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Abstract

In this work, we define composite matrices which are derived from group rings. We extend
the idea of G-codes to composite G-codes. We show that these codes are ideals in a group
ring, where the ring is a finite commutative Frobenius ring and G is an arbitrary finite group.
We prove that the dual of a composite G-code is also a composite G-code. We also define
quasi-composite G-codes. Additionally, we study generator matrices, which consist of the
identity matrices and the composite matrices. Together with the generator matrices, the well
known extension method, the neighbour method and its generalization, we find extremal
binary self-dual codes of length 68 with new weight enumerators for the rare parameters
y =7, 8 and 9. In particular, we find 49 new such codes. Moreover, we show that the codes
we find are inaccessible from other construction

Keywords Composite matrices - Group rings - Composite G-codes - Self-orthogonal
composite G-codes - Codes over rings - Self-dual codes

Mathematics Subject Classification 94B05 - 16534

1 Introduction

Recently, the authors in [13] have defined G-codes which are ideals in a group ring, where
the ring is a finite commutative Frobenius ring and G is an arbitrary finite group. This idea
is based on applying the matrix o (v), where v is a group ring element, which was first
introduced in [21]. In another recent paper [19], the authors also apply the matrix o (v) to
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form generator matrices of the form [/ | o (v)], where [ is the identity matrix, to search for
extremal self-dual codes.

In [10] and [11], the authors amend the generator matrices of the form [/ | o (v)]. Namely,
they replace the matrices o (v) with more complex matrices and call these the composite
constructions. The authors define a number of composite constructions which they apply
to search for extremal self-dual codes, but no general theory is given. Later in [9], the
authors generalize the idea of composite constructions, amend the matrix o (v) and define
the composite constructions, which they also call the composite matrices, in a more general
and rigorous way.

In this work, we look at the composite matrices and compare them to the matrices obtained
from o (v). We look at when these matrices are equivalent and when they are not. We next
apply the more general and rigorous definition of the composite matrices to define composite
G-codes. This is an extension of G-codes mentioned earlier. We show that these codes are
ideals in the group ring, and that the dual of a composite G-code is also a composite G-
code. Moreover, we show when the composite G-codes are self-orthogonal and self-dual.
Additionally, we define quasi-composite G-codes and extend some known results to quasi
G-codes.

We generalize the theory of the composite constructions defined in [10] and [11]. Namely,
we show in general when and under what conditions such matrices produce self-dual codes,
rather than showing it for individual cases as in [10] and [11]. Lastly in this paper, we
combine the ideas of composite matrices, the well known extension method and the neighbour
construction and its generalization (see [18] for details), to search for extremal binary self-
dual codes of length 68. As a result, we obtain 49 such codes with parameters that were not
known in the literature before.

The rest of the work is organized as follows. In Sect. 2, we give preliminary definitions
and results on codes, group rings and special matrices. We also recall the construction of
G-codes from [13]. In Sect. 3, we define the composite matrix which was introduced in
[9] and compare it with the matrix o (v). In Sect. 4, we define the composite G-codes and
show that these are ideals in the group ring. In Sect. 5, we study when the composite G-
codes are self-orthogonal and self-dual. Section 6 consists of a study of quasi-composite
G-codes. In Sect. 7, we generalize the theory of the composite constructions from [10] and
[11]. Additionally, we find new extremal self-dual binary codes of length 68. We finish with
concluding remarks and directions for possible future research.

2 Preliminaries
2.1 Codes, group rings and special matrices

We begin by recalling the standard definitions from coding theory. In this paper, all rings are
assumed to be commutative, finite, Frobenius rings with a multiplicative identity. Denote the
character module of R by R. A code C of length n over a Frobenius ring R is a subset of R”.
For a finite ring R the following are equivalent:

(1) R is a Frobenius ring;
(2) As aleft module, RA’:“ RR;
(3) Asaright module R = Rg.

We consider codes over Frobenius rings since such rings have good duality properties
which are reflected by the equivalent statements above. If the code is a submodule of R",
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then we say that the code is linear. For a full description of Frobenius rings and codes
over Frobenius rings, see [5]. Elements of the code C are called codewords of C. Let x =
(x1,x2,...,xy)andy = (y1, y2, ..., yn) be two elements of R". The duality is understood
in terms of the Euclidean inner product, namely:

(X, Y)E =) xiyi.
The dual C+ of the code C is defined as
Ct={xeR"|(x,y)g =0forally € C}.

We say that C is self-orthogonal if C € C* and is self-dual if C = C*.

We next recall the standard definitions and notations for group rings. Let RG denote the
group ring of the group G over the ring R. A non-zero element z in a ring R is said to be a
zero-divisor in R if and only if there exists a non-zero element r € R with z x r = 0. When
R has an identity 1g, we say u is a unit in R if and only if there exists an element w € R
with u %« w = 1g. The group of units of R is denoted by U(R). Let R, «, denote the ring of
n x n matrices with coefficients from R. While group rings can be given for infinite rings and
infinite groups, we are only concerned with group rings where both the ring and the group
are finite. Let G be a finite group of order n, then the group ring RG consists of > ;| & gi,
o € R, &gi € G.

Addition in the group ring is done by coordinate addition, namely

Dowigi+ ) Bigi =) (i +Bai (&)
i=1 i=1

i=1

The product of two elements in a group ring is given by

(Zaigi) D Bigi | =D wiBisig)- @)
i=1 j=1 i.j

It follows that the coefficient of g in the product is > 818 =8k a; ;. For more details on
group rings, see [25] and [26].

A right circulant matrix is one where each row is shifted one element to the right relative
to the preceding row. Since we shall always shift to the right in this work, we shall simply
call it a circulant matrix. We label the circulant matrix as A = circ(oy, a2, ..., ®,), where
«; are rings elements. The transpose of a matrix A, denoted by A7, is a matrix whose rows
are the columns of A, that is AiTj =Aj;.

2.2 G-codes

The following matrix construction was given by Hurley in [21]. The same matrix construction
was used to study group codes over commutative Frobenius rings in [13]. Let R be a finite
commutative Frobenius ring and let G = {g1, g2, ..., gn} be a group of order n. Let v =
Qg 81 + g, 82 + -+ - + atg, gy € RG. Define the matrix o (v) € M, (R) to be

o -1 o -1 o -1 o -1
81 81 81 82 81 83 81 &n
o _—1 o —1 o _—1 o _—1
8 81 8 &2 8 83 8 &
O_(v) — 2' 2 2 2. n (3)
Yorlar Yales %ales v %ela
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‘We note that the elements gl_l, g 1, e 8 ! are the elements of the group G in a some
given order. For a given element v € RG, we define the G-code over the ring R :

C(v) = (o (v)), “4)

where this indicates that the code is formed by taking the row space of o (v) over the ring R.
It has been shown that C(v) corresponds to an ideal in the group ring RG.

3 The composite Q(v) matrix

In this section, we define the composite matrix €2(v) which was first introduced in [9] and
compare it with the matrix o (v).

Let R be a finite commutative Frobenius ring. Let {g1, g2, ..., g} be a fixed listing of the
elements of G. Let {(h;)1, (hi)2, ..., (hi),} be a fixed listing of the elements of H;, where
H; is any group of order r. Let r be a factor of n withn > r and n, r # 1. Also, let G, be a
subset of G containing r distinct elements of G. Define the following map:

¢ . H,' [and Gr
4
(hi)i = gj-18k
¢
(hi)2 = gj-18k+1

[
(hi)r = &j-18k+(r—1)-

It was shown in [9] that the map ¢ is a bijection.
Letv =g g1 +0g,8 + ..., 8, € RG. Define the matrix Q(v) € M, (R) to be

Al Ao Aj ... A%
A%-&-l A%+2 A%+3 A%

Q) = : : : SR I ®)
A(rfrl)n_i_] A(rfrl)n +2 A(rfrl)n+3 - A%

where at least one block has the following form:

o -1 o _—1 o -1
8; 8k 8 8k+1 8j 8k+(r—1)

o -1 o -1 [APIN o -1
g]'_Hé’k é’j+1gk+l gj+1gk+(r—l)

— o -1 o -1 o -1
Al = 8428k 8j+28k+1 8 j4+28k+(r—1) s
o _—1 o -1 o o -1
8j+r—18k 8jtr—18k+1 8 jpr—18k+(r—1)
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and the other blocks are of the form:

o -1 o -1 o -1
gj 8k gj 8k+1 é’j 8k+(r—1)
Yo hdy ) Yoy B Yoy (i)
Ap = %o oy Yoy mon Yoyt eon |
Lo oy Fao o Yy (i)

where in both cases, when/ = 1then j = 1,k = 1, when/ = 2then j = 1,k = r+1, when
I=3thenj=1k=2r+1,... whenl =2then j=1,k=n—r+1.Whenl =241
then j =r+ 1,k = 1,whenl:%+2thenj :r—i—l,k:r—l—l,whenl:%—i—Sthen
j=r+1,k=2r+1, ... whenl:Zr—”thenj:r—i—l,k:n—r—l—l, ..., and so on.
We note that if the above matrix €2(v) consists of blocks which are of the A; form only,
then it is the same as the matrix o (v) from [21]. Therefore, from now on we assume that
the matrix Q2 (v) consists of at least one block of the A; form. It is also clear that the matrix
2 (v) cannot be constructed when the order of the group G is odd. In each block, the first
row consists of 7 distinct elements of G. The map ¢ is applied in individual blocks which
means we can employ 7—; different maps ¢; and Z‘—; different groups of order r (if that many
exist). This is the advantage of our construction over the matrix o (v), namely, by employing
different groups of order r and by applying the maps ¢; in individual blocks, we construct
more complex matrices over the ring R. We call the matrix 2 (v) the composite G-matrix.
The rows of the matrix o (v) in [21] consist of the vectors that correspond to the elements
hv in RG where h is any element of G. This is not the case in the composite matrix Q2 (v).

Example1 Let G = (x,y |x* = y> = 1,x¥ = x~') = Dg. Let v = a1 + a,x —i—ozxzx2 +
ax3x3 +oayy +(xxyxy+ozxzyx2y +ax3yx3y € RDg, where oy, € R. Let Hy = {(a, b | a? =
b2 =1,ab= ba) = Cy x Cp. We now define the composite matrix as:

a0 = (3 %)

el Xerle Pgrles eles Peles erlge Yol Peley
gy Bn %oz hn) Yorny s X3 0 | Xe 3 e Yea @y a) Xy s Yy (ke
Y13 Bon %o 3w Y13 s X3 0 | Xe D3 e Yea @3 a) X3 ) Y (! (ke
_ | Gawnitaon Few@ni ey “eeni hns Xzt | %@t oo “e @z e e g iy % gt ts)

%ei'er Yele Xeiles Xl Felles Xl les Xl Xl les

Xelar Yeler Xeiles Xeiles Leiles Xeiles Lol Loiles

%ol gr %ol erles Xerlgn el gs e g Perlgr el g

OtXx lﬂl akx Ié’l aé’x IS’S Dté'x ]<‘»’4 Dté'x ]XS aXx 1%6 aﬂs IS’7 Dté'x ]XX

where

¢ _ ¢ _
dr: ()i — g7 'gi o ()i = g 'g
fori ={1,2,3,4} forwhen{i=1,j=5,i=2,j=6,i=3,j=7,i=4,j =28}
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in A} and A, This results in a composite matrix over R of the following form:

] Oy Oy2 O3 | Gy Oy le2y le3y
Qx O 03 Q2 |0y Oy O3y 02,
Q2 03 O Oy |02, O3y Oy Oy

o3 02 Oy O] |3, A2, Oy O
Q(v): X X x°y Yx<y Y Yy

Oy O3y 02y Oy | O] 03 02 Oy
Qxy Oy Otxsy Oéxz), Oy O] O3 o2
@2y Oy Oy Q3,02 Oy O] Q3
@3y 02y Oxy Oy |03 02 Ox Q)

3y
We now look at the rows of €2(v) and see what their corresponding element in R Dy is, in
terms of v. Let 1, ro, ..., rg be the rows of €2(v), then each row is formed by multiplying
each term of v by an element of G. The elements of G do not have to be the same but they
can be. For example:
= a1+ amx(Dx + agy2(Dx® + a6 (Dx7 + e, (Dy
oty (DY + a2, (D27 + )0, (DX,
the first row of 2 (v) is obtained by multiplying each term of v by the same group element
of G, namely 1.
12 = o)1 ()1 + oy, (x3)x + 052 ()c))c2 + (3,0 ()63)x3 + o)y (X)y
F(3)py (xHxy + a(x)xzy(x)xzy + a(xa)x3y(x3)x3y,

the second row of €2(v) is obtained by multiplying the terms of v by the group elements of

G; x or x°.

rg = 03y (x3y)l + oz(xsy)x(x3y)x + o3y ()c3y)x2 + a(x3y)x3(x3y)x3 + oz(x3y)y(x3y)y
3
+a(x3y)xy(x )’)x}’ + a(x3y)x2y(x3y)x2y + a(x3y)x3y(x3y)x3y7

the eighth row of €2 (v) is obtained by multiplying each term of v by the same group element
of G, namely x3y.

Example 1 highlights the difference between the matrix o (v) from [21] and the matrix
2 (v). Namely, each row of o (v) consists of vectors that correspond to the elements Av in
RG with h € G (we multiply each term of v by the same group element of G) where in
Q(v), some rows are formed by multiplying the terms of v by different group elements of
G. Therefore, we can say that each row of Q2 (v) corresponds to an element in RG of the
following form:

n
v; = Z g 28 8is (6)
i=1

where g g € R, gi,gj. € G and j is the jth row of the matrix € (v). In other words, we
can define the composite matrix 2 (v) as

Ugr 81 Xg1,8 Fgiz83 -+ Agian
gy g1 Ygrygr Xgoigs - - Agyy g

Q) = . . o , (N
agnlgl agr12g2 agn3g3 e agnngn
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where the elements g, are simply the group elements G. Which elements of G these are,
depends how the composite matrix is defined, i.e., what groups we employ and how we define
the ¢; map in individual blocks.

It is possible to form a composite matrix so that each row of Q2 (v) corresponds to the
elements g, v in RG where g, are equal for all i € {1,2, ..., n}. If this is the case, then
Q(v) is equivalent to o (v). We look at an example.

Example2 Let G = (x,y | x* = y?> = 1,x¥ = x71) = Dg. Let v = o + oty x + a0x” +
axd + ayy + dxyXxy +(xxzyx2y +(xx3yx3y € RDg, where oy, € R. Then

oy
a3

Qx
o]

a2 o3| oy

o3y
o2y

Qxy
Qay

2 Qy2y O3y

ax w2 Uy
Ay

o

o2,
a2

Qx

o]
o

oy o3

X7y
o2,
a3

o]

a3
a2

Oxy

o | Oy oy
o1
Ay

a2

x3
o2y,

x3y
o

o(v) =
@) oy 3y,

Qy

Qx
o

Qyy
o2,

O[)CV

Ay

x2
a3
ol

Qyy
o

o3y
ay

x2

Qyy oy o3

o2y

x2y
N

Qxy o3 a2 Oy Q)

Now let H; = (a | a* = 1) = C4 and define the composite matrix as:

Q) = (Ai A'z)
Az Ay
agf'm ag."gz aﬁ."m agf'm aﬁ."ﬁs aﬁf'gs a}»’f‘ﬁ aﬁf'm
Ly hon Xen Gy ha) Fen @y G %o i) | %)y o Xea )y ) Fea ()3 ta)n) Y )y (ha)e)
Lo (D3 Boo %3 G Yoy Gos Yoy k) | %o )7 B Feah)3 )2y Cer ()3 ()3 Xa((h2)3 ! (h2)s)
%1 (g D %o ) X s Fen g s | %6 ()i o)1) Xea o)y 1)) Fa((2); )3 Yo ()i ta)e)
Otgs"g! ag;‘g: ak{'m ag;'m aﬁ{‘ﬁs aﬁ{‘m ak{'m ag;'m
Yeolan Yol Yeles Yoolas Pes'es Y56 Ye5ter Ye5'es
Xerle %erler Xerles orles Yo les %o le6 Xerle Xorley
ag;'m ag;‘gz aﬁ{'m ag;'m ag;‘gs aﬁ{'gs ax;'m a‘e;'m
where

¢
¢ :(h)i 2 8 'g;
forwhen{i =1, =5,

¢ _
o1 (h)i = 8 'gi
fori = {1,2,3, 4)

in A} and A). Then

i=2,j=6i=3,j=7,i=4,j =28}

o Oy 02 03| Ay Oy 02y O3,
O3 01 Oy 02 |03y, Oy Oy O42
02 03 O] Oy (02, 03, Oy Oxy
Q) = O 02 03 O | Oy Q2 043, Oy
Oy O3, 02, Oxy | O 043 02 Oy
Oxy Oy 03, 02| Ox O] Q3 Oy
O2y Oy Oy 03,02 Ox O] 03
O3y 02y Oxy Oy |03 02 Oy O]

Clearly, in this specific case, 2 (v) is equivalent to o (v).

Example 2 leads to the following result.

Corollary 3.1 The matrix Q(v) is equivalent to the matrix o (v) if the group elements g, in
Equation 6 are the same foralli € {1,2,...,n}.

@ Springer
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We also have the following result.

Corollary3.2 Let v = ag g1 + g, 82 + ... 04,80 € RG and o (v) be the corresponding
matrix over R. Let v' be also an element of RG but with a different ordering of the elements
to v. Then o (V) is permutation equivalent to o (v).

This corollary leads to the following Theorem. We omit the proof.

Theorem 3.3 Let Q(v) be a composite matrix over R such that at least one row of Q(v)
corresponds to an element in RG of the form

n
* — . .
Vi = 2 _ % 5i8ii8is
i=1

where gj; is not the same for all i € {1,2,...,n}. Here, Ug; g € R, gi,gj; € Gand jis
the jth row of the matrix Q2(v). Then Q2 (v) is not permutation equivalent to o (v) for any
arrangement of the elements of G in v.

4 Composite G-codes

We are now ready to introduce the code construction.
For a given element v € RG and some groups H; of order r, we define the following code
over the ring R :

Cv) = (2(v)). (@)

The code is formed by taking the row space of €2 (v) over the ring R. As in [13], the code
C(v) is a linear code over the ring R, since it is the row space of a generator matrix. It is not
possible to determine the size of the code immediately from the matrix.

Example3 Let G = (x,y | x* =1,y = x2, x¥ = x7 ) = Qy. Letv = Z?zoai+1xi +
aipsx'y € RQg, whereo; = ay, € R.Let Hy = (a,b|a® = b* = 1, ab = ba) = C, x C5.
We now define the composite matrix as:

Q) = (A’1 A?)
As A}
Xeite Xl Xoiles Xty Foiles el e ler Portes
Loy ()3 1) YDy ) %o ()3 s Yy (e Peyles el Yele eyles
gy hn Fen D3 G %oy s Yoy (s Peles e lg6 Yol ety
_ | Kot @ ez ey Feiwnni tns Cenig e Pei'es Pei'ss Yerler Yei'es
ag;'m ag;‘gz azz;'m ag?';:a a.cs”.es uﬂ{'xa ak{'m ag{‘gx
Yeo'a ele Peles R Loy ()3 B Fea@nz ) Ya iy s Ypuhny (e
P le Yele Ferles e lg Loy ()3 B Yeahny 2 Fea iy s Yes iz (e
Yeler eile Peiles Peilen Loa )y B Fea @ ) Ya Gy Bz You g ke
where:

¢ _ [ _
o1 : (h)i = g7 ' & b :(hn)i 2> gslgj
fori ={1,2,3,4} forwhen{i=1,j=5,i=2,j=6,i=3,j=7,i=4,j =28},
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in A and A} respectively. This results in a composite matrix over R of the following form:

o] ) O3 04|05 Og 07 (g
o) 0] 04 03|08 05 g (7
o3 04 0] 02|07 08 U5 (g
04 03 O O] |0g 07 g 5

o7 0g 05 Og o] o4 03 O
og a7 0 Q5|04 o] A @3
o5 o 07 Ol |3 o) o] Oy
o 05 Oy 07 [0 03 Org O]

If we letv = x3 + xy +x2y +x3y € F, Qg, where (x, y) = Qsg, then

00010111
00101011
01001101
10001110
11010100
11101000
01110001
10110010

Cv) =(QW) =

and C(v) is equivalent to

10000111
01001011
00101101
00011110

Clearly C(v) = (2(v)) is the [8, 4, 4] extended Hamming code.

In the above example, the group C» x C, was applied twice in two different blocks: A
and A)y. As mentioned in the previous section, we can employ more than one group of order
r, please see [9] for details.

We now extend two results from [13]; we show that the codes constructed from the
composite matrices are also ideals in the group ring. We then show that the automorphism
group of such codes contains the group G as a subgroup.

Theorem 4.1 Let R be a finite commutative Frobenius ring, G a finite group of order n. Let
H; be finite groups of order r such that r is a factor of n withn > r and n,r # 1. Also, let
v € RG and C(v) = (2(v)) be the corresponding code in R". Define I(v) to be the set of
elements of RG such that Y_ «;g;i € I1(v) if and only if (1, a2, ..., an) € C(v). Then I(v)
is a left ideal in RG.

Proof We saw above that the rows of €2(v) consist precisely of the vectors that correspond
to the elements of the form v;f =", g 68); & in RG, where Ug; g € R, gi.gj; €G
and j is the jzh row of the matrix €2(v). We also know that some of the elements g, equal
to ¢;(h;) for some map ¢; and the elements h; of H;. Leta = > ;g and b = )_ Bigi
be two elements in 7 (v), thena + b = Y _(a; + Bi)gi which corresponds to the sum of the
corresponding elements in C(v). This implies that 7 (v) is closed under addition.

Let w; = ) Bigi € RG. Then if wy corresponds to a vector in C(v), it is of the form
>y vi. Then wiwy = > Bigi Y Vi Vi = Y Bivigi v} which corresponds to an element in
C(v) and gives that the element is in /(v). Therefore I (v) is a left ideal of RG. O
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1624 S.T. Dougherty et al.

Corollary 4.2 Let R be a finite commutative Frobenius ring and G a finite group of order n.
Let H; be finite groups of order r such that r is a factor of n withn > r and n,r # 1. Also,
letv € RG and let C(v) = (Q2(v)) be the corresponding code in R". Then the automorphism
group of C(v) has a subgroup isomorphic to the group G.

Proof Since I(v) is an ideal in RG we have that 7(v) is held invariant by the action of
the elements of the group G. It follows immediately that the automorphism group of C(v)
contains the group G as a subgroup. O

Similarly, as in [13], the codes constructed by the above technique are held invariant
by the action of the group G on the coordinates. We can therefore construct a code whose
automorphism group must contain the group G. Moreover, in our construction, we apply
groups of order r and the bijective maps ¢; in individual blocks to determine the permutation
of the coordinates in each row of a code. For this reason, we refer to a code constructed by
the above technique as a composite G-code.

We also have the following as a result of Corollary 4.2.

Corollary 4.3 The putative [72, 36, 16] code cannot be of the form C(v) = (2 (v)) for any
v € F2G for any group G.

Proof 1t is well known that the automorphism group of a putative [72, 36, 16] code must
have order less than or equal to 5 (see [13] for details). If it were of this construction, some
group of order 72 would have to be in its automorphism group. Therefore, the code cannot
be formed from this construction. O

We finish this section with one more result which is a generalization of the result from
[13]. We show that if C is a composite G-code for some G then its orthogonal C* is also a
composite G-code.

Let 7 be an ideal in a group ring RG. Define R(C) = {w | vw = 0, Yv € [}. Itis
immediate that R (/) is an ideal of RG.

Let v = ag g1 + g, 82 + - + 05,8, € RG and C(v) be the corresponding code.
Let ¥ : RG — R" be the canonical map that sends g, g1 + ctg,g2 + -+ + g, 8y tO
(0lg)s gy - - -, @g,). Let I be the ideal W ~1(C). Let w = (w1, wa, ..., w,) € CL. Then

[(ag_/l.gl’ Ogjgar--vs Olg_,-[g,,)a (w1, w2, ..., wy)] =0, Vj, 9

where g, € G. This gives that

n
Zagfigi w; =0, Vj. (10)
i=0

Letw = W=(w) = 3" wg, g; and define W € RG tobe W = by, g1 +bg, 82+ +bg, gn
where

by =w 1. (11)

8i
Then

n n
D g awi =0 = > g b1 =0. (12)
i=1 i=1

Here g, gig; I = gj;» hence this is the the coefficient of g;, in the product of W and vf.
This gives that W € R(I) if and only if w € C*.
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Let ¢ : R® — RG by ¢(w) = W. It is clear that ¢ is a bijection between C and
RW(0)).

Theorem 4.4 LetC = C(v) be a code in RG formed from the vector v € RG. Then (et (Cl)
is an ideal of RG.

Proof We have that W (¢ (C1)) is permutation equivalent to ¢! and ¢ (C1) is an ideal and so
W1(C) is an ideal as well. ]

5 Self-orthogonal composite G-codes

In this section, we extend more results from [13]. Namely, we show that the map Q : RG —
M, (R) is an injective ring homomorphism, we show when our construction C = (Q2(v))
produces a self-orthogonal code and also when it produces a self-dual code.

Before we look at the theoretical results, we define the composite matrix €2 (v) that we
defined in the the previous section, in a different but equivalent form. Namely, let

o -1 o -1 o —1 o —1
811 81 812 82 g13 83 81, 8n
Yol %ole Yeles v %gle
2 2 2 2, &n
Qw =| * 252 a
o -1 o _—1 o —1 o —1
8ny 81 8ny 82 8n3 83 8np 8n

where g;l are simply the elements of the group G. These elements are determined by how
the matrix has been partitioned, what groups H; of order r have been employed and how the
maps ¢; have been defined to form the composite matrix. This representation of the composite
matrix €2 (v) will make it easier to prove the upcoming results.

Theorem 5.1 Let R be a finite commutative Frobenius ring, G be a group of order n and H;
be finite groups of order r such that r is a factor of n withn > 1 and n,r # 1. Then the map
Q: RG — My,(R) is an injective ring homomorphism.

Proof We need to show that the map €2 preserves addition and multiplication. Let R be a finite
commutative Frobenius ring, G be a group of order n and H; be finite groups of order r such
that r is a factor of n with n > 1 and n, r # 1. Now define the mapping Q : RG — M, (R)
as follows. Suppose v = Y 7| g, gi. Then

o _—1 o —1 o —1 0 |
gllgl g|282 g12g3 81, 8n
erlar Yerler %erles Ygyls
— 2y 2 23 7 2 SN
Qe =| = * :
o -1 o -1 o -1 R |
8ny 81 8ny 82 8n3 83 8ny 8n

where gj_l_l are simply the elements of the group G in some order. This order is determined
by how the matrix has been partitioned, what groups H; of order r have been employed
and how the maps ¢; have been defined to form the composite matrix €2 (v). This mapping
is clearly surjective and injective. We now show that €2 is additive and multiplicative. Let
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w =) Bg i then

(o + ﬂ)g—lgl (o + ﬁ)g—1g2 (o + '6)81_3183 o (ot 'B)gl_,,lgn
(+ 'B)g N (@ + 'B)g ) (+ 'B)gz’;gs @B,
Qv+w) =
(a+'3)g g (OH_'B)g & (OH"B)g o @B,
O[gl_llgl agl_zlgz ag._;gz R 'Bgl_llg1 ﬂgl_zlgz 'Bgl_;gs 'Bgl_,,lgn
B “g{llgn O‘g;;gz ag£3133 Otngnlgn . ﬁg{llgl ‘3852182 ﬁg;;gs ag;’llg”
Yorter Yoder Yetes  Yeulen 'Bgn’llgn ﬁgizlgz ﬁg{;ga e Bort,
= QW) + Q(w).

Thus addition is preserved. Next, suppose v * w = 7, where t = Y *_, ¥,, 8. Then

Y 4 Y Y

g e Veitle Yeiles o Ve e
Voly Volg Vol +ov Vool
g'er Verler Verles 8, 8
Q) xQw)=| ™ 2 % = Qv w).
Verler YVeu'sr Verdes = Vel gn
Thus, multiplication is preserved. This concludes the proof. O

For anelement v = " a;g; € RG, define the element v’ € RG as v’ = Z(xigfl . This
is sometimes known as the canonical involution for the group ring.

Lemma 5.2 Let R be a finite commutative Frobenius ring, G be a group of order n and H;
be finite groups of order r such that r is a factor of n withn > 1 and n,r # 1. Then for an
element v € RG, we have that Q)T = Q7).

Proof The ij-th elements of QT is C((g_—lgi 1= Aty which is the ji-th element of
i SJi Ji °!

Q(v). O

Lemma 5.3 Let R be a finite commutative Frobenius ring, G be a group of order n and H;
be finite groups of order r such that r is a factor of n withn > landn,r # 1. Ifv = vT
and v* = 0 then Cy is a self-orthogonal code.

Proof If v = v7 then Q(v)T = Q(vT) by Lemma 4.2. Then we have that (2 (v)Q(v));; is
the inner-product of the i-th and j-th rows of € (v). Since v> = 0, by Theorem 4.1 we have
that Q2 (v)Q2(v) = 0. This gives that any two rows of Q(v) are orthogonal and hence they
generate a self-orthogonal code. O

Theorem 5.4 Let R be a finite commutative Frobenius ring, G be a group of order n and H;
be finite groups of order r such that r is a factor of n withn > 1 andn,r # 1. Let v be an
element in RG. If v =T, v2 =0, and |Cy| = |RZ| then Cy is a self-dual code.

Proof By Lemma 4.3 the code C,, is self-orthogonal and since |Cy| = |R 3 |, we have that C,
is self-dual. O

@ Springer



Composite matrices from group rings, composite G-codes... 1627

6 Quasi composite G-codes

In this section, we make a generalization of the notion of quasi-G-codes. In [6], the authors
have developed a ring with a Gray map that could be used to describe certain families of
quasi-cyclic groups. That same ring can be used in this setting to construct quasi-composite
G-codes which we shall describe below. Self-dual codes over these rings were studied in
[14]. Recently, in [1], the authors study the algebraic structure of quasi-group codes.

Let G be a finite group of order n and R a finite Frobenius commutative ring. Let C be
a code in R*" where the coordinates can be partitioned into n sets of size s where each set
is assigned an element of G. If the code C is held invariant by the action of multiplying the
coordinate set marker by every element of G then the code C is called a quasi-composite
G-code of index s.

We now describe a family of rings to construct quasi-composite G-codes.

Let pl pz, ..., py be prime numbers with > 0 and p; # p; if i # j. Define A to be
A =p1'p22 ..pf’, forsomek; > 1,i =1,...,¢t.

The ring is defined as follows:

pi
Ryn =TFglup 1, o ithp ks Upy 1s ey Upyhosvnns p, i, 1/ (U pj,, = 0),

where the indeterminates {u p, ;}1<i<s,1<j<k;) commute.
Leti € {1,...,t},j € {1,...,k;}. Take the set of exponents J; = {O, I,...,pi — 1}

. . ki i1 ki .

for the indeterminant u, ;. For o; € J;* denote u‘;‘_’l . a” x by u . For a monomial
[

ui' . uf"in Ry A write u®, where o = (a1, ..., a;) € J1 X oee X J,

LetJ = Jlk1 X oo X J,k’. Any element ¢ in R4 A can be written as

. a1 Otl,kl a1 ay,ky
C_ZCO‘ _ZCO‘ prl s Hprky o Up e Uk (13)
ael ael

with ¢, € Fy.

It is immediate that R, A is a commutative ring with |R; A| = qpil ptepl — q”®

Next we define a Gray map on this ring. We will consider the elements in R, A as g-ary
vectors of A coordinates. Order the elements of A lexicographically and use this ordering
to label the coordinate positions of ]FqA. Define the Gray map Wp : Ap — IFqA as follows:

1 ifbc{@ull,
0 otherwise,

Wa(a)p = {

where W4 (a)p indicates the coordinate of W (a) corresponding to the position of the element
b € A with the defined ordering.

It follows that Wa (@) is 1, if each indeterminate u ), ; in the monomial b with non- zero
exponent is also in the monomlal a with the same exponent. In other words, it is 1 when bis
a subset of @. In order to consider all the subsets of @, we also add the empty subset that is
given when b = 1; that is we compare btoaul.

Finally, we extend W, linearly for all elements of R; a. Then W, is a Gray map from
Rq, A to FqA

Theorem 6.1 Let C be a composite G-code in Ry a for a finite group G of order n. Then
W (C) is a quasi-composite G-code of length n A of index A in IFqA”.

Proof Since C is a composite G-code in R, A, each row of C corresponds to an element
of the form v; = Cgj 1818181 T Cgjye28p82F ++ + Cgj 0,80 8n in Ry, AG, where Cgjigi €
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Ry.A, gj:& € Gandwhere jisthe jthrow of thecode C. Then Wa (v;) = ‘I’A(nglgl)gjlgl‘f‘
N (cgjzgl)gjzgz + -+ Valcg;, )8, 8n- Therefore WA (C) is a quasi-composite G-code
of length nA of index A in ]Flf”. O

Theorem 6.2 Let C be a composite G-code of length n and of index k over Ry a for a finite
group G. Then WA (C) is a quasi-composite G-code of length nA of index kA in FqA”.

Proof Since C is a composite G-code in R, A, each row of C corresponds to an ele-
ment of the form v; = Cojy 018181+ Cg) 028282 + o+ + Cg0,8ju8n in Ry AG, where
Cgjg € Ry.A.8j;8 € G and where j is the jth row of the code C. Then Wia(v;) =
‘I’kA(nglgl)gjlgl + Wi (ngzgl)gfzg2+' ~+Wralcg;, 61)8,8n- Therefore WA (C) is a quasi-
composite G-code of length nA of index kA in I, qA". O

7 Generator matrices of the form [/, | Q(v)]

In this section, we consider generator matrices of the form [/, | € (v)] to construct extremal
binary self-dual codes. This approach was used in [10] and [11] where only groups of orders
4, 8 and 16 were considered to form the matrices 2 (v). In both papers: [10] and [11], the
authors define a specific generator matrices of the form [/, | €2(v)] for lengths 8 and 16.
The authors also prove theoretical results on when these matrices produce self-dual codes
over the Frobenius ring R. We generalize the theoretical results so that we show when the
generator matrices of the form [/, | Q2 (v)] produce self-dual codes for any possible case rather
than looking at individual cases for specific composite matrices €2 (v). Before the theoretical
results, we give a motivating example in which we compare the generator matrix of the form
[1, | o(v)] with a generator matrix of the form [/, | Q2(v)].

Example4 Let G = (x,y | x® = y> = 1,x¥ = x7!) = Dis. Also let v =

1 4 S
Doic0 2 j—0®1+i+8jx'y’ € F2Die, then

o(v) = (;T ABT> ,

where A = circ(ay, a2, 03, 04, a5, a6, a7, a8), B = circ(ag, ayo, o1, o2, ®13, A14,
a5, a16) and «; € . We now employ the generator matrix of the form [/1¢ | o(v)] to
search for binary self-dual codes with parameters [32, 16, 8]. We summarise the results in a
table.

C; Type First row of A First row of B |Aut(C)|

C | (0,0,0,0,0,1,0, 1) 0,0,0,1,1,1,1,1) 215.32.5.7
Cy I 0,0,0,0,0,1,1,1) 0,1,0,1,1,1,1,1) 215.32

C3 i1 0,0,0,0,1,1,1, 1) 0,0,0,1,0,0,1,1) 25.3.5.31

Example 5 We now amend o (v) from the previous example by forming a composite matrix.
LetG = (x,y |x¥*=y2=1,x =x7!) Z Digand v = ZZ:O Z;zoal_ki_,_gjx’y/ €
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FyDis. Also let Hy = (a,b | a®> = b?> = 1,ab = ba) = C4 x Cy and Hy = (¢, d | ¢* =
d? =4 = ¢~1) = Dg. Now we define the composite matrix as:

AL AL
QW) =} 7).
AL Al

where

Xl Yol Yerles Yo les Yerles P Xl Xl ey
% (3" D Xy 2 %oy sy Yy s ez hos) Yy he) %1z k) %y (s
L3 0 X @3 ) %o )3 s Y3 Gos Y3 s Yz ine) %ei 3 iy Xy (s
A = “or @3 oD %03 B Ye@ni G Cer gt hn “e i e ez tne %oz Gon ey ts)
L5 ) X @5 B2 Fen s sy Y3 Gos Yoz s Yz e %ozt Xz ()
(g ) X g 2y Fen (g sy Y (g s Cerng sy Yo g hne) Xeihg iy X g ()
Y1)y ) Yo7 B2y Xy s Yoy s Yo @7 s) Xy e Yoy Y@y ks
iz ) X g o) Fen g sy Y gt s Yerngt s Yo g e X g g X g ()
o o

a 3

o' e o' g X a1 o' 216

Xy ) Xea )y 2) Foa )y sy Yea )y hs Ceahny hns) Y2y he) Xea ;! ) Fea iy (s
a7 ) Xea )3 2 Fea ()3 sy Yea )3 s YT rns) Y2 he) Xea T ) Fea 3 (ns)
Ay = Xy ) Xea )y 2y Foa i s Yea i hs Xy hns) Y2y he) Xea ! ) Fea iy s
X ()5 D Y2 ()3 h2) a3 )z Yo (s e Fea s sy Xea (s (e Ca ()3 ) Yoz (hs)
Yo ()5 ) Y (g ha) Fer (gt )3) Ya (g e g ts) Fer gt tde) Ya (g () Yo (g )
a )y ) Fea )y 2y Fea )y sy Yea )y hs Yo ins) Yean; he) Xea iy m) Fea iy (s

o)z ) Y g B2y Fer gt )3) Ya g e Yoa g sy Fer gt tne) Yea (g )y Y hngt g

_ o - o - o -
880 &' g0 &' eu & 'en2

43

55'e e5les e5les o526 5l er o5l gs

3((ha)y " (1) X3 ()7 (h2)2) F3 ()3 (h2)3) Ygs((h)y ' (h2)s) ¥oa(ha)s (h2)s) X3 (ha)y ' (hde) %3 ()3 (h2)) %3 ()" (ha)s)
X3 ()7 ()1 Y3 ()3 (2)2) Fg3((h2)3' (h2)3) Fga(h2)7 (h2)a) F3((h2)y! (h2)s) %3 ((h2)7' (h2)e) 3 ()3 (h)7) F3((h2)3" (h2)s)
Ay = 3 ((ha)y (1) X3 ()7 (h2)2) F3 ()i (h2)3) Yos(h)y  (h2)s) ¥oa(ha)y (2)s) X3 ((ha)y! (hde) %3 ()i (h2)1) Y3 ()} (ha)s)
X3 ()5 ()1 Y3 ()5 (h2)2) Fg3((h2)5 ' (h2)3) Fgaha)5 (h2)a) F3((ha)5! (h2)s) %3 ((h2)5' (h2)e) s ()5 (h)7) F3((h2)5 " (ha)s)
s ()5 (h)1) Y3 (Uin)g! h2)2) %3 (ha)g (h2)3) ¥ga((ha)g ! (h)e) Y ((ha)g! (h2)s) Y ((ho)g ! (ho)e) ¥a((ha)g! (h2)7) Yo ((ha)g ! (ha)s)
3((ha)7" (1) X3 ((2)7 (h2)2) %3 ()7 (h2)3) Y3 (h)7 ' (h2)a) ¥oa(ha)7 (h2)s) X3 (ha)7! (hde) X3 ()7 (h2)) Y3 ()7 (ha)s)
g3 )z (h2)1) Y3 (U)g! 2)2) %3 (ho)g (h2)3) ¥a )z (h)e) Y ((ha)g! (h2)s) Y ((ho)g (ho)) Xa((ha)g! (h2)7) Y (o) (ha)s)

o, -1
8 81

ei'eo %eilgio0 Yerten Yeolen erlgis i g i gis i g6
Ygu ()3 )1) Ya((2)y h2)2) Fba(h)y ' (h2)3) Xa(h)y (h)e) Ypu((i2)y (h2)5) Ya((h2)3' (h2)) X))y (h2)7) Ypu((a)y! (a)s)
Xpa ()3 )1 Ya ()3 (2)2) Fa((h)3  (h2)3) Fgah2)3 (h2)a) Fu((h2)y! (h2)s) Fa((h2)3! (h2)e) ¥ ()3 (h2)7) Foa((ha)y (ha)s)
A = Ygu ()7 o)1) Yga((2)7 (h2)2) Fba(h)y (h2)3) Xa(); (h)e) Ypu ()7 (h2)5) Ya((h2)y  (h2)e) Fa(h)i (h2)y) Ypu ()i (a)s)
Loy (h)5" (o)1) Xpa ()7 (h2)2) Fu ()3 (h2)3) Ypu(h)5' (h2)a) ¥a(h2)5" (h2)s) Xa((h2)5! (h2)e) Fa((ha)3" (h2)7) Yu((ha)5" (ho)s)
ga(ha)g )1) Ya((na)g (h2)2) Fba((ha)g (h2)3) ¥a((h)g (h)e) u((in)g (h2)s) Ya((ha)g' (h2)e) Fa((h)g! (h2)7) gu((ha)g ! (ha)s)
Xy ((h2)7" ()1 Ya ()7 (2)2) ()7 (2)3) Ygaha)y (h2)a) Fu((ha)y (h2)s) Fa((h2)7! (h2)e) Xpa((h)7 " (h2)7) ()7 (ha)s)
ga(h)g ' )1) Yga((n)g (1)) Fba(ha)g' (h2)3) ¥a(h)g (h)a) Ygu((in)g (h2)s) Ya((ha)g' (h2)e) ¥a(h)g! (h2)7) Ygu((ha)g! (io)s)

and where:

¢ _ ¢ _
dr: (h)i = g'e o ih)i = g e

fori ={1,2,...,8} forwheni=1{9,10,...,16}

P, _ . _
b3: ()i = go'er dai(h)i = g5'gi
fori ={1,2,...,8} forwheni =1{9,10,...,16}.

This results in a composite matrix of the following form:
Ay By
B A

A3z Bj
T AT
B3 A3

Q) = As Ba |
T AT
B, A,
where

Ay =circ(ay, a2, a3, ag),
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B = circ(as, ag, a7, ag),
Az = circ(ag, 1o, 011, ®12),
By = circ(ays, a4, a15, a16),
Az = circ(ay, a1, 15, A14),
B3 = circ(ag3, a2, a11, @10),
Ayq = circ(ay, ag, a7, ag),
By = circ(as, ag, a3, a2)

and where «; € Fo. We now employ the generator matrix of the form [/ | €2 (v)] to search
for binary self-dual codes with parameters [32, 16, 8]. We summarise the results in a table.

C; TyperAl By T'A, By T'As ;) TAy By [Aut(C;)|

CiI (0,0.1,0)(0,0.1,0) (0,0, 1,0) (1,1, 1,1) (0. 1,1, 1) (1,0, 1,0) (0,0, 1,0) (0,0, 1,0)2° - 3% . 5

The order of the automorphism group of the code obtained in Example 7 is different from
the order of automorphism of codes obtained in Example 6. This shows that the composite
matrices can be used to produce codes whose structure is not attainable from matrices of the
form [, | o (v)] or other classical techniques for producing extremal binary self-dual codes.
In fact, this is the main motivating factor for this construction, that is, we construct codes
whose automorphism group differs from other constructions which means we find codes that
are inaccessible from other techniques.

Theorem 7.1 Let R be a finite commutative Frobenius ring, G be a group of order n and H;
be finite groups of order r such that r is a factor of n withn > 1 andn,r # 1. Letv € RG
and let Q(v) be the corresponding composite matrix over R. The matrix G = [I, | Q(v)]
generates a self-dual code C over R if and only if Q()Q )T = —1,.

Proof The code C is self-dual if and only if GGT is the zero matrix over R. Now,
GG =[L, | QW)L | QW] =1, | Q)Q®w)"].
Thus, GG is the zero matrix over R if and only if Q(v)Q ()T = —1I,. O

We saw earlier in the work that Q(vT) = Q(v)7. Now using Theorem 7.1, the fact that
2 is a ring homomorphism, and the fact that Q (v) = —1I,, if and only if v = —1, we get the
following corollary.

Corollary 7.2 Let R be a finite commutative Frobenius ring, G be a group of order n and
H; be finite groups of order r such that r is a factor of n withn > 1 and n,r # 1. Let
v € RG and let Q2 (v) be the corresponding composite matrix over R. The matrix [I,, | Q2 (v)]
generates a self-dual code over R if and only if voT = —1. In particular v has to be a unit.

When we consider a ring of characteristic 2, we have —1,, = I, which leads to the
following further important result:

Corollary 7.3 Let R be a finite commutative Frobenius ring of characteristic 2, G be a group
of order n and H; be finite groups of order r such that r is a factor of n with n > 1 and
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n,r # 1. Let v € RG and let Q(v) be the corresponding composite matrix over R. Then
the matrix (I, | Q(v)] generates a self-dual code over R if and only if v satisfies vv' = 1,
namely v is a unitary unit in RG.

7.1 New extremal self-dual binary codes of length 68

In this section, we search for extremal binary self-dual codes of length 68 using the generator
matrix described in the previous section with some other well-known techniques. We focus
on this particular length, since there are still many Type I unknown codes of this length, i.e.,
codes of length 68 with parameters in their weight enumerators that are not known in the
literature. Recently, much work has been done to find new, extremal, Type I binary self-dual
codes of length 68, see [8,10-12,17] for some examples. We now describe our approach.

We apply the generator matrix of the form [/ | 2 (v)] over the ring F4 +uF4 to find extremal
self-dual codes whose binary images are the extremal self-dual binary codes of length 64.
We then apply a very well known extension method to obtain codes of length 68. Similar
approach can be found in [10]. We next apply a very recent technique, called a neighbor of a
neighbor method (please see [18] for details), to find a family of neighbours which turn out
to be extremal self-dual binary codes of length 68 with parameters not known in the literature
before. In particular we find new codes of length 68 with the rare parameters of y = 7, §, 9.
We split this section into the following subsections. In the first one, we describe the ring
F4 + ulF4 and give the most up to date list of codes of length 68 with parameters known in
the literature. Then we define the generator matrix of the form [/ | € (v)], which we use to
find codes of length 64. We then extend these codes to obtain codes of length 68. Finally, we
apply the family of neighbours method to find codes of length 68 with parameters not known
in the literature.

7.1.1 Thering F4 + ulFy4, the extension and neighbour methods

Let us recall the following Gray Maps from [16] and [7]:

vi, : )" — (F2)™"
aw +bw — (a,b), a,b e T}

PP uF, © (F2 + uF)" — F3"
a+burs (b,a+b), a,bels.

In [24], these maps were generalized to the following Gray maps:

OFy+ury - (Fa + ulFy)" — ]Fin
a+burs (b,a+b), a,bely.

VEyuby © (Fa +uFs)" — (F + uF2)>"
aw + bw +— (a,b), a,b € (Fy + ulFy)"

Proposition 7.4 ( [24]) Let C be a code over ¥y + uF4. If C is self-orthogonal, then so are
Yr,+uF, (C) and ¢, +ur,(C). The code C is a Type I (resp. Type II) code over F4 4 ulF4 if
and only if gp,4ur, (C) is a Type I (resp. Type II) F4 -code, if and only if Yg,+ur, (C) is a
Type I (resp. Type II) Fy + ulF,-code. Furthermore, the minimum Lee weight of C is the same
as the minimum Lee weight of Yrg,+ur, (C) and ¢r,4+uF,(C).

The next corollary follows immediately from the proposition and we will use this result
repeatedly to produce binary codes.

Corollary 7.5 Suppose that C is a self-dual code over Fq + ulF4 of length n and minimum
Lee distance d. Then ¢r, 4y, © Y¥,+uF, (C) is a binary [4n, 2n, d] self-dual code. Moreover,
the Lee weight enumerator of C is equal to the Hamming weight enumerator of Qr,1uF, ©
Y, +ur, (C). If C is Type I (Type II), then 50 is @y +uF, © YFy4ur, (C).
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For the computational results in later sections, we are going to use the following extension
method to obtain codes of length n 4 2.

Theorem 7.6 [15] Let C be a self-dual code of length n over a commutative Frobenius ring
with identity R and G = (r;) be a k x n generator matrix for C, where r; is the i-th row of G,
1 <i <k.Letcbeaunitin R such that > = —1 and X be a vector in S™ with (X, X)=-—1.
Let y; = (r;, X) for 1 <i < k. The following matrix

generates a self-dual code D over R of length n + 2.

We will also apply the neighbor method and its generalization to search for new extremal
binary self-dual codes from codes obtained directly from our constructions or from the
described above, extension method. Two self-dual binary codes of length 2n are said to be
neighbors of each other if their intersection has dimension n — 1. Let x € IF%” — C then
D= ((x)l nc, x) is a neighbour of C.

Recently in [18], the neighbor method has been extended and the following formula for
constructing the k*"-range neighbour codes was provided:

Nisny = <(xi)l NNy, xz'>,

where N1y is the neighbour of Aj;) and x; € ]F%" — Ni).
There are two possibilities for the weight enumerators of extremal singly-even [64, 32, 12],
codes ( [4]):
Wea1 = 1+ (13124 168)y'% + (22016 — 648)y'* + ..., 14 < B < 284,

Wear = 1+ (13124 168)y'% 4 (23040 — 648)y'* + ..., 0 < B < 277.
Recently, many new codes are constructed for both weight enumerators in [17], [22] and
[29].

The weight enumerator of a singly-even, self-dual [68, 34, 12], code is in one of the
following forms by [3,20]:
1+ (442 4+ 48)y'% + (10864 — 88)y'* + ...,
1 + (442 + 4B8)y'? + (14960 — 88 — 256y)y* + ... ,

Wes, 1
Wes,2

where f and y are parameters and 0 < y < 9. The first examples of codes withay =7
in Weg 2 are constructed in [28]. Many codes for different values of 8 and y have been
constructed in [8,12,17,19,27,28]. The first examples of codes with y = 8,9 in Weg > are
constructed in [18]. For an up-to-date list of all known Type I binary self-dual codes with
parameters [64, 32, 12] and [68, 43, 12] please see [23].

7.1.2 The generator matrix
We now define the generator matrix of the form [/ | €2 (v)] which we then employ to search

for self-dual codes over the ring F4 + ulF4. Of course, I is simply the identity matrix so we
define Q(v).
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LetG = (x,y |x*=y>=1,xY =x~ 1) 2 Dg. Letv = o] + atpx +ozxzx2 +otx3x3 +
ayy + OxyXy +cxxzyx2y +0tx3yx3y € RDg, where ay, € R. Let Hy = (a, b | a? =b? =
1,ab =ba) = Cy x Cyand Hy = (¢ | ¢* = 1) = C4. We now define € (v) as:

Q) = (Ail A%)
A3 A4
ag,"gw ay."gz al:,"m ay."ga O‘g."gs ag('xs a.&'.’lm a;:,"m
D1 ()3 ) % ((h2)y ! (h2)2) %1 (h2)3 ' (h2)3) Fo1 ()5 (h2)a) | Y )y i) Xepa (3 )2y Foa ()3 hdy) Fa )y (h)a)
L ()3 1) Fr ()3 (h)2) X (h)3 (h2)3) % ()3 (h2)e) | Fa ()3 ) Fa )3 )2y Xz ) Fea Gy (hi)e)
_ | o in %eiwni tnn et hns) %ozt | “e gt oo %@zt “eni tny “er g e
ag{'yl el ag{'xz az:;lm as’{‘yﬁ ag{'g(, ag{‘m as’{'xs
X3 ((h2)3 ")) Y3 ()3 (h)2) X3((h)y " (h2)3) F3((ha)y ! (ha)a) | Fa iy ) Fu )y 2y Ya(hny ) Fa Gy (e
X3 ((h2)3" o)1) X3 ()3t (h2)2) Xd3 ()3 (h2)3) ¥e3((h2)3! (h2)) | Fba ()3 ) Xes ()3 h2) Ya )3 3 Yga(h)y ! (e
X3 ()7 1) Y3 ()7 (h)2) X3 hn)yt (h)3) F3 ()7 (e | Fea @y i Fou (i 2y Yea(hny ) Fes Gy (e
where:

[ _
¢2: (h)i > g g

¢ _
o1 : (h2); —l->g| e ’
forwhen{i=1,j=5,i=2,j=6,i=3,j=7,i=4,j=28}

fori = (1,2,3,4)

[} _
b1 (h)i 2> g5'g;

¢ _
¢y (h)i = g5'gi .
forwhen{i=1,j=35,i=2,j=6,i=3,j=7,i=4,j=38)

fori ={1,2,3,4}

in A}, A}, A% and A),. This results in a composite matrix over R of the following form:
] Oy Oy2 O3 | Gy Oy lezy lesy
Op O] 3 02 [0y Oy O3, 0y
03 0 o] Oy [0y 03y Oy Oy
Q) = 02 03 oy o |03y @y Oyy @y (14)
Oy O3y 02y Oy [ Q] Q3 G2 Oy
W3y Oy Oxy Qo @G o] Oy 0
Qg Oy Oy Q3,000 Oy O] O3
Oyy G2, @3, Oy | Op Q2 Q3 Q]

Therefore, the final form of the generator matrix which we later employ to search for
self-dual codes has the following form:

]2,

where €2 (v) is the composite matrix defined in (14).

7.1.3 Computational results

(15)

We now employ the generator matrix defined in (15) over the ring F4 4 ulF4 to search for
codes of length 16 whose binary images are the extremal self-dual codes of length 64. In
fact, we only list one of the codes found. This code in turn is used to find new extremal
binary self-dual codes of length 68. All the upcoming computational results were obtained
by performing the searches using MAGMA ( [2]).

‘We now apply Theorem 7.6 to the ¥, 4., - image of the code in Table 1. As a result, we
were able to find many extremal self-dual codes of length 68 but to save space, we only list
one. This code is found in Table 2, where 1 + u in F, + ulF», is denoted by 3.

The order of the automorphism group of the code in Table 2 is 2. We note that the code
from Table 2 has parameters that are not new in the literature.
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Table 1 Type I Codes of length 64 and their 8 values

Ci (g, o, 02, 0,3, @y, axy, @2, @,3,) [Aut (C;)l Wea,2

1 O, w,u+1,u+1, 0, wu+u, w, wu +u+1) 24 B=0

Table 2 Type I Codes of length 68 from Theorem 7.6

Ces,i Ci ¢ X vy B

Ces1 C1 1 (0,3,3,4,3,1,3,3,3,3,1,1,0,3,3,1,3,1,0,u, 1,3,4,3,0,1,3,u4,3,0,3, 1) 4 103

Table 3 i'* neighbour of )

i Nt X Y B

0 Ny (1111011010011101111111100100111110) 4 101
1 Ny (0110100100111101111011111110111011) 6 145
2 ./\f(g) (0000100000010000011101110110000101) 7 152
3 Ny (1111111100000010000111001100101011) 7 143
4 M5) (0110010010100110110111101011111111) 8 162
5 Ne) (1100001011011111001111110010001011) 9 174
6 Ny (1110010010100011111100101110001100) 9 167
7 ./\f(g) (0011000000000110110101001101100000) 9 159
8 /\/(9) (1001101110001110110000111101000011) 9 158
9 MIO) (1001011111100101110001001011110110) 9 157
10 Nan (1010101101101101110111011111111010) 9 152
11 MIZ) (1111010110110000110111011010101010) 7 131
12 N3y (1000011111111011110110001010110010) 6 117

We now apply the k" range neighbour formula (mentioned earlier) to the code obtained
in Table 2.

Let Moy = C where C is the extremal binary self dual code of length 68 with parameters
B =103 and y = 4. Applying the k"" range formula, we obtain (Table 3):

We shall now separately consider the neighbours of A7y, Mgy, Moy, Ma1y, N2y and
N(13). We tabulate the results below. All the codes in Table 4 have an automorphism group of
order 1. The codes in bold in Tables 3 and 4 indicate codes with new parameters, i.e., codes
with these values in their weight enumerators were not known in the literature before.

As we can see, we were able to construct many extremal binary self-dual codes of length
68 with new weight enumerators for the rare parameters y = 7, 8 and 9.

8 Conclusion

In this paper, we have extended the idea of G-codes to composite G-codes. We have shown
that similarly as the G-codes, the composite G-codes are also ideals in the group ring RG.
We have shown that the dual of a composite G-code is also a G-code. We have studied
self-orthogonal and self-dual composite G-codes over rings. Moreover, we have extended
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SST 6 (100000TTITOIOTOI00T00TOITTT00T0010) 1 pST 6 (OTOTTTTOOTTTIOTTOTOITOOTITITTIT00T 1000) Il
1ST 6 (TIOTTTOTTITITIOTTO000TOTIOTTTIIITOTT) 1 141 8 (OTTOTOTTTOTT000000T IT000TO0TTO00TT) Il
(148 8 (OOTTTTITOTO00TTIOITTO000T00TTTTTION) 1 6€1 ] (00T TTT000TTOTO0TTOOTTO0TTOT000I0T0) 1
d A (89x -+ 9€x *SEx) V% Opn el A (89x ¢+ <9€x “S€x) Y Opn
9sT 6 (OTOTTTIOI00T000T0TO00TOTOTTO0TOITOT) 01
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the results on quasi-G-codes to quasi-composite G-codes. We have also generalized results
on self-dual codes obtained from generator matrices of the form [/ | (v)], where 2 (v)
is the composite matrix. Additionally in this work, we were able to construct the following
extremal binary self-dual codes with new weight enumerators in Weg 2:

(r =5, p={110).

(y =6, B={117,120, 121, 122, 123, 124}).

(y =17, B=1{131,132,134, 135, 136, 137, 138, 139, 141, 143}).

(y =8, B =1{139, 140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152}).

(y =9, B=1{151,152,154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
166, 167, 168, 170, 172}).

A suggestion for future work would be to consider composite matrices of greater lengths
to search for extremal binary self dual codes over different rings. For example, one may
consider our approach to search for extremal binary self-dual codes of length 80. Another
direction is to determine which codes are composite G-codes for a finite group G.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Borello M., Wolfgang W.: On the Algebraic Structure of Quasi Group Codes. arXiv:1912.09167.
. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput.
24, 235-265 (1997).
3. Buyuklieva S., Boukliev I.: Extremal self-dual codes with an automorphism of order 2. IEEE Trans. Inf.
Theory 44, 323-328 (1998).
4. Conway J.H., Sloane N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans.
Inf. Theory 36(6), 1319-1333 (1990).
5. Dougherty S.T.: Algebraic Coding Theory Over Finite Commutative Rings. SpringerBriefs in Mathemat-
icsSpringer, Cham (2017).
6. Dougherty S.T., Fernandez-Cordoba D., Ten-Valls R.: Quasi-cyclic codes as cyclic codes over a family
of local rings. Finite Fields Appl. 40, 138-149 (2016).
7. Dougherty S.T., Gaborit P., Harada M., Sole P.: Type II codes over Fp + uF;. IEEE Trans. Inf. Theory
45, 32-45 (1999).
8. Dougherty S.T., Gildea J., Kaya A.: Quadruple bordered constructions of self-dual codes from group
rings over Frobenius rings. Cryptogr. Commun. (2019). https://doi.org/10.1007/s12095-019-00380-8.
9. Dougherty S.T., Gildea J., Korban A.: Extending an established isomorphism between group rings and a
subring of the n x n matrices. Int. J. Algebra Comput. https://doi.org/10.1142/S0218196721500223.
10. Dougherty S.T., Gildea J., Korban A., Kaya A.: Composite constructions of self-dual codes from group
rings and new extremal self-dual binary codes of length 68. Adv. Math. Commun. (2019). https://doi.org/
10.3934/amc.2020037.
11. Dougherty S.T., Gildea J., Korban A., Kaya A.: New extremal self-dual binary codes of length 68 via
composite construction, o + ulf lifts, extensions and neighbors. Int. J. Inf. Coding Theory 5(3/4),
211-226 (2020).

N =

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1912.09167
https://doi.org/10.1007/s12095-019-00380-8
https://doi.org/10.1142/S0218196721500223
https://doi.org/10.3934/amc.2020037
https://doi.org/10.3934/amc.2020037

1638 S.T. Dougherty et al.

20.

21.
22.

23.

29.

Dougherty S.T., Gildea J., Korban A., Kaya A., Tylshchak A., Yildiz B.: Bordered constructions of
self-dual codes from group rings. Finite Fields Appl. 57, 108-127 (2019).

Dougherty S.T., Gildea J., Taylor R., Tylshchak A.: Group rings, G-codes and constructions of self-dual
and formally self-dual codes. Des. Codes Cryptogr. 86(9), 2115-2138 (2018).

Dougherty S.T., Kaya A., Salutrk E.: Constructions of self-dual codes and formally self-dual codes over
rings. AAEECC (2016). https://doi.org/10.1007/s00s00-016-0288-5.

Dougherty S.T., Kim J.L., Kulosman H., Liu H.: Self-dual codes over commutative Frobenius rings. Finite
Fields Appl. 16(1), 14-26 (2010).

Gaborit P., Pless V., Sole P., Atkin O.: Type II codes over F4. Finite Fields Appl. 8, 171-183 (2002).
Gildea J., Kaya A., Korban A., Yildiz B.: Constructing self-dual codes from group rings and reverse
circulant matrices. Adv. Math. Commun. https://doi.org/10.3934/amc.2020077.

Gildea J., Kaya A., Korban A., Yildiz B.: New extremal binary self-dual codes of length 68 from gener-
alized neighbours. Finite Fields Appl. 67 (2020).

Gildea J., Kaya A., Taylor R., Yildiz B.: Constructions for self-dual codes induced from group rings.
Finite Fields Appl. 51, 71-92 (2018).

Harada M., Munemasa A.: Some restrictions on weight enumerators of singly even self-dual codes. IEEE
Trans. Inf. Theory 52, 1266—1269 (2006).

Hurley T.: Group rings and rings of matrices. Int. J. Pure Appl. Math. 31(3), 319-335 (2006).

Kaya A.: New extremal binary self-dual codes of lengths 64 and 66 from Rj-lifts. Finite Fields Appl. 46,
271-279 (2017).

Korban A.: All known type I binary [64, 32, 12] and [68, 34, 12] self-dual codes. https://sites.google.
com/view/adriankorban/binary-self-dual-codes.

. Ling S., Sole P.: Type II codes over F4 + ulF4. Eur. J. Comb. 22, 983-997 (2001).
. Milies C.P., Sehgal S.K.: An Introduction to Group Rings. Kluwer, Dordrecht (2002).

Sehgal S.K.: Units in Integral Group Rings. Longman, Essex (1993).
Yankov N., Lee M.H., Gurel M., Ivanova M.: Self-dual codes with an automorphism of order 11. IEEE
Trans. Inf. Theory 61(3), 1188-1193 (2015).

. Yankov N., Ivanova M., Lee M.H.: Self-dual codes with an automorphism of order 7 and s-extremal codes

of length 68. Finite Fields Appl. 51, 17-30 (2018).
Yankov N., Anev D.: On the self-dual codes with an automorphism of order 5. AAECC (2019). https:/
doi.org/10.1007/s00200-019-00403-0.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


https://doi.org/10.1007/s00s00-016-0288-5
https://doi.org/10.3934/amc.2020077
https://sites.google.com/view/adriankorban/binary-self-dual-codes
https://sites.google.com/view/adriankorban/binary-self-dual-codes
https://doi.org/10.1007/s00200-019-00403-0
https://doi.org/10.1007/s00200-019-00403-0

	Composite matrices from group rings, composite G-codes and constructions of self-dual codes
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Codes, group rings and special matrices
	2.2 G-codes

	3 The composite Ω(v) matrix
	4 Composite G-codes
	5 Self-orthogonal composite G-codes
	6 Quasi composite G-codes
	7 Generator matrices of the form [In  |  Ω(v)]
	7.1 New extremal self-dual binary codes of length 68
	7.1.1 The ring mathbbF4+umathbbF4, the extension and neighbour methods
	7.1.2 The generator matrix
	7.1.3 Computational results


	8 Conclusion
	References




