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conjecture and the Combinatorial Nullstellensatz

Oliver Janzer1 · Zoltán Lóránt Nagy2

Received: 8 July 2020 / Revised: 30 January 2021 / Accepted: 24 February 2021 / Published online: 25 March 2021
© The Author(s) 2021

Abstract
The long-standing Erdős–Faber–Lovász conjecture states that every n-uniform linear hyper-
gaph with n edges has a proper vertex-coloring using n colors. In this paper we propose
an algebraic framework to the problem and formulate a corresponding stronger conjecture.
Using the Combinatorial Nullstellensatz, we reduce the Erdős–Faber–Lovász conjecture to
the existence of non-zero coefficients in certain polynomials. These coefficients are in turn
related to the number of orientations with prescribed in-degree sequences of some auxiliary
graphs. We prove the existence of certain orientations, which verifies a necessary condition
for our algebraic approach to work.

Keywords Coloring · Hypergraphs · Erdős–Faber–Lovász · Combinatorial Nullstellensatz ·
Graph orientations

Mathematics Subject Classification 05C15 · 05C20

1 Introduction

A hypergraph H = (V , E) consists of a nonempty vertex set V , and an edge set E . A
hypergraph is called linear if the intersection of each pair of edges contains at most one
vertex. A proper vertex coloringwith a color setC of the hypergraph is a function c : V → C
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such that each edge consists of vertices of different colors. Awell known conjecture of Erdős,
Faber and Lovász, dating back to 1972, asserts an upper bound on the minimum number of
colors.

Conjecture 1.1 (Erdős–Faber–Lovász) If a linear hypergraphH = (V , E) has n edges, each
of size at most n, then H can be colored properly by n colors.

Erdős considered this one of his three favourite combinatorial problems, and offered one
of his highest prizes ever for a proof or disproof [4,5].

Note that n colors are obviously needed, and the statement follows if one considers only
linear hypergraphs such that every vertex is incident to at least 2 hyperedges, according to
the observation below.

Observation 1.2 Consider a hypergraphH = (V , E) in which every edge has size at most n.
If one deletes the vertices of degree 1, any proper coloring of the obtained derived hypergraph
with at least n colors can be extended to a proper coloring of H = (V , E) with the same
color set.

On the other hand, in any linear hypergraph with n edges, if every vertex has degree at
least 2, then the size of every edge is at most n. Thus, Conjecture 1.1 is equivalent to the
statement that any linear hypergraph with n edges in which every vertex has degree at least
2 can be colored properly by n colors. By dualizing the problem, its connection to Vizing’s
theorem becomes clear. To this end, one may assign vertices to the edges ofH and introduce
the dual hypergraph Ĥ with hyperedges Hv assigned to each vertex v ∈ V (H) such that Hv

consists of the vertices corresponding to hyperedges incident to v inH. IfH is linear with n
edges, then the resulting hypergraph Ĥ on n vertices is linear as well. Moreover, since every
vertex has degree at least 2 in H and H is linear, it follows that Ĥ has no multiple edges.
Thus this way we get another variant of the conjecture.

Conjecture 1.3 (Erdős–Faber–Lovász, 2nd (dual) variant) Any linear hypergraph on n ver-
tices has chromatic index at most n.

The conjecture is confirmed for certain hypergraph families, but the problem is still widely
open, even though asymptotic and fractional versions were established byKahn and Seymour
[10,11,25]. Some notable hypergraph families for which the conjecture is confirmed are the
dense derived hypergraphs for which the minimum degree δ(H) is greater than

√
n [19,23],

the uniform derived hypergraphs [6] or the cases n ≤ 12 [8,22] and some other families
[3,7,9,17,20]. These results mostly apply algorithmic and graph theoretic arguments some
with computer-based search. For further results on the topic, we refer to [21].

In this paper we propose an algebraic approach, in connection with the celebrated Com-
binatorial Nullstellensatz of Alon [1]. We point out that the existence of a suitable proper
coloring of a hypergraph H is strongly connected to the existence of a particular degree-
bounded orientation of certain auxiliary graphs obtained from H. In Sect. 2 we introduce
the algebraic tool and present two types of auxiliary graphs assigned to the linear hyper-
graphs. The application of the algebraic tool will imply that if the total sum of certain signed
bounded-degree orientations of the auxiliary graph is nonzero, then there exists a proper
coloring with at most n colors. We formulate a conjecture that in fact, this related stronger
variant of the Erdős–Faber–Lovász conjecture also holds. In Sect. 3we study the strengthened
variant of Conjecture 1.1 and show that a special, so-called Vandermonde-type, orientation
exists for both families of auxiliary graphs assigned to arbitrary n-uniform hypergraphs H
with n edges. This verifies a necessary condition for our algebraic approach to work. Finally,
in Sect. 4 we give some concluding remarks.

123



Coloring linear hypergraphs: the Erdős–Faber–Lovász conjecture... 1993

2 The algebraic tool and the strengthening of the E–F–L conjecture

Our starting point is Alon’s celebrated Combinatorial Nullstellensatz [1], more precisely the
Non-vanishing lemma, described below. This tool turned out to be very powerful in several
areas of combinatorics; in particular, in graph coloring problems [1,15,18,26]. The connection
of graph orientations and this lemma appeared first in the influential paper of Alon and Tarsi
[2]. Here we recall the form of the Combinatorial Nullstellensatz that we will apply.

Theorem 2.1 (Combinatorial Nullstellensatz, Non-vanishing lemma [1]) Let F be an arbi-
trary field and let P = P(x1, . . . , xk) be a polynomial of k variables over F. Suppose that
there exists amonomial

∏k
i=1 x

di
i , such that the sum

∑k
i=1 di equals the total degree of P, and

the coefficient of
∏k

i=1 x
di
i in P is nonzero. Then for any set of subsets A1, . . . , Ak of F such

that |Ai | > di , there exists a k-tuple (s1, s2, . . . , sk) ∈ Ś
Ai forwhich P(s1, s2, . . . , sk) �= 0.

In most applications of the Combinatorial Nullstellensatz, the polynomial can be directly
derived from the combinatorial setting, and the choice of the maximal monomial with which
Theorem 2.1 is applied is also natural. The main step to make the argument work is to check
that the coefficient of this monomial is not zero. In fact, one usually knows or conjectures
in advance the extremal structure, which can be helpful in setting up the corresponding
polynomials and verifying that the coefficient in view is nonzero. Unlike in those cases, here
we have large freedom to consider a suitable polynomial, and we have to pick the polynomial
and its maximal monomial carefully so that the coefficient is surely nonzero. This provides
a rather novel application of the main tool.

Let us continue by setting the main notations. For a graph or hypergraphH, d(v) denotes
the degree of the vertex v. A monomial

∏
j y

α j
j of a multivariate polynomial Q(y) is a t-

bounded degree monomial if the degree of each variable y j is bounded from above by t , i.e.
α j ≤ t . The total degree of a polynomial Q is denoted by deg(Q).

Our aim is to set up a multivariate polynomial where the variables correspond to vertices
ofH and the values taken by the variables correspond to colors. The polynomial encodes the
coloring constraints of the hypergraph H. In order to do this, we assign an auxiliary graph
G(H) first to the linear hypergraph H. We note that we shall propose two different kinds of
polynomial that can be used to encode the colouring constraints.

2.1 Setting up polynomials corresponding to proper colorings

From now on, speaking about a linear hypergraph H we always assume that it has n hyper-
edges E = {F1, F2, . . . , Fn} of size n, unless specified otherwise.

We start with introducing two kinds of auxiliary graph, G1(H) and G2(H) assigned to the
hypergraph H. They correspond to two separate approaches to Conjecture 1.1. Both graphs
consist of n vertex-disjoint cliques of size n, together with a set of so-called identifier edges
joining vertices from different cliques. We remark in advance that the identifier edges are not
uniquely determined by the hypergraph H; we have some freedom how to choose them.

Definition 2.2 The auxiliary graph of first kind G1(H) assigned to H is defined as follows.
We take n copies K (i)

n (i = 1, . . . , n) of the complete graph Kn , where the vertices vi, j

( j = 1, . . . , n) of K (i)
n are labelled by the vertices of Fi , see Fig. 1. We call them the base

cliques. Here each vertex v ∈ V (H) appears d(v) times, and for each v ∈ V (H) we choose
an arbitrary spanning tree on the set of those d(v) vertices in G1(H) which are labelled by
v. We call these identifier spanning trees. For each edge of these spanning trees, we define
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Fig. 1 H and the base cliques of Gi (H), (i ∈ {1, 2})

Fig. 2 Identifier edges in auxiliary graphs G1(H) and G2(H)

an edge of multiplicity n − 1 in G1(H), see Fig. 2. We call these new edges identifier edges.
The edge set of G1(H) consists of the edges of the base cliques and the identifier edges.

Definition 2.3 The auxiliary graph of second kind G2(H) assigned toH is defined as follows.
We take n copies K (i)

n (i = 1, . . . , n) of the complete graph Kn , where the vertices vi, j

( j = 1, . . . , n) of K (i)
n are labelled by the vertices of Fi , see Fig. 1. We call them the base

cliques. Here each vertex v ∈ V (H) appears d(v) times, and for each v ∈ V (H)we choose an
arbitrary identifier spanning tree on the set of those d(v) vertices inG2(H)which are labelled
by v. For each edge vi, jvk,l of the spanning tree, we either take the set {vi, jvk,t : t �= l} or
the set {vi,tvk,l : t �= j} to be edges of G2(H). We call these new edges identifier edges and
they have multiplicity 1, see Fig 2. The edge set of the auxiliary graph consists of the edges
of the base cliques and the identifier edges.

Remark 2.4 In what follows, when vi, jvk,l is an edge in an identifier spanning tree and i < k,
then we shall always take the set {vi, jvk,t : t �= l} to be the corresponding edges of G2(H).
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Remark 2.5 Informally, the identifier edges are defined as follows. For a pair of intersecting
hyperedges inH, their common vertex v has a copy corresponding to each of the two edges.
These two copies are either joined in the corresponding identifier spanning tree or not. If they
are, then in G1(H) we put an identifier edge with multiplicity n − 1 between them, while in
G2(H) we put a set of identifier edges forming a star with n − 1 leaves whose centre is one
of the two copies of v and whose leaves are all vertices in the other base clique, apart from
the copy of v.

A suitable coloring for H with n distinct elements of a field F possesses the following
properties:

(P1) Every clique Fi contains all of the colors (once).
(P2) Vertices from different cliques which correspond to the same vertex in H are assigned

the same color.

In terms of the auxiliary graphs, a suitable vertex-colouring ofH corresponds to a vertex-
coloring ofGi (H) (i ∈ {1, 2}) inwhich any two vertices in the same base clique have different
colors, while any two vertices joined by an edge in an identifier spanning tree have the same
color.

In order to determine whether a given coloring is suitable or not, we assign a variable xi, j
to each vertex vi, j ( j = 1, . . . , n) of the base cliques K (i)

n . These variables will take one of n
possible values from F corresponding to the n colors we can use on the vertices. Moreover,
we define the following three families of polynomials.

For any 1 ≤ i ≤ n, let

Qi (x) =
∏

1≤ j< j ′≤n

(xi, j − xi, j ′).

For any 1 ≤ i < k ≤ n, if there exist some vi, j ∈ K (i)
n and vk,l ∈ K (k)

n which form an
edge in an identifier spanning tree, then let

Ri,k(x) = (xi, j − xk,l)
n−1 − 1.

(Note that, as H is linear, there is at most one such pair of vertices.) Otherwise, let
Ri,k(x) = 1.

Similarly, if there exist some vi, j ∈ K (i)
n and vk,l ∈ K (k)

n which form an edge in an
identifier spanning tree, then let

�i,k(x) =
∏

m(xi, j − xk,m)

xi, j − xk,l
,

and otherwise let �i,k(x)=1.
Define P1(x) and P2(x) as follows:

P1(x) =
n∏

i=1

Qi (x) ·
∏

1≤i<k≤n

Ri,k(x),

P2(x) =
n∏

i=1

Qi (x) ·
∏

1≤i<k≤n

�i,k(x).

123



1996 O. Janzer, Z. L. Nagy

Observe that Pj (x) is not uniquely determined yet (it depends on the choice of the identifier
spanning trees), but its total degree can be expressed by the degree profile of the hypergraph
as

deg Pj (x) = n

(
n

2

)

+
∑

v∈V (H)

(d(v) − 1)(n − 1).

In order to apply the Non-vanishing lemma (Theorem 2.1), we have to set the field F.
When n is a prime power, let P1(x) be viewed as a polynomial over F = Fn . For arbitrary n,
let P2(x) be viewed as a polynomial over F = R.

Now we can formulate our first contribution which provides an algebraic framework to
the main problem.

Conjecture 2.6 Let H be an n-uniform linear hypergraph with n edges.

(a) One can choose the identifier spanning trees in a way that P2(x) has an (n−1)-bounded
degree maximal monomial with nonzero coefficient.

(b) When n is a prime power, one can choose the identifier spanning trees in a way that P1(x)
has an (n − 1)-bounded degree maximal monomial with nonzero coefficient.

Part (a) of this conjecture would imply the Conjecture 1.1 of Erdős, Faber and Lovász,
while part (b) would confirm it for infinitely many values of n. Indeed, if one evaluates the
polynomial P1 on the Cartesian product {0, 1, . . . , n − 1}n , or P2 on F

n
n (note that here n

is assumed to be a prime power) then it will vanish except when the values of the variables
correspond to a proper coloring, although one has to suppose that n is a prime in the case
of P1. To see this, note that Qi (x) = 0 holds if and only if there exist two vertices in some
hyperedge Fi with the same color. Moreover, when n is a prime power, then Ri,k(x) = 0
for some i, k if and only if not all identified vertices received the same color. Finally, if
Qi (x) �= 0 for every i , then we have �i,k(x) = 0 for some i, k if and only if not all identified
vertices were colored with the same color. Hence, Pj (x) �= 0 ( j ∈ {1, 2}) holds if and only
if both properties (P1) and (P2) are satisfied.

2.2 Searching for a nonzero coefficient and the connection to orientations

Alon and Tarsi made a connection between a certain coloring problem and the number of
Eulerian orientations via theNon-vanishingLemma [2]. In our case, the situation is somewhat
similar.

Define the sign of an orientation of the graph Ga(H) (a ∈ {1, 2}) to be (−1)t , where t is
the number of edges which point from xi, j to xi, j ′ with j < j ′ or from xi, j to xk,l with i < k.
Let P̃a(x) be the polynomial obtained from Pa(x) by keeping only the maximum-degree
monomials. Observe that P̃a(x) = ∏

(xi, j − xk,l), where the product is over all i, j, k, l for
which i < k or i = k, j < l, and vi, jvk,l is an edge in Ga(H) (for multiple edges we take
the same factor several times). Hence, an orientation of the edges of Ga(H) corresponds to
a monomial arising from expanding the brackets in P̃a(x): the endpoint of each edge shows
which variable is chosen from the bracket corresponding to that edge. Thus, the coefficient
of any monomial

∏
i, j x

αi, j
i, j in P̃a(x) is the sum of the signs of those orientations of Ga(H)

in which the in-degree of every vertex vi, j is precisely αi, j . This implies that the coefficient
of any maximum-degree monomial

∏
i, j x

αi, j
i, j in Pa(x) is the sum of the signs of those

orientations of Ga(H) in which the in-degree of every vertex vi, j is precisely αi, j .
To make the Non-vanishing lemma applicable, we clearly need that the exponent of each

variable is less than n. We will also rely on the following basic fact.
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Fact 2.7 (−1)(
n
2) · Qi (x) = ∏

j< j ′(xi, j ′ − xi, j ) equals the Vandermonde determinant

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 xi,1 x2i,1 . . . xn−1
i,1

1 xi,2 x2i,2 . . . xn−1
i,2

1 xi,3 x2i,3 . . . xn−1
i,3

...
...

...
. . .

...

1 xi,n x2i,n . . . xn−1
i,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Using Fact 2.7, the product
∏

i Qi (x) ·∏i, j x
βi, j
i, j is a linear combination of monomials of

the form
∏

i, j x
βi, j+σi ( j)
i, j , where {σi ( j) : 1 ≤ j ≤ n} = {0, 1, . . . , n−1} for every i . Thus, to

determine the coefficients of the (n−1)-degree bounded monomials with maximal degree in

P1(x), it suffices to consider thosemonomials
∏

i, j x
βi, j
i, j in

∏
i<k Ri,k(x)which havemaximal

degree and for which there exist functions σi as above such that βi, j +σi ( j) ≤ n−1 for every
i, j . Call such monomials Vandermonde-completable. Similarly, to compute the coefficients
of the (n − 1)-bounded degree polynomials in P2(x) with maximal degree, we only need to
consider Vandermonde-completable monomials in

∏
i<k �i,k(x).

We call an orientation of the identifier edge set (in G1(H) or G2(H)) Vandermonde-
completable if one can orient the edges in the base cliques such that each clique spans
a transitive tournament and every in-degree in the whole graph is bounded by n − 1
from above. Under the correspondence between the orientations of the identifier edges in
G1(H) and the monomials in

∏
i<k Ri,k(x) presented at the beginning of this subsection,

Vandermonde-completable orientations correspond to Vandermonde-completable monomi-
als and vice versa. Indeed, let O be a Vandermonde-completable orientation and let M be
the corresponding monomial in

∏
i<k Ri,k(x). Take transitive orientations of the edges of the

base cliques which keep the in-degree of every vertex bounded by n − 1. If in the transitive
orientation of the i th clique, vi, j gets s incoming edges, then inO, vi, j gets at most n−1− s
incoming edges, so the exponent of xi, j in M is at most n − 1 − s. Hence, we can take
σi ( j) = s, and this shows that M is Vandermonde-completable. The converse is almost
identical, and the same holds in the case of G2(H) and

∏
i<k �i,k(x).

2.3 Main results

Recall that to prove Conjecture 2.6 one needs to prove that the sum of all of these
Vandermonde-completable monomials in the polynomial has non-zero coefficient.

Our main result states that Vandermonde-completable orientations exist.

Theorem 2.8 Let H be an n-uniform linear hypergraph with n hyperedges. Then, for any
choice of the identifier spanning trees, there is a Vandermonde-completable orientation of
the identifier edges in G1(H).

When n is a prime power, the number of Vandermonde-completable orientations corre-
sponding to a given Vandermonde-completable monomial in

∏
i<k Ri,k(x) is not divisible by

n. Moreover these orientations all have the same sign, so we obtain the following corollary.

Corollary 2.9 Let n be a prime power and let H be an n-uniform linear hypergraph with n
hyperedges. Then, for any choice of the identifier spanning trees, there is a Vandermonde-
completable monomial (with non-zero coefficient) in

∏
i<k Ri,k(x).
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We also prove the analogue of Theorem 2.8 in the case of G2(H), although in this case
we make a specific choice for the identifier spanning trees.

Theorem 2.10 Let H be an n-uniform linear hypergraph with n hyperedges. Then one can
choose the identifier spanning trees in a way that there is a Vandermonde-completable ori-
entation of the identifier edges in G2(H).

Unfortunately, we cannot prove an analogue of Corollary 2.9 because we cannot compute
the sum of the signs of the orientations that yield the same monomial in

∏
i<k �i,n(x). We

leave it as a conjecture.

Conjecture 2.11 Let H be an n-uniform linear hypergraph with n hyperedges. Then one
can choose the identifier spanning trees in a way that there is a Vandermonde-completable
monomial (with non-zero coefficient) in

∏
i<k �i,k(x).

3 The proofs of themain results

3.1 The case of auxiliary graph G1(H)

Proof of Theorem 2.8 We will use the following claim.

Claim 3.1 Let T be a tree with k vertices. Write T ′ for the multigraph on the same vertex set,
obtained by taking n − 1 copies of each edge of T . Suppose that for every v ∈ V (T ) there
is an integer αv such that αv ≤ n − 1 and

∑
v∈V (T ) αv = (k − 1)(n − 1). Then there exists

an orientation of the edges of T ′ in which every v has in-degree αv .

Proof We use induction on k. The statement is clear for k = 0, 1. Assume that k > 1. Let
w be a leaf of T . Let uw be the unique edge of T containing w. Direct αw of the (n − 1)
edges of T ′ corresponding to uw towards w and direct the rest towards u. (Note that the
conditions αv ≤ n − 1 and

∑
v∈V (T ) αv = (k − 1)(n − 1) ensure that αw ≥ 0.) Let S be

the tree obtained from T by deleting w. For every v ∈ V (S) \ {u}, let βv = αv , while let
βu = αu − (n − 1 − αw). Clearly,

∑
v∈V (S) βv = (k − 2)(n − 1). Hence, by the induction

hypothesis, we can orient the edges of S′ (which is the multigraph obtained by taking n − 1
copies of each edge of S) in a way that the in-degree of every vertex v ∈ V (S) is βv . Together
with the orientation of the edges corresponding to uw, we get a suitable orientation of T ′,
completing the induction step. 	


For any 1 ≤ a, b ≤ n with a �= b, let s(a, b) =
{
a − b if a > b

n + a − b if a < b
Let v ∈ V (H). Let the edges of H which contain v be Fi1 , . . . , Fik , where i1 < · · · < ik .

Then each base clique K
(i j )
n (1 ≤ j ≤ k) contains a vertex labelled by v, call it w j . Let T

be the identifier spanning tree on the vertex set {w1, . . . , wk}. Define i0 to be ik . Note that
s(i j−1, i j ) ≤ n−1 for every 1 ≤ j ≤ k and

∑
1≤ j≤k s(i j−1, i j ) = (k−1)n ≥ (k−1)(n−1).

Thus, by Claim 3.1, we can orient the edges of G1(H) corresponding to the spanning tree
T in a way that every vertex w j gets in-degree at most s(i j−1, i j ). Hence, the in-degree at
every w j is at most max(s(iq , i j ) : q �= j).

Performing this for every v ∈ V (H), we obtain an orientation of the identifier edges in
G1(H). We claim that it is Vandermonde-completable. Indeed, for every 1 ≤ i ≤ n, using
the fact that {s(q, i) : q �= i} = {1, . . . , n − 1} and that H is linear, the number of vertices
of K (i)

n with in-degree at least n − j is at most j for every 1 ≤ j ≤ n. 	
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Fig. 3 Spanning paths on
identified vertices in G2(H) (top)
and the orientation of the
identifier edges adjacent to F0 or
S

3.2 The case of auxiliary graph G2(H)

Proof of Theorem 2.10 For any x ∈ V (H), let the identifier spanning tree corresponding to x
be the path vi1, j1vi2, j2 . . . vit , jt , where i1 < i2 < · · · < it (so the edges of H containing x
are Fi1 , . . . , Fit ). We call the auxiliary graphs G2(H) obtained this way path-like. Note that
if vi, j and vk,l (i < k) are identified, then the edges between the i th and kth base clique are
joining each vertex of the kth base clique to vi, j except for vk,l .

We claim that for this choice, there is a Vandermonde-completable orientation of the
identifier edges in G2(H). The proof is by induction on n. The case n = 1 is trivial. For the
inductive step, suppose that we have proved the claim for n and let us consider a path-like
auxiliary graph G = G2(H) of a hypergraph H with n + 1 edges F0, F1, . . . , Fn , each of
size n + 1. We call a vertex vi, j a source if it forms an edge with vk,l for some i < k in an
identifier spanning path (Fig. 3).

Note that each edge Fi contains a vertex which is not contained in any other edge Fj .
That is, each base clique contains at least one vertex with no identification to other ver-
tices. Without loss of generality, v1,n+1 ∈ F1, . . . , vn,n+1 ∈ Fn are such vertices. Let
S = {v1,n+1, . . . vn,n+1} and let H′ be the n-uniform linear hypergraph whose edges are
F ′
1 = F1 \ {v1,n+1}, . . . , F ′

n = Fn \ {vn,n+1}. Note that the identifier edges of G2(H)

induced by the set F ′
1 ∪ · · · ∪ F ′

n are the identifier edges of G ′ = G2(H′). Hence, by the
induction hypothesis, we may orient them in a Vandermonde-completable way. We extend
this to a Vandermonde-completable orientation of the identifier edges of G2(H) as follows.

• Orient each identifier edge with one endpoint in S towards the other endpoint of the edge
(which is necessarily the source). Clearly, the path-like property of G2(H) implies that
the in-degree of any source vertex is increased by at most one, while the in-degree of any
non-source vertex is unchanged.

• Consider all the identifier edges adjacent to the vertices of F0. Each pair of base cliques
F0 and Fk spans either zero or n identifier edges, all of them incident to a single vertex
v0,i of F0. Orient these edges v0,ivk, j towards v0,i if and only if vk, j is a source or
j = n + 1. This does not change the in-degree of the source vertices in F ′

1 ∪ · · · ∪ F ′
n ,

and it increases the in-degree of any non-source vertex in F ′
1 ∪ · · · ∪ F ′

n by at most one.
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It is straightforward to see that the resulting orientation is Vandermonde-completable in
the base cliques Fi , i > 0, since each in-degree is increased by at most one and we added
a new vertex of in-degree zero to each Fi . Thus, we only have to confirm that F0 is also
Vandermonde-completable. Since Fi has at most n − i source vertices, any vertex in F0
which is joined to an element of Fi in an identifier spanning tree has in-degree at most
n− i + 1. Moreover, any non-source vertex in F0 has in-degree 0. Hence, for each i ≥ 1, the
number of vertices in F0 with in-degree at least n − i + 1 is at most i , as required. 	


4 Concluding remarks

Theorems 2.8 and 2.10 suggest that Conjecture 2.6 (and, consequently, the Erdős–Faber–
Lovász conjecture) is likely to hold.

For some linear hypergraph families,we canfind (n−1)-boundeddegreemonomialswhich
correspond to an (almost) unique orientation of the auxiliary graph, hence their coefficient
is non-zero. For example, this is the case when the degree of every vertex inH is either 1 or
at least

√
n, or when we have a decent proportion of pairs of hyperedges that do not intersect

each other. However, we were unable to extend this approach to be applicable to all linear
hypergraphs.

Since the polynomials P1 and P2 have a rather difficult structure and involve a huge
sum of monomials, approaches which provide a simplified sum or an exact formula for the
coefficients seem essential to resolve the problem. As we have seen, Fact 2.7 already pro-
vides some simplification. We mention that suitable simplified formulae have been obtained
in other settings of the Combinatorial Nullstellensatz, see [13,14,16,24]. In these results,
the key ingredient was the following coefficient formula, also mentioned as Quantitative
Nullstellensatz.

Lemma 4.1 (Coefficient formula) Let F be an arbitrary field and P ∈ F[x1, x2, . . . , xn] a
polynomial of degree deg(P) ≤ d1 + d2 + · · · + dn. For arbitrary subsets C1,C2, . . . ,Cn of
F with |Ci | = di + 1, the coefficient of

∏
xdii in P is

∑

c1∈C1

∑

c2∈C2

· · ·
∑

cn∈Cn

P(c1, c2, . . . , cn)

φ′
1(c1)φ

′
2(c2) . . . φ′

n(cn)
,

where φi (z) = ∏
c∈Ci

(z − c).

Once we have this coefficient formula, we may seek for a suitable Cartesian product set
(or grid)C1× C2× . . . × Cn onwhich polynomial P vanishes in most cases. This approach
proved to be successful in several different combinatorial problems, see [14]. To reach an
analogous goal, onemay take a suitable describing polynomial and suitable monomial (rather
than a different grid) in order to guarantee vanishing terms in the sum for the coefficient, via
Vandermonde-completability.
Note added. Six months after we posted our preprint, the Erdős–Faber–Lovász conjecture
was solved for every large enough n by Kang, Kelly, Kühn, Methuku and Osthus [12].
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