanned by the elements of a non-junta code, providing
the smallest intersection value is strictly larger than zero. In addition, if these two possible
intersection values are consecutive integers, we prove that this bound is tight and classify the
examples attaining the largest dimension as one of four infinite families.
Let S = {π1, π2, . . . , πn} be a (k; �1, �2, . . . , �v)-SPID. As in [1], for each j ∈ {1, ..., n},
the differences

δ j (S) = dim〈π1, . . . , π j 〉 − dim〈π1, . . . , π j−1〉
will be an important arithmetic tool in order to prove our results. We underline here that we
consider the span of the empty set as the null subspace; accordingly we put δ1 = k. Clearly,
the values δ j (S) depend on the labeling of the subspaces in S. In the following, we will
enclose these integers in an array, say δ(S) = (δ1(S), . . . , δn(S)). Regarding this array, we
show the following fact which also will play a crucial role.
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On sets of subspaces with two intersection dimensions 2083

Proposition 1.2 Let k, t1, t2, . . . , tv ∈ Z
+ be integers such that k ≥ t1 > t2 > · · · > tv ≥ 1.

Let S = {π1, . . . , πn} be a (k; k − t1, k − t2, . . . , k − tv)-SPID in a vector space V, with
n ≥ 3. Then there exists a permutation σ of the indices in the set In = {1, 2, . . . , n} such
that

t1 = δ2(Sσ ) ≥ δ3(Sσ ) ≥ . . . ≥ δn(Sσ ),

where Sσ = {πσ(1), . . . , πσ(n)}, and
δ j (Sσ ) = dim〈πσ(1), . . . , πσ( j)〉 − dim〈πσ(1), . . . , πσ( j−1)〉.

Proof Let m ∈ Z
+ be the maximum integer for which there exist m k-spaces,

πi1 , πi2 , . . . , πim , ofS, forming a (k−t1)-sunflower ofmaximal dimension; obviouslym ≥ 2.
Consider

max
1≤i≤n

i 	=i1,...,im

dim(πi ∩ 〈πh | h 	= i〉),

and denote by in an integer in {1, . . . , n} \ {i1, . . . , im} such that

dim(πin ∩ 〈πh | h 	= in〉) = max
1≤i≤n

i 	=i1,...,im

dim(πi ∩ 〈πh | h 	= i〉).

Similarly, consider

max
1≤i≤n

i 	=i1,...,im ,in

dim(πi ∩ 〈πh | h 	= i, in〉),

then there exists an integer, say in−1 ∈ {1, . . . , n} \ {i1, . . . , im, in}, such that
dim(πin−1 ∩ 〈πh | h 	= in−1, in〉) = max

1≤i≤n
i 	=i1,...,im ,in

dim(πi ∩ 〈πh | h 	= i, in〉).

After n − m steps, we obtain a sequence of indices (im+1, . . . , in).
Let σ be a permutation of the indices {1, . . . , n}, fixing the set {i1, i2, . . . , im} and such

that σ( j) = i j , for every j = m + 1, . . . , n. Consider Sσ = {πσ(1), . . . , πσ(n)}, we will
show that

δ j+1(Sσ ) ≤ δ j (Sσ ) for all j = 2, . . . , n − 1.

First of all, δ j (Sσ ) ≤ t1, for each j = 2, . . . , n; indeed

δ j (Sσ ) = k − dim(πσ( j) ∩ 〈πσ(1), . . . , πσ( j−1)〉) ≤ k − dim(πσ( j) ∩ πσ(1)) ≤ t1.

Also, since πσ(1), . . . , πσ(m) form a (k − t1)-sunflower of maximal dimension, then we have
δ j (Sσ ) = t1, with 2 ≤ j ≤ m. Note that

dim(πi j+1 ∩ 〈πh | h 	= i j+1, . . . , in〉) ≥ dim(πi j ∩ 〈πh | h 	= i j , . . . , in〉)
for all m + 1 ≤ j ≤ n − 1, because otherwise we would have

dim(πi j+1 ∩ 〈πh | h 	= i j+1, . . . , in〉) < dim(πi j ∩ 〈πh | h 	= i j , . . . , in〉)
≤ dim(πi j ∩ 〈πh | h 	= i j , i j+2, . . . , in〉),

123



2084 G. Longobardi et al.

which is a contradiction by the definition of i j+1. Then

δ j+1(Sσ ) = k − dim(πi j+1 ∩ 〈πh | h 	= i j+1, . . . , in〉)
≤ k − dim(πi j ∩ 〈πh | h 	= i j , . . . , in〉) = δ j (Sσ ).

This concludes the proof. 
�

In other terms, it is always possible to sort k-spaces in S in such a way that the associated
array δ(S), is non-increasing (see also [1, Theorem 2]).

Remark 1.3 We note explicitly that for a (k; k − t)-SCID S = {π1, . . . , πn} ⊂ V, we have

δ(S) := (δ1, δ2, . . . , δn) = (k, t, . . . , t) (1)

if and only if S is a (k − t)-sunflower of maximal dimension. The necessary condition is in
fact trivial. While, regarding the sufficiency we may observe that since δn(S) = t and

πn ∩ 〈π1, . . . , πn−1〉 ⊇ πn ∩ πi ,

we get for each i ∈ {1, ..., n − 1}, πn ∩ πi = V ′, where V ′ = πn ∩ 〈π1, . . . , πn−1〉. This
implies that S is a (k − t)-sunflower. Finally, by using Grassmann’s formula, it is easy to
show that S is of maximal dimension.

2 A junta-property bound for (k; k − t1, k − t2)-SPIDs

In this section, we restrict our discussion to the casewhere only two values for the intersection
dimensions are possible.

We start by showing a result which appears as a quite natural generalization of [1, Theorem
2] to (k; k − t1, k − t2)-SPID, with k − t1 	= 0.

Theorem 2.1 Let k, t1, t2 ∈ Z
+ such that k > t1 > t2 ≥ 2. Let S be a (k; k− t1, k− t2)-SPID

in V, with n = |S| ≥ 3. If dim〈S〉 ≥ k + (t1 − 1)(n − 1) + 2, then S is a (k − t1)-junta.

Proof Let δ(S) be any non-increasing array associated with S. In particular, arguing as in
the proof of Proposition 1.2, we can choose as first m spaces, m ≥ 2, those forming a
(k − t1)-sunflower of maximal dimension. By Remark 1.3, the integer m is the largest index
for which δm = t1. Let V ′ be the center of the sunflower formed by π1, . . . , πm . Hence,
we get dim V ′ = k − t1. Assume that S is not a (k − t1)-junta, so we can find a subspace
πr ∈ S \{π1, . . . , πm} not containing V ′.We denote k−t1−dim(πr ∩V ′) by ε; hence, ε ≥ 1.
Also, in the quotient vector space� = 〈S〉/(V ′∩πr ), we have that dim� πr = t1+ε, and that
dim�(πr ∩πi ) ∈ {ε, ε+ t1− t2}, for each 1 ≤ i ≤ m. Also, the subspaces (πr ∩πi )/(V ′ ∩πr )

of �, with 1 ≤ i ≤ m, are linearly independent. Hence,

δr = dim πr − dim(〈π1, π2, . . . , πr−1〉 ∩ πr ) ≤ dim� πr − dim�〈π1 ∩ πr , . . . , πm ∩ πr 〉

= t1 + ε −
m∑

i=1

dim�(πr ∩ πi ) ≤ t1 + ε − m · ε ≤ t1 − m + 1.
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Since δ(S) = (δ1, . . . , δn) is non-increasing, it is easy to see that

dim〈S〉 =
n∑

i=1

δi = k +
m∑

i=2

δi +
r−1∑

i=m+1

δi +
n∑

i=r

δi

≤ k + (m − 1)t1 + (r − m − 1)(t1 − 1) + (n − r + 1)(t1 − m + 1)

= k + (n − 1)(t1 − 1) − (n − r)(m − 2) + 1

≤ k + (n − 1)(t1 − 1) + 1,

(2)

which proves the theorem. 
�
Remark 2.2 We point out here that unlike what happens for SCIDs, in general the bound
stated above is not tight. For instance, with the same notation as used in Theorem 2.1; if
t1 > t2 ≥ 2 and there exists an integer s such that r > s > m with δs ≤ t2, we can slightly
improve on the upper bound stated in Theorem 2.1. In fact, if this is the case we can repeat
the proof of Theorem 2.1, and by re-writing Inequality (2), we get

dim〈S〉 =
n∑

i=1

δi = k +
m∑

i=2

δi +
s−1∑

i=m+1

δi +
r−1∑

i=s

δi +
n∑

i=r

δi

≤ k + (m − 1)t1 + (s − m − 1)(t1 − 1) + (r − s)t2 + (n − r + 1)(t1 − m + 1)

= k + (n − 1)(t1 − 1) − (n − r)(m − 2) − (r − s)(t1 − t2 − 1) + 1

≤ k + (n − 1)(t1 − 1) − (t1 − t2) + 2.

(3)

This possibility can be realised if the first r −1 spaces form a (k− t1)-junta with dim(πs ∩
π j ) = k − t2 for some j ∈ {1, . . . , s − 1}. In what follows, we exhibit a concrete example.

Let k, t1, t2 ∈ Z
+ such that k > t1 > t2 + 1 > 2 and consider t1 − t2 + 1 ≤ m ≤

min{t1 + 1, n − 1}. Let V ′, X , N1, . . . , Nm , Mm+1, . . . , Ms−1 and Ps, . . . , Pn−1 be linearly
independent subspaces of V such that

(a) dim V ′ = k − t1,
(b) dim X = t1 − m + 1,
(c) dim Ni = t1, for i = 1, . . . ,m,
(d) dim Mj = t1 − 1, for j = m + 1, . . . , s − 1,
(e) dim P� = t2, for � = s, . . . , n − 1.

Let Ai = {ai1, . . . , ai,t1−t2} be a set of linearly independent 1-spaces in Ni , for i = 1, . . . ,m,
|Ai | = t1 − t2, and we choose in Ai a 1-space, for example ai1. Now, let bm+1, . . . , bs−1 be
distinct 1-spaces in 〈a11, . . . , am1〉 \ {a11, . . . , am1} (where qm−1

q−1 ≥ s − m − 1 when V is a
vector space over the Galois field of order q , Fq ) and let W be a (k − t1 − 1)-space in V ′.
Then we define the k-spaces π1, . . . , πn as follows.

◦ π1 = 〈V ′, N1〉, π2 = 〈V ′, N2〉, . . ., πm = 〈V ′, Nm〉,
◦ πm+1 = 〈V ′, bm+1, Mm+1〉, . . ., πs−1 = 〈V ′, bs−1, Ms−1〉,
◦ πs = 〈V ′, Qs, Ps〉,. . .,πn−1 = 〈V ′, Qn−1, Pn−1〉,
◦ πn = 〈W , a11, . . . , am1, X〉,

where Qs, . . . , Qn−1 are (t1 − t2)-spaces equal to 〈Ai 〉, for some i ∈ {1, . . . ,m}. It is easy
to verify that

(i) πi ∩ π j = V ′, with i, j = 1, . . . , s − 1,
(ii) πi ∩ π j = V ′, with i = m + 1, . . . , s − 1 and j = s, . . . , n − 1,
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V

W

N1, . . . , Nm

Nm

Q1

N1

Qm

a11, . . . , am1a1,t1−t2

a11

am1

am,t1−t2

Mm+1

Pn−1

Ms−1

Ps

X

bm+1

bs−1

Fig. 1 The (k; k − t1, k − t2)-SPID described in Remark 2.2

(iii) dim(πi ∩ π j ) ∈ {k − t1, k − t2}, for i = 1, . . . ,m and j = s, . . . , n.

Hence, S = {π1, . . . , πn} is a set of n distinct k-spaces pairwise meeting either in a space
of dimension k − t1 or of dimension k − t2, i.e. a (k; k − t1, k − t2)-SPID. Also, it is clear
that S is not a (k − t1)-junta. Now, we have that

〈S〉 = 〈π1, . . . , πn〉 = 〈V ′, N1, . . . , Nm, Mm+1, . . . , Ms−1, Ps, . . . , Pn−1, X〉.
So, by hypothesis,

dim〈S〉 = k + (m − 1)t1 + (s − m − 1)(t1 − 1) + (n − s)t2 + (t1 − m + 1)

= k + (n − 1)(t1 − 1) − (n − s)(t1 − t2 − 1) + 1

≤ k + (n − 1)(t1 − 1) − (t1 − t2) + 2.

We find that the array δ(S) corresponding to such a SPID is as follows:

δ(S) = (k, t1, . . . , t1︸ ︷︷ ︸
m−1 times

, t1 − 1, . . . , t1 − 1︸ ︷︷ ︸
s−m−1 times

, t2, . . . , t2︸ ︷︷ ︸
n−s times

, t1 − m + 1).

In the following, we will show that if in addition we ask that the two possible values for the
dimensions of the intersection between elements of the SPID are consecutive integers, then
the bound in Theorem 2.1 is sharp. Towards this aim, we put beforehand the following result.

Proposition 2.3 Let t1, t2 ∈ Z
+ with k > t1 > t2 ≥ 2. Let S be a (k; k − t1, k − t2)-SPID in

a vector space V, with n = |S| ≥ 3, such that dim〈S〉 = k + (n − 1)(t1 − 1) + 1. Also let
δ(S) be any non-increasing array associated with S.
Then, there is no (k − t1)-sunflower of maximal dimension with at least three petals in S, if
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and only if

δ(S) = (k, t1, t1 − 1, . . . , t1 − 1). (4)

Moreover, if S = {π1, π2, . . . , πn} has associated non-increasing array δ(S) like in (4), then
any permutation σ , fixing π1 and π2, does not change δ(S).

Proof The necessity is obvious because if any such a δ(S) is like in (4), then, by Proposition
1.2 and by Remark 1.3, S can not contain a (k − t1)-sunflower of maximal dimension with
at least three petals.

Regarding sufficiency, clearly we have dim(π1 ∩ π2) = k − t1 and by hypothesis in any
non-increasing array the largest index m for which δm = t1, is 2. Now, if δn ≤ t1 − 2, then

dim〈S〉 =
n∑

i=1

δi = k + t1 +
n−1∑

i=3

δi + δn ≤ k + t1 + (n − 3)(t1 − 1) + t1 − 2

= k + (n − 1)(t1 − 1),

a contradiction. Hence, (δ1, δ2, . . . , δn) = (k, t1, t1 − 1, . . . , t1 − 1).
Now, we show that any permutation of the k-spaces in S, fixing π1 and π2, does not change
the array (4). First of all, we notice that

dim(π j ∩ 〈π1, π2〉) = k − t1 + 1, for all j = 3, . . . , n.

Indeed, for 3 ≤ j ≤ n,

k − t1 ≤ dim(π j ∩ π1) ≤ dim(π j ∩ 〈π1, π2〉)
≤ dim(π j ∩ 〈π1, π2, . . . , π j−1〉) = k − t1 + 1.

If dim(π j ∩ 〈π1, π2〉) = k − t1, then

π j ∩ π1 = π j ∩ 〈π1, π2〉 = π j ∩ π2.

Consequently, we also have π j ∩ 〈π1, π2〉 = π1 ∩ π2. This implies that π1, π2, π j form a
(k− t1)-sunflower of maximal dimension; in fact, dim〈π1, π2, π j 〉 = k+2t1 and, eventually
applying the same procedure as in the proof of Proposition 1.2, wewould get a non-increasing
array δ(S) with δ2 = δ3 = t1; a contradiction. Hence, dim(π j ∩ 〈π1, π2〉) = k − t1 + 1.

Nevertheless, since any non-increasing array δ(S) is as in (4), we have

k − t1 + 1 = max
3≤i≤n

dim(πi ∩ 〈πh | h 	= i〉) ≥ dim(π j ∩ 〈πh | h 	= j〉)
≥ dim(π j ∩ 〈π1, π2〉) = k − t1 + 1.

Hence, for any I ⊂ In = {1, . . . , n}, with 1, 2 ∈ I and j /∈ I ,

dim(π j ∩ 〈πh | h ∈ I 〉) = k − t1 + 1.

Now, let σ be any permutation of In such that σ(1) = 1 and σ(2) = 2, then

δ j (Sσ ) = k − dim(πσ( j) ∩ 〈πσ(1), πσ(2), . . . , πσ( j−1)〉)
= k − dim(πσ( j) ∩ 〈π1, π2, πσ(3), . . . , πσ( j−1)〉) = t1 − 1,

for all j = 3, . . . , n. 
�
Next, we exhibit four families of (k; k − t, k − t + 1)-SPIDs which are not (k − t)-juntas,
and such that dim〈S〉 = k + (n − 1)(t − 1) + 1.

In the following, we will denote by δ′(S) any non-increasing array obtained as described
in Proposition 1.2.
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V

W

N1, . . . , Nm

N2

a1, . . . , am

Nm

N1

X

Mm+1

Mn−1

a2

am

a1
bn−1

bm+1

Fig. 2 The (k; k − t, k − t + 1)-SPID described in Class I

2.1 SPIDs with ı′ = (k, t, . . . , t, t − 1, . . . , t − 1, t + 1 − m)

Let t ∈ Z
+ such that 2 ≤ t ≤ k − 1. Let m ∈ Z

+ be a positive integer such that m > 2. We
provide a class of (k; k − t, k − t + 1)-SPIDs with non-increasing array

δ′(S) = (k, t, . . . , t︸ ︷︷ ︸
m−1 times

, t − 1, . . . , t − 1︸ ︷︷ ︸
n−m−1 times

, t + 1 − m).

• Class I
Let 2 < m ≤ min{t+1, n−1}. Let V ′, X , N1, . . . , Nm and Mm+1, . . . , Mn−1 be linearly

independent subspaces of V such that dim V ′ = k − t , dim X = t − m + 1, dim Ni = t for
i = 1, . . . ,m, and dim Mj = t − 1 for j = m + 1, . . . , n − 1 (Fig. 2). Let a1, . . . , am be
1-spaces in N1, . . . , Nm , respectively. Also, let bm+1, . . . , bn−1 be 1-spaces in 〈a1, . . . , am〉
such that either

(i) at least two of them are the same 1-space, or
(ii) at least one of them is equal to ai , with i ∈ {1, . . . ,m}.
Let W be a (k − t − 1)-space in V ′. Then we define the k-spaces π1, . . . , πn as follows.

◦ π1 = 〈V ′, N1〉, π2 = 〈V ′, N2〉, . . ., πm = 〈V ′, Nm〉,
◦ πm+1 = 〈V ′, Mm+1, bm+1〉, . . ., πn−1 = 〈V ′, Mn−1, bn−1〉,
◦ πn = 〈W , a1, . . . , am, X〉.

By Requests (i) and (ii), it is clear that the pairwise intersection of distinct spaces πi and π j ,
i, j = 1, . . . , n − 1, either is the (k − t)-space V ′ or it is a (k − t + 1)-space containing
V ′. Moreover, since each of the spaces π1, . . . , πn−1 contains a unique 1-space from the
set {a1, . . . , am, bm+1, . . . , bn−1} (note that by Properties (i) and (ii), some of the 1-spaces
could be equal), we have dim(πn ∩ πi ) = k − t , for all i = 1, . . . , n − 1. Hence, the set

123



On sets of subspaces with two intersection dimensions 2089

S = {π1, . . . , πn} is a set of n distinct k-spaces pairwise meeting in a space of dimension
k − t or k − t + 1. Also, since not all pairwise intersections equal the same (k − t)-space,
S is not a (k − t)-junta. The set {a1, . . . , am, bm+1, . . . , bn−1} is contained in 〈N1, . . . , Nm〉
and W ⊂ V ′. Then

〈S〉 = 〈π1, . . . , πn〉 = 〈V ′, N1, . . . , Nm, Mm+1, . . . , Mn−1, X〉.
Clearly, since V ′, X , N1, . . . , Nm and Mm+1, . . . , Mn−1 are linearly independent spaces of
V, we have that

dim〈S〉 = k − t + m · t + (n − 1 − m) · (t − 1) + t − m + 1

= k + (n − 1)(t − 1) + 1.

Arguing as in Proposition 1.2, we find

δ′(S) = (k, t, . . . , t︸ ︷︷ ︸
m−1 times

, t − 1, . . . , t − 1︸ ︷︷ ︸
n−m−1 times

, t + 1 − m).

Lemma 2.4 Let S be a (k; k − t, k − t + 1)-SPID of V, where 2 ≤ t ≤ k − 1, such that S is
not a (k − t)-junta, with |S| = n ≥ 3. If dim〈S〉 = k + (n − 1)(t − 1) + 1 and there exists
a (k − t)-sunflower of maximal dimension with at least three petals in S, then S belongs to
Class I.

Proof Since dim〈S〉 = k + (n − 1)(t − 1) + 1, from the proof of Theorem 2.1 we get

n∑

i=1

δi = k + (n − 1)(t1 − 1) − (n − r)(m − 2) + 1.

Moreover, since this implies that (n − r)(m − 2) = 0 and m ≥ 3, necessarily r = n. Then,

δ′(S) = (k, t, . . . , t︸ ︷︷ ︸
m−1 times

, t − 1, . . . , t − 1︸ ︷︷ ︸
n−m−1 times

, t + 1 − m). (5)

Consider S ′ = {π1, . . . , πn−1}. Since dim〈S ′〉 = k + (n − 2)(t − 1) +m − 1 ≥ k + (n −
2)(t −1)+2, then, by Theorem 2.1, we have that S ′ is a (k− t)-junta. Let V ′ be the common
(k− t)-space through which the k-spaces π1, . . . , πn−1 pass, and denote k− t−dim(πn∩V ′)
by ε. Since S is not a junta, ε ≥ 1; indeed, by the proof of Theorem 2.1, necessarily ε = 1.
LetW denote the (k− t −1)-subspace πn ∩V ′. Furthermore, we note the first k-spaces form
a sunflower of maximal dimension since δ2 = · · · = δm = t . Hence, there exist t-spaces
N1, . . . , Nm , with i = 1, . . . ,m, such that N1, . . . , Nm, V ′ are linearly independent, and
πi = 〈V ′, Ni 〉. Also, by hypothesis, there exist at least two k-spaces in S such that they meet
in a (k − t + 1)-space. We first show that

dim(πn ∩ π j ) = k − t, for all j ∈ {1, . . . , n − 1}.
For this purpose, suppose by way of contradiction that there exists a j ∈ {1, . . . , n− 1} such
that dim(πn ∩ π j ) = k − t + 1; we may distinguish between two cases:

(a) j ∈ {1, . . . ,m}. Then there are two 1-spaces a j1 and a j2 in πn ∩ π j not in V ′, and there
is at least another 1-space ai ∈ πn ∩ πi , for all i ∈ {1, . . . ,m} \ { j} not in V ′. Without
loosing any generality, wemay choose the Ni ’s in such away that a1 ∈ N1, . . . , am ∈ Nm

and 〈a j1 , a j2〉 ⊆ N j . Hence,

πn ∩ 〈π1, . . . , πn−1〉 ⊇ 〈W , a1, . . . , a j−1, a j1 , a j2 , a j+1, . . . , am〉,

123



2090 G. Longobardi et al.

obtaining that

t − m + 1 = δn ≤ k − dim〈W , a1, . . . , a j−1, a j1 , a j2 , a j+1, . . . , am〉 = t − m,

a contradiction.
(b) j ∈ {m+1, . . . , n−1}. Since, by Point (a), dim(πn∩πi ) = k−t for every i = 1, . . . ,m,

πn contains the 1-spaces a1 ∈ π1, . . . , am ∈ πm , meeting V ′ trivially. Furthermore, since
dim(πn ∩ π j ) = k − t + 1, there must be two 1-spaces a′, a′′ ∈ πn ∩ π j not in V ′ and
such that 〈a′, a′′〉 ∩ W is trivial. Also, the subspace 〈a′, a′′〉 can not be contained in
〈V ′, a1, . . . , am〉, otherwise we would have

π j ∩ 〈V ′, a1, . . . , am〉 ⊇ 〈V ′, a′, a′′〉,
and, consequently,

t − 1 = δ j ≤ k − dim〈V ′, a′, a′′〉 = t − 2.

Moreover, 〈a′, a′′〉 meets 〈V ′, a1, . . . , am〉 in a 1-space, otherwise

πn ∩ 〈π1, . . . , πn−1〉 ⊇ 〈W , a1, . . . , am, a′, a′′〉
obtaining again t −m+1 = δn ≤ t −m−1. However, if b ∈ 〈a′, a′′〉 \ 〈V ′, a1, . . . , am〉,
then

t − m + 1 = δn ≤ k − dim〈W , a1 . . . , am, b〉 = t − m;
which is again a contradiction.

Hence, definitely dim(πn ∩ π j ) = k − t , for each j ∈ {1, . . . , n − 1}.
Now, since δn = t −m + 1 and πn intersects V ′ in the (k − t − 1)-dimensional subspace W ,
we get that the k-space πn may be realised as follows

πn = 〈W , a1, . . . , am, X〉,
for suitable points a1 ∈ N1, . . . , am ∈ Nm and X a (t − m + 1)-dimensional subspace such
that V ′, N1, . . . , Nm, X are linearly independent.

Since πn ∩ π j , j = m + 1, . . . , n − 1, is a (k − t)-space contained in 〈W , a1, . . . , am〉,
there must exist a 1-space b j in 〈a1, . . . , am〉 \ W such that πn ∩ π j = 〈W , b j 〉 otherwise
t − m + 1 = δn = k − dim(πn ∩ 〈π1, . . . , πn−1〉) ≤ k − dim〈W , a1, . . . , am, b j 〉 = t − m,

a contradiction. Moreover, since δ j = t − 1, it is immediate that for any j = m +
1, . . . , n − 1, we have π j = 〈V ′, b j , Mj 〉, with Mj a (t − 1)-space and such that
V ′, N1, . . . , Nm, Mm+1, . . . , Mn−1 and X are linearly independent. Note explicitly that if
dim(πi ∩π j ) = k− t+1, with i, j ∈ {m+1, . . . , n−1}, then bi = b j . Indeed, let πi ∩π j =
〈V ′, a′〉. This space is contained in 〈π1, π2, . . . , πm〉, since if a′ /∈ 〈π1, π2, . . . , πm〉, assum-
ing j > i , we have

π j ∩ 〈π1, . . . , πi 〉 ⊇ 〈V ′, b j , a
′〉,

obtaining δ j ≤ t − 2. So, 〈V ′, a′〉 ⊆ 〈π1, . . . , πm〉. Now, since πi ∩ 〈π1, π2, . . . , πm〉 =
〈V ′, bi 〉 and π j ∩ 〈π1, π2, . . . , πm〉 = 〈V ′, b j 〉 have dimension k − t + 1 and

πi ∩ π j = πi ∩ π j ∩ 〈π1, π2, . . . , πm〉,
we get that both 〈V ′, bi 〉 and 〈V ′, b j 〉 are equal to πi ∩ π j . Now, since we assumed j > i , if
bi 	= b j then again we would have t − 1 = δ j ≤ t − 2, which is not the case. Suppose that
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Fig. 3 The (k; k − t, k − t + 1)-SPIDs described in Class II

there exist i ∈ {1, . . . ,m} and j ∈ {m + 1, . . . , n − 1} such that dim(πi ∩ π j ) = k − t + 1,
then there exists a 1-space a′ ∈ Ni such that

〈V ′, a′〉 = πi ∩ π j ⊆ π j ∩ 〈π1, . . . , πm〉 = 〈V ′, b j 〉.
Hence, b j ∈ 〈V ′, a′〉 and, since δ j = t − 1, b j ∈ 〈a1, . . . , am〉 ∩ Ni otherwise

t − 1 = δ j = k − dim(π j ∩ 〈π1, . . . , π j−1〉) ≤ k − dim〈V ′, a′, b j 〉 = t − 2;
this implies that b j = ai . Note explicitly that a k-space π j in S, with j ∈ {m+1, . . . , n−1},
can meet at most one πi , with i ∈ {1, . . . ,m}, in a (k − t + 1)-space. Finally, it is possible
that in S there exists a k-space π j , with j ∈ {m + 1, . . . , n − 1}, that intersects πi , with
i ∈ {1, . . . ,m}, and πh , with h ∈ {m + 1, . . . , n − 1}, in two (k − t + 1)-spaces. From
previous results, bh = b j = ai . So, S belongs to Class I. 
�

2.2 SPIDs with ı′ = (k, t, t − 1, t − 1, . . . , t − 1)

• Class II
Choose integers n ≥ 3 and k, t such that 2 ≤ t ≤ k − 1. Let W be a (k − t + 1)-subspace of
V, and X1, X2 t-spaces such that dim〈X1, X2〉 = 2t − 1. Moreover, consider M3, . . . , Mn

(t −1)-subspaces of V such thatW , 〈X1, X2〉, M3, . . . , Mn are linearly independent. LetW1

and W2 be two (k − t)-spaces in W (Fig. 3). Then we define the sets π1, . . . , πn as follows:

◦ π1 = 〈W1, X1〉, π2 = 〈W2, X2〉,
◦ π3 = 〈W , M3〉, …, πn = 〈W , Mn〉.

Now, since dim(X1 ∩ X2) = 1, π1 ∩ π2 is a (k − t)-space. Moreover, these two spaces meet
other ones either inW1 or inW2, and {π3, . . . , πn} is a (k − t + 1)-sunflower with centerW .
Clearly,

〈S〉 = 〈π1, . . . , πn〉 = 〈W , X1, X2, M3, . . . , Mn〉.
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Fig. 4 The (k; k − t, k − t + 1)-SPIDs described in Class III

Since W , 〈X1, X2〉, M3, . . . , Mn are linearly independent, we find that

dim〈S〉 = k − t + 1 + 2t − 1 + (n − 2) · (t − 1)

= k + (n − 1)(t − 1) + 1.

Again arguing as in Proposition 1.2, we get

δ′(S) = (k, t, t − 1, . . . , t − 1).

Weobserve that particular examples in this class contain (k−t+1)-sunflowers ofmaximal
dimension, but do not contain (k − t)-sunflowers of maximal dimension. Nonetheless, they
are (k − t − 1)-juntas.

• Class III
Choose integers n ≥ 3, 2 ≤ s < n and k, t such that 2 ≤ t ≤ k − 1. Let V be a vector space
over a field F which is either infinite or else a finite field F of order q with q a prime power
such that q + 1 ≥ s. Let V ′, 〈X1, X2〉, M3, . . . , Mn be linearly independent subspaces of V

such that dim V ′ = k − t + 2, and dim X1 = t , dim X2 = t − 1 with dim(X1 ∩ X2) = 1 and
dim Mi = t − 1, for i = 3, . . . , n. Let W0,W1, . . . ,Ws be distinct (k − t + 1)-spaces in V ′
such that W1, . . . ,Ws go through a (k − t)-space W (Fig. 4), and W0 does not pass through
W . We define the sets

π1 = 〈W , X1〉, π2 = 〈W0, X2〉,
π3 = 〈W1, M3〉, . . . , πm1 = 〈W1, Mm1〉,

πm1+1 = 〈W2, Mm1+1〉, . . . , πm2 = 〈W2, Mm2〉,
. . .

πms−1+1 = 〈Ws, Mms−1+1〉, . . . , πn = 〈Ws, Mn〉.
Clearly, S = {π1, . . . , πn} is a (k; k − t, k − t + 1)-SPID which is not a (k − t)-junta and

〈S〉 = 〈π1, . . . , πn〉 = 〈V ′, X1, X2, M3, . . . , Mn〉.
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Fig. 5 The (k; k − t, k − t + 1)-SPIDs described in Class IV

Since V ′, 〈X1, X2〉, M3, . . . , Mn are linearly independent, we find that

dim〈S〉 = k − t + 2 + 2t − 2 + (n − 2)(t − 1)

= k + (n − 1)(t − 1) + 1.

Also in this case we have δ′(S) = (k, t, t − 1, . . . , t − 1).
Examples in this class may contain (k − t)-sunflowers not of maximal dimension and

(k − t + 1)-sunflowers of maximal dimension.
• Class IV
Choose integers n ≥ 3, 2 ≤ s < n and k, t such that 2 ≤ t ≤ k − 1. Let V be a vector space
over a field F which is either infinite or else a finite field F of order q with q a prime power

such that q
k−t+2−1
q−1 ≥ s+2. Let V ′, M1, . . . , Mn be linearly independent subspaces ofV such

that dim V ′ = k − t + 2, and dim Mi = t − 1, for i = 1, . . . , n. Let V0,W0,W1, . . . ,Ws

be s + 2 (k − t + 1)-spaces in V ′ such that they do not go through the same (k − t)-space,
with W1, . . . ,Ws distinct (Fig. 5) (which in the case V is a vector space over a finite field of
order q , exist for the above assumption on q). We define the sets

π1 = 〈V0, M1〉, π2 = 〈W0, M2〉,
π3 = 〈W1, M3〉, . . . , πm1 = 〈W1, Mm1〉,

πm1+1 = 〈W2, Mm1+1〉, . . . , πm2 = 〈W2, Mm2〉,
. . .

πms−1+1 = 〈Ws, Mms−1+1〉, . . . , πn = 〈Ws, Mn〉.
Clearly, the set S is a {k; k − t, k − t + 1}-SPID such that it is not a (k − t)-junta and

〈S〉 = 〈π1, . . . , πn〉 = 〈V ′, M1, M2, M3, . . . , Mn〉.

123



2094 G. Longobardi et al.

Since V ′, M1, M2, M3, . . . , Mn are linearly independent, we find that

dim〈S〉 = k − t + 2 + n · (t − 1) = k + (n − 1)(t − 1) + 1,

and δ′(S) = (k, t, t − 1, . . . , t − 1).
Examples in this last class may contain (k− t +1)-sunflowers of maximal dimension and

(k − t)-sunflowers not of maximal dimension.

3 Tightness of the junta-property bound for (k; k − t, k − t + 1)-SPIDs

We will prove the following classification result.

Theorem 3.1 Let S be a (k; k − t, k − t + 1)-SPID in a vector space V, with |S| = n ≥ 3
and 2 ≤ t ≤ k − 1. If the dimension of 〈S〉 is k + (n − 1)(t − 1) + 1, then S is either a
(k − t)-junta or S is one of the examples described in Classes I, II, III or IV.

First, we state the following lemma.

Lemma 3.2 Let S be a (k; k − t, k − t + 1)-SPID (2 ≤ t ≤ k − 1) in a vector space V such
that n = |S| ≥ 3 and S is not a (k − t)-junta.
If dim〈S〉 = k+ (n−1)(t−1)+1 and there is not a (k− t)-sunflower of maximal dimension
with at least three petals in S, then S is equivalent to one of the examples described in Classes
I I , I I I , or I V .

Proof By Propositions 1.2 and 2.3, we may sort k-subspaces in S in such a way that

(δ1, δ2, . . . , δn) = (k, t, t − 1, . . . , t − 1). (6)

Also, arguing as in the proof of Proposition 2.3, we get that dim(π4 ∩ 〈π1, π2, π3〉) =
dim(π4 ∩ 〈π1, π2〉) = k − t + 1, and hence

π4 ∩ π3 ⊆ π4 ∩ 〈π1, π2, π3〉 = π4 ∩ 〈π1, π2〉 ⊆ 〈π1, π2〉.
Eventually rearranging the spaces π3, . . . , πn in S, we can repeat the previous argument,
getting

πi ∩ π j ⊆ 〈π1, π2〉,
for all distinct πi and π j , with i, j ∈ {3, . . . , n}. Moreover, dim(πi ∩ 〈π1, π2〉) = dim(π j ∩
〈π1, π2〉) = k − t + 1.

Now, define in S ′ = {π3, . . . , πn}, the following binary relation

πi ∼ π j ⇐⇒ πi ∩ 〈π1, π2〉 = π j ∩ 〈π1, π2〉,
for i, j = 3, . . . , n.
Clearly,∼ is an equivalence relation onS ′. The k-spaces of an equivalence classmeet 〈π1, π2〉
in the same (k − t + 1)-space. In this way, we get s distinct (k − t + 1)-dimensional spaces
in 〈π1, π2〉, sayW1, . . . ,Ws , where s is a given integer, 1 ≤ s ≤ n− 2, pairwise intersecting
in a (k − t)-space. Indeed, let πi and π j be k-spaces of S ′ in different equivalence classes.
Then, by the proof of Proposition 2.3, dim(πi ∩〈π1, π2〉) = dim(π j ∩〈π1, π2〉) = k− t+1,

πi ∩ 〈π1, π2〉 = W� and π j ∩ 〈π1, π2〉 = Wm,
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for some distinct �,m ∈ {1, . . . , s}. Hence,
πi ∩ π j = πi ∩ π j ∩ 〈π1, π2〉 = W� ∩ Wm .

Since k−t ≤ dim(πi ∩π j ) = dim(W�∩Wm) andW�,Wm are distinct (k−t+1)-subspaces,

dim(W� ∩ Wm) = k − t .

Now, since the relation ∼ induces a partition J1, J2, . . . , Js on the elements of the index
set {3, 4, . . . , n}, by Proposition 2.3, we can label appropriately the elements of S, obtaining

π j1 = 〈W1, Mj1〉 with j1 ∈ J1,

π j2 = 〈W2, Mj2〉 with j2 ∈ J2,

. . .

π js = 〈Ws, Mjs 〉 with js ∈ Js,

where the elements in the set {Mjh : jh ∈ Jh, h ∈ {1, 2, . . . , s}}, are certain linearly
independent (t − 1)-spaces in V.

We divide the remainder of the proof in two steps:

(1) First, we look at the case where all elements in S ′ meet 〈π1, π2〉 in the same (k − t + 1)-
space, say W . It is clear that for 3 ≤ j ≤ n and i = 1, 2, πi ∩ π j = πi ∩ W . Indeed,
since W = π j ∩ 〈π1, π2〉; we have

πi ∩ π j ⊆ W .

Hence, πi ∩ π j ⊆ W ∩ πi . On the other hand, since

W = π j ∩ 〈πi , π2〉 ⊆ π j ,

then we also have W ∩ πi ⊆ π j ∩ πi . Next we show that

dim(πi ∩ π j ) = k − t,

for 3 ≤ j ≤ n and i = 1, 2. To this aim, suppose that either the space π1 or π2 contains
W (W � π1 ∩ π2, since dim(π1 ∩ π2) = k − t). For instance, let π1 contain W . Then,
π2∩W = π1∩π2; in fact, we have that π1∩π2 ⊇ π2∩W = π2∩π j with j ∈ {3, ..., n}.
But then S is a (k − t)-junta; a contradiction. Hence, π1 ∩ W = W1 and π2 ∩ W = W2

are (k − t)-spaces, and they are distinct otherwise S is again a (k − t)-junta. Precisely,
they are two hyperplanes of W . We denote by W ′ the (k − t − 1)-space of W in which
they meet, and choose a basis of V in such a way that the following happens

π1 ∩ W = 〈W ′, a1〉 and π2 ∩ W = 〈W ′, a2〉,
with a1, a2 distinct 1-spaces inW1\W ′ andW2\W ′, withW ′, a1, a2 linearly independent.
Then, there also exist two t-spaces X1 and X2, having a 1-space in common and such
that

π1 = 〈W ′, a1, X1〉, π2 = 〈W ′, a2, X2〉.
This finally means that S is one of the examples in Class II.

(2) Now, we suppose that s ≥ 2. In this case, W1, . . . ,Ws are (k − t + 1)-spaces pairwise
intersecting in a (k − t)-space. Hence, by [3, Sect. 9.3], either

(a) they have a (k − t)-space in common, or
(b) they lie in a (k − t + 2)-space V ′.
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Note explicitly that for s = 2, (a) and (b) are equivalent. If s ≥ 3, we will show that

dim〈W1,W2, . . . ,Ws〉 = k − t + 2, (7)

which is equivalent to prove that, for all 1 ≤ h ≤ s,

Wh ⊆ 〈W1,W2〉. (8)

Suppose thatW1,W2, . . . ,Ws go through a (k− t)-space in 〈π1, π2〉 and let π j1 , π j2 , π jh
be k-spaces belonging to different equivalence classes with respect to ∼, such that

π j1 = 〈W1, Mj1〉 π j2 = 〈W2, Mj2〉 π jh = 〈Wh, Mjh 〉.
Since there is not a sunflower of maximal dimension with at least three petals contained
in S, we have

dim(π jh ∩ 〈π j1 , π j2〉) ≥ k − t + 1.

Then, by applying Grassmann’s Formula, we obtain

k − t + 1 ≤ dim(π jh ∩ 〈π j1 , π j2〉) = 2k + t − dim〈W1,W2,Wh, Mj1 , Mj2 , Mjh 〉
= 2k + t − 3(t − 1) − (dimWh + dim〈W1,W2〉 − dim(Wh ∩ 〈W1,W2〉).

This implies dim(Wh ∩ 〈W1,W2〉) ≥ k − t + 1 and hence we get property (8). So, all
(k − t + 1)-spaces W1, . . . ,Ws lie in a (k − t + 2)-space, say V ′.
Obviously, V ′ is contained in 〈π1, π2〉 and

k − t ≤ dim(πi ∩ V ′) ≤ k − t + 1, for i = 1, 2. (9)

Indeed, since for i ∈ {1, 2} and for any j ∈ {3, . . . , n},
πi ∩ π j = πi ∩ π j ∩ 〈π1, π2〉 = πi ∩ Wh ⊆ πi ∩ V ′,

for some h ∈ {1, . . . , s}, then the first inequality in (9) follows.
On the other hand, if dim(πi ∩V ′) ≥ k− t +2, for i = 1 or 2, then V ′ is contained either
in π1 or in π2 (not in both since dim(π1 ∩ π2) = k − t). Without loss of generality, we
can suppose that V ′ is contained in π1. Then

π2 ∩ π jh = π2 ∩ Wh ⊆ π2 ∩ V ′ ⊆ π1 ∩ π2,

for h ∈ {1, . . . , s}. This implies that π1 ∩ π2 is contained in all elements of S and hence
it is a (k − t)-junta. Furthermore, π1 ∩ V ′ and π2 ∩ V ′ are distinct subspaces. Indeed,

(�) if π1 ∩V ′ = π2 ∩V ′ and it is a (k− t +1)-space, then π1 ∩π2 is a (k− t +1)-space,
a contradiction;

(��) if π1 ∩V ′ = π2 ∩V ′ is a (k − t)-space, since for i = 1, 2 and h = 1, . . . , s, πi ∩Wh

has dimension at least k − t and Wh ⊆ V ′, we have that

π1 ∩ Wh = π1 ∩ V ′ = π2 ∩ V ′ = π2 ∩ Wh .

This implies that π1 ∩ π2 is contained in all elements of S; again this is not the case.
Now, let Wh be a (k − t + 1)-space with 1 ≤ h ≤ s, then

k − t = dim(π1 ∩ π2) ≥ dim(π1 ∩ π2 ∩ Wh)

≥ dim(π1 ∩ Wh) + dim(π2 ∩ Wh) − dimWh ≥ 2(k − t) − k + t − 1 = k − t − 1.
(10)

By taking into account Inequalities (9) and (10), the discussion may be reduced to one
of the following three cases:
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(i) dim(π1 ∩ V ′) = dim(π2 ∩ V ′) = k − t (and dim(π1 ∩ π2 ∩ V ′) = k − t − 1).
(ii) π1 and π2 meet V ′ in subspaces with different dimensions.
(iii) π1 ∩ V ′ and π2 ∩ V ′ are two hyperplanes of V ′.

Case (i): We shall show that for all 3 ≤ j ≤ n,

π j ∩ 〈π1, π2〉 = 〈π1 ∩ V ′, π2 ∩ V ′〉. (11)

Since π j ∩ 〈π1, π2〉 ⊆ V ′, and π1 and π2 meet V ′ in a (k − t)-space,

π j ∩ π1 = π1 ∩ V ′ and π j ∩ π2 = π2 ∩ V ′ ,

obtaining that

π j ∩ 〈π1, π2〉 ⊇ 〈π j ∩ π1, π j ∩ π2〉 = 〈π1 ∩ V ′, π2 ∩ V ′〉.
However, since they both are (k − t)-spaces in V ′, we obtain equality stated in (11).
Hence, every π j , j = 3, . . . , n, meets 〈π1, π2〉 in the same (k − t + 1)-subspace. But
this contradicts s ≥ 2.
Case (ii): We can suppose, without loss of generality, that

dim(π1 ∩ V ′) = k − t and dim(π2 ∩ V ′) = k − t + 1.

Clearly, π1 ∩ V ′
� π2 ∩ V ′, otherwise

π1 ∩ Wh = π1 ∩ V ′ ⊆ π2 ∩ V ′.

This implies that π1 ∩ π2 ⊆ Wh , for h = 1, . . . , s, and then S is a (k − t)-junta with
center π1 ∩ π2. Since W = π1 ∩ π2 ∩ V ′ is a (k − t − 1)-space, there exists a t-space
X1 contained in π1 and a (t − 1)-space X2 contained in π2 both disjoint from V ′, for
i = 1, 2, and such that 〈X1, X2〉 = 2t − 2. Then

π1 = 〈π1 ∩ V ′, X1〉 and π2 = 〈π2 ∩ V ′, X2〉.
We note explicitly that

π1 ∩ V ′ = π1 ∩ Wh ⊆ Wh, (12)

for h ∈ {1, . . . , s}, since dim(π1 ∩ V ′) = k − t .
Case (iii): Now, we suppose that π1 ∩ V ′ and π2 ∩ V ′ are hyperplanes of V ′, say V0 and
W0, respectively. Then, there exists Xi , i = 1, 2, a (t − 1)-space in πi disjoint from V ′,
such that

π1 = 〈V0, X1〉 and π2 = 〈W0, X2〉.
Again, by Grassmann’s Formula, we obtain that X1, X2, V ′ are linearly independent and
dim〈X1, X2〉 = 2t − 2.

So, the discussion in Case (ii) provides us with an example described in Class III, while Case
(iii) gives an example in Class IV. 
�
Remark 3.3 Let W = {W1, . . . ,Ws, π2 ∩ V ′} be the set of (k − t + 1)-spaces in V ′ with
2 ≤ s ≤ n − 3.
In Case (ii), if s ≥ 3 by Formula (12), the first s subspaces inW form a sunflower with center
π1 ∩ V ′, and π2 ∩ V ′ not through π1 ∩ V ′.
In Case (iii), considering π1∩V ′ and π2∩V ′, one of them or both could be in {W1, . . . ,Ws}.
If s = 2, at most one of π1 ∩ V ′ and π2 ∩ V ′ can coincide with W1 or W2. Otherwise,
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W1 ∩ W2 = π1 ∩ π2 and it is contained in all elements of S.
In particular, if s = 2 and n = 4, it is straightforward to see that exactly one of π1 ∩ V ′ and
π2 ∩ V ′ must necessarily be equal to W1 or W2.

We are now in the position to prove the main result of this section.

Proof of Theorem 3.1 We assume that S is not a (k − t)-junta and denote the elements of S
by π1, π2, . . . , πn . We will consider all possible orderings of the spaces in S such that the
parameters (δ2, . . . , δn) are non-increasing. Since dim〈S〉 = k+ (n−1)(t −1)+1, we have
the equality in (2) of Theorem 2.1. Hence, if m ≥ 3, we have

(δ2, . . . , δn) = ( t, . . . , t︸ ︷︷ ︸
m−1 times

, t − 1, . . . , t − 1︸ ︷︷ ︸
n−m−1 times

, t + 1 − m), (13)

otherwise m = 2 and we have

(δ2, . . . , δn) = (t, t − 1, . . . , t − 1). (14)

◦ Suppose that we can find a permutation of the elements in S such that δ(S) is as in (13),
for m ≥ 3. Then, by Lemma 2.4, it follows that S belongs to Class I.

◦ If otherwise (δ2, . . . , δn) is as in (14), by Proposition 2.3, there is no (k − t)-sunflower
of maximal dimension with at least three petals. The result then follows by Lemma 3.2.
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