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Abstract
Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have
been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography
WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of
Gabidulin codes to certain finite rings byKamche et al. (IEEETrans Inf Theory 65(12):7718–
7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite
commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based
on simple linear-algebraic operations. We derive an upper bound on the failure probability of
the decoder, which is significantly more involved than in the case of finite fields. The bound
depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze
the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois
ring that can decode roughly the same number of errors as a Gabidulin code with the same
code parameters, but faster than the currently best decoder for Gabidulin codes. However,
the price that one needs to pay is a small failure probability, which we can bound from above.
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1 Introduction

Rank-metric codes are sets of matrices whose distance is measured by the rank of their
difference. Over finite fields, the codes have found various applications in network coding,
cryptography, space-time coding, distributed data storage, and digital watermarking. The first
rank-metric codes were introduced in [6,9,22] and are today called Gabidulin codes. Moti-
vated by cryptographic applications, Gaborit et al. introduced low-rank parity-check (LRPC)
in [1,10]. They can be seen as the rank-metric analogs of low-density parity-check codes in
the Hamming metric. LRPC codes have since had a stellar career, as they are already the
core component of a second-round submission to the currently running NIST standardization
process for post-quantum secure public-key cryptosystems [17]. They are suitable in this sce-
nario due to their weak algebraic structure, which prevents efficient structural attacks. Despite
this weak structure, the codes have an efficient decoding algorithm, which in some cases can
decode up to the same decoding radius as a Gabidulin code with the same parameters, or
even beyond [1]. A drawback is that for random errors of a given rank weight, decoding
fails with a small probability. However, this failure probability can be upper-bounded [1,10]
and decreases exponentially in the difference between maximal decoding radius and error
rank. The codes have also found applications in powerline communications [29] and network
coding [19].

Codes over finite rings, in particular the ring of integersmodulom, have been studied since
the 1970s [3,4,24]. They have, for instance, be used to unify the description of good non-linear
binary codes in the Hamming metric, using a connection via the Gray mapping from linear
codes over Z4 with high minimum Lee distance [12]. This Gray mapping was generalized
to arbitrary moduli m of Zm in [5]. Recently, there has been an increased interest in rank-
metric codes over finite rings due to the following applications. Network coding over certain
finite rings was intensively studied in [7,11], motivated by works on nested-lattice-based
network coding [8,18,26,28] which show that network coding over finite rings may result in
more efficient physical-layer network coding schemes. Kamche et al. [14] showed how lifted
rank-metric codes over finite rings can be used for error correction in network coding. The
result uses a similar approach as [23] to transformation the channel output into a rank-metric
error-erasure decoding problem. Another application of rank-metric codes over finite rings
are space-time codes. It was first shown in [15] how to construct space-time codes with
optimal rate-diversity tradeoff via a rank-preserving mapping from rank-metric codes over
Galois rings. This result was generalized to arbitrary finite principal ideal rings in [14]. The
use of finite rings instead of finite fields has advantages since the rank-preserving mapping
can be chosen more flexibly. Kamche et al. also defined and extensively studied Gabidulin
codes over finite principal ideal rings. In particular, they proposed a Welch–Berlekamp-like
decoder for Gabidulin codes and a Gröbner-basis-based decoder for interleaved Gabidulin
codes [14].

Motivated by these recent developments on rank-metric codes over rings, in this paper
we define and analyze LRPC codes over Galois rings. Essentially, we show that Gaborit
et al.’s construction and decoder work as well over these rings, with only a few minor
technical modifications. The core difficulty of proving this result is the significantly more
involved failure probability analysis, which stems from the weaker algebraic structure of
rings compared to fields: the algorithm and proof are based on dealing with modules over
Galois rings instead of vector spaces over finite fields, which behave fundamentally different
since Galois rings are usually not integral domains. We also provide a thorough complexity
analysis. The results can be summarized as follows.
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Low-rank parity-check codes over Galois rings 353

Main results

Let p be a prime and r , s be positive integers. A Galois ring R of cardinality prs is a finite
Galois extension of degree s of the ring Zpr of integers modulo the prime power pr . As
modules over R are not always free (i.e., have a basis), matrices over R have a rank and a
free rank, which is always smaller or equal to the rank. We will introduce these and other
notions formally in Sect. 2.

In Sect. 3, we construct a family of rank-metric codes and a corresponding family of
decoders with the following properties: Let m, n, k, λ be positive integers such that λ is
greater than the smallest divisor of m and k fulfills k ≤ λ−1

λ
n. The constructed codes are

subsets C ⊆ Rm×n of cardinality |C| = |R|mk . Seen as a set of vectors over an extension ring
of R, the code is linear w.r.t. this extension ring. We exploit this linearity in the decoding
algorithm.

Furthermore, let t be a positive integer with t < min
{

m
λ(λ+1)/2 ,

n−k+1
λ

}
. Let C ∈ C be

a (fixed) codeword and let E ∈ Rm×n be chosen uniformly at random from all matrices of
rank t (and arbitrary free rank). Then, we show in Sect. 5 that the proposed decoder in Sect. 4
recovers the codeword C with probability at least

1 − 4ps[λt−(n−k+1)] − 4tp
s
(

t λ(λ+1)
2 −m

)
.

Hence, depending on the relation of ps and t , the success probability is positive for

t � tmax :=
⌈
min
{

m
λ(λ+1)/2 ,

n−k+1
λ

}⌉
− 1.

and converges exponentially fast to 1 in the difference tmax − t . Note that for λ = 2 and
m > 3

2 (n − k + 1), we have tmax = � n−k
2 �.

The decoder has complexity Õ(λ2n2m) operations in R (see Sect. 6). In Sect. 7, we present
simulation results.

Example 1 Consider the case p = 2, s = 4, r = 2, m = n = 101, k = 40, and λ = 2. Then,
the decoder in Sect. 4 can correct up to tmax = � n−k

2 � = 30 errors with success probability
at least 1 − 2−6. For t = 24 errors, the success probability is already ≈ 1 − 2−46 and for
t = 18, it is ≈ 1 − 2−102. A Gabidulin code as in [14], over the same ring and the same
parameters, can correct any error of rank up to 30 (i.e., the same maximal radius). However,
the currently fastest decoder for Gabidulin codes over rings [14] has a larger complexity than
the LRPC decoder in Sect. 4.

The results of this paper were partly presented at the IEEE International Symposium
on Information Theory 2020 [21]. Compared to this conference version, we generalize the
results in two ways: first, we consider LRPC codes over the more general class of Galois
rings instead of the integers modulo a prime power. This is a natural generalization since
Galois rings share with finite fields many of the properties needed for dealing with the rank
metric. Indeed, they constitute the common point of view between finite fields and rings of
integers modulo a prime power. Second, the conference version only derives a bound on the
failure probability for errors whose free rank equals their rank. For some applications, this
is no restriction since the error can be designed, but for most communications channels, we
cannot influence the error and need to correct also errors of arbitrary rank profile. Hence, we
provide a complete analysis of the failure probability for all types of errors.
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2 Preliminaries

2.1 Notation

Let A be any commutative ring. We denote modules over A by calligraphic letters, vectors
as bold small letters, and matrices as bold capital letters. We denote the set of m ×n matrices
over the ring A by Am×n and the set of row vectors of length n over A by An = A1×n . Rows
and columns of m × n matrices are indexed by 1, . . . , m and 1, . . . , n, where Xi, j denotes
the entry in the i-th row and j-th column of the matrix X . Moreover, for an element a in a
ring A, we denote by Ann(a) the ideal Ann(a) = {b ∈ A | ab = 0}.

2.2 Galois rings

A Galois ring R := GR(pr , s) is a finite local commutative ring of characteristic pr and
cardinality prs , which is isomorphic to Z[z]/(pr , f (z)), where f (z) is a polynomial of
degree s that is irreducible modulo p. Let m be the unique maximal ideal of R. It is also
well-known that R is a finite chain ring and all its ideals are powers of m such that r is
smallest positive integer r for which mr = {0}. Since Galois rings are principal ideal rings,
m is generated by one ring element. We will call such a generator gm (which is unique up to
invertible multiples). Note that in a Galois ring this element can always be chosen to be p.
Moreover, R/m is isomorphic to the finite field Fps .

In this setting, it is well-known that there exists a unique cyclic subgroup of R∗ of order
ps − 1, which is generated by an element η. The set Ts := {0} ∪ 〈η〉 is known as Teichmüller
set of R. Every element a ∈ R has hence a unique representation as

a =
r−1∑
i=0

gi
mai , ai ∈ Ts .

We will refer to this as the Teichmüller representation of a. For Galois rings, this repre-
sentation coincides with the p-adic expansion. If, in addition, one chooses the polynomial
h(z) to be a Hensel lift of a primitive polynomial in Fp[x] of degree s, then the element η

can be taken to be one of the roots of h(z). Here, for Hensel lift of a primitive polynomial
h̄(z) ∈ Fp[z], we mean that h(x) ∈ Zpr [z] is such that the canonical projection of h(z) over
Fp[z] is h̄(z) and h(z) divides z ps−1 − 1 in Zpr [z]. The interested reader is referred to [2,16]
for a deeper understanding on Galois rings.

It is easy to see that the number of units in R is given by

|R∗| = |R \ m| = |R| − |m| = psr − ps(r−1) = |R|(1 − p−s). (1)

Example 2 Let p = 2, s = 1, r = 3, and R = {0, 1, . . . , 7}. We have that m = {0, 2, 4, 6}
and R/m = {0, 1} = F2. Thus, gm = 2. The set {1} is the unique cyclic subgroup of
R∗ = {1, 3, 5, 7} of order ps − 1 = 1 which is generated by η = 1 and Ts = {0, 1}. Then,
the Teichmüller representation of a = 5 is given by a = 1 · g0

m + 0 · g1
m + 1 · g2

m.

Example 3 Let p = 2, s = 3, r = 3, and let us construct R = GR(8, 3). Consider the ring
Z8, and h(z) := z3 + 6z2 + 5z + 7 ∈ Z8[z]. The canonical projection of the polynomial h(z)
over F2[z] is z3 + z + 1 which is primitive, and hence irreducible, in F2[z]. Thus, we have

R ∼= Z8[z]/(h(z)).
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Low-rank parity-check codes over Galois rings 355

Clearly, m = (2)R and we can choose gm = 2. Moreover, if η is a root of h(z), then
we also have R ∼= Z8[η], and every element can be represented as a0 + a1η + a2η2, for
a0, a1, a2 ∈ Z8. On the other hand, the polynomial h(z) divides x7−1 inZ8[z] and therefore
it is a Hensel lift of z3 + z + 1. This implies that η has order 7, and the Teichmüller set is
T3 = {0, η, η2, . . . , η7 = 1}. If we take the element a = 5+ 3η2, then, it can be verified that
its Teichmüller represntation is a = η6 + η4gm + η5g2

m = η6 + η4 · 2 + η5 · 4.

2.3 Extensions of Galois rings

Let h(z) ∈ R[z] be a polynomial of degree m such that the leading coefficient of h(z) is a
unit and h(z) is irreducible over the finite field R/m. Then, the Galois ring R[z]/(h(z)) is
denoted by S. We have that S is the Galois ring GR(pr , sm), with maximal idealM = mS.
Moreover, it is known that subrings of Galois rings are Galois rings and that for every �

dividing m there exists a unique subring of S which is a Galois extension of degree � of R.
These are all subrings of S that contain R. In particular there exists a unique copy of R in S,
and we can therefore consider (with a very small abuse of notation) R ⊆ S. In particular, we
have that gm is also the generator ofM in S.

As for R, also S contains a unique cyclic subgroup of order psm − 1, and we can consider
the Teichmüller set Tsm as the union of such a subgroup together with the 0 element. Hence,
every a ∈ S has a unique representation as

a =
r−1∑
i=0

gi
mai , ai ∈ Tsm .

The number of units in S is given by

|S∗| = |S \ M| = |S| − |M| = psrm − |m|m = psrm − (ps(r−1))m
= psrm(1 − p−sm) = |S|(1 − p−sm).

From now on and for the rest of the paper, we will always denote by R the Galois ring
GR(pr , s), and by S the Galois ring GR(pr , sm).

2.4 Smith normal form

The Smith normal form is well-defined for both R and S, i.e., for A ∈ Rm×n , there are
invertible matrices S ∈ Rm×m and T ∈ Rn×n such that

D = SAT ∈ Rm×n

is a diagonal matrix with diagonal entries d1, . . . , dmin{n,m} with

d j ∈ mi j \ mi j +1,

where the 0 ≤ i1 ≤ i2 ≤ · · · ≤ imin{n,m} ≤ r . The same holds for matrices over S, where
we replace m byM (note thatMr = {0} andMr−1 = {0} for the same r ). The rank and the
free rank of A (w.r.t. a ring A ∈ {S, R}) is defined by rk(A) := |{i ∈ {1, . . . ,min{m, n}} :
Di,i = 0}| and frk(A) := |{i ∈ {1, . . . ,min{m, n}} : Di,i is a unit}|, respectively, where D
is the diagonal matrix of the Smith normal form w.r.t. the ring R.
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2.5 Modules over finite chain rings

The ring S is a free module over R of rank m. Hence, elements of S can be treated as vectors
in Rm and linear independence, R-subspaces of S and the R-linear span of elements are well-
defined. Let γ = [γ1, . . . , γm] be an ordered basis of S over R. By utilizing the module space
isomorphism S ∼= Rm , we can relate each vector a ∈ Sn to a matrix A ∈ Rm×n according
to extγ : Sn → Rm×n, a �→ A, where a j = ∑m

i=1 Ai, jγi , j ∈ {1, . . . , n}. The (free) rank
norm (f)rkR(a) is the (free) rank of the matrix representation A, i.e., rkR(a) := rk(A) and
frkR(a) := frk(A), respectively.

Example 4 Let p = 2, s = 1, r = 3 as in Example 2, h(z) = z3 + z + 1 and

a = [2z2 + 2z + 5, 4z2 + z + 6, 2z2 + z
]
.

Using a polyomial basis γ = [1, z, z2], the matrix representation of a is

A =
⎡
⎣
5 6 0
2 1 1
2 4 2

⎤
⎦

and the Smith normal form of A is given by

D =
⎡
⎣
1 0 0
0 1 0
0 0 2

⎤
⎦ .

It can be observed that d1, d2 ∈ m0 \ m1 = {1, 3, 5, 7} and d3 ∈ m1 \ m2 = {2, 6} and thus
rk(A) = rk(D) = 3 and frk(A) = frk(D) = 2. It follows that rkR(a) = 3 and frkR(a) = 2.

Let a = ∑m
i=1 aiγi ∈ S, where ai ∈ R. The following statements are equivalent (cf. [14,

Lemma 2.4]):

– a is a unit in S.
– At least one ai is a unit in R.
– {a} is linearly independent over R.

The R-linear module that is spanned by v1, . . . , v� ∈ S is denoted by 〈v1, . . . , v�〉R :={∑�
i=1 aivi : ai ∈ R

}
. The R-linear module that is spanned by the entries of a vector a ∈ Sn

is called the support of a, i.e., suppR(a) := 〈a1, . . . , an〉R . Further,A ·B denotes the product
module of two submodules A and B of S, i.e., A · B := 〈a · b : a ∈ A, b ∈ B〉.

2.6 Valuation in Galois rings

We define the valuation of a ∈ R \ {0} as the unique integer v(a) ∈ {0, . . . , r − 1} such that
a ∈ mv(a) \ mv(a)+1,

and set v(0) := r . In the same way, the valuation of b ∈ S \ {0} as the unique integer
v(b) ∈ {0, . . . , r − 1} such that

b ∈ Mv(b) \ Mv(b)+1,

and v(0) = r .
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Low-rank parity-check codes over Galois rings 357

Let {γ1, . . . , γm} be a basis of S as R-module. It is easy to see that for a =∑m
i=1 aiγi ∈

S \ {0}, where ai ∈ R (not all 0), we have

v(a) = min
i=1,...,m

{v(ai )}. (2)

Example 5 Let p = 2, s = 1, r = 3 as in Example 2, h(z) = z3 + z +1 and let a = 1, b = 2,
c = 4 ∈ R. Since a ∈ m0 \m1 = {1, 3, 5, 7}, b ∈ m1 \m2 = {2, 6}, and c ∈ m2 \m3 = {4},
one obtains v(a) = 0, v(b) = 1 and v(c) = 2.

Furthermore, let d = 2z2 + 1, e = 4z2 + 2z + 2, f = 4z2 + 4, where d ∈ M0 \ M1,
e ∈ M1 \M2 and f ∈ M2 \M3. It follows that v(d) = 0, v(e) = 1 and v( f ) = 2. Since an
element is a unit if and only if its valuation is equal to 0, only the elements a and d are units.

2.7 Rank profile of a module andmingensets

Let M be an R-submodule of S and d1, . . . , dn be diagonal entries of a Smith normal form
of a matrix whose row space is M. Define the rank profile of M to be the polynomial

φM(x) :=
r−1∑
i=0

φM
i x i ∈ Z[x]/(xr ),

where
φM

i := ∣∣{ j : v(d j ) = i
}∣∣ .

Note that φM(x) is independent of the chosen matrix and Smith normal form since the
diagonal entries di are unique up to multiplication by a unit. We can easily read the free rank
and rank from the rank profile

frkRM = φM
0 = φM(0),

rkRM =
r−1∑
i=0

φM
i = φM(1).

Example 6 Consider the ring R = GR(8, 3) as defined in Example 3, where as generator of
m we take gm = 2. Take a module M whose diagonal matrix in the Smith normal form is

⎡
⎢⎢⎢⎢⎣

1
1
2
4
0

⎤
⎥⎥⎥⎥⎦

.

We have
φM(x) = 2 + x + x2.

On Z[x]/(xr ), we define the following partial order �.

Definition 1 Let a(x), b(x) ∈ Z[x]/(xr ). We say that a(x) � b(x) if for every i ∈
{0, . . . , r − 1} we have

i∑
j=0

a j ≤
i∑

j=0

b j .
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Remark 1 The partial order � on rank profiles is compatible with the containment of sub-
modules. That is, if M1 ⊆ M2 then φM1 � φM2 . Clearly the opposite implication is not
true in general.

For D and T as in the Smith normal form of a matrix over R, observe that the nonzero
rows of the matrix DT−1 produce a set of generators for the R-module generated by the
rows of A, which is minimal and of the form

Γ = {gi
mai,�i | 0 ≤ i ≤ r − 1, 1 ≤ �i ≤ φM

i }.
A generating set coming from the Smith Normal Form as described above will be called
m-shaped basis. Alternatively, am-shaped basis for a R-moduleM is a generating set {bi,�i |
0 ≤ i ≤ r − 1, 1 ≤ �i ≤ φM

i } such that v(bi,�i ) = i . Moreover, every R-submodule of Rn

can be seen as the rowspace of a matrix, and hence it decomposes as

M =
〈
Γ (0)
〉

R
+ m
〈
Γ (1)
〉

R
+ · · · + mr−1

〈
Γ (r−1)

〉
R

,

where Γ (i) := {ai,�i | 0 ≤ i ≤ r − 1, 1 ≤ �i ≤ φM
i }. It is easy to see that 〈Γ (i)〉R is a free

module. However, this decomposition depends on the chosen m-shaped basis Γ .
For a moduleM with m-shaped basis Γ = {gi

mai,�i | 0 ≤ i ≤ r − 1, 1 ≤ �i ≤ φM
i }, we

have the following: Let e ∈ M and

e =
r−1∑
i=0

φM
i∑

�i =1

ei,�i gi
mai,�i =

r−1∑
i=0

φM
i∑

�i =1

e′
i,�i

gi
mai,�i

be two different representations of e in the m-shaped basis with coefficients ei,�i , e′
i,�i

∈ R,
respectively. Then, we have

ei,�i ≡ e′
i,�i

mod gr−i
m

for all 0 ≤ i ≤ r − 1 and 1 ≤ �i ≤ φM
i . This is due to the fact that by definition of

m-shaped basis, the set {ai,�i | 0 ≤ i ≤ r − 1, 1 ≤ �i ≤ φM
i } is linear independent over R,

and hence (ei,�i − e′
i,�i

)gi
m = 0 for every i, �i . Therefore, the representation of an element

in M with respect to a m-shaped basis have uniquely determined coefficients ei,�i modulo
Ann(gi

m) = mr−i .

Lemma 1 Let M be an R-submodule of S with rank-profile φM and let j ∈ {1, . . . , r − 1}.
Then, the rank-profile of m jM is given by

φm jM(x) = x jφM(x).

In particular, the rank of m jM is equal to φm jM(1) =
r−1− j∑

i=0
φM

i .

Proof Let gm be a generator of m. If Γ = {gi
mai,�i | 0 ≤ i ≤ r − 1, 1 ≤ �i ≤ φM

i } is a
m-shaped basis for M , then it is easy to see that

{
gi+ j
m ai,�i | 0 ≤ i ≤ r − j − 1, 1 ≤ �i ≤ φM

i

}

is a m-shaped basis for m jM. Hence, the first j coefficients of φm jM(x) are equal to zero,
while the remaining ones are the j-th shift of the first r − j coefficients of φM(x). ��
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Proposition 1 For any pair of R-submodules M1,M2 of S, we have

φM1·M2(x) � φM1(x)φM2(x).

Proof Let gm be a generator of m. Let M1,M2 be two R-submodules with rank-profile
φM1 and φM2 respectively. Then, there exist a minimal generating set of M1 given by

Γ1 :=
{

gi
mai, ji | 0 ≤ i ≤ r − 1, 1 ≤ ji ≤ φ

M1
i

}
,

and a minimal generating set of M2 given by

Γ2 :=
{

gi
mbi, ji | 0 ≤ i ≤ r − 1, 1 ≤ ji ≤ φ

M2
i

}
.

In particular, the product set Γ1 · Γ2 is a generating set of M1 · M2. Hence

r−1∑
i=0

φ
M1·M2
i = rkR(M1 · M2)

≤ |Γ1 · Γ2 \ {0}|

=
r−1∑
i=0

i∑
j=0

φ
M1
j φ

M2
i− j

=
r−1∑
i=0

(φM1φM2)i .

The general inequality for the truncated sums then follows by considering the rank of the
submodule m j (M1 · M2) and Lemma 1. ��

3 LRPC codes over Galois rings

Definition 2 Let k, n, λ be positive integers with 0 < k < n. Furthermore, let F ⊆ S be a
free R-submodule of S of rank λ. A low-rank parity-check (LRPC) code with parameters
λ, n, k is a code with a parity-check matrix H ∈ S(n−k)×n such that rkS H = frkS H = n −k
and F = 〈H1,1, . . . , H(n−k),n〉R .

Note that an LRPC code is a free submodule of Sn of rank k. Thismeans that the cardinality
of the code is |S|k = |R|mk = prsmk . We define the following three additional properties
of the parity-check matrix that we will use throughout the paper to prove the correctness of
our decoder and to derive failure probabilities. As for rank-metric codes over finite fields, we
can interpret vectors over S as matrices over R by the R-module isomorphism S � Rm . In
particular, an LRPC code can be seen as a subset of Rm×n .

Definition 3 Let λ,F , and H be defined as in Definition 2. Let f1, . . . , fλ ∈ S be a free basis
of F . For i = 1, . . . , n − k, j = 1, . . . , n, and � = 1, . . . , λ, let hi, j,� ∈ R be the unique
elements such that Hi, j =∑λ

�=1 hi, j,� f�. Define

123



360 J. Renner et al.

Hext :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1,1,1 h1,2,1 . . . h1,n,1

h1,1,2 h1,2,2 . . . h1,n,2
...

...
. . .

...

h2,1,1 h2,2,1 . . . h2,n,1

h2,1,2 h2,2,2 . . . h2,n,2
...

...
. . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(n−k)λ×n . (3)

Then, H has the

1. unique-decoding property if λ ≥ n
n−k and frk (Hext) = rk (Hext) = n,

2. maximal-row-span property if every row of the parity-check matrix H spans the entire
space F ,

3. unity property if every entry Hi, j of H is chosen from the set Hi, j ∈ F̃ :={∑λ
i=1 αi fi : αi ∈ R∗ ∪ {0}

}
⊆ F .

Furthermore, we say that F has the base-ring property if 1 ∈ F .

In the original papers about LRPC codes over finite fields, [1,10], some of the properties
of Definition 3 are used without explicitly stating them.

We will see in Sect. 4.2 that the unique-decoding property together with a property of
the error guarantees that erasure decoding always works (i.e., that the full error vector can
be recovered from knowing the support and syndrome of an error). This property is also
implicitly used in [10]. It is, however, not very restrictive: if the parity-check matrix entries
Hi, j are chosen uniformly at random from F , this property is fulfilled with the probability
that a random λ(n −k)×n matrix has full (free) rank n. This probability is arbitrarily close to
1 for increasing difference of λ(n − k) and n (cf. [20] for the field and Lemma 7 in Sect. 5.2
for the ring case).

We will use the maximal-row-span property to prove a bound on the failure probability of
the decoder in Sect. 5. It is a sufficient condition that our bound (in particular Theorem 3 in
Sect. 5) holds. Although not explicitly stated, [1, Proposition 4.3] must also assume a similar
or slightly weaker condition in order to hold. It does not hold for arbitrary parity-check
matrices as in [1, Definition 4.1] (see the counterexample in Remark 4 in Sect. 5). This is
again not a big limitation in general for two reasons: first, the ideal codes in [1, Definition 4.2]
appear to automatically have this property, and second, a random parity-check matrix has
this property with high probability.

In the case of finite fields, the unity property is no restriction at all since the units of a finite
field are all non-zero elements. That is, we have F̃ = F . Over rings, we need this additional
property as a sufficient condition for one of our failure probability bounds (Theorem 3 in
Sect. 5). It is not a severe restriction in general, since

|F̃ |
|F | = (|R∗| + 1)λ

|R|λ = (1 − p−s + p−sr )λ,

which is relatively close to 1 for large ps and comparably small λ.
Finally, Gaborit et al. [10] also used the base-ring property of F . In contrast to the other

three properties in Definition 3, this property only depends on F and not on H . We will also
assume this property to derive a bound on the probability of one possible cause of a decoding
failure event in Sect. 5.3.
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4 Decoding

4.1 Themain decoder

Fix λ and F as in Definition 2. Let f1, . . . , fλ ∈ S be a free basis of F . Note that since the
fi are linearly independent, the sets { fi } are linearly independent, which by the discussion
in Sect. 2 implies that all the fi are units in S. Hence, f −1

i exists for each i . We will discuss
erasure decoding (Line 6) in Sect. 4.2.

Algorithm 1: LRPC Decoder
Input:
– LRPC parity-check matrix H (as in Definition 2)
– r = c+ e, such that

– c is in the LRPC code C given by H and
– The support of e is a module of rank t .

Output: Codeword c′ of C or “decoding failure”
1 s = [s1, . . . , sn−k ] ← rH�
2 S ← 〈s1, . . . , sn−k 〉R
3 for i = 1, . . . , λ do

4 Si ← f −1
i S =

{
f −1
i a : a ∈ S

}

5 E ′ ←⋂λ
i=1 Si

6 e ← Erasure decoding with support E ′ w.r.t. the syndrome s, as described in Lemma 2 (Sect. 4.2)
7 if There is exactly one solution e of the erasure decoding problem then
8 return r − e

9 else
10 return “decoding failure”

Algorithm 1 recovers the support E of the error e if E ′ = E . A necessary (but not sufficient)
condition for this to be fulfilled is that we haveS = E ·F . Furthermore, wewill see in Sect. 4.2
that we can uniquely recover the error vector e from its support E and syndrome s if the the
parity-checkmatrix fulfills the unique decoding property andwe haveφE·F = φEφF . Hence,
decoding works if the following three conditions are fulfilled:

1. φE·F = φEφF , (product condition).
2. S = E · F , (syndrome condition)
3.
⋂λ

i=1 Si = E , (intersection condition),

We call the case that at least one of the three conditions is not fulfilled a (decoding) failure.
Wewill see in the next section (Sect. 5) that whether an error results in a failure depends solely
on the error support E . Furthermore, given an error support that is drawn uniformly at random
from the modules of a given rank profile φ, the failure probability can be upper-bounded by
a function that depends only on the rank of the module (i.e., φE (1)).

In Sect. 6, we will analyze the complexity of Algorithm 1. The proofs in that section also
indicate how the algorithm can be implemented in practice.

Remark 2 Note that the success conditions above imply that for an error of rank φE (1) = t ,
we have λt ≤ m (due to the product condition) as well as λ ≥ n

n−k (due to the unique-

decoding property). Combined, we obtain t ≤ m n−k
n = m(1− R), where R := k

n is the rate
of the LRPC code.
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4.2 Erasure decoding

As its name suggests, the unique decoding property of the parity-check matrix is related to
unique erasure decoding, i.e., the process of obtaining the full error vector e after having
recovered its support. The next lemma establishes this connection.

Lemma 2 (Unique Erasure Decoding)Given a parity-check matrix H that fulfills the unique-
decoding property. Let E be a free support of rank t ≤ m

λ
. If φE·F = φEφF , then, for any

syndrome s ∈ Sn−k , there is at most one error vector e ∈ Sn with support E that fulfills
He� = s�.

Proof Let f1, . . . , fλ be a basis of the free module F . Furthermore, let ε1, . . . , εt be an
m-shaped basis of M. To avoid too complicated sums in the derivation below, we use a

slightly different notation as in the definition of m-shaped basis and write ε j = g
v(ε j )
m ε∗

j for
all j = 1, . . . , t , where ε∗

j ∈ S∗ are units.

Due to φE·F = φEφF , we have that fiεκ for i = 1, . . . , λ and κ = 1, . . . , t is an m-
shaped basis of the product space E ·F . Any entry of the parity-check matrix H has a unique
representation Hi, j = ∑λ

�=1 hi, j,� f� for hi,k,� ∈ R. Furthermore, any entry of error vector
e = [e1, . . . , en] can be represented as e j = ∑t

κ=1 e j,κεκ , where the e j,κ ∈ R are unique
modulo mr−v(εκ ).

We want to recover the error vector e from the syndrome s = [s1, . . . , sn−k]�, which are
related by definition as follows:

si =
n∑

j=1

Hi, j e j

=
n∑

j=1

λ∑
�=1

hi, j,� f�

t∑
κ=1

e j,κεκ

=
n∑

j=1

λ∑
�=1

t∑
κ=1

hi, j,�e j,κ

︸ ︷︷ ︸
=: si,�,κ

f�εκ

=
λ∑

�=1

t∑
κ=1

si,�,κ f�εκ .

Hence, for any representation e j,κ of the error e, there is a representation si,�,κ of s. If we
know the latter representation, it is easy to obtain the corresponding e j,κ under the assumed
conditions: write

si,�,κ =
n∑

j=1

hi, j,�e j,κ , � = 1, . . . , λ, κ = 1, . . . , t, i = 1, . . . , n − k.
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We can rewrite this into t independent linear systems of equations of the form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1,1,κ
s1,2,κ

...

s2,1,κ
s2,2,κ

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=: s(κ)

= Hext ·

⎡
⎢⎢⎢⎢⎢⎢⎣

e1,κ
e2,κ
...

en,κ

...

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=: e(κ)

(4)

for each κ = 1, . . . , t , where Hext ∈ R(n−k)λ×n is independent of κ and defined as in (3).
By the unique decoding property, Hext has more rows than columns (i.e, (n − k)λ ≥ n)

and full free rank and rank (equal to n). Hence, each system in (4) has a unique solution e(κ).
It is left to show that any representation si,�,κ of s in them-shaped basis fiεκ of E ·F yields

the same error vector e. Recall that si,�,κ is unique modulo mr−v(εi ) (note that v( fiεκ) =
v(εκ)). Assume now that we have a different representation, say

s′(κ) = s(κ) + gr−v(εκ )
m χ ,

where χ ∈ R(n−k)λ. Then the unique solution e′(κ) of the linear system s′(κ)Hexte′(κ) is of
the form

e′(κ) = e(κ) + gr−v(εκ )
m μ

for some μ′ ∈ R(n−k)λ. Hence, e′(κ) ≡ e(κ) mod mr−v(εκ ), which means that the two
representations e′(κ) and e(κ) belong to the same error e.

This shows that we can take any representation of the syndrome vector s, solve the system
in (4) for e(κ) for κ = 1, . . . , t , and obtain the unique error vector e corresponding to this
syndrome s and support E . ��

5 Failure probability

Consider an error vector e that is chosen uniformly at random from the set of error vectors
whose support is a module of a given rank profile φ ∈ Z[x]/(xr ) and rank φ(1) = t . In this
section, we derive a bound on the failure probability of the LRPC decoder over Galois rings
for this error model. The resulting bound does not depend on the whole rank profile φ, but
only on the rank t .

This section is the most technical and involved part of the paper. Therefore, we derive
the bound in three steps, motivated by the discussion on failure conditions in Sect. 4: In
Sect. 5.1, we derive an upper bound on the failure probability of the product condition.
Sect. 5.2 presents a bound on the syndrome condition failure probability conditioned on the
event that the product condition is fulfilled. Finally, in Sect. 5.3, we derive a bound on the
intersection failure probability, given that the first conditions are satisfied.

The proof strategy is similar to the analogous derivation for LRPC codes over fields by
Gaborit et al. [10]. However, our proof is much more involved for several reasons:

– we need to take care of the weaker structure of Galois rings and modules over them, e.g.,
zero divisors and the fact that not all modules have bases and thus module elements may
not be uniquely represented in a minimal generating set;
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– we correct a few (rather minor) technical inaccuracies in the original proof; and
– some for finite fields well-known prerequisite results are, to the best of our knowledge,

not known over Galois rings.

Before analyzing the three conditions, we show the following result, whose implication
is that if e is chosen randomly as described above, then the random variable E , the support of
the chosen error, is also uniformly distributed on the set of modules with rank profile φ. Note
that the analogous statement for errors over a finite field follows immediately from linear
algebra, but here, we need a bit more work.

Lemma 3 Let φ(x) ∈ Z[x]/(xr ) with nonnegative coefficients and let E be an R-submodule
of S with rank profile φ(x). Then, the number of vectors e ∈ Sn whose support is equal to E
only depends on φ(x).

Proof Let us write φ(x) =∑r−1
i=0 ni xi with N := φ(1) =∑r−1

i=0 ni = rkR(E), and let Γ be
a m-shaped basis for E . Then, the vector e whose first N entries are the element of Γ and
whose last n − N entries are 0 is a vector whose support is equal to E . Moreover, all the
vectors in Sn whose support is equal to E are of the form (Ae�)�, for A ∈ GL(n, R). Let us
fix a basis of S so that we can identify S with Rm . In this representation, e� corresponds to
a matrix DT , where

D =

⎡
⎢⎢⎢⎢⎢⎣

In0
gm In1

. . .

gr−1
m Inr−1

0

⎤
⎥⎥⎥⎥⎥⎦

∈ Rn×n

and T ∈ Rn×m has linearly independent rows over R. Then, the vectors in Sn whose support
is equal to E correspond to matrices ADT for A ∈ GL(n, R), and their number is equal to
the cardinality of the set

Vec(E, n) := {ADT | A ∈ GL(n, R)}.
The group GL(n, R) left acts on Vec(E, n) and, by definition, its action is transitive. Hence,
by the orbit-stabilizer theorem, we have

|Vec(E, n)| = |GL(n, R)|
|Stab(DT )| ,

where Stab(DT ) = StabGL(n,R)(DT ) = {A ∈ GL(n, R) | ADT = DT }. Hence, we need
to count how many matrices A ∈ GL(n, R) satisfy

(A − In)DT = 0.

Let us call S := A − In and divide it in r + 1 block Si ∈ Rn×ni for i ∈ {0, . . . , r − 1} and
Sr ∈ Rn×(n−N ). Moreover, do the same with T , dividing it in r + 1 blocks T i ∈ Rni ×m for
i ∈ {0, . . . , r − 1} and T r ∈ R(n−N )×m . Therefore, we get

[
S0 S1 · · · Sr−1 Sr

]

⎡
⎢⎢⎢⎢⎢⎣

T0

gmT1
...

gr−1
m T r−1

0

⎤
⎥⎥⎥⎥⎥⎦

= 0.
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Since the rows of T are linearly independent over R, this is true if and only if Si ∈ mr−i Rn×ni .
This condition clearly only depends on the values ni ’s, and hence on φ(x). ��

5.1 Failure of product condition

The product condition means that the product space of the randomly chosen support E and
the fixed free module F (in which the parity-check matrix coefficients are contained) has
maximal rank profile φE·F = φEφF . If E was a free module, the condition would translate
to E · F being a free module of rank λt . In fact, our proof strategy reduces the question if
φE·F = φEφF to the question whether a free module of rank t , which is related to E , results
in a product space with the free module F of maximal rank profile. Hence, we first study this
question for products of free modules. This part of the bound derivation is similar to the case
of LRPC codes over finite fields (cf. [1]), but the proofs and counting arguments are more
involved since we need to take care of non-units in the ring.

Lemma 4 Let α′, β be non-negative integers with (α′ + 1)β < m. Further, let A′,B be free
submodules of S of free rank α′ and β, respectively, such that also A′ ·B is a free submodule
of S of free rank α′β. For an element a ∈ S∗, chosen uniformly at random, let A := A′ +〈a〉.
Then, we have

Pr
(
frkR(A · B) < α′β + β

) ≤ (1 − p−sβ) r−1∑
j=0

ps(r− j)[(α′+1)β−m].

Proof First note that since a is a unit in S, the mapping ϕa : B → S, b �→ ab is injective.
This means that aB is a free module with frkR(aB) = frkR(B) = β. Let b1, . . . , bβ be
a basis of B. Then, ab1, . . . , abβ is a basis of aB. Therefore, A · B is a free module with
frkR(A · B) = αβ + β if and only if aB ∩ A′ · B = {0}. Hence,

Pr
(
frkR(A · B) < α′β + β

) ≤ Pr
(∃b ∈ B \ {0} : ab ∈ A′ · B) . (5)

Let c be chosen uniformly at random from S. Recall that a is chosen uniformly at random
from S∗. Then,

Pr
(∃b ∈ B \ {0} : ab ∈ A′ · B) ≤ Pr

(∃b ∈ B \ {0} : cb ∈ A′ · B) . (6)

This holds since if c is chosen to be a non-unit in S, then the statement “∃ b ∈ B \ {0} : cb ∈
A′ · B” is always true. To see this, write c = gmc′ for some c′ ∈ S. Since β > 0, there is a
unit b∗ ∈ B ∩ S∗. Choose b := gr−1

m b∗ ∈ B \ {0}. Hence, cb = gmc′gr−1
m b∗ = 0, and b is

from B and non-zero.
Now we bound the right-hand side of (6) as follows

Pr
(∃b ∈ B \ {0} : cb ∈ A′ · B) ≤∑b∈B\{0} Pr

(
cb ∈ A′ · B)

=
r−1∑
j=0

∑
b∈B:v(b)= j

Pr
(

cb∗g j
m ∈ A′ · B

)
.

Since b∗ is a unit in S, for uniformly drawn c, cb∗ is also uniformly distributed on S.
Hence, cb∗g j

m is uniformly distributed on the ideal M j of S (the mapping S → M j ,
χ �→ χg j

m is surjective and maps equally many elements to the same image) and we have

Pr
(

cb∗g j
m ∈ A′ · B

)
=
∣∣M j ∩A′·B∣∣

|M j | . Let v1, . . . , vα′β be a basis of A′ · B. Then, by (2), an
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element c ∈ A′ · B is in M j if and only if it can be written as c =∑i μivi , where μi ∈ m j

for all i .
Hence,

∣∣M j ∩ A′ · B∣∣ = |m j |α′β . Moreover, we have |M j | = |m j |m , where |m j | =
ps(r− j). Overall, we get

Pr
(∃ b ∈ B \ {0} : cb ∈ A′ · B) ≤

r−1∑
j=0

∑
b∈B : v(b)= j

ps(r− j)(α′β−m)

=
r−1∑
j=0

∣∣{b ∈ B : v(b) = j}∣∣ps(r− j)(α′β−m). (7)

Furthermore, we have (note that M j+1 ⊆ M j )
∣∣{b ∈ B : v(b) = j}∣∣ =

∣∣∣(M j \ M j+1) ∩ B
∣∣∣ = ∣∣M j ∩ B

∣∣− ∣∣M j+1 ∩ B
∣∣

= ps(r− j)β − ps(r− j−1)β . (8)

Combining and simplifying (5), (6), (7), and (8) we obtain the desired result. ��
Lemma 5 Let B be a fixed free submodule of S with frkR(B) = β. For a positive integer α

with αβ < m, let A be drawn uniformly at random from the set of free submodules of S of
free rank α. Then,

Pr (frkR(A · B) < αβ) ≤ (1 − p−sβ) α∑
i=1

r−1∑
j=0

ps(r− j)(iβ−m) ≤ 2α ps(αβ−m)

Proof Drawing a free submodule A ⊆ S of rank α uniformly at random is equivalent to
drawing iteratively A0 := {0}, Ai := Ai−1 + 〈ai 〉 for i = 1, . . . , α where for each iteration
i , the element ai ∈ S is chosen uniformly at random from the set of vectors that are linearly
independent of Ai−1. The equivalence of the two random experiments is clear since the
possible choices of the sequence a1, . . . , aα gives exactly all bases of free R-submodules
of S of rank α. Furthermore, all sequences are equally likely and each resulting submodule
has the same number of bases that generate it (which equals the number of invertible α × α

matrices over R). We have the following recursive formula for any i = 1, . . . , α:

Pr
(
frkR(Ai · B) < iβ

)

= Pr
(
frkR(Ai · B) < iβ ∧ frkR(Ai−1 · B) = (i − 1)β

)

+ Pr
(
frkR(Ai · B) < iβ ∧ frkR(Ai−1 · B) < (i − 1)β

)
︸ ︷︷ ︸

frkR(Ai−1·B)<(i−1)β implies frkR(Ai ·B)<iβ

= Pr
(
frkR(Ai · B) < iβ | frkR(Ai−1 · B) = (i − 1)β

)

· Pr(frkR(Ai−1 · B) = (i − 1)β)︸ ︷︷ ︸
≤1

+Pr
(
frkR(Ai−1 · B) < (i − 1)β

)

(∗)≤ (1 − p−sβ) r−1∑
j=0

ps(r− j)(iβ−m) + Pr
(
frkR(Ai−1 · B) < (i − 1)β

)
,

where (∗) follows from Lemma 4 by the following additional argument:

Pr
(
frkR(Ai · B) < iβ | frkR(Ai−1 · B) = (i − 1)β ∧ ai linearly independent and
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its span trivially intersects with Ai−1
)

≤ Pr
(
frkR(Ai · B) < iβ | frkR(Ai−1 · B) = (i − 1)β ∧ ai uniformly from S∗)

≤ (1 − p−sβ) r−1∑
j=0

ps(r− j)(iβ−m),

where the last inequality is exactly the statement of Lemma 4. By Pr
(
frkR(A0B) < 0

) = 0,
we get

Pr (frkR(A · B) < αβ) = Pr
(
frkR(Aα · B) < αβ

)

= (1 − p−sβ) α∑
i=1

r−1∑
j=0

ps(r− j)(iβ−m)

≤ α
(
1 − p−sβ)
︸ ︷︷ ︸

≤1

p−rs(m−αβ)
r−1∑
j=0

p js(m−αβ)

︸ ︷︷ ︸
≤2p(r−1)s(m−αβ)

≤ 2α ps(αβ−m).

This proves the claim. ��
Recall that the error support E is not necessarily a free module. In the following sequence

of statements, we will therefore answer the question how the results of Lemmas 4 and 5 can
be used to derive a bound on the product condition failure probability. To achieve this, we
study the following free modules related to modules of arbitrary rank profile. Note that this
part of the proof differs significantly from LRPC codes over finite fields, where all modules
are vector spaces, and thus free.

For a module M ⊆ S with m-shaped basis Γ , define F(Γ ) ⊆ S be the free module that
is obtained from M as follows: Let us write Γ = {gi

mai,�i | 0 ≤ i ≤ r − 1, 1 ≤ �i ≤ φM
i },

where the elements ai,�i are all reduced moduloMr−i , that is, the Teichmüller representation
of ai,�i is of the form

ai,�i =
r−i−1∑

j=0

g j
mz j , z j ∈ Ttm .

This is clearly possible since if we add to ai,�i an element y ∈ Mr−i = (gr−i
m ), then

gi
m(ai,�i + y) = gi

mai,�i . At this point, we define F(Γ ) := {ai,�i | 0 ≤ i ≤ r − 1, 1 ≤ �i ≤
φM

i }, andF(Γ ) := 〈F(Γ )〉R . The fact thatF(Γ ) is free directly follows from considering its
Smith Normal Form, which tells us that in thematrix representation it is spanned by (some of)
the rows of an invertible matrix in GL(m, R). In particular, we have frkR(F(Γ )) = rkR(M).

Example 7 Let p = 2, s = 1, r = 3 as in Example 2, h(z) = z3 + z + 1 and M a module
with m-shaped basis Γ = {1, 2z2 + 2z, 4z2 + 2z + 2}. Then, M has a diagnonal matrix in
Smith normal form of ⎡

⎣
1 0 0
0 2 0
0 0 2

⎤
⎦

and φM(z) = 2z + 1. Using the notation above, we observe a0,1 = 1, a1,1 = z2 + z,
a1,2 = z3 + 2z2 and F(Γ ) = 〈{1, z2 + z, z3 + 2z2}〉R .
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At this point, for two differentm-shaped basesΓ ,� ofM, one could askwhetherF(Γ ) =
F(�). The answer is affirmative, and it can be deduced from the following result.

Proposition 2 Let n0, . . . , nr−1 ∈ N be nonnegative integers, let N := n0 + · · · + nr−1 and
let D ∈ RN×N be a diagonal matrix given by

D :=

⎡
⎢⎢⎢⎣

In0
gm In1

. . .

gr−1
m Inr−1

⎤
⎥⎥⎥⎦ .

Moreover, let T1, T2 ∈ Rr×m be such that the rows of T i are R-linearly independent for
each i ∈ {1, 2}. Then, the rowspaces of DT1 and DT2 coincide if and only if for every
i, j ∈ {0, . . . , r − 1} there exist Y i, j ∈ Rni ×n j with Y i,i ∈ GL(ni , R) and Zi ∈ Rni ×m such
that

T2 = YT1 + Z,

where

Y =

⎡
⎢⎢⎢⎢⎢⎣

Y0,0 gmY0,1 g2
mY0,2 · · · gr−1

m Y0,r−1

Y1,0 Y1,1 gmY1,2 · · · gr−2
m Y1,r−1

Y2,0 Y2,1 Y2,2 · · · gr−3
m Y2,r−1

...
...

...
...

Y r−1,0 Y r−1,1 Y r−1,2 · · · Y r−1,r−1

⎤
⎥⎥⎥⎥⎥⎦

, Z =

⎡
⎢⎢⎢⎢⎢⎣

0
gr−1
m Z1

gr−2
m Z2

...

gmZr−1

⎤
⎥⎥⎥⎥⎥⎦

.

Proof The rowspaces of DT1 and DT2 coincide if and only if there exists a matrix X ∈
GL(N , R) such that XDT1 = DT2. Divide T � in r blocks T �,i ∈ Rni ×m for i ∈ {0, . . . , r −
1} and divide X in r × r blocks X i, j ∈ Rni ×n j for i, j ∈ {0, . . . , r − 1}. Hence, from
XDT1 = DT2 we get

r−1∑
j=0

X i, j g
j
mT1, j = gi

mT2,i . (9)

Since the rows of T1 are R-linearly independent, (9) implies that g j
mX i, j ∈ gi

mRni ×n j . This
shows that

X =

⎡
⎢⎢⎢⎢⎢⎣

Y0,0 Y0,1 Y0,2 · · · Y0,r−1

gmY1,0 Y1,1 Y1,2 · · · Y1,r−1

g2
mY2,0 gmY2,1 Y2,2 · · · Y2,r−1

...
...

...
...

gr−1
m Y r−1,0 gr−2

m Y r−1,1 gr−3
m Y r−1,2 · · · Y r−1,r−1

⎤
⎥⎥⎥⎥⎥⎦

,

for some Y i, j ∈ Rni ×n j . Observe now that X = U + gmL, where

U =

⎡
⎢⎢⎢⎢⎢⎣

Y0,0 Y0,1 Y0,2 · · · Y0,r−1

0 Y1,1 Y1,2 · · · Y1,r−1

0 0 Y2,2 · · · Y2,r−1
...

...
...

...

0 0 0 · · · Y r−1,r−1

⎤
⎥⎥⎥⎥⎥⎦

,
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L =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
Y1,0 0 0 · · · 0

gmY2,0 Y2,1 0 · · · 0
...

...
...

...

gr−2
m Y r−1,0 gr−3

m Y r−1,1 gr−4
m Y r−1,2 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

.

Since X is invertible and gmL is nilpotent, then U is also invertible and hence Y i,i ∈
GL(ni , R), for every i ∈ {0, . . . , r − 1}. At this point, observe that XD = DY , from which
we deduce

D(T2 − YT1) = 0.

This implies that the i th block of T2 − YT1 ∈ Ann(gi
m)Rni ×m = gr−i

m Rni ×m and we
conclude. ��

Let M be an R-submodule of S. Proposition 2 implies that if we restrict to take a m-
shaped basis Γ = {gi

mai, ji | 0 ≤ i ≤ r − 1, 1 ≤ ji ≤ φM
i

}
such that the elements ai, ji

have Teichmüller representation

ai, ji =
r−i−1∑
�=0

g�
mz�, z� ∈ Ttm, (10)

then the module F(Γ ) is well-defined and does not depend on the choice of Γ .

Definition 4 We define F(M) to be the space F(Γ ), where Γ = {gi
mai, ji | 0 ≤ i ≤

r − 1, 1 ≤ ji ≤ φM
i

}
is any m-shaped basis such that the elements ai, ji have Teichmüller

representation as in (10).

The following two corollaries follow from observations in Proposition 2. We will use
them to show that for certain uniformly chosen modulesM, the corresponding free modules
F(M) are uniformly chosen from the set of free modules of rank equal to the rank of M.
The proofs can be found in Appendix A.

Now, for a given R-submodule of S we consider all the free modules that comes from a
m-shaped basis for M. More specifically, we set

Free(M) :=
{
A |A is free with frkR(A) = rkR(M) and ∃{ai,�i } basis of A

such that {gi
mai,�i } is a m-shaped basis for M

}
.

In fact, even though for the R-module M there is a unique free module F(M) as explained
in Definition 4, we have more than one free module A belonging to Free(M). The exact
number of such free modules is given in the following Corollary.

Corollary 1 LetM be an R-submodule of S with rank profile φM(x) and rank N := rkR(M).
Then

|Free(M)| = s(m−N )
∑r−1

i=1 iφM
i .

In particular, |Free(M)| only depends on φM(x).

Proof See Appendix A. ��
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Now we estimate an opposite quantity. For a fixed rank profile φ(x) with φ(1) ≤ m,
and given a free R-submodule N of S with free rank frkR(N ) = φ(1), for how many R-
submodules M of S with rank profile φM(x) = φ(x) the module N belongs to Free(M)?
Formally, we want to estimate the cardinality of the set

Mod(φ,N ) := {M ⊆ S | φM(x) = φ(x) and N ∈ Free(M)
}
.

Corollary 2 Let φ(x) = ∑r−1
i=0 ni xi ∈ N[x]/(xr ) such that φ(1) = N ≤ m, and let N be a

free R-submodule of S with free rank frkR(N ) = N. Then

|Mod(φ,N )| = |GL(N , R)|
|G∗

φ | .

In particular, |Mod(φ,N )| only depends on φ(x).

Proof See Appendix A. ��
We need the following lemma to derive a sufficient condition for the product of two

modules to have a maximal rank profile.

Lemma 6 Let M be an R-submodule of S, and let A,B ∈ Free(M). Moreover, let N be a
free R-submodule of S. Then, N ·A is free with frkR(N ·A) = rkR(M)frkR(N ) if and only
if N · B is free with frkR(N · B) = rkR(M)frkR(N ).

Proof Let A = {ai, ji | 0 ≤ i ≤ r − 1, 1 ≤ ji ≤ φM
i } be a basis of A and B = {bi, ji | 0 ≤

i ≤ r − 1, 1 ≤ ji ≤ φM
i } be a basis of B such that Γ := {gi

mai, ji | 0 ≤ i ≤ r − 1, 1 ≤
ji ≤ φM

i } and � := {gi
mbi, ji | 0 ≤ i ≤ r − 1, 1 ≤ ji ≤ φM

i } are two m-shaped bases
for M, and let Δ = {u1, . . . , ut } be a basis for N . Assume that Δ · A = {u�ai, ji } has
rkR(M)frkR(N ) linearly independent elements over R. By symmetry, it is enough to show
that this implies N · B is free. By Proposition 2, we know that there exists xi, ji ∈ S such
that B = 〈{ai, ji + gmxi, ji | 0 ≤ i ≤ r − 1, 1 ≤ ji ≤ φM

i }〉R . Hence, we need to prove that
the elements {u�(ai, ji + gm xi, ji )} are linearly independent over R. Suppose that there exists
λ�,i, ji ∈ R such that

∑
�,i, ji

λ�,i, ji u�(ai, ji + gm xi, ji ) = 0,

hence, rearranging the sum, we get
∑
�,i, ji

λ�,i, ji u�ai, ji = −gm
∑
�,i, ji

λ�,i, ji u�xi, ji . (11)

Multiplying both sides by gr−1
m we obtain
∑
�,i, ji

λ�,i, ji gr−1
m u�ai, ji = 0,

and since by hypothesis {u�ai, ji } is a basis, this implies λ�,i, ji ∈ Ann(gr−1
m ) = m and

therefore there exist λ′
�,i, ji

∈ R, such that λ�,i, ji = gmλ′
�,i, ji

. Thus, (11) becomes

gm
∑
�,i, ji

λ′
�,i, ji u�ai, ji = −g2

m

∑
�,i, ji

λ′
�,i, ji u�xi, ji .

Now, multiplying both sides by gr−2
m and with the same reasoning as before, we obtain that

all the λ′
�,i, ji

∈ m and the right-hand side of (11) belongs to m3. Iterating this process r − 2
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times, we finally get that the right-hand side of (11) belongs to mr = (0), and therefore (11)
corresponds to

∑
�,i, ji

λ�,i, ji u�ai, ji = 0,

which, by hypothesis implies λ�,i, ji = 0 for every �, i, ji . This concludes the proof, showing
that the elements {u�(ai, ji + gm xi, ji )} are linearly independent over R. ��

With the aid of Lemma 6 we can show that the property for the product of two arbitrary
R-modulesM1,M2 of having maximal rank profile (according to Definition 1) depends on
the free modules F(M1) and F(M2) and on their product.

Proposition 3 Let M1 and M2 be submodules of S. If the product of free modules F(M1)

and F(M2) has free rank

frkR(F(M1)F(M2)) = rkR(F(M1)) rkR(F(M2)),

then we have
φM1·M2(x) = φM1(x)φM2(x).

Moreover, if we assume that deg(φM1(x)) + deg(φM2(x)) < r , then also the converse
is true. In particular, the converse is true if one of the two modules is free.

Proof First, observe that by Lemma 6 we can take any pair of m-shaped bases Γ1 and Γ2 of
M1 and M2, respectively. Let us fix

Γ1 :=
{

gi
mai, ji | 0 ≤ i ≤ r − 1, 1 ≤ ji ≤ φ

M1
i

}

m-shaped basis of M1 and

Γ2 :=
{

gi
mbi, ji | 0 ≤ i ≤ r − 1, 1 ≤ ji ≤ φ

M2
i

}

m-shaped basis ofM2. By hypothesis, the set F(Γ1)·F(Γ2) contains rkR(M1)rkR(M2) = t
linearly independent elements over R. Let A ∈ Rt×m be the matrix whose rows are the
vectorial representations in Rm of the elements in F(Γ1) · F(Γ2). Clearly, a Smith Normal
Form for A is A = DT where D = (I t | 0) and T ∈ GL(n, R) is any invertiblematrixwhose
first t ×m block is equal to A. By definition Γ1 ·Γ2 is a generating set forM1 ·M2 and hence
M1·M2 is equal to the rowspace of thematrix A′ whose rows are the vectorial representations
of the elements in Γ1 ·Γ2. A row of A′ corresponding to the element gi

mai, ji gs
mbs,�s ∈ Γ1 ·Γ2

is equal to the row of A corresponding to the element ai, ji bs,�s multiplied by gi+s
m . Therefore,

A′ = D′A = D′DT = (D′ | 0)T , where D′ is a t × t diagonal matrix whose diagonal
elements are all of the form gi+s

m for suitable i, s. This shows that A′ = (D′ | 0)T is a Smith
Normal Form for A′ and the rank profile φM1·M2(x) corresponds to φM1(x)φM2(x).

On the other hand, if φM1·M2(x) = φM1(x)φM2(x), then the set Γ1 · Γ2 is a m-shaped
basis for M1 · M2. Moreover, since deg(φM1(x)) + deg(φM2(x)) < r , we have that
F(Γ1) · F(Γ2) = F(Γ1 · Γ2), which is a set of rkR(M1)rkR(M2) nonzero elements. Let
SDT be a Smith normal form for M1 · M2, then the elements of F(Γ1 · Γ2) correspond to
the first rkR(M1)rkR(M2) rows of matrix T , and hence they are R-linearly independent.
Thus, F(M1) · F(M2) is free with free rank equal to rkR(M1)rkR(M2). ��
Remark 3 Observe that the second part of Proposition 3 does not hold anymore if we remove
the hypothesis that deg(φM1(x)) + deg(φM2(x)) < r .
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LetA′,A = A′ +〈a〉 and B be three free modules of free rank α−1, α and β respectively,
such that A′ · B is free of rank (α − 1)β, but A · B is not free of rank αβ. Take a basis for
A of the form {a1, . . . , aα−1, a} such that {a1, . . . , aα−1} is a basis of A′, and fix also a
basis {b1, . . . , bβ} for B. Then, define M1 to be the R-module whose m-shaped basis is
{a1, . . . , aα−1, gr−1

m a}, and define M2 = mB. Consider the module M1 · M2. It is easy to
see thatM1 ·M2 = m(A′ ·B) = A′ ·M2. Observe that B ∈ Free(M2) and by Proposition 3
and Lemma 6, we have that φM1·M2(x) = φM1(x)φM2(x). However, by construction we
have A ∈ Free(M1), B ∈ Free(M1) andA ·B is not free of rank αβ. Therefore, by Lemma
6 this also holds for F(M1) · F(M2).

We are now ready to put the various statements of this subsection together and prove an
upper bound on the failure probability of the product condition—the main statement of this
subsection.

Theorem 1 Let B be a fixed R-submodule of S with rank profile φB(x) and let λ := φB(1) =
rkR(B). Let t be a positive integer with tλ < m and φ(x) ∈ Z[x]/(xr ) with nonnegative
coefficients such that φ(1) = t . Let A be an R-submodule of S selected uniformly at random
among all the modules with φA = φ. Then,

Pr
(
φA·B = φAφB) ≤ (1 − p−sβ) α∑

i=1

r−1∑
j=0

ps(r− j)(iβ−m) ≤ 2α ps(αβ−m)

Proof Let us denote byMod(φ) the set of all R-submodules of S whose rank profile equals φ.
Choose uniformly at random a moduleA in Mod(φ), and then select X uniformly at random
from Free(A). Then, this results in a uniform distribution on the set of all free modules with
free rank equal to φ(1) = t , that is the set Mod(t), where t denotes the constant polynomial
in Z[x]/(xr ) equal to t . Indeed, for an arbitrary free module N with frkR(N ) = t ,

Pr(X = N ) = Pr(X = N | A ∈ Mod(N , φ))Pr(A ∈ Mod(N , φ))

= 1

|Free(A)|
|Mod(N , φ)|

|Mod(φ)| ,

which by Corollaries 1 and 2 is a constant number that does not depend on N .
Now, suppose that φA·B = φAφB. By Proposition 3, this implies N · N ′ is not a free

module of rank tλ, where N is any free module in Free(A) and N ′ is any free module in
Free(B). Hence,

Pr
(
φA·B = φAφB) ≤ 1 − Pr

(N · N ′ is a free module of free rank tλ
)
,

and we conclude using Lemma 5. ��
As a consequence, we can finally derive the desired upper bound on the product condition

failure probability.

Theorem 2 Let F be defined as in Definition 2. Let t be a positive integer with tλ < m and
φ(x) ∈ Z[x]/(xr ) with nonnegative coefficients and such that φ(1) = t (recall that this
means that an error of rank profile φ has rank t). Let e be an error word, chosen uniformly at
random among all error words with support E of rank profile φE = φ. Then, the probability
that the product condition is not fulfilled is

Pr
(
φE·F = φEφF ) ≤ (1 − p−sλ) t∑

i=1

r−1∑
j=0

ps(r− j)(iλ−m) ≤ 2tps(tλ−m)
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Proof Let us denote by Mod(φ) the set of all R-submodules of S whose rank profile equals
φ. By Lemma 3, choosing uniformly at random e among all the words whose support E has
rank profile φ results in a uniform distribution on Mod(φ). At this point, the claim follows
from Theorem 1. ��

5.2 Failure of syndrome condition

Here we derive a bound on the probability that the syndrome condition is not fulfilled, given
that the product condition is satisfied. As in the case of finite fields, the bound is based on the
relative number of matrices of a given dimension that have full (free) rank. For completeness,
we give a closed-form expression for this number in the following lemma. However, it can
also be derived from the number of submodules of a given rank profile, which was given in
[13, Theorem 2.4]. Note that the latter result holds also for finite chain rings.

Lemma 7 Let a, b be positive integers with a < b. Then, the number of a × b matrices over

R = GR(pr , s) of (full) free rank a is NM(a, b; R) = pabrs∏a−1
a′=0

(
1 − pa′−b

)
.

Proof First note that NM(1, b; R) = pbrs − pb(r−1)s = pbrs
(
1− pbs

)
since a 1×b matrices

over R is of free rank 1 if and only if at least one entry is a unit. Hence we subtract from the
number of all matrices (|R|b = pbrs) the number of vectors that consist only of non-units
(|R| − |R∗|)b = pb(r−1)s (cf. (1)).

Let now for any a′ ≤ a be A ∈ Ra′×b a matrix of free rank a′. We define V(A) := {v ∈
R1×b : frk( [A�v�]� ) = a′}. We study the cardinality of V(A). We have frk

( [
A�v�]� ) =

a′ if and only if the rows of the matrix Â := [A�v�]� are linearly dependent. Due to
frk(A) = a′ and the existence of a Smith normal form of A, there are invertibe matrices S
and T such that SAT = D, where D is a diagonal matrix with ones on its diagonal.

Since S and T are invertible, we can count the number of vectors v′ such that the rows of
the matrix

[
D�v′�]� are linearly independent instead of the matrix Â (note that v = v′T−1

gives a corresponding linearly dependent row in Â).
Since D is in diagonal form with only ones on its diagonal, the linearly dependent vectors

are exactly of the form
v′ = [v′

1, . . . , v
′
a, v′

a′+1, . . . , v
′
b],

where v′
i ∈ R for i = 1, . . . , a′ and v′

i ∈ m for i = a′ + 1, . . . , b. Hence, we have

|V(A)| = pa′rs p(b−a′)(r−1)s) = pbrs p(a′−b)s .

Note that this value is independent of A.
By the discussion on |V(A)|, we get the following recursive formula:

NM(a′+1, b; R)=
{
NM(a′, b; R)pbrs

(
1 − p(a′−b)s

)
, a′ ≥ 1,

pbrs
(
1 − pbs

)
, a′ = 0,

which resolves into NM(a, b; R) = pabrs∏a−1
a′=0

(
1 − p(a′−b)s

)
. ��

At this point we can prove the bound on the failure probability of the syndrome condition
similar to the one in [10], using Lemma 7. The additional difficulty over rings is to deal with
non-unique decompositions of module elements in m-shaped bases and the derivation of a
simplified bound on the relative number of non-full-rank matrices. Furthermore, the start of
the proof corrects a minor technical impreciseness of Gaborit et al.’s proof.
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Theorem 3 Let F be defined as in Definition 2, t be a positive integer with tλ < min{m, n −
k + 1}, and E be an error space of rank t. Suppose that the product condition is fulfilled for
E and F . Suppose further that H has the maximal-row-span and unity properties (cf. Defi-
nition 3).

Let e be an error word, chosen uniformly at random among all error words with support
E . Then, the probability that the syndrome condition is not fulfilled for e is

Pr
(S = E · F | φE·F = φEφF ) ≤ 1 −

λt−1∏
i=0

(
1 − p[i−(n−k)]s) < 4p−s(n−k+1−λt).

Proof Let e′ ∈ Sn be chosen such that every entry e′
i is chosen uniformly at random from

the error support E .1 Denote by Se and Se′ the syndrome spaces obtained by computing the
syndromes of e and e′, respectively. Then, we have

Pr
(Se′ = E · F) ≤ Pr

(Se′ = E · F | suppR(e′) = E) = Pr
(Se = E · F),

where the latter equality follows from the fact that the random experiments of choosing e′
and conditioning on the property that e′ has support E is the same as directly drawing e
uniformly at random from the set of errors with support E . Hence, we obtain a lower bound
on Pr
(Se = E · F) by studying Pr

(Se′ = E · F), which we do in the following.
Let f1, . . . , fλ and ε1, . . . , εt be m-shaped bases of F and E , respectively, such that f jεi

for i = 1, . . . , t , j = 1, . . . , λ form an m-shaped basis of E · F . Note that the existence of
such bases is guaranteed by the assumed product condition φE·F = φEφF .

Since e′
i is an element drawn uniformly at random from E , we can write it as e′

i =∑t
μ=1 e′

i,μεμ, where e′
i, j are uniformly distributed on R. We can assume uniformity of e′

i,μ

since for a given e′
i , the decomposition of e′

i,μ is unique modulomr−v(εi ). In particular, there
are equally many decompositions [e′

i,1, . . . , e′
i,t ] for each e′

i and the sets of these decompo-
sitions are disjoint for different i .

Due to the unity property of the parity-check matrix H , we can write any entry Hi, j of H
as Hi, j = ∑λ

η=1 hi, j,η fη, where the hi, j,η are units in R or zero. Furthermore, since each
row of H spans the entire module F (full-row-span property), for each i and each η, there is
at least one j∗ with hi, j∗,η = 0. By the previous assumption, this means that hi, j∗,η ∈ R∗.

Then, each syndrome coefficient can be written as

si =
∑n

j=1
e′

j Hi, j =
∑t

μ=1

∑λ

η=1

(∑n

j=1
e′

j,μhi, j,η

)

︸ ︷︷ ︸
=:sμ,η,i

εμ fη.

By the above discussion, for each i and η, there is a j∗ with hi, j∗,η ∈ R∗. Hence, sμ,η,i

is a sum (with at least one summand) of the products of uniformly distributed elements of R
and units of R. A uniformly distributed ring element times a unit is also uniformly distributed
on R. Hence sμ,η,i is a sum (with at least one summand) of uniformly distributed elements
of R. Hence, sμ,η,i itself is uniformly distributed on R.

1 This means that e′ might have a support that is contained in, but not equal to E . The difference to the actual
error e is that e is chosen uniformly from all errors of support exactly E .
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All together, we can write
⎡
⎢⎢⎢⎣

s1
s2
...

sn−k

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

s1,1,1 s1,2,1 · · · st,λ,1

s1,1,2 s1,2,2 · · · st,λ,2
...

...
. . .

...

s1,1,n−k s1,2,n−k · · · st,λ,n−k

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=: S

·

⎡
⎢⎢⎢⎣

ε1 f1
ε1 f2

...

εt fλ

⎤
⎥⎥⎥⎦ ,

where, by assumption, the εi f j are a generating set of E · F and the matrix S is chosen
uniformly at random from R(n−k)×tλ. If S has full free rank tλ, then we have Se′ = E · F .
By Lemma 7, the probability of drawing such a full-rank matrix is

NM(a, b; R)

|R|ab
=

a−1∏
a′=0

(
1 − p(a′−b)s

)
.

This proves the bound

Pr
(S = E · F | φE·F = φEφF ) ≤ 1 −

λt−1∏
i=0

(
1 − p[i−(n−k)]s) .

We simplify the bound further using the observation that the product is a q-Pochhammer
symbol. Hence, we have

1 −
λt−1∏
i=0

(
1 − p[i−(n−k)]s) =

λt∑
j=1

(−1) j+1 p− j(n−k)s
[
λt
j

]

ps
ps( j

2)

︸ ︷︷ ︸
=: a j

,

where

[
a
b

]

q
:= ∏b

j=1
qa+1− j −1

q j −1
is the Gaussian binomial coefficient. Using qb(a−b) ≤

[
a
b

]

q
< 4qb(a−b), we obtain

∣∣∣∣
a j+1

a j

∣∣∣∣ = p−(n−k− j)s

[
λt

j + 1

]

ps[
λt
j

]

ps

< p−(n−k− j)s 4qs( j+1)(λt− j−1)

qs j(λt− j)

= 4ps[λt− j−(n−k+1)] < 1

for λt < n − k + 1, i.e., |a j | is strictly monotonically decreasing. Since the summands a j

have alternating sign, we can thus bound
∑λt

j=1 a j ≤ a1, which gives

1 −
λt−1∏
i=0

(
1 − p[i−(n−k)]s) ≤ a1 < 4p−s(n−k+1−λt)

��
Remark 4 In contrast to Theorem 3 the full-row-span property was not assumed in [1, Propo-
sition 4.3], which is the analogous statement for finite fields. However, also the statement
in [1, Proposition 4.3] is only correct if we assume additional structure on the parity-check
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matrix (e.g., that each row spans the entire spaceF or a weaker condition), due to the follow-
ing counterexample: Consider a parity-check matrix H that contains only non-zero entries
on its diagonal and in the last row, where the diagonal entries are all f1 and the last row
contains the remaining f2, . . . , fλ, i.e.,

H :=

⎡
⎢⎢⎢⎣

f1 0 · · · 0 0 0 · · · 0 0 · · · 0
0 f1 · · · 0 0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

0 0 · · · f1 f2 f3 · · · fλ 0 · · · 0

⎤
⎥⎥⎥⎦ .

This is a valid parity-check matrix according to [1, Definition 4.1] since the entries of H span
the entire space F . However, due to the structure of the matrix, the first n − k − 1 syndromes
are all in f1E , hence rkR(S) ≤ t + 1 < tλ for any error of support E .

5.3 Failure of intersection condition

We use a similar proof strategy as in [1] to derive an upper bound on the failure probability of
the intersection condition. The following lemma is the Galois-ring analog of [1, Lemma 3.4],
where the difference is that we need to take care of the fact that the representation of module
elements in an m-shaped basis is not necessarily unique in a Galois ring.

Lemma 8 Let A ⊆ S be an R-module of rank α and B ⊆ S be a free R-module of free rank
β. Assume that φA·B2 = φAφB2

and that there is an element e ∈ A ·B \A with eB ⊆ A ·B.
Then, there is an y ∈ B \ R such that yB ⊆ B.

Proof Let a1, . . . , aα be an m-shaped basis of A and b1, . . . , bβ be a basis of B. Due to
e ∈ A · B, there are coefficients ei, j ∈ R such that

e =∑α
i=1

(∑β
j=1 ei, j b j

)
︸ ︷︷ ︸

=: b′
i

ai . (12)

Due to the fact that e /∈ A, there is an η ∈ {1, . . . , α} with b′
ηaη /∈ A. In particular,

y := g
v(aη)
m b′

η ∈ B \ R. We show that y fulfills yB ⊆ B.
Let now b ∈ B. Since by assumption eb ∈ A · B, there are ci, j ∈ R with eb =∑α
i=1

(∑β
j=1 ci, j b j

)
ai . By (12), we can also write eb = ∑α

i=1

(∑β
j=1 ei, j b j b

)
ai =

∑α
i=1 b′

i bai . Due to the maximality of the rank profile of A · B2, i.e., φA·B2 = φAφB2
,

we have that the coefficients ci ∈ B2 of any representation c = ∑i ci ai of an element
c ∈ A ·B2 are unique moduloMr−v(ai ). Hence, for every i = 1, . . . , α, there exists χi ∈ B2

such that

b′
i b =

β∑
j=1

ci, j b j + gr−v(ai )
m χi .

Thus, with
∑β

j=1 cη, j b j ∈ B, gv(ai )
m ∈ R, and gr

m = 0, we get

yb = g
v(aη)
m b′

ηb = g
v(aη)
m

β∑
j=1

cη, j b j + gr
mχη ∈ B.

Since this hold for any b, we have yB ⊆ B, which proves the claim. ��
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We get the following bound using Lemma 8, Theorem 1, and a similar argument as in
[10].

Theorem 4 Let F be defined as in Definition 2 such that it has the base-ring property (i.e.,
1 ∈ F). Suppose that no intermediate ring R′ between R � R′ ⊆ S is contained in F (this
holds, e.g., for λ greater than the smallest divisor of m or for special F).

Let t be a positive integer with t λ(λ+1)
2 < m and tλ < n−k +1, and let φ(x) ∈ Z[x]/(xr )

with nonnegative coefficients such that φ(1) = t . Choose e ∈ Sn uniformly at random from
the set of vectors with whose support has rank profile φ.

Then, the probability that the intersection condition is not fulfilled, given that syndrome
and product conditions are satisfied, is

Pr
(⋂λ

i=1 Si = E | S = E · F ∧ φE·F = φEφF
)

≤
(
1 − p−s λ(λ+1)

2

) t∑
i=1

r−1∑
j=0

p
s(r− j)

(
i λ(λ+1)

2 −m
)

≤ 2tp
s
(

t λ(λ+1)
2 −m

)

Proof Suppose that the product (φE·F = φEφF ) and syndrome (S = E · F) conditions are
fulfilled, and assume that the intersection condition is not fulfilled. Then we have

⋂λ
i=1 Si =:

E ′
� E . Choose any e ∈ E ′ \ E . Since F contains 1 by assumption, we have e ∈ A · B. Due

to A ⊆ E , we have e /∈ A. Furthermore, we have E ′ · B = E · B, so all conditions on e of
Lemma 8 are fulfilled.

Since E is chosen uniformly at random from all free submodules of S of rank t , we can
apply Theorem 1 and obtain that φE·F2 = φEφF2

with probability at least

Pr
(
φA·B2 = φAφB2

)

≤
(
1 − p−sλ′) t∑

i=1

r−1∑
j=0

ps(r− j)(iλ′−m)

≤
(
1 − p−s λ(λ+1)

2

) t∑
i=1

r−1∑
j=0

p
s(r− j)

(
i λ(λ+1)

2 −m
)

≤ 2tp
s
(

t λ(λ+1)
2 −m

)

where λ′ := rkR(F2) ≤ 1
2λ(λ + 1) (this is clear since F2 is generated by the products of all

unordered element pairs of an m-shaped basis of F).
Hence, with probability at least one minus this value, both conditions of Lemma 8 are

fulfilled. In that case, there is an element y ∈ F \ R such that yF ⊆ F . Thus, also yiF ⊆ F
for all positive integers i , and we have that the ring R(y) extended by the element y /∈ R
fulfills R(y) ⊆ F (this holds since F contains at least one unit). This is a contradiction to
the assumption on intermediate rings. ��

5.4 Overall failure probability

The following theorem states the overall bound on the failure probability, exploiting the
bounds derived in Theorems 2, 3, and 4.
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Theorem 5 Let F be defined as in Defintion 2 such that it has the base-ring property (i.e.,
1 ∈ F). Suppose that no intermediate ring R′ between R � R′ ⊆ S is contained in F (this
holds, e.g., for λ greater than the smallest divisor of m or for special F). Suppose further
that H has the maximal-row-span and unity properties (cf. Definition 3).

Let t be a positive integer with t λ(λ+1)
2 < m and tλ < n−k +1, and let φ(x) ∈ Z[x]/(xr )

with nonnegative coefficients such that φ(1) = t . Choose e ∈ Sn uniformly at random from
the set of vectors with whose support has rank profile φ.

Then, Algorithm 1 with input c+ e returns c with a failure probability of at most

Pr(failure) ≤ (1 − p−sλ) t∑
i=1

r−1∑
j=0

ps(r− j)(iλ−m)

+
[
1 −

λt−1∏
i=0

(
1 − p[i−(n−k)]s)

]

+
(
1 − p−s λ(λ+1)

2

) t∑
i=1

r−1∑
j=0

p
s(r− j)

(
i λ(λ+1)

2 −m
)

(13)

≤ 4ps[λt−(n−k+1)] + 4tp
s
(

t λ(λ+1)
2 −m

)
(14)

Proof The statement follows by applying the union bound to the failure probabilities of the
three success conditions, derived in Theorems 2, 3, and 4. ��

The simplified bound (14) in Theorem 5 coincides up to a constant with the bound by
Gaborit et at. [10] in the case of a finite field (Galois ring with r = 1). If we compare an
LRPC code over a finite field of size prs and with an LRPC code over a Galois ring with
parameters p, r , s (i.e., the same cardinality), then we can observe that the bounds have the
same exponent, but the base of the exponent is different: It is prs for the field and ps for
the ring case. Hence, the maximal decoding radii tmax (i.e., the maximal rank t for which
the bound is < 1) are roughly the same, but the exponential decay in tmax − t for smaller
error rank t is slower in case of rings due to a smaller base of the exponential expression.
This “loss” is expected due to the weaker structure of modules over Galois rings compared
to vector spaces over fields.

6 Decoding complexity

We discuss the decoding complexity of the decoding algorithm described in Sect. 4. Over
a field, all operations within the decoding algorithm are well-studied and it is clear that the
algorithm runs in roughly Õ(λ2n2m) operations over the small field Fq . Although we believe
that an analog treatment over the rings studied in this paper must be known in the community,
we have not found a comprehensive complexity overview of the corresponding operations in
the literature. Hence, we start the complexity analysis with an overview of complexities of
ring operations and linear algebra over these rings.

6.1 Cost model and basic ring operations

Weexpress complexities in operations in R. For somecomplexity expressions,weuse the soft-
O notation, i.e., f (n) ∈ Õ(g(n)) if there is a r ∈ Z≥0 such that f (n) ∈ Õ(g(n) log(g(n))r ).
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Weuse the following result, which follows straightforwardly from standard computer-algebra
methods in the literature.

Lemma 9 (Collection of results in [27]) Addition in S costs m additions in R. Multiplication
in S can be done in O(m log(m) log(log(m))) operations in R.

Proof We represent elements of S as residue classes of polynomials in R[z]/(h(z)) (e.g., each
residue class is represented by its unique representative of degree < m), where h ∈ R[z] is
a monic polynomial of degree m as explained in the preliminaries.

Addition is done independently on the m coefficients of the polynomial representation, so
it only requires m additions in R. Multiplication consists of multiplying two residue classes
in R[z]/(h(z)), which can be done by multiplying the two representatives of degree< m and
then taking themmodulo (h(z)) (i.e., take the remainder of the division by the monic polyno-
mial h). Both multiplication and division can be implemented in O(m log(m) log(log(m)))

time using Schönhage and Strassen’s polynomialmultiplication algorithm (cf. [27, Sect. 8.3])
and a reduction of division to multiplication using a Newton iteration (cf. [27, Sect. 9.1]).
Note that both methods work over any commutative ring with 1. ��

6.2 Linear algebra over Galois rings

We recall how fast we can compute the Smith normal form of a matrix over R and show
that computing the right kernel of a matrix and solving a linear system can be done in a
similar speed. Let 2 ≤ ω ≤ 3 be the matrix multiplication exponent (e.g., ω = 2.37 using
the Coppersmith–Winograd algorithm).

Lemma 10 ([25, Proposition 7.16]) Let A ∈ Ra×b. Then, the Smith normal form D of A, as
well as the corresponding transformation matrices S and T , can be computed in

O(abmin{a, b}ω−2 log(a + b))

operations in R.

Lemma 11 Let A ∈ Ra×b. An m-shaped basis of the right kernel of A can be computed in
O(abmin{a, b}ω−2 log(a + b)) operations in R.

Proof We compute the Smith normal form D = SAT and the transformation matrices S
and T of A. To compute the right kernel, we need to solve the homogeneous linear system
Ax = 0 for x. Using the Smith normal form, we can rewrite it into

DT−1x = 0.

Denote y := T−1x and first solve Dy = 0. W.l.o.g., let the diagonal entries of D be of the
form ⎡

⎢⎢⎢⎢⎢⎣

In0
gm In1

. . .

gr−1
m Inr−1

0

⎤
⎥⎥⎥⎥⎥⎦

where the ni are the coefficients of the rank profile φ(x) =∑r−1
i=0 ni xi ∈ N[x]/(xr ) of A’s

row space. Then, the rows of the following matrix are an m-shaped basis of the right kernel
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of D (we denote by η := n0 the free rank of A’s row space and by μ :=∑r−1
i=0 ni ) the rank

of A’s row space):

K :=
[
0(μ−η)×η B 0(μ−η)×(b−μ)

0(b−μ)×η 0(b−μ)×(μ−η) I (b−μ)×(b−μ)

]
∈ R(b−η)×b,

where

B :=

⎡
⎢⎢⎢⎣

gr−1
m In1

gr−2
m In1

. . .

g1
m Inr−1

⎤
⎥⎥⎥⎦ .

Hence, the rows of KT� form an m-shaped basis of the right kernel of A. Note that this
matrix multiplication can be implemented with complexity O(b2) since K has only at most
one entry per row and column. ��
Lemma 12 Let A ∈ Ra×b and b ∈ Ra. A solution of the linear system Ax = b (or,
in case no solution exists, the information that it does not exist) can be obtained in
O(abmin{a, b}ω−2 log(a + b)) operations in R.

Proof We follow the same strategy and the notation as in Lemma 11. Solve

D T−1x︸ ︷︷ ︸
=: y

= Sb =: b′.

for one y. The system has a solution if and only if b′
j ∈ Mi j for j = 1, . . . , r ′, and b′

j = 0
for all j > r ′. In case it has a solution, it is easy to obtain a solution y. Then we only need to
compute x = T y, which is a solution of Ax = b. The heaviest step is to compute the Smith
normal form, which proves the complexity statement. ��

6.3 Complexity of the LRPC decoder over Galois rings

Theorem 6 Suppose that the inverse elements f −1
1 , . . . , f −1

λ are precomputed. Then, Algo-
rithm 1 has complexity Õ(λ2n2m) operations in R.

Proof The heaviest steps of Algorithm 1 (see Sect. 4) are as follows:
Line 1 computes the syndrome s from the received word. This is a vector-matrix multi-

plication in S, which costs O(n(n − k)) ⊆ O(n2) operations in S, i.e., Õ(n2m) operations
in R.

Line 4 is called λ times and computes for each fi the set Si = f −1
i S (recall that the

inverses f −1
i are precomputed). We obtain a generating set of Si by multiplying f −1

i to all
syndrome coefficients s1, . . . , sn−k . This costs O(λ(n − k)) operations in S in total, i.e.,
Õ(λnm) operations in R. If we want a minimal generating set, we can compute the Smith
normal form for each Si , which costs Õ(λnω−1m) operations in R according to Lemma 10.

Line 5 computes the intersection E ′ ←⋂λ
i=1 Si of the modules Si . This can be computed

via the kernel computation algorithm as follows: Let A and B be two modules. Then, we
haveA∩B = K (K(A) ∪ K(B)). Hence, we can compute the intersection A∩B by writing
generating sets of the modules as the rows of two matrices A and B, respectively. Then, we
compute matrices A′ and B′, whose rows are generating sets of the right kernel of A and
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B, respectively. Then, rows of the matrix C :=
[
A′
B′
]
are a generating set of K(A) ∪ K(B),

and be obtain A ∩ B by computing again the right kernel of C. By applying this algorithm
iteratively to the Si (using the kernel computation algorithm described in Lemma 11), we
obtain the intersection E ′ in Õ(λnω−1m) operations.

Line 6 recovers an error vector e from the support E ′ and syndrome s. As shown in
the proof of Lemma 2, this can be done by solving t linear systems over R with each n
unknowns and (n − k)λ equations w.r.t. the same matrix Hext. Hence, we only once need
to compute the Smith normal form of Hext, which requires Õ(n[(n − k)λ]ω−1) operations.
The remaining steps for solving the systems (see Lemma 12 to compute one solution, if it
exists, and Lemma 11 to compute an affine basis) consist mainly of matrix-vector operations,
which require in total Õ(tλ2(n − k)2) operations in R, where t ≤ m is the rank of E ′. Note
that during the algorithm, it is easy to detect whether the systems have no solution, a unique
solution, or more than one solution. ��
Remark 5 The assumption that f −1

1 , . . . , f −1
λ are precomputed makes sense since in many

application, the code is chosen once and then several receivedwords are decoded for the same
f1, . . . , fλ. Precomputation of all f −1

1 , . . . , f −1
λ costs at most Õ(λmω) since for a ∈ S, the

relation a−1a ≡ 1 mod h (for a and a−1 being the unique representative in R[z]/(h) with
degree < m) gives a linear system of equations of size m × m over R with a unique solution
a−1. This complexity can only exceed the cost bound in Theorem 6 if m � n.

In fact, we conjecture, but cannot rigorously prove, that the inverse of a unit in S can be
computed in Õ(m) operations in R using a fast implementation of the extended Euclidean
algorithm (see, e.g., [27]). If this is true, the precomputation cost is smaller than the cost
bound in Theorem 6.

The currently fastest decoder for Gabidulin codes over finite rings, theWelch–Berlekamp-
like decoder in [14], has complexity O(nω) operations over S since its main step is to solve
a linear system of equations. Over R, this complexity bound is Õ(nωm), i.e., it is larger than
the complexity bound for our LRPC decoder for constant λ and the same parameters n andm.

7 Simulation results

We performed simulations of LRPC codes with λ = 2, k = 8 and n = 20 (note that we need
k ≤ λ−1

λ
n by the unique-decoding property) over the ring S with p = r = 2, s = 1 and

m = 21. In each simulation, we generated one parity-check matrix (fulfilling the maximal-
row-span and the unity properties) and conducted a Monte Carlo simulation in which we
collected at least 1000 decoding errors and at least 50 failures of every success condition. All
simulations gave very similar results and confirmed our analysis. We present one of the simu-
lation results in Fig. 1 for errors of rank weight t = 1, . . . , 7 and three different rank profiles.

We indicate by markers the estimated probabilities of violating the product condition (S:
Prod), the syndrome condition (S: Synd), the intersection condition (S: Inter) as well as
the decoding failure rate (S: Dec). Black markers denote the result of the simulations with
errors of rank profile φ1(x) = t , blue markers show the result with errors of rank profile
φ2(x) = t x and orange markers indicate the result with rank profile φ3(x) ∈ {1, 1 + x, 2 +
x, 2+2x, 3+2x, 3+3x, 4+3x}. Further, we show the derived bounds2 on the probabilities
of not fulfilling the product condition (B: Prod) given in Theorem 2, the syndrome condition

2 In Fig. 1, we show for each condition the tightest bound that we derived.
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Fig. 1 Simulation results for λ = 2, k = 8 and n = 20 over S with p = r = 2, s = 1 and m = 21. The
markers indicate the estimated probabilities of not fulfilling the product condition (S: Prod), the syndrome
condition (S: Synd), the intersection condition (S: Inter) and the decoding failure rate (S: Dec), where the
black, blue and orange markers refer to errors of rank profile φ1(x) = t , φ2(x) = t x and φ3(x) ∈ {1, 1 +
x, 2 + x, 2 + 2x, 3+ 2x, 3+ 3x, 4 + 3x}, respectively. The derived bounds on these probabilities are shown
as lines

(B: Synd) derived in Theorem 3, the intersection condition (B: Inter) provided in Theorem 4
and the union bound (B: Dec) stated in Theorem 5. Since the derived bounds depend only
on the rank weight t but not on the rank profile, we show each bound only once.

One can observe that the bound on the probability of not fulfilling the syndrome condition
is very close to the true probability while the bounds on the probabilities of violating the
product and syndrome condition are loose. Gaborit et al. have made the same observation in
the case of finite fields. In addition, it seems that only the rank weight but not the rank profile
has an impact on the probabilities of violating the success conditions.

We also found that the base-ring property of F is—in all tested cases—not necessary
for the failure probability bound on the intersection condition (Theorem 4) to hold. It is an
interesting question whether we can prove the bound without this assumption, both for finite
fields and rings.

8 Conclusion

We have adapted low-rank parity-check codes from finite fields to Galois rings and showed
that Gaborit et al.’s decoding algorithm works as well for these codes. We also presented
a failure probability bound for the decoder, whose derivation is significantly more involved
than the finite-field analog due to the weaker structure ofmodules over finite rings. The bound
shows that the codes have the samemaximal decoding radius as their finite-field counterparts,
but the exponential decay of the failure bound has ps as a basis instead of the cardinality of
the base ring |R| = prs (note R is a finite field if and only if r = 1). This means that there
is a “loss” in failure probability when going from finite fields to finite rings, which can be
expected due to the zero divisors in the ring.

The results show that LRPC codes work over finite rings, and thus can be considered,
as an alternative to Gabidulin codes over finite rings, for potential applications of rank-
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metric codes, such as network coding and space-time codes—recall from the introduction
that network and space-time coding over rings may have advantages compared to the case of
fields. It also opens up the possibility to consider the codes for cryptographic applications,
the main motivation for LRPC codes over fields.

Open problems are a generalization of the codes to more general rings (such as principal
ideal rings); an analysis of the codes in potential applications; as well as an adaption of the
improved decoder for LRPC codes over finite fields in [1] to finite rings. To be useful for
network coding (both in case of fields and rings), the decoder must be extended to handle
row and column erasures in the rank metric (cf. [14,23]).
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Appendix A: Proofs of Corollaries 1 and 2

In this section we provide the proofs of Corollaries 1 and 2 in Sect. 5.1.
Inspired by Proposition 2, we study the following notions. For a given potential rank

profile φ(x) =∑r−1
i=0 ni xi ∈ N[x]/(xr ), with φ(1) = N ≤ m, we consider the sets

Gφ :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

Y0,0 gmY0,1 g2
mY0,2 · · · gr−1

m Y0,r−1

Y1,0 Y1,1 gmY1,2 · · · gr−2
m Y1,r−1

Y2,0 Y2,1 Y2,2 · · · gr−3
m Y2,r−1

...
...

...
...

Y r−1,0 Y r−1,1 Y r−1,2 · · · Y r−1,r−1

⎤
⎥⎥⎥⎥⎥⎦

: Y i, j ∈ Rni ×n j

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

G∗
φ :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

Y0,0 gmY0,1 g2
mY0,2 · · · gr−1

m Y0,r−1

Y1,0 Y1,1 gmY1,2 · · · gr−2
m Y1,r−1

Y2,0 Y2,1 Y2,2 · · · gr−3
m Y2,r−1

...
...

...
...

Y r−1,0 Y r−1,1 Y r−1,2 · · · Y r−1,r−1

⎤
⎥⎥⎥⎥⎥⎦

: Y i, j ∈ Rni ×n j ,Y i,i ∈ GL(ni , R)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Hφ :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

0
gr−1
m Z1

gr−2
m Z2

...

gmZr−1

⎤
⎥⎥⎥⎥⎥⎦

: Zi ∈ Rni ×m

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.
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Notice that

(P1) (Gφ,+, ·) is a subring of RN×N ;
(P2) G∗

φ = Gφ ∩ GL(N , R);
(P3) (G∗

φ, ·) is a subgroup of GL(N , R);

(P4) (Hφ,+) is a subgroup of RN×m ;
(P5) For every Y ∈ Gφ , Z ∈ Hφ , we have Y Z ∈ Hφ ;
(P6) If Y ∈ G∗

φ , then Z �−→ Y Z is a bijection of Hφ .

With these tools and from Proposition 2 we can deduce the two corollaries.

Proof of Corollary 1 First, denote by ni := φM
i and let N := n0 + · · · + nr−1, and fix an

R-basis of S so that we identify S with Rm . Fix a free moduleN ∈ Free(M) and let TN be
such that rowspace(TN ) = N By Proposition 2, we have

Free(M) = {rowspace(YTN + Z) | Y ∈ G∗
φ, Z ∈ Hφ}

= {rowspace(TN + Y−1Z) | Y ∈ G∗
φ, Z ∈ Hφ}

= {rowspace(TN + Z) | Z ∈ Hφ},
where the last equality follows from (p6). It is immediate to see that rowspace(TN + Z) =
N = rowspace(TN ) if and only if all the rows of Z belong to N . For the i th block of ni

rows of Z, we can freely choose among all the elements in gr−i
m N , that are si N . Hence we

get

|{Z ∈ Hφ | rowspace(TN + Z) = N }| = |{Z ∈ Hφ | rowspace(Z) ⊆ N }| =
r−1∏
i=1

sini N .

This means that every module is counted
∏r−1

i=1 sini N many times and we finally obtain

|Free(M)| = |Hφ |∏r−1
i=1 sini N

=
r−1∏
i=1

sini m

sini N
= s(m−N )

∑r−1
i=1 ini .

��
Proof of Corollary 2 Let M be an R-submodule of S with rank profile φM and observe that
M ∈ Mod(φ,N ) if and only if N ∈ Free(M). Identify S with Rm , and define

D :=

⎡
⎢⎢⎢⎣

In0
gm In1

. . .

gr−1
m Inr−1

⎤
⎥⎥⎥⎦ .

With this notation, we have

Mod(φ,N ) = {rowspace(DT ) | T ∈ RN×m, rowspace(T ) = N }.
Moreover, there are exactly |GL(N , R)|manymatrices T ∈ RN×m such that rowspace(T ) =
N , and they are obtained by fixing any matrix T̄ and considering {AT̄ | A ∈ GL(N , R)}.
Let us fix M̄ := rowspace(DT̄ ) ∈ Mod(φ,N ). We count for how many A ∈ GL(N , R)

we have rowspace(DAT̄ ) = M̄. By Proposition 2, this happens if and only if there exist
Y ∈ G∗

φ, Z ∈ Hφ such that AT̄ = Y T̄ + Z, which in turn is equivalent to the condition that

there exists Y ∈ G∗
φ such that (A−Y )T̄ ∈ Hφ . Let us call S := A−Y and divide S in r × r
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blocks Si, j ∈ Rni ×n j , for i, j ∈ {0, . . . , r − 1}. Divide also T in r blocks T i ∈ Rni ×m for
i ∈ {0, . . . , r − 1}. Hence, we have, for every i ∈ {0, . . . , r − 1}

r−1∑
j=0

Si, jT j ∈ mr−i Rni ×m .

Since the rows of T are linearly independent over R, this implies that Si, j ∈ mr−i , that is S
is of the form

S = A − Y =

⎡
⎢⎢⎢⎢⎢⎣

0
gr−1
m Z1

gr−2
m Z2

...

gmZr−1

⎤
⎥⎥⎥⎥⎥⎦

.

Therefore, we have rowspace(DAT̄ ) = M̄ if and only if A = Y + S. It is easy to see that
this holds if and only if A ∈ G∗

φ . Hence, the R-submodule M̄ is counted |G∗
φ | many times.

Since the choice of M̄ was arbitrary, we conclude

|Mod(φ,N )| = |GL(N , R)|
|G∗

φ | .

��
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