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Abstract
In this work, we define composite matrices which are derived from group rings. We extend
the idea of G-codes to composite G-codes. We show that these codes are ideals in a group
ring, where the ring is a finite commutative Frobenius ring and G is an arbitrary finite group.
We prove that the dual of a composite G-code is also a composite G-code. We also define
quasi-composite G-codes. Additionally, we study generator matrices, which consist of the
identity matrices and the composite matrices. Together with the generator matrices, the well
known extension method, the neighbour method and its generalization, we find extremal
binary self-dual codes of length 68 with new weight enumerators for the rare parameters
γ = 7, 8 and 9. In particular, we find 49 new such codes. Moreover, we show that the codes
we find are inaccessible from other construction

Keywords Composite matrices · Group rings · Composite G-codes · Self-orthogonal
composite G-codes · Codes over rings · Self-dual codes

Mathematics Subject Classification 94B05 · 16S34

1 Introduction

Recently, the authors in [13] have defined G-codes which are ideals in a group ring, where
the ring is a finite commutative Frobenius ring and G is an arbitrary finite group. This idea
is based on applying the matrix σ(v), where v is a group ring element, which was first
introduced in [21]. In another recent paper [19], the authors also apply the matrix σ(v) to
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form generator matrices of the form [I | σ(v)], where I is the identity matrix, to search for
extremal self-dual codes.

In [10] and [11], the authors amend the generator matrices of the form [I | σ(v)].Namely,
they replace the matrices σ(v) with more complex matrices and call these the composite
constructions. The authors define a number of composite constructions which they apply
to search for extremal self-dual codes, but no general theory is given. Later in [9], the
authors generalize the idea of composite constructions, amend the matrix σ(v) and define
the composite constructions, which they also call the composite matrices, in a more general
and rigorous way.

In this work, we look at the composite matrices and compare them to thematrices obtained
from σ(v). We look at when these matrices are equivalent and when they are not. We next
apply the more general and rigorous definition of the composite matrices to define composite
G-codes. This is an extension of G-codes mentioned earlier. We show that these codes are
ideals in the group ring, and that the dual of a composite G-code is also a composite G-
code. Moreover, we show when the composite G-codes are self-orthogonal and self-dual.
Additionally, we define quasi-composite G-codes and extend some known results to quasi
G-codes.

We generalize the theory of the composite constructions defined in [10] and [11]. Namely,
we show in general when and under what conditions such matrices produce self-dual codes,
rather than showing it for individual cases as in [10] and [11]. Lastly in this paper, we
combine the ideas of compositematrices, thewell known extensionmethod and the neighbour
construction and its generalization (see [18] for details), to search for extremal binary self-
dual codes of length 68. As a result, we obtain 49 such codes with parameters that were not
known in the literature before.

The rest of the work is organized as follows. In Sect. 2, we give preliminary definitions
and results on codes, group rings and special matrices. We also recall the construction of
G-codes from [13]. In Sect. 3, we define the composite matrix which was introduced in
[9] and compare it with the matrix σ(v). In Sect. 4, we define the composite G-codes and
show that these are ideals in the group ring. In Sect. 5, we study when the composite G-
codes are self-orthogonal and self-dual. Section 6 consists of a study of quasi-composite
G-codes. In Sect. 7, we generalize the theory of the composite constructions from [10] and
[11]. Additionally, we find new extremal self-dual binary codes of length 68. We finish with
concluding remarks and directions for possible future research.

2 Preliminaries

2.1 Codes, group rings and special matrices

We begin by recalling the standard definitions from coding theory. In this paper, all rings are
assumed to be commutative, finite, Frobenius rings with a multiplicative identity. Denote the
character module of R by ̂R. A code C of length n over a Frobenius ring R is a subset of Rn .
For a finite ring R the following are equivalent:

(1) R is a Frobenius ring;
(2) As a left module, ̂R ∼= R R;
(3) As a right module ̂R ∼= RR .

We consider codes over Frobenius rings since such rings have good duality properties
which are reflected by the equivalent statements above. If the code is a submodule of Rn ,
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then we say that the code is linear. For a full description of Frobenius rings and codes
over Frobenius rings, see [5]. Elements of the code C are called codewords of C . Let x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two elements of Rn . The duality is understood
in terms of the Euclidean inner product, namely:

〈x, y〉E =
∑

xi yi .

The dual C⊥ of the code C is defined as

C⊥ = {x ∈ Rn | 〈x, y〉E = 0 for all y ∈ C}.
We say that C is self-orthogonal if C ⊆ C⊥ and is self-dual if C = C⊥.

We next recall the standard definitions and notations for group rings. Let RG denote the
group ring of the group G over the ring R. A non-zero element z in a ring R is said to be a
zero-divisor in R if and only if there exists a non-zero element r ∈ R with z ∗ r = 0. When
R has an identity 1R, we say u is a unit in R if and only if there exists an element w ∈ R
with u ∗ w = 1R . The group of units of R is denoted by U (R). Let Rn×n denote the ring of
n×n matrices with coefficients from R.While group rings can be given for infinite rings and
infinite groups, we are only concerned with group rings where both the ring and the group
are finite. Let G be a finite group of order n, then the group ring RG consists of

∑n
i=1 αi gi ,

αi ∈ R, gi ∈ G.

Addition in the group ring is done by coordinate addition, namely
n

∑

i=1

αi gi +
n

∑

i=1

βi gi =
n

∑

i=1

(αi + βi )gi . (1)

The product of two elements in a group ring is given by
(

n
∑

i=1

αi gi

)

⎛

⎝

n
∑

j=1

β j g j

⎞

⎠ =
∑

i, j

αiβ j gi g j . (2)

It follows that the coefficient of gk in the product is
∑

gi g j=gk αiβ j . For more details on
group rings, see [25] and [26].

A right circulant matrix is one where each row is shifted one element to the right relative
to the preceding row. Since we shall always shift to the right in this work, we shall simply
call it a circulant matrix. We label the circulant matrix as A = circ(α1, α2, . . . , αn), where
αi are rings elements. The transpose of a matrix A, denoted by AT , is a matrix whose rows
are the columns of A, that is AT

i j = A ji .

2.2 G-codes

The followingmatrix constructionwas given byHurley in [21]. The samematrix construction
was used to study group codes over commutative Frobenius rings in [13]. Let R be a finite
commutative Frobenius ring and let G = {g1, g2, . . . , gn} be a group of order n. Let v =
αg1g1 + αg2g2 + · · · + αgn gn ∈ RG. Define the matrix σ(v) ∈ Mn(R) to be

σ(v) =

⎛

⎜

⎜

⎜

⎜

⎝

αg−1
1 g1

αg−1
1 g2

αg−1
1 g3

. . . αg−1
1 gn

αg−1
2 g1

αg−1
2 g2

αg−1
2 g3

. . . αg−1
2 gn

...
...

...
...

...

αg−1
n g1

αg−1
n g2

αg−1
n g3

. . . αg−1
n gn

⎞

⎟

⎟

⎟

⎟

⎠

. (3)
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We note that the elements g−1
1 , g−1

2 , . . . , g−1
n are the elements of the group G in a some

given order. For a given element v ∈ RG, we define the G-code over the ring R :

C(v) = 〈σ(v)〉, (4)

where this indicates that the code is formed by taking the row space of σ(v) over the ring R.

It has been shown that C(v) corresponds to an ideal in the group ring RG.

3 The compositeÄ(v)matrix

In this section, we define the composite matrix �(v) which was first introduced in [9] and
compare it with the matrix σ(v).

Let R be a finite commutative Frobenius ring. Let {g1, g2, . . . , gn} be a fixed listing of the
elements of G. Let {(hi )1, (hi )2, . . . , (hi )r } be a fixed listing of the elements of Hi , where
Hi is any group of order r . Let r be a factor of n with n > r and n, r 	= 1. Also, let Gr be a
subset of G containing r distinct elements of G. Define the following map:

φ : Hi 
→ Gr

(hi )1
φ−→ g j−1gk

(hi )2
φ−→ g j−1gk+1

...
...

...

(hi )r
φ−→ g j−1gk+(r−1).

It was shown in [9] that the map φ is a bijection.
Let v = αg1g1 + αg2g2 + . . . , αgn gn ∈ RG. Define the matrix �(v) ∈ Mn(R) to be

�(v) =

⎛

⎜

⎜

⎜

⎜

⎝

A1 A2 A3 . . . A n
r

A n
r +1 A n

r +2 A n
r +3 . . . A 2n

r
...

...
...

...
...

A (r−1)n
r +1 A (r−1)n

r +2 A (r−1)n
r +3 . . . A n2

r2

⎞

⎟

⎟

⎟

⎟

⎠

, (5)

where at least one block has the following form:

Al =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
j gk

αg−1
j gk+1

. . . αg−1
j gk+(r−1)

αg−1
j+1gk

αg−1
j+1gk+1

. . . αg−1
j+1gk+(r−1)

αg−1
j+2gk

αg−1
j+2gk+1

. . . αg−1
j+2gk+(r−1)

...
...

...
...

αg−1
j+r−1gk

αg−1
j+r−1gk+1

. . . αg−1
j+r−1gk+(r−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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and the other blocks are of the form:

A′
l =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
j gk

αg−1
j gk+1

. . . αg−1
j gk+(r−1)

α
φl ((hi )

−1
2 (hi )1)

α
φl ((hi )

−1
2 (hi )2)

. . . α
φl ((hi )

−1
2 (hi )r )

α
φl ((hi )

−1
3 (hi )1)

α
φl ((hi )

−1
3 (hi )2)

. . . α
φl ((hi )

−1
3 (hi )r )

...
...

...
...

α
φl ((hi )

−1
r (hi )1)

α
φl ((hi )

−1
r (hi )2)

. . . α
φl ((hi )

−1
r (hi )r )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where in both cases, when l = 1 then j = 1, k = 1,when l = 2 then j = 1, k = r +1,when
l = 3 then j = 1, k = 2r + 1, . . . when l = n

r then j = 1, k = n − r + 1. When l = n
r + 1

then j = r + 1, k = 1, when l = n
r + 2 then j = r + 1, k = r + 1, when l = n

r + 3 then
j = r + 1, k = 2r + 1, . . . when l = 2n

r then j = r + 1, k = n − r + 1, . . . , and so on.
We note that if the above matrix �(v) consists of blocks which are of the Al form only,

then it is the same as the matrix σ(v) from [21]. Therefore, from now on we assume that
the matrix �(v) consists of at least one block of the A′

l form. It is also clear that the matrix
�(v) cannot be constructed when the order of the group G is odd. In each block, the first
row consists of r distinct elements of G. The map φl is applied in individual blocks which

means we can employ n2

r2
different maps φl and n2

r2
different groups of order r (if that many

exist). This is the advantage of our construction over the matrix σ(v), namely, by employing
different groups of order r and by applying the maps φl in individual blocks, we construct
more complex matrices over the ring R. We call the matrix �(v) the composite G-matrix.

The rows of the matrix σ(v) in [21] consist of the vectors that correspond to the elements
hv in RG where h is any element of G. This is not the case in the composite matrix �(v).

Example 1 Let G = 〈x, y | x4 = y2 = 1, x y = x−1〉 ∼= D8. Let v = α1 + αx x + αx2 x
2 +

αx3x
3 +αy y +αxy xy +αx2 y x

2y +αx3 y x
3y ∈ RD8, where αgi ∈ R. Let H1 = 〈a, b | a2 =

b2 = 1, ab = ba〉 ∼= C2 × C2. We now define the composite matrix as:

�(v) =
(

A′
1 A′

2
A3 A4

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
1 g1

αg−1
1 g2

αg−1
1 g3

αg−1
1 g4

αg−1
1 g5

αg−1
1 g6

αg−1
1 g7

αg−1
1 g8

α
φ1 ((h1 )

−1
2 (h1 )1 )

α
φ1 ((h1 )

−1
2 (h1 )2 )

α
φ1((h1 )

−1
2 (h1 )3 )

α
φ1 ((h1 )

−1
2 (h1 )4 )

α
φ2 ((h1 )

−1
2 (h1)1 )

α
φ2 ((h1 )

−1
2 (h1 )2 )

α
φ2 ((h1 )

−1
2 (h1)3 )

α
φ2 ((h1 )

−1
2 (h1 )4 )

α
φ1 ((h1 )

−1
3 (h1 )1 )

α
φ1 ((h1 )

−1
3 (h1 )2 )

α
φ1 (h1 )

−1
3 (h1 )3)

α
φ1 ((h1 )

−1
3 (h1 )4 )

α
φ2 ((h1 )

−1
3 (h1)1 )

α
φ2 ((h1 )

−1
3 (h1 )2 )

α
φ2 ((h1 )

−1
3 (h1)3 )

α
φ2 ((h1 )

−1
3 (h1 )4 )

α
φ1 ((h1 )

−1
4 (h1 )1 )

α
φ1 ((h1 )

−1
4 (h1 )2 )

α
φ1 (h1 )

−1
4 (h1 )3)

α
φ1 ((h1 )

−1
4 (h1 )4 )

α
φ2 ((h1 )

−1
4 (h1)1 )

α
φ2 ((h1 )

−1
4 (h1 )2 )

α
φ2 ((h1 )

−1
4 (h1)3 )

α
φ2 ((h1 )

−1
4 (h1 )4 )

αg−1
5 g1

αg−1
5 g2

αg−1
5 g3

αg−1
5 g4

αg−1
5 g5

αg−1
5 g6

αg−1
5 g7

αg−1
5 g8

αg−1
6 g1

αg−1
6 g2

αg−1
6 g3

αg−1
6 g4

αg−1
6 g5

αg−1
6 g6

αg−1
6 g7

αg−1
6 g8

αg−1
7 g1

αg−1
7 g2

αg−1
7 g3

αg−1
7 g4

αg−1
7 g5

αg−1
7 g6

αg−1
7 g7

αg−1
7 g8

αg−1
8 g1

αg−1
8 g2

αg−1
8 g3

αg−1
8 g4

αg−1
8 g5

αg−1
8 g6

αg−1
8 g7

αg−1
8 g8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where

φ1 : (h1)i
φ1−→ g−1

1 gi φ2 :(h1)i φ2−→ g−1
1 g j

for i = {1, 2, 3, 4} for when {i = 1, j = 5, i = 2, j = 6, i = 3, j = 7, i = 4, j = 8}
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in A′
1 and A′

2. This results in a composite matrix over R of the following form:

�(v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1 αx αx2 αx3 αy αxy αx2 y αx3 y
αx α1 αx3 αx2 αxy αy αx3 y αx2 y
αx2 αx3 α1 αx αx2 y αx3y αy αxy

αx3 αx2 αx α1 αx3y αx2 y αxy αy

αy αx3 y αx2 y αxy α1 αx3 αx2 αx

αxy αy αx3 y αx2 y αx α1 αx3 αx2

αx2 y αxy αy αx3 y αx2 αx α1 αx3

αx3 y αx2 y αxy αy αx3 αx2 αx α1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We now look at the rows of �(v) and see what their corresponding element in RD8 is, in
terms of v. Let r1, r2, . . . , r8 be the rows of �(v), then each row is formed by multiplying
each term of v by an element of G. The elements of G do not have to be the same but they
can be. For example:

r1 = α(1)1(1)1 + α(1)x (1)x + α(1)x2(1)x
2 + α(1)x3(1)x

3 + α(1)y(1)y

+α(1)xy(1)xy + α(1)x2 y(1)x
2y + α(1)x3 y(1)x

3y,

the first row of �(v) is obtained by multiplying each term of v by the same group element
of G, namely 1.

r2 = α(x)1(x)1 + α(x3)x (x
3)x + α(x)x2(x)x

2 + α(x3)x3(x
3)x3 + α(x)y(x)y

+α(x3)xy(x
3)xy + α(x)x2 y(x)x

2y + α(x3)x3 y(x
3)x3y,

the second row of �(v) is obtained by multiplying the terms of v by the group elements of
G; x or x3.

r8 = α(x3 y)1(x
3y)1 + α(x3 y)x (x

3y)x + α(x3 y)x2(x
3y)x2 + α(x3y)x3(x

3y)x3 + α(x3 y)y(x
3y)y

+α(x3 y)xy(x
3y)xy + α(x3 y)x2 y(x

3y)x2y + α(x3 y)x3y(x
3y)x3y,

the eighth row of �(v) is obtained by multiplying each term of v by the same group element
of G, namely x3y.

Example 1 highlights the difference between the matrix σ(v) from [21] and the matrix
�(v). Namely, each row of σ(v) consists of vectors that correspond to the elements hv in
RG with h ∈ G (we multiply each term of v by the same group element of G) where in
�(v), some rows are formed by multiplying the terms of v by different group elements of
G. Therefore, we can say that each row of �(v) corresponds to an element in RG of the
following form:

v∗
j =

n
∑

i=1

αg ji gi
g ji gi , (6)

where αg ji gi
∈ R, gi , g ji ∈ G and j is the j th row of the matrix �(v). In other words, we

can define the composite matrix �(v) as

�(v) =

⎛

⎜

⎜

⎜

⎝

αg11 g1
αg12 g2

αg13 g3
. . . αg1n gn

αg21 g1
αg22 g2

αg23 g3
. . . αg2n gn

...
...

...
...

...

αgn1 g1
αgn2 g2

αgn3 g3
. . . αgnn gn

⎞

⎟

⎟

⎟

⎠

, (7)
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where the elements g ji are simply the group elements G. Which elements of G these are,
depends how the composite matrix is defined, i.e., what groups we employ and howwe define
the φl map in individual blocks.

It is possible to form a composite matrix so that each row of �(v) corresponds to the
elements αg ji

v in RG where g ji are equal for all i ∈ {1, 2, . . . , n}. If this is the case, then
�(v) is equivalent to σ(v). We look at an example.

Example 2 Let G = 〈x, y | x4 = y2 = 1, x y = x−1〉 ∼= D8. Let v = α1 + αx x + αx2 x
2 +

αx3x
3 + αy y + αxy xy + αx2 y x

2y + αx3 y x
3y ∈ RD8, where αgi ∈ R. Then

σ(v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1 αx αx2 αx3 αy αxy αx2 y αx3 y
αx3 α1 αx αx2 αx3 y αy αxy αx2 y
αx2 αx3 α1 αx αx2 y αx3 y αy αxy

αx αx2 αx3 α1 αxy αx2 y αx3 y αy

αy αx3y αx2 y αxy α1 αx3 αx2 αx

αxy αy αx3y αx2 y αx α1 αx3 αx2

αx2 y αxy αy αx3y αx2 αx α1 αx3

αx3y αx2 y αxy αy αx3 αx2 αx α1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Now let H1 = 〈a | a4 = 1〉 ∼= C4 and define the composite matrix as:

�(v) =
(

A′
1 A′

2
A3 A4

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
1 g1

αg−1
1 g2

αg−1
1 g3

αg−1
1 g4

αg−1
1 g5

αg−1
1 g6

αg−1
1 g7

αg−1
1 g8

α
φ1((h1)

−1
2 (h1)1)

α
φ1((h1)

−1
2 (h1)2 )

α
φ1((h1)

−1
2 (h1)3)

α
φ1((h1)

−1
2 (h1)4)

α
φ2 ((h2 )

−1
2 (h2 )1)

α
φ2 ((h2 )

−1
2 (h2 )2 )

α
φ2 ((h2 )

−1
2 (h2 )3)

α
φ2 ((h2 )

−1
2 (h2 )4)

α
φ1((h1)

−1
3 (h1)1)

α
φ1((h1)

−1
3 (h1)2 )

α
φ1(h1)

−1
3 (h1)3)

α
φ1((h1)

−1
3 (h1)4)

α
φ2 ((h2 )

−1
3 (h2 )1)

α
φ2 ((h2 )

−1
3 (h2 )2 )

α
φ2 ((h2 )

−1
3 (h2 )3)

α
φ2 ((h2 )

−1
3 (h2 )4)

α
φ1((h1)

−1
4 (h1)1)

α
φ1((h1)

−1
4 (h1)2 )

α
φ1(h1)

−1
4 (h1)3)

α
φ1((h1)

−1
4 (h1)4)

α
φ2 ((h2 )

−1
4 (h2 )1)

α
φ2 ((h2 )

−1
4 (h2 )2 )

α
φ2 ((h2 )

−1
4 (h2 )3)

α
φ2 ((h2 )

−1
4 (h2 )4)

αg−1
5 g1

αg−1
5 g2

αg−1
5 g3

αg−1
5 g4

αg−1
5 g5

αg−1
5 g6

αg−1
5 g7

αg−1
5 g8

αg−1
6 g1

αg−1
6 g2

αg−1
6 g3

αg−1
6 g4

αg−1
6 g5

αg−1
6 g6

αg−1
6 g7

αg−1
6 g8

αg−1
7 g1

αg−1
7 g2

αg−1
7 g3

αg−1
7 g4

αg−1
7 g5

αg−1
7 g6

αg−1
7 g7

αg−1
7 g8

αg−1
8 g1

αg−1
8 g2

αg−1
8 g3

αg−1
8 g4

αg−1
8 g5

αg−1
8 g6

αg−1
8 g7

αg−1
8 g8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where

φ1 : (h1)i
φ1−→ g−1

1 gi φ2 :(h1)i φ2−→ g−1
1 g j

for i = {1, 2, 3, 4} for when {i = 1, j = 5, i = 2, j = 6, i = 3, j = 7, i = 4, j = 8}
in A′

1 and A′
2. Then

�(v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1 αx αx2 αx3 αy αxy αx2 y αx3 y
αx3 α1 αx αx2 αx3y αy αxy αx2 y
αx2 αx3 α1 αx αx2 y αx3y αy αxy

αx αx2 αx3 α1 αxy αx2 y αx3 y αy

αy αx3 y αx2 y αxy α1 αx3 αx2 αx

αxy αy αx3 y αx2 y αx α1 αx3 αx2

αx2 y αxy αy αx3 y αx2 αx α1 αx3

αx3 y αx2 y αxy αy αx3 αx2 αx α1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Clearly, in this specific case, �(v) is equivalent to σ(v).

Example 2 leads to the following result.

Corollary 3.1 The matrix �(v) is equivalent to the matrix σ(v) if the group elements g ji in
Equation 6 are the same for all i ∈ {1, 2, . . . , n}.
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We also have the following result.

Corollary 3.2 Let v = αg1g1 + αg2g2 + . . . αgn gn ∈ RG and σ(v) be the corresponding
matrix over R. Let v′ be also an element of RG but with a different ordering of the elements
to v. Then σ(v′) is permutation equivalent to σ(v).

This corollary leads to the following Theorem. We omit the proof.

Theorem 3.3 Let �(v) be a composite matrix over R such that at least one row of �(v)

corresponds to an element in RG of the form

v∗
j =

n
∑

i=1

αg ji gi
g ji gi ,

where g ji is not the same for all i ∈ {1, 2, . . . , n}. Here, αg ji gi
∈ R, gi , g ji ∈ G and j is

the j th row of the matrix �(v). Then �(v) is not permutation equivalent to σ(v) for any
arrangement of the elements of G in v.

4 CompositeG-codes

We are now ready to introduce the code construction.
For a given element v ∈ RG and some groups Hi of order r ,we define the following code

over the ring R :

C(v) = 〈�(v)〉. (8)

The code is formed by taking the row space of �(v) over the ring R. As in [13], the code
C(v) is a linear code over the ring R, since it is the row space of a generator matrix. It is not
possible to determine the size of the code immediately from the matrix.

Example 3 Let G = 〈x, y | x4 = 1, y2 = x2, x y = x−1〉 ∼= Q8. Let v = ∑3
i=0 αi+1xi +

αi+5xi y ∈ RQ8,where αi = αgi ∈ R. Let H1 = 〈a, b | a2 = b2 = 1, ab = ba〉 ∼= C2×C2.

We now define the composite matrix as:

�(v) =
(

A′
1 A2

A3 A′
4

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
1 g1

αg−1
1 g2

αg−1
1 g3

αg−1
1 g4

αg−1
1 g5

αg−1
1 g6

αg−1
1 g7

αg−1
1 g8

α
φ1((h1)

−1
2 (h1)1)

α
φ1((h1)

−1
2 (h1)2 )

α
φ1((h1)

−1
2 (h1)3)

α
φ1((h1)

−1
2 (h1)4)

αg−1
2 g5

αg−1
2 g6

αg−1
2 g7

αg−1
2 g8

α
φ1((h1)

−1
3 (h1)1)

α
φ1((h1)

−1
3 (h1)2 )

α
φ1((h1)

−1
3 (h1)3)

α
φ1((h1)

−1
3 (h1)4)

αg−1
3 g5

αg−1
3 g6

αg−1
3 g7

αg−1
3 g8

α
φ1((h1)

−1
4 (h1)1)

α
φ1((h1)

−1
4 (h1)2 )

α
φ1((h1)

−1
4 (h1)3)

α
φ1((h1)

−1
4 (h1)4)

αg−1
4 g5

αg−1
4 g6

αg−1
4 g7

αg−1
4 g8

αg−1
5 g1

αg−1
5 g2

αg−1
5 g3

αg−1
5 g4

αg−1
5 g5

αg−1
5 g6

αg−1
5 g7

αg−1
5 g8

αg−1
6 g1

αg−1
6 g2

αg−1
6 g3

αg−1
6 g4

α
φ4((h1)

−1
2 (h1)1)

α
φ4((h1)

−1
2 (h1)2 )

α
φ4((h1)

−1
2 (h1)3)

α
φ4((h1)

−1
2 (h1)4)

αg−1
7 g1

αg−1
7 g2

αg−1
7 g3

αg−1
7 g4

α
φ4((h1)

−1
3 (h1)1)

α
φ4((h1)

−1
3 (h1)2 )

α
φ4((h1)

−1
3 (h1)3)

α
φ4((h1)

−1
3 (h1)4)

αg−1
8 g1

αg−1
8 g2

αg−1
8 g3

αg−1
8 g4

α
φ4((h1)

−1
4 (h1)1)

α
φ4((h1)

−1
4 (h1)2 )

α
φ4((h1)

−1
4 (h1)3)

α
φ4((h1)

−1
4 (h1)4)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where:

φ1 : (h1)i
φ1−→ g−1

1 gi φ4 :(h1)i φ4−→ g−1
5 g j

for i = {1, 2, 3, 4} for when {i = 1, j = 5, i = 2, j = 6, i = 3, j = 7, i = 4, j = 8},
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in A′
1 and A′

4 respectively. This results in a composite matrix over R of the following form:

�(v) =

⎛

⎜

⎜

⎝

X1 Y1 X2

Y1 X1

X3 X4 Y4
Y4 X4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1 α2 α3 α4 α5 α6 α7 α8

α2 α1 α4 α3 α8 α5 α6 α7

α3 α4 α1 α2 α7 α8 α5 α6

α4 α3 α2 α1 α6 α7 α8 α5

α7 α6 α5 α8 α1 α4 α3 α2

α8 α7 α6 α5 α4 α1 α2 α3

α5 α8 α7 α6 α3 α2 α1 α4

α6 α5 α8 α7 α2 α3 α4 α1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

If we let v = x3 + xy + x2y + x3y ∈ F2Q8, where 〈x, y〉 ∼= Q8, then

C(v) = 〈�(v)〉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1
1 0 0 0 1 1 1 0
1 1 0 1 0 1 0 0
1 1 1 0 1 0 0 0
0 1 1 1 0 0 0 1
1 0 1 1 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and C(v) is equivalent to
⎛

⎜

⎜

⎝

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎞

⎟

⎟

⎠

.

Clearly C(v) = 〈�(v)〉 is the [8, 4, 4] extended Hamming code.

In the above example, the group C2 × C2 was applied twice in two different blocks: A′
1

and A′
4. As mentioned in the previous section, we can employ more than one group of order

r , please see [9] for details.
We now extend two results from [13]; we show that the codes constructed from the

composite matrices are also ideals in the group ring. We then show that the automorphism
group of such codes contains the group G as a subgroup.

Theorem 4.1 Let R be a finite commutative Frobenius ring, G a finite group of order n. Let
Hi be finite groups of order r such that r is a factor of n with n > r and n, r 	= 1. Also, let
v ∈ RG and C(v) = 〈�(v)〉 be the corresponding code in Rn . Define I (v) to be the set of
elements of RG such that

∑

αi gi ∈ I (v) if and only if (α1, α2, . . . , αn) ∈ C(v). Then I (v)

is a left ideal in RG.

Proof We saw above that the rows of �(v) consist precisely of the vectors that correspond
to the elements of the form v∗

j = ∑n
i=1 αg ji gi

g ji gi in RG, where αg ji gi
∈ R, gi , g ji ∈ G

and j is the j th row of the matrix �(v). We also know that some of the elements g ji equal
to φl(hi ) for some map φl and the elements hi of Hi . Let a = ∑

αi gi and b = ∑

βi gi
be two elements in I (v), then a + b = ∑

(αi + βi )gi which corresponds to the sum of the
corresponding elements in C(v). This implies that I (v) is closed under addition.

Let w1 = ∑

βi gi ∈ RG. Then if w2 corresponds to a vector in C(v), it is of the form
∑

γ jv
∗
j . Then w1w2 = ∑

βi gi
∑

γ jv
∗
j = ∑

βiγ j giv∗
j which corresponds to an element in

C(v) and gives that the element is in I (v). Therefore I (v) is a left ideal of RG. 
�
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Corollary 4.2 Let R be a finite commutative Frobenius ring and G a finite group of order n.

Let Hi be finite groups of order r such that r is a factor of n with n > r and n, r 	= 1. Also,
let v ∈ RG and let C(v) = 〈�(v)〉 be the corresponding code in Rn . Then the automorphism
group of C(v) has a subgroup isomorphic to the group G.

Proof Since I (v) is an ideal in RG we have that I (v) is held invariant by the action of
the elements of the group G. It follows immediately that the automorphism group of C(v)

contains the group G as a subgroup. 
�
Similarly, as in [13], the codes constructed by the above technique are held invariant

by the action of the group G on the coordinates. We can therefore construct a code whose
automorphism group must contain the group G. Moreover, in our construction, we apply
groups of order r and the bijective maps φl in individual blocks to determine the permutation
of the coordinates in each row of a code. For this reason, we refer to a code constructed by
the above technique as a composite G-code.

We also have the following as a result of Corollary 4.2.

Corollary 4.3 The putative [72, 36, 16] code cannot be of the form C(v) = 〈�(v)〉 for any
v ∈ F2G for any group G.

Proof It is well known that the automorphism group of a putative [72, 36, 16] code must
have order less than or equal to 5 (see [13] for details). If it were of this construction, some
group of order 72 would have to be in its automorphism group. Therefore, the code cannot
be formed from this construction. 
�

We finish this section with one more result which is a generalization of the result from
[13]. We show that if C is a composite G-code for some G then its orthogonal C⊥ is also a
composite G-code.

Let I be an ideal in a group ring RG. Define R(C) = {w | vw = 0, ∀v ∈ I }. It is
immediate that R(I ) is an ideal of RG.

Let v = αg1g1 + αg2g2 + · · · + αgn gn ∈ RG and C(v) be the corresponding code.
Let � : RG → Rn be the canonical map that sends αg1g1 + αg2g2 + · · · + αgn gn to
(αg1 , αg2 , . . . , αgn ). Let I be the ideal �

−1(C). Let w = (w1, w2, . . . , wn) ∈ C⊥. Then

[(αg ji g1
, αg ji g2

, . . . , αg ji gn
), (w1, w2, . . . , wn)] = 0, ∀ j, (9)

where g ji ∈ G. This gives that

n
∑

i=0

αg ji gi
wi = 0, ∀ j . (10)

Letw = �−1(w) = ∑

wgi gi and definew ∈ RG to bew = bg1g1 +bg2g2 +· · ·+bgn gn
where

bgi = wg−1
i

. (11)

Then
n

∑

i=1

αg ji gi
wi = 0 �⇒

n
∑

i=1

αg ji gi
bg−1

i
= 0. (12)

Here g ji gi g
−1
i = g ji , hence this is the the coefficient of g ji in the product of w and v∗

j .

This gives that w ∈ R(I ) if and only if w ∈ C⊥.
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Let φ : Rn → RG by φ(w) = w. It is clear that φ is a bijection between C⊥ and
R(�−1(C)).

Theorem 4.4 Let C = C(v) be a code in RG formed from the vector v ∈ RG. Then�−1(C⊥)

is an ideal of RG.

Proof We have that �(φ(C⊥)) is permutation equivalent to C⊥ and φ(C⊥) is an ideal and so
�−1(C) is an ideal as well. 
�

5 Self-orthogonal compositeG-codes

In this section, we extend more results from [13]. Namely, we show that the map � : RG →
Mn(R) is an injective ring homomorphism, we show when our construction C = 〈�(v)〉
produces a self-orthogonal code and also when it produces a self-dual code.

Before we look at the theoretical results, we define the composite matrix �(v) that we
defined in the the previous section, in a different but equivalent form. Namely, let

�(v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
11

g1
αg−1

12
g2

αg−1
13

g3
. . . αg−1

1n
gn

αg−1
21

g1
αg−1

22
g2

αg−1
23

g3
. . . αg−1

2n
gn

...
...

...
...

...

αg−1
n1 g1

αg−1
n2 g2

αg−1
n3 g3

. . . αg−1
nn gn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where g−1
ji

are simply the elements of the group G. These elements are determined by how
the matrix has been partitioned, what groups Hi of order r have been employed and how the
mapsφl have been defined to form the compositematrix. This representation of the composite
matrix �(v) will make it easier to prove the upcoming results.

Theorem 5.1 Let R be a finite commutative Frobenius ring, G be a group of order n and Hi

be finite groups of order r such that r is a factor of n with n > 1 and n, r 	= 1. Then the map
� : RG → Mn(R) is an injective ring homomorphism.

Proof Weneed to show that themap� preserves addition andmultiplication. Let R be a finite
commutative Frobenius ring, G be a group of order n and Hi be finite groups of order r such
that r is a factor of n with n > 1 and n, r 	= 1. Now define the mapping � : RG → Mn(R)

as follows. Suppose v = ∑n
i=1 αgi gi . Then

�(v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
11

g1
αg−1

12
g2

αg−1
13

g3
. . . αg−1

1n
gn

αg−1
21

g1
αg−1

22
g2

αg−1
23

g3
. . . αg−1

2n
gn

...
...

...
...

...

αg−1
n1 g1

αg−1
n2 g2

αg−1
n3 g3

. . . αg−1
nn gn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where g−1
ji

are simply the elements of the group G in some order. This order is determined
by how the matrix has been partitioned, what groups Hi of order r have been employed
and how the maps φl have been defined to form the composite matrix �(v). This mapping
is clearly surjective and injective. We now show that � is additive and multiplicative. Let
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w = ∑n
i=1 βgi gi then

�(v + w) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(α + β)g−1
11

g1
(α + β)g−1

12
g2

(α + β)g−1
13

g3
. . . (α + β)g−1

1n
gn

(α + β)g−1
21

g1
(α + β)g−1

22
g2

(α + β)g−1
23

g3
. . . (α + β)g−1

2n
gn

...
...

...
...

...

(α + β)g−1
n1 g1

(α + β)g−1
n2 g2

(α + β)g−1
n3 g3

. . . (α + β)g−1
nn gn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
11

g1
αg−1

12
g2

αg−1
13

g3
. . . αg−1

1n
gn

αg−1
21

g1
αg−1

22
g2

αg−1
23

g3
. . . αg−1

2n
gn

...
...

...
...

...

αg−1
n1 g1

αg−1
n2 g2

αg−1
n3 g3

. . . αg−1
nn gn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

βg−1
11

g1
βg−1

12
g2

βg−1
13

g3
. . . βg−1

1n
gn

βg−1
21

g1
βg−1

22
g2

βg−1
23

g3
. . . αg−1

2n
gn

...
...

...
...

...

βg−1
n1 g1

βg−1
n2 g2

βg−1
n3 g3

. . . βg−1
nn gn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= �(v) + �(w).

Thus addition is preserved. Next, suppose v ∗ w = t, where t = ∑n
i=1 γgi gi . Then

�(v) ∗ �(w) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

γg−1
11

g1
γg−1

12
g2

γg−1
13

g3
. . . γg−1

1n
gn

γg−1
21

g1
γg−1

22
g2

γg−1
23

g3
. . . γg−1

2n
gn

...
...

...
...

...

γg−1
n1 g1

γg−1
n2 g2

γg−1
n3 g3

. . . γg−1
nn gn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= �(v ∗ w).

Thus, multiplication is preserved. This concludes the proof. 
�
For an element v = ∑

αi gi ∈ RG, define the element vT ∈ RG as vT = ∑

αi g
−1
i . This

is sometimes known as the canonical involution for the group ring.

Lemma 5.2 Let R be a finite commutative Frobenius ring, G be a group of order n and Hi

be finite groups of order r such that r is a factor of n with n > 1 and n, r 	= 1. Then for an
element v ∈ RG, we have that �(v)T = �(vT ).

Proof The i j-th elements of �(vT ) is α
(g−1

i g ji )
−1 = αg−1

ji
gi

which is the j i-th element of

�(v). 
�
Lemma 5.3 Let R be a finite commutative Frobenius ring, G be a group of order n and Hi

be finite groups of order r such that r is a factor of n with n > 1 and n, r 	= 1. If v = vT

and v2 = 0 then Cv is a self-orthogonal code.

Proof If v = vT then �(v)T = �(vT ) by Lemma 4.2. Then we have that (�(v)�(v))i j is
the inner-product of the i-th and j-th rows of �(v). Since v2 = 0, by Theorem 4.1 we have
that �(v)�(v) = 0. This gives that any two rows of �(v) are orthogonal and hence they
generate a self-orthogonal code. 
�
Theorem 5.4 Let R be a finite commutative Frobenius ring, G be a group of order n and Hi

be finite groups of order r such that r is a factor of n with n > 1 and n, r 	= 1. Let v be an
element in RG. If v = vT , v2 = 0, and |Cv| = |R n

2 | then Cv is a self-dual code.

Proof By Lemma 4.3 the code Cv is self-orthogonal and since |Cv| = |R n
2 |, we have that Cv

is self-dual. 
�
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6 Quasi composite G-codes

In this section, we make a generalization of the notion of quasi-G-codes. In [6], the authors
have developed a ring with a Gray map that could be used to describe certain families of
quasi-cyclic groups. That same ring can be used in this setting to construct quasi-composite
G-codes which we shall describe below. Self-dual codes over these rings were studied in
[14]. Recently, in [1], the authors study the algebraic structure of quasi-group codes.

Let G be a finite group of order n and R a finite Frobenius commutative ring. Let C be
a code in Rsn where the coordinates can be partitioned into n sets of size s where each set
is assigned an element of G. If the code C is held invariant by the action of multiplying the
coordinate set marker by every element of G then the code C is called a quasi-composite
G-code of index s.

We now describe a family of rings to construct quasi-composite G-codes.
Let p1, p2, . . . , pt be prime numbers with t ≥ 0 and pi 	= p j if i 	= j . Define 	 to be

	 = pk11 pk22 . . . pktt , for some ki ≥ 1, i = 1, . . . , t .
The ring is defined as follows:

Rq,	 = Fq [u p1,1, . . . , u p1,k1 , u p2,1, . . . , u p2,k2 , . . . , u pt ,kt ]/〈u pi
pi , j

= 0〉,
where the indeterminates {u pi , j }(1≤i≤t,1≤ j≤ki ) commute.
Let i ∈ {1, . . . , t}, j ∈ {1, . . . , ki }. Take the set of exponents Ji = {0, 1, . . . , pi − 1}

for the indeterminant u pi , j . For αi ∈ J kii denote uαi ,1
pi ,1

. . . uαi ,ki
pi ,ki

by uαi
i . For a monomial

uα1
1 . . . uαt

t in Rq,	 write uα, where α = (α1, . . . , αt ) ∈ J k11 × · · · × J ktt .

Let J = J k11 × · · · × J ktt . Any element c in Rq,	 can be written as

c =
∑

α∈J

cαu
α =

∑

α∈J

cαu
α1,1
p1,1

. . . uα1,k1
p1,k1

. . . uαt ,1
pt ,1

. . . uαt ,kt
pt ,kt

(13)

with cα ∈ Fq .

It is immediate that Rq,	 is a commutative ring with |Rq,	| = q p
k1
1 p

k2
2 ...pktt = q	.

Next we define a Gray map on this ring. We will consider the elements in Rq,	 as q-ary
vectors of 	 coordinates. Order the elements of A	 lexicographically and use this ordering
to label the coordinate positions of F	

q . Define the Gray map �	 : A	 → F
	
q as follows:

�	(a)b =
{

1 if̂b ⊆ {̂a ∪ 1},
0 otherwise,

where�	(a)b indicates the coordinate of�	(a) corresponding to the position of the element
b ∈ A	 with the defined ordering.

It follows that �	(a)b is 1, if each indeterminate u p1, j in the monomial b with non-zero
exponent is also in the monomial a with the same exponent. In other words, it is 1 when̂b is
a subset of â. In order to consider all the subsets of â, we also add the empty subset that is
given when b = 1; that is we comparêb to â ∪ 1.

Finally, we extend �	 linearly for all elements of Rq,	. Then �	 is a Gray map from
Rq,	 to F

	
q .

Theorem 6.1 Let C be a composite G-code in Rq,	 for a finite group G of order n. Then
�(C) is a quasi-composite G-code of length n	 of index 	 in F

	n
q .

Proof Since C is a composite G-code in Rq,	, each row of C corresponds to an element
of the form v j = cg j1 g1

g j1g1 + cg j2 g2
g j2g2 + · · · + cg jn gn g jn gn in Rq,	G, where cg ji gi

∈
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Rq,	, g ji gi ∈ G andwhere j is the j th rowof the codeC.Then�	(v j ) = �	(cg j1 g1
)g j1g1+

�	(cg j2 g1
)g j2g2 + · · · + �	(cg jn g1)g jn gn . Therefore �	(C) is a quasi-composite G-code

of length n	 of index 	 in F
	n
q . 
�

Theorem 6.2 Let C be a composite G-code of length n and of index k over Rq,	 for a finite
group G. Then �	(C) is a quasi-composite G-code of length n	 of index k	 in F

	n
q .

Proof Since C is a composite G-code in Rq,	, each row of C corresponds to an ele-
ment of the form v j = cg j1 g1

g j1g1 + cg j2 g2
g j2g2 + · · · + cg jn gn g jn gn in Rq,	G, where

cg ji gi
∈ Rq,	, g ji gi ∈ G and where j is the j th row of the code C. Then �k	(v j ) =

�k	(cg j1 g1
)g j1g1+�k	(cg j2 g1

)g j2g2+· · ·+�k	(cg jn g1)g jn gn .Therefore�	(C) is a quasi-

composite G-code of length n	 of index k	 in F
	n
q . 
�

7 Generator matrices of the form [In |Ä(v)]
In this section, we consider generator matrices of the form [In | �(v)] to construct extremal
binary self-dual codes. This approach was used in [10] and [11] where only groups of orders
4, 8 and 16 were considered to form the matrices �(v). In both papers: [10] and [11], the
authors define a specific generator matrices of the form [In | �(v)] for lengths 8 and 16.
The authors also prove theoretical results on when these matrices produce self-dual codes
over the Frobenius ring R. We generalize the theoretical results so that we show when the
generatormatrices of the form [In | �(v)] produce self-dual codes for any possible case rather
than looking at individual cases for specific composite matrices �(v). Before the theoretical
results, we give a motivating example in which we compare the generator matrix of the form
[In | σ(v)] with a generator matrix of the form [In | �(v)].
Example 4 Let G = 〈x, y | x8 = y2 = 1, x y = x−1〉 ∼= D16. Also let v =
∑7

i=0
∑1

j=0 α1+i+8 j x i y j ∈ F2D16, then

σ(v) =
(

A B
BT AT

)

,

where A = circ(α1, α2, α3, α4, α5, α6, α7, α8), B = circ(α9, α10, α11, α12, α13, α14,

α15, α16) and αi ∈ F2. We now employ the generator matrix of the form [I16 | σ(v)] to
search for binary self-dual codes with parameters [32, 16, 8]. We summarise the results in a
table.

Ci Type First row of A First row of B |Aut(Ci )|

C1 II (0, 0, 0, 0, 0, 1, 0, 1) (0, 0, 0, 1, 1, 1, 1, 1) 215 · 32 · 5 · 7
C2 I (0, 0, 0, 0, 0, 1, 1, 1) (0, 1, 0, 1, 1, 1, 1, 1) 215 · 32
C3 II (0, 0, 0, 0, 1, 1, 1, 1) (0, 0, 0, 1, 0, 0, 1, 1) 25 · 3 · 5 · 31

Example 5 We now amend σ(v) from the previous example by forming a composite matrix.
Let G = 〈x, y | x8 = y2 = 1, x y = x−1〉 ∼= D16 and v = ∑7

i=0
∑1

j=0 α1+i+8 j x i y j ∈
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F2D16. Also let H1 = 〈a, b | a2 = b2 = 1, ab = ba〉 ∼= C4 × C2 and H2 = 〈c, d | c4 =
d2 = cd = c−1〉 ∼= D8. Now we define the composite matrix as:

�(v) =
(

A′
1 A′

2
A′
3 A′

4

)

,

where

A′
1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
1 g1

αg−1
1 g2

αg−1
1 g3

αg−1
1 g4

αg−1
1 g5

αg−1
1 g6

αg−1
1 g7

αg−1
1 g8

α
φ1((h1 )

−1
2 (h1 )1 )

α
φ1((h1 )

−1
2 (h1 )2 )

α
φ1 ((h1)

−1
2 (h1 )3)

α
φ1((h1 )

−1
2 (h1 )4 )

α
φ1((h1 )

−1
2 (h1 )5 )

α
φ1((h1)

−1
2 (h1 )6 )

α
φ1((h1 )

−1
2 (h1 )7 )

α
φ1 ((h1)

−1
2 (h1)8 )

α
φ1((h1 )

−1
3 (h1 )1 )

α
φ1((h1 )

−1
3 (h1 )2 )

α
φ1 ((h1)

−1
3 (h1 )3)

α
φ1((h1 )

−1
3 (h1 )4 )

α
φ1((h1 )

−1
3 (h1 )5 )

α
φ1((h1)

−1
3 (h1 )6 )

α
φ1((h1 )

−1
3 (h1 )7 )

α
φ1 ((h1)

−1
3 (h1)8 )

α
φ1((h1 )

−1
4 (h1 )1 )

α
φ1((h1 )

−1
4 (h1 )2 )

α
φ1 ((h1)

−1
4 (h1 )3)

α
φ1((h1 )

−1
4 (h1 )4 )

α
φ1((h1 )

−1
4 (h1 )5 )

α
φ1((h1)

−1
4 (h1 )6 )

α
φ1((h1 )

−1
4 (h1 )7 )

α
φ1 ((h1)

−1
4 (h1)8 )

α
φ1((h1 )

−1
5 (h1 )1 )

α
φ1((h1 )

−1
5 (h1 )2 )

α
φ1 ((h1)

−1
5 (h1 )3)

α
φ1((h1 )

−1
5 (h1 )4 )

α
φ1((h1 )

−1
5 (h1 )5 )

α
φ1((h1)

−1
5 (h1 )6 )

α
φ1((h1 )

−1
5 (h1 )7 )

α
φ1 ((h1)

−1
5 (h1)8 )

α
φ1((h1 )

−1
6 (h1 )1 )

α
φ1((h1 )

−1
6 (h1 )2 )

α
φ1 ((h1)

−1
6 (h1 )3)

α
φ1((h1 )

−1
6 (h1 )4 )

α
φ1((h1 )

−1
6 (h1 )5 )

α
φ1((h1)

−1
6 (h1 )6 )

α
φ1((h1 )

−1
6 (h1 )7 )

α
φ1 ((h1)

−1
6 (h1)8 )

α
φ1((h1 )

−1
7 (h1 )1 )

α
φ1((h1 )

−1
7 (h1 )2 )

α
φ1 ((h1)

−1
7 (h1 )3)

α
φ1((h1 )

−1
7 (h1 )4 )

α
φ1((h1 )

−1
7 (h1 )5 )

α
φ1((h1)

−1
7 (h1 )6 )

α
φ1((h1 )

−1
7 (h1 )7 )

α
φ1 ((h1)

−1
7 (h1)8 )

α
φ1((h1 )

−1
8 (h1 )1 )

α
φ1((h1 )

−1
8 (h1 )2 )

α
φ1 ((h1)

−1
8 (h1 )3)

α
φ1((h1 )

−1
8 (h1 )4 )

α
φ1((h1 )

−1
8 (h1 )5 )

α
φ1((h1)

−1
8 (h1 )6 )

α
φ1((h1 )

−1
8 (h1 )7 )

α
φ1 ((h1)

−1
8 (h1)8 )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

A′
2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
1 g9

αg−1
1 g10

αg−1
1 g11

αg−1
1 g12

αg−1
1 g13

αg−1
1 g14

αg−1
1 g15

αg−1
1 g16

α
φ2 ((h1)

−1
2 (h1 )1 )

α
φ2 ((h1 )

−1
2 (h1 )2 )

α
φ2 ((h1 )

−1
2 (h1)3 )

α
φ2 ((h1)

−1
2 (h1 )4 )

α
φ2 ((h1 )

−1
2 (h1 )5 )

α
φ2 ((h1 )

−1
2 (h1 )6 )

α
φ2 ((h1)

−1
2 (h1 )7)

α
φ2 ((h1 )

−1
2 (h1 )8 )

α
φ2 ((h1)

−1
3 (h1 )1 )

α
φ2 ((h1 )

−1
3 (h1 )2 )

α
φ2 ((h1 )

−1
3 (h1)3 )

α
φ2 ((h1)

−1
3 (h1 )4 )

α
φ2 ((h1 )

−1
3 (h1 )5 )

α
φ2 ((h1 )

−1
3 (h1 )6 )

α
φ2 ((h1)

−1
3 (h1 )7)

α
φ2 ((h1 )

−1
3 (h1 )8 )

α
φ2 ((h1)

−1
4 (h1 )1 )

α
φ2 ((h1 )

−1
4 (h1 )2 )

α
φ2 ((h1 )

−1
4 (h1)3 )

α
φ2 ((h1)

−1
4 (h1 )4 )

α
φ2 ((h1 )

−1
4 (h1 )5 )

α
φ2 ((h1 )

−1
4 (h1 )6 )

α
φ2 ((h1)

−1
4 (h1 )7)

α
φ2 ((h1 )

−1
4 (h1 )8 )

α
φ2 ((h1)

−1
5 (h1 )1 )

α
φ2 ((h1 )

−1
5 (h1 )2 )

α
φ2 ((h1 )

−1
5 (h1)3 )

α
φ2 ((h1)

−1
5 (h1 )4 )

α
φ2 ((h1 )

−1
5 (h1 )5 )

α
φ2 ((h1 )

−1
5 (h1 )6 )

α
φ2 ((h1)

−1
5 (h1 )7)

α
φ2 ((h1 )

−1
5 (h1 )8 )

α
φ2 ((h1)

−1
6 (h1 )1 )

α
φ2 ((h1 )

−1
6 (h1 )2 )

α
φ2 ((h1 )

−1
6 (h1)3 )

α
φ2 ((h1)

−1
6 (h1 )4 )

α
φ2 ((h1 )

−1
6 (h1 )5 )

α
φ2 ((h1 )

−1
6 (h1 )6 )

α
φ2 ((h1)

−1
6 (h1 )7)

α
φ2 ((h1 )

−1
6 (h1 )8 )

α
φ2 ((h1)

−1
7 (h1 )1 )

α
φ2 ((h1 )

−1
7 (h1 )2 )

α
φ2 ((h1 )

−1
7 (h1)3 )

α
φ2 ((h1)

−1
7 (h1 )4 )

α
φ2 ((h1 )

−1
7 (h1 )5 )

α
φ2 ((h1 )

−1
7 (h1 )6 )

α
φ2 ((h1)

−1
7 (h1 )7)

α
φ2 ((h1 )

−1
7 (h1 )8 )

α
φ2 ((h1)

−1
8 (h1 )1 )

α
φ2 ((h1 )

−1
8 (h1 )2 )

α
φ2 ((h1 )

−1
8 (h1)3 )

α
φ2 ((h1)

−1
8 (h1 )4 )

α
φ2 ((h1 )

−1
8 (h1 )5 )

α
φ2 ((h1 )

−1
8 (h1 )6 )

α
φ2 ((h1)

−1
8 (h1 )7)

α
φ2 ((h1 )

−1
8 (h1 )8 )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

A′
3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
9 g1

αg−1
9 g2

αg−1
9 g3

αg−1
9 g4

αg−1
9 g5

αg−1
9 g6

αg−1
9 g7

αg−1
9 g8

α
φ3((h2 )

−1
2 (h2 )1 )

α
φ3((h2 )

−1
2 (h2 )2 )

α
φ3((h2 )

−1
2 (h2 )3 )

α
φ3 ((h2 )

−1
2 (h2 )4 )

α
φ3((h2 )

−1
2 (h2 )5 )

α
φ3((h2 )

−1
2 (h2 )6 )

α
φ3((h1 )

−1
2 (h2 )7 )

α
φ3((h2 )

−1
2 (h2 )8 )

α
φ3((h2 )

−1
3 (h2 )1 )

α
φ3((h2 )

−1
3 (h2 )2 )

α
φ3((h2 )

−1
3 (h2 )3 )

α
φ3 ((h2 )

−1
3 (h2 )4 )

α
φ3((h2 )

−1
3 (h2 )5 )

α
φ3((h2 )

−1
3 (h2 )6 )

α
φ3((h2 )

−1
3 (h2 )7 )

α
φ3((h2 )

−1
3 (h2 )8 )

α
φ3((h2 )

−1
4 (h2 )1 )

α
φ3((h2 )

−1
4 (h2 )2 )

α
φ3((h2 )

−1
4 (h2 )3 )

α
φ3 ((h2 )

−1
4 (h2 )4 )

α
φ3((h2 )

−1
4 (h2 )5 )

α
φ3((h2 )

−1
4 (h2 )6 )

α
φ3((h2 )

−1
4 (h2 )7 )

α
φ3((h2 )

−1
4 (h2 )8 )

α
φ3((h2 )

−1
5 (h2 )1 )

α
φ3((h2 )

−1
5 (h2 )2 )

α
φ3((h2 )

−1
5 (h2 )3 )

α
φ3 ((h2 )

−1
5 (h2 )4 )

α
φ3((h2 )

−1
5 (h2 )5 )

α
φ3((h2 )

−1
5 (h2 )6 )

α
φ3((h2 )

−1
5 (h2 )7 )

α
φ3((h2 )

−1
5 (h2 )8 )

α
φ3((h2 )

−1
6 (h2 )1 )

α
φ3((h2 )

−1
6 (h2 )2 )

α
φ3((h2 )

−1
6 (h2 )3 )

α
φ3 ((h2 )

−1
6 (h2 )4 )

α
φ3((h2 )

−1
6 (h2 )5 )

α
φ3((h2 )

−1
6 (h2 )6 )

α
φ3((h2 )

−1
6 (h2 )7 )

α
φ3((h2 )

−1
6 (h2 )8 )

α
φ3((h2 )
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7 (h2 )1 )

α
φ3((h2 )
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7 (h2 )2 )

α
φ3((h2 )

−1
7 (h2 )3 )

α
φ3 ((h2 )

−1
7 (h2 )4 )

α
φ3((h2 )

−1
7 (h2 )5 )

α
φ3((h2 )

−1
7 (h2 )6 )

α
φ3((h2 )

−1
7 (h2 )7 )

α
φ3((h2 )

−1
7 (h2 )8 )

α
φ3((h2 )

−1
8 (h2 )1 )

α
φ3((h2 )

−1
8 (h2 )2 )

α
φ3((h2 )

−1
8 (h2 )3 )

α
φ3 ((h2 )

−1
8 (h2 )4 )

α
φ3((h2 )

−1
8 (h2 )5 )

α
φ3((h2 )

−1
8 (h2 )6 )

α
φ3((h2 )

−1
8 (h2 )7 )

α
φ3((h2 )

−1
8 (h2 )8 )

⎞
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⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

A′
4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
9 g9

αg−1
9 g10

αg−1
9 g11

αg−1
9 g12

αg−1
9 g13

αg−1
9 g14

αg−1
9 g15
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9 g16

α
φ4 ((h2 )

−1
2 (h2 )1 )

α
φ4 ((h2 )

−1
2 (h2 )2 )

α
φ4 ((h2 )
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2 (h2 )3 )
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φ4 ((h2 )
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2 (h2 )4 )
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φ4((h2 )
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2 (h2 )5 )

α
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2 (h2 )6 )
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−1
2 (h2 )7 )

α
φ4 ((h2 )
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2 (h2 )8 )

α
φ4 ((h2 )
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3 (h2 )1 )

α
φ4 ((h2 )
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3 (h2 )2 )
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3 (h2 )4 )
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−1
3 (h2 )7 )

α
φ4 ((h2 )

−1
3 (h2 )8 )
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α
φ4 ((h2 )
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α
φ4 ((h2 )
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α
φ4 ((h2 )
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φ4 ((h2 )

−1
7 (h2 )3 )

α
φ4 ((h2 )

−1
7 (h2 )4 )

α
φ4((h2 )

−1
7 (h2 )5 )

α
φ4 ((h2 )

−1
7 (h2 )6 )

α
φ4 ((h2 )

−1
7 (h2 )7 )

α
φ4 ((h2 )

−1
7 (h2 )8 )

α
φ4 ((h2 )

−1
8 (h2 )1 )

α
φ4 ((h2 )

−1
8 (h2 )2 )

α
φ4 ((h2 )

−1
8 (h2 )3 )

α
φ4 ((h2 )

−1
8 (h2 )4 )

α
φ4((h2 )

−1
8 (h2 )5 )

α
φ4 ((h2 )

−1
8 (h2 )6 )

α
φ4 ((h2 )

−1
8 (h2 )7 )

α
φ4 ((h2 )

−1
8 (h2 )8 )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and where:

φ1 : (h1)i
φ1−→ g−1

1 gi φ2 :(h1)i φ2−→ g−1
1 gi

for i = {1, 2, . . . , 8} for when i = {9, 10, . . . , 16}
φ3 : (h2)i

φ3−→ g−1
9 gi φ4 :(h2)i φ4−→ g−1

9 gi
for i = {1, 2, . . . , 8} for when i = {9, 10, . . . , 16}.

This results in a composite matrix of the following form:

�(v) =

⎛

⎜

⎜

⎝

A1 B1 A2 B2

B1 A1 B2 A2

A3 B3 A4 B4

BT
3 AT

3 BT
4 AT

4

⎞

⎟

⎟

⎠

,

where

A1 = circ(α1, α2, α3, α4),
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B1 = circ(α5, α6, α7, α8),

A2 = circ(α9, α10, α11, α12),

B2 = circ(α13, α14, α15, α16),

A3 = circ(α9, α16, α15, α14),

B3 = circ(α13, α12, α11, α10),

A4 = circ(α1, α8, α7, α6),

B4 = circ(α5, α4, α3, α2)

and where αi ∈ F2. We now employ the generator matrix of the form [I16 | �(v)] to search
for binary self-dual codes with parameters [32, 16, 8]. We summarise the results in a table.

Ci Type rA1 rB1 rA2 rB2 rA3 rB3 rA4 rB4 |Aut(Ci )|

C1 II (0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0) (1, 1, 1, 1) (0, 1, 1, 1) (1, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0) 29 · 32 · 5

The order of the automorphism group of the code obtained in Example 7 is different from
the order of automorphism of codes obtained in Example 6. This shows that the composite
matrices can be used to produce codes whose structure is not attainable from matrices of the
form [In | σ(v)] or other classical techniques for producing extremal binary self-dual codes.
In fact, this is the main motivating factor for this construction, that is, we construct codes
whose automorphism group differs from other constructions which means we find codes that
are inaccessible from other techniques.

Theorem 7.1 Let R be a finite commutative Frobenius ring, G be a group of order n and Hi

be finite groups of order r such that r is a factor of n with n > 1 and n, r 	= 1. Let v ∈ RG
and let �(v) be the corresponding composite matrix over R. The matrix G = [In | �(v)]
generates a self-dual code C over R if and only if �(v)�(v)T = −In .

Proof The code C is self-dual if and only if GGT is the zero matrix over R. Now,

GGT = [In | �(v)][In | �(v)]T = [In | �(v)�(v)T ].
Thus, GGT is the zero matrix over R if and only if �(v)�(v)T = −In . 
�

We saw earlier in the work that �(vT ) = �(v)T . Now using Theorem 7.1, the fact that
� is a ring homomorphism, and the fact that �(v) = −In if and only if v = −1, we get the
following corollary.

Corollary 7.2 Let R be a finite commutative Frobenius ring, G be a group of order n and
Hi be finite groups of order r such that r is a factor of n with n > 1 and n, r 	= 1. Let
v ∈ RG and let �(v) be the corresponding composite matrix over R. The matrix [In | �(v)]
generates a self-dual code over R if and only if vvT = −1. In particular v has to be a unit.

When we consider a ring of characteristic 2, we have −In = In, which leads to the
following further important result:

Corollary 7.3 Let R be a finite commutative Frobenius ring of characteristic 2, G be a group
of order n and Hi be finite groups of order r such that r is a factor of n with n > 1 and
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n, r 	= 1. Let v ∈ RG and let �(v) be the corresponding composite matrix over R. Then
the matrix [In | �(v)] generates a self-dual code over R if and only if v satisfies vvt = 1,
namely v is a unitary unit in RG.

7.1 New extremal self-dual binary codes of length 68

In this section, we search for extremal binary self-dual codes of length 68 using the generator
matrix described in the previous section with some other well-known techniques. We focus
on this particular length, since there are still many Type I unknown codes of this length, i.e.,
codes of length 68 with parameters in their weight enumerators that are not known in the
literature. Recently, much work has been done to find new, extremal, Type I binary self-dual
codes of length 68, see [8,10–12,17] for some examples. We now describe our approach.

We apply the generatormatrix of the form [I |�(v)] over the ringF4+uF4 to find extremal
self-dual codes whose binary images are the extremal self-dual binary codes of length 64.
We then apply a very well known extension method to obtain codes of length 68. Similar
approach can be found in [10]. We next apply a very recent technique, called a neighbor of a
neighbor method (please see [18] for details), to find a family of neighbours which turn out
to be extremal self-dual binary codes of length 68 with parameters not known in the literature
before. In particular we find new codes of length 68 with the rare parameters of γ = 7, 8, 9.
We split this section into the following subsections. In the first one, we describe the ring
F4 + uF4 and give the most up to date list of codes of length 68 with parameters known in
the literature. Then we define the generator matrix of the form [I | �(v)], which we use to
find codes of length 64. We then extend these codes to obtain codes of length 68. Finally, we
apply the family of neighbours method to find codes of length 68 with parameters not known
in the literature.

7.1.1 The ring F4 + uF4, the extension and neighbour methods

Let us recall the following Gray Maps from [16] and [7]:

ψF4 : (F4)
n → (F2)

2n ϕF2+uF2 : (F2 + uF2)
n → F

2n
2

aω + bω 
→ (a, b), a, b ∈ F
n
2 a + bu 
→ (b, a + b), a, b ∈ F

n
2 .

In [24], these maps were generalized to the following Gray maps:

ψF4+uF4 : (F4 + uF4)
n → (F2 + uF2)

2n ϕF4+uF4 : (F4 + uF4)
n → F

2n
4

aω + bω 
→ (a, b), a, b ∈ (F2 + uF2)
n a + bu 
→ (b, a + b), a, b ∈ F

n
4 .

Proposition 7.4 ( [24]) Let C be a code over F4 + uF4. If C is self-orthogonal, then so are
ψF4+uF4(C) and ϕF4+uF4(C). The code C is a Type I (resp. Type II) code over F4 + uF4 if
and only if ϕF4+uF4(C) is a Type I (resp. Type II) F4 -code, if and only if ψF4+uF4(C) is a
Type I (resp. Type II) F2 +uF2-code. Furthermore, the minimum Lee weight of C is the same
as the minimum Lee weight of ψF4+uF4(C) and ϕF4+uF4(C).

The next corollary follows immediately from the proposition and we will use this result
repeatedly to produce binary codes.

Corollary 7.5 Suppose that C is a self-dual code over F4 + uF4 of length n and minimum
Lee distance d. Then ϕF2+uF2 ◦ψF4+uF4(C) is a binary [4n, 2n, d] self-dual code. Moreover,
the Lee weight enumerator of C is equal to the Hamming weight enumerator of ϕF2+uF2 ◦
ψF4+uF4(C). If C is Type I (Type II), then so is ϕF2+uF2 ◦ ψF4+uF4(C).
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For the computational results in later sections, we are going to use the following extension
method to obtain codes of length n + 2.

Theorem 7.6 [15] Let C be a self-dual code of length n over a commutative Frobenius ring
with identity R and G = (ri ) be a k × n generator matrix for C, where ri is the i-th row of G,
1 ≤ i ≤ k. Let c be a unit in R such that c2 = −1 and X be a vector in Sn with 〈X , X〉 = −1.
Let yi = 〈ri , X〉 for 1 ≤ i ≤ k. The following matrix

⎡

⎢

⎢

⎢

⎣

1 0 X
y1 cy1 r1
...

...
...

yk cyk rk

⎤

⎥

⎥

⎥

⎦

generates a self-dual code D over R of length n + 2.

We will also apply the neighbor method and its generalization to search for new extremal
binary self-dual codes from codes obtained directly from our constructions or from the
described above, extension method. Two self-dual binary codes of length 2n are said to be
neighbors of each other if their intersection has dimension n − 1. Let x ∈ F

2n
2 − C then

D = 〈〈x〉⊥ ∩ C, x
〉

is a neighbour of C.
Recently in [18], the neighbor method has been extended and the following formula for

constructing the kth-range neighbour codes was provided:

N(i+1) =
〈

〈xi 〉⊥ ∩ N(i), xi
〉

,

where N(i+1) is the neighbour of N(i) and xi ∈ F
2n
2 − N(i).

There are twopossibilities for theweight enumerators of extremal singly-even [64, 32, 12]2
codes ( [4]):

W64,1 = 1 + (1312 + 16β)y12 + (22016 − 64β)y14 + . . . , 14 ≤ β ≤ 284,

W64,2 = 1 + (1312 + 16β)y12 + (23040 − 64β)y14 + . . . , 0 ≤ β ≤ 277.

Recently, many new codes are constructed for both weight enumerators in [17], [22] and
[29].

The weight enumerator of a singly-even, self-dual [68, 34, 12]2 code is in one of the
following forms by [3,20]:

W68,1 = 1 + (442 + 4β)y12 + (10864 − 8β)y14 + . . . ,

W68,2 = 1 + (442 + 4β)y12 + (14960 − 8β − 256γ )y14 + . . . ,

where β and γ are parameters and 0 ≤ γ ≤ 9. The first examples of codes with a γ = 7
in W68,2 are constructed in [28]. Many codes for different values of β and γ have been
constructed in [8,12,17,19,27,28]. The first examples of codes with γ = 8, 9 in W68,2 are
constructed in [18]. For an up-to-date list of all known Type I binary self-dual codes with
parameters [64, 32, 12] and [68, 43, 12] please see [23].

7.1.2 The generator matrix

We now define the generator matrix of the form [I | �(v)] which we then employ to search
for self-dual codes over the ring F4 + uF4. Of course, I is simply the identity matrix so we
define �(v).
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Let G = 〈x, y | x4 = y2 = 1, x y = x−1〉 ∼= D8. Let v = α1 + αx x + αx2 x
2 + αx3x

3 +
αy y + αxy xy + αx2 y x

2y + αx3 y x
3y ∈ RD8, where αgi ∈ R. Let H1 = 〈a, b | a2 = b2 =

1, ab = ba〉 ∼= C2 × C2 and H2 = 〈c | c4 = 1〉 ∼= C4. We now define �(v) as:

�(v) =
(

A′
1 A′

2
A′
3 A′

4

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αg−1
1 g1

αg−1
1 g2

αg−1
1 g3

αg−1
1 g4

αg−1
1 g5

αg−1
1 g6

αg−1
1 g7

αg−1
1 g8

α
φ1((h2)

−1
2 (h2)1)

α
φ1((h2)

−1
2 (h2)2)

α
φ1((h2)

−1
2 (h2)3)

α
φ1((h2)

−1
2 (h2)4)

α
φ2((h1)

−1
2 (h1)1)

α
φ2 ((h1)

−1
2 (h1)2)

α
φ2 ((h1)

−1
2 (h1)3)

α
φ2((h1)

−1
2 (h1)4)

α
φ1((h2)

−1
3 (h2)1)

α
φ1((h2)

−1
3 (h2)2)

α
φ1(h2)

−1
3 (h2)3)

α
φ1((h2)

−1
3 (h2)4)

α
φ2((h1)

−1
3 (h1)1)

α
φ2 ((h1)

−1
3 (h1)2)

α
φ2 ((h1)

−1
3 (h1)3)

α
φ2((h1)

−1
3 (h1)4)

α
φ1((h2)

−1
4 (h2)1)

α
φ1((h2)

−1
4 (h2)2)

α
φ1(h2)

−1
4 (h2)3)

α
φ1((h2)

−1
4 (h2)4)

α
φ2((h1)

−1
4 (h1)1)

α
φ2 ((h1)

−1
4 (h1)2)

α
φ2 ((h1)

−1
4 (h1)3)

α
φ2((h1)

−1
4 (h1)4)

αg−1
5 g1

αg−1
5 g2

αg−1
5 g3

αg−1
5 g4

αg−1
5 g5

αg−1
5 g6

αg−1
5 g7

αg−1
5 g8

α
φ3((h2)

−1
2 (h2)1)

α
φ3((h2)

−1
2 (h2)2)

α
φ3((h2)

−1
2 (h2)3)

α
φ3((h2)

−1
2 (h2)4)

α
φ4((h1)

−1
2 (h1)1)

α
φ4((h1)

−1
2 (h1)2)

α
φ4((h1)

−1
2 (h1)3)

α
φ4((h1)

−1
2 (h1)4)

α
φ3((h2)

−1
3 (h2)1)

α
φ3((h2)

−1
3 (h2)2)

α
φ3(h2)

−1
3 (h2)3)

α
φ3((h2)

−1
3 (h2)4)

α
φ4((h1)

−1
3 (h1)1)

α
φ4((h1)

−1
3 (h1)2)

α
φ4((h1)

−1
3 (h1)3)

α
φ4((h1)

−1
3 (h1)4)

α
φ3((h2)

−1
4 (h2)1)

α
φ3((h2)

−1
4 (h2)2)

α
φ3(h2)

−1
4 (h2)3)

α
φ3((h2)

−1
4 (h2)4)

α
φ4((h1)

−1
4 (h1)1)

α
φ4((h1)

−1
4 (h1)2)

α
φ4((h1)

−1
4 (h1)3)

α
φ4((h1)

−1
4 (h1)4)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where:

φ1 : (h2)i
φ1−→ g−1

1 gi φ2 : (h1)i
φ2−→ g−1

1 g j

for i = {1, 2, 3, 4} for when {i = 1, j = 5, i = 2, j = 6, i = 3, j = 7, i = 4, j = 8} ,

φ3 : (h1)i
φ1−→ g−1

5 gi φ4 : (h1)i
φ2−→ g−1

5 g j

for i = {1, 2, 3, 4} for when {i = 1, j = 5, i = 2, j = 6, i = 3, j = 7, i = 4, j = 8} .

in A′
1, A

′
2, A

′
3 and A′

4. This results in a composite matrix over R of the following form:

�(v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1 αx αx2 αx3 αy αxy αx2 y αx3 y
αx α1 αx3 αx2 αxy αy αx3 y αx2 y
αx3 αx2 α1 αx αx2 y αx3y αy αxy

αx2 αx3 αx α1 αx3y αx2 y αxy αy

αy αx3 y αx2 y αxy α1 αx3 αx2 αx

αx3 y αy αxy αx2 y αx3 α1 αx αx2

αx2 y αxy αy αx3 y αx2 αx α1 αx3

αxy αx2 y αx3 y αy αx αx2 αx3 α1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (14)

Therefore, the final form of the generator matrix which we later employ to search for
self-dual codes has the following form:

[I | �(v)], (15)

where �(v) is the composite matrix defined in (14).

7.1.3 Computational results

We now employ the generator matrix defined in (15) over the ring F4 + uF4 to search for
codes of length 16 whose binary images are the extremal self-dual codes of length 64. In
fact, we only list one of the codes found. This code in turn is used to find new extremal
binary self-dual codes of length 68. All the upcoming computational results were obtained
by performing the searches using MAGMA ( [2]).

We now apply Theorem 7.6 to the ψF4+uF4 - image of the code in Table 1. As a result, we
were able to find many extremal self-dual codes of length 68 but to save space, we only list
one. This code is found in Table 2, where 1 + u in F2 + uF2, is denoted by 3.

The order of the automorphism group of the code in Table 2 is 2. We note that the code
from Table 2 has parameters that are not new in the literature.
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Table 1 Type I Codes of length 64 and their β values

Ci (α1, αx , αx2 , αx3 , αy , αxy , αx2 y , αx3 y) |Aut(Ci )| W64,2

1 (0, w, u + 1, u + 1, u, wu + u, w,wu + u + 1) 24 β = 0

Table 2 Type I Codes of length 68 from Theorem 7.6

C68,i Ci c X γ β

C68,1 C1 1 (0, 3, 3, u, 3, 1, 3, 3, 3, 3, 1, 1, 0, 3, 3, 1, 3, 1, 0, u, 1, 3, u, 3, 0, 1, 3, u, 3, 0, 3, 1) 4 103

Table 3 i th neighbour ofN(0)

i N(i+1) xi γ β

0 N(1) (1111011010011101111111100100111110) 4 101

1 N(2) (0110100100111101111011111110111011) 6 145

2 N(3) (0000100000010000011101110110000101) 7 152

3 N(4) (1111111100000010000111001100101011) 7 143

4 N(5) (0110010010100110110111101011111111) 8 162

5 N(6) (1100001011011111001111110010001011) 9 174

6 N(7) (1110010010100011111100101110001100) 9 167

7 N(8) (0011000000000110110101001101100000) 9 159

8 N(9) (1001101110001110110000111101000011) 9 158

9 N(10) (1001011111100101110001001011110110) 9 157

10 N(11) (1010101101101101110111011111111010) 9 152

11 N(12) (1111010110110000110111011010101010) 7 131

12 N(13) (1000011111111011110110001010110010) 6 117

We now apply the kth range neighbour formula (mentioned earlier) to the code obtained
in Table 2.

Let N(0) = C where C is the extremal binary self dual code of length 68 with parameters
β = 103 and γ = 4. Applying the kth range formula, we obtain (Table 3):

We shall now separately consider the neighbours of N(7),N(8),N(10),N(11),N(12) and
N(13).We tabulate the results below. All the codes in Table 4 have an automorphism group of
order 1. The codes in bold in Tables 3 and 4 indicate codes with new parameters, i.e., codes
with these values in their weight enumerators were not known in the literature before.

As we can see, we were able to construct many extremal binary self-dual codes of length
68 with new weight enumerators for the rare parameters γ = 7, 8 and 9.

8 Conclusion

In this paper, we have extended the idea of G-codes to composite G-codes. We have shown
that similarly as the G-codes, the composite G-codes are also ideals in the group ring RG.

We have shown that the dual of a composite G-code is also a G-code. We have studied
self-orthogonal and self-dual composite G-codes over rings. Moreover, we have extended
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the results on quasi-G-codes to quasi-composite G-codes. We have also generalized results
on self-dual codes obtained from generator matrices of the form [I | �(v)], where �(v)

is the composite matrix. Additionally in this work, we were able to construct the following
extremal binary self-dual codes with new weight enumerators in W68,2:

(γ = 5, β = {110}).
(γ = 6, β = {117, 120, 121, 122, 123, 124}).
(γ = 7, β = {131, 132, 134, 135, 136, 137, 138, 139, 141, 143}).
(γ = 8, β = {139, 140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152}).
(γ = 9, β = {151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,

166, 167, 168, 170, 172}).

A suggestion for future work would be to consider composite matrices of greater lengths
to search for extremal binary self dual codes over different rings. For example, one may
consider our approach to search for extremal binary self-dual codes of length 80. Another
direction is to determine which codes are composite G-codes for a finite group G.
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