
Designs, Codes and Cryptography (2020) 88:2597–2621
https://doi.org/10.1007/s10623-020-00804-0

On the inverses of Kasami and Bracken–Leander exponents

Lukas Kölsch1

Received: 28 March 2020 / Revised: 8 September 2020 / Accepted: 11 September 2020 /
Published online: 6 October 2020
© The Author(s) 2020

Abstract
We explicitly determine the binary representation of the inverse of all Kasami exponents
Kr = 22r − 2r + 1 modulo 2n − 1 for all possible values of n and r . This includes as an
important special case the APN Kasami exponents with gcd(r , n) = 1. As a corollary, we
determine the algebraic degree of the inverses of the Kasami functions. In particular, we show
that the inverse of an APN Kasami function on F2n always has algebraic degree n+1

2 if n ≡ 0
(mod 3). For n �≡ 0 (mod 3)we prove that the algebraic degree is bounded from below by n

3 .
We considerKasami exponentswhose inverses are quadratic exponents orKasami exponents.
We also determine the binary representation of the inverse of the Bracken–Leander exponent
BLr = 22r + 2r + 1 modulo 2n − 1 where n = 4r and r odd. We show that the algebraic
degree of the inverse of the Bracken–Leander function is n+2

2 .

Keywords Kasami exponent · Bracken–Leander function · Modular inversion · Algebraic
degree · APN functions

Mathematics Subject Classification 11T06 · 11Y99 · 94A60

1 Introduction

Vectorial Boolean function play a big role in cryptography because of their importance in the
construction of S-boxes in block ciphers. To ensure resistance against differential attacks,
S-boxes should have low differential uniformity [14].

Definition 1 A function f : F2n → F2n has differential uniformity d , if

d = max
a∈F∗

2n ,b∈F2n
|{x : f (x) + f (x + a) = b}| .

A function with differential uniformity 2 is called almost perfect nonlinear (APN) on F2n .

Clearly, the differential uniformity is always amultiple of 2 so APN functions have the lowest
possible differential uniformity and give the best protection against differential attacks. In
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Table 1 List of known APN exponents over F2n with n = 2t + 1 up to inversion and cyclotomic equivalence

Exponent Conditions Algebraic degree Inverse determined in

Gold 2r + 1 gcd(r , n)=1 r < n/2 2 [14]

Kasami 22r − 2r + 1 gcd(r , n)=1 r < n/2 r + 1 This paper

Welch 2t + 3 3 [10]

Niho 2t − 2
t
2 − 1 t even t+2

2 [10,15]

2t − 2
3t+1
2 − 1 t odd t + 1

Inverse 22t − 1 n − 1 Obvious

Dobbertin 24r + 23r + 22r + 2r − 1 5r = n r + 3 [10]

addition to applications in cryptography, APN functions are connected to coding theory
and reversed Dickson polynomials [2,8,14]. Generally, finding families of APN functions is
difficult and remains a challenge in this research area. One of the best understood classes of
APN functions are APN monomials (see Table 1). If the monomial x �→ xl , 1 ≤ l ≤ 2n − 2
is APN on F2n , we call l an APN exponent on F2n . We denote by wt(l) the binary weight
of l, i.e. the number of ones in its binary expansion. The binary weight of l is precisely the
algebraic degree of the function x �→ xl . The algebraic degree is an important cryptographic
property since mappings with low algebraic degree are potentially more vulnerable to attacks
like higher-order differential attacks [9] or algebraic attacks [4]. It is well known that the
differential uniformity of a permutation is invariant under taking the inverse. In particular, if l
is an APN exponent and invertible inZ2n−1 then the inverse l−1 of l modulo 2n −1 is an APN
exponent as well. We say that l and l ′ are cyclomotic equivalent if l ′ ≡ 2i l (mod 2n − 1)
for some i . Differential uniformity is also invariant under cyclotomic equivalence. If l and
l ′ are cyclotomic equivalent then the binary representation of l ′ is just a cyclic shift of the
binary representation of l. Additionally, if l ′ is invertible modulo 2n − 1 then l ′−1 ≡ 2−i l−1

(mod 2n − 1). To fully classify the APN monomials, it is thus necessary to determine the
inverse of the known APN exponents (if they exist). It is known that APN exponents are
invertible if and only if n is odd (see e.g. [1, Proposition 9.19]). Determining the explicit
binary representations of the inverses of the known APN exponents is thus an interesting
problem. The precise binary representations immediately also give the algebraic degree of
the function x �→ xl

−1
. This has been done for all known APN exponents except for the

Kasami exponents (see Table 1). This paper will close this gap and find an explicit expression
for the inverses of all Kasami exponents (if they exist). We will also deal with the non-APN
Kasami exponents.

The objective is thus the following: Find the inverse of Kr = 22r − 2r + 1 modulo 2n − 1
for all r , n. Compared to other APN exponents, determining the inverses of the Kasami
exponents is particularly challenging because they are independent from the field size. APN
exponents with this property are called exceptional APN exponents. It was shown in [6] that
Gold and Kasami exponents are the only exceptional APN exponents. Finding the inverses
of Gold exponents is relatively easy because of their low binary weight. In contrast, the
algebraic degree of the Kasami exponents is unbounded which makes the determination of
the inverses much harder.

In [10], a method to find the inverse of a fixed exponent l modulo 2n − 1 for arbitrary n
was given. This technique was used to determine the inverses of the second Kasami exponent
K2 = 13. Unfortunately, it is unclear how to use this approach to determine the inverses of
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Table 2 List of exponents yielding 4 differentially uniform permutations over F2n with n = 2t up to inversion
and cyclotomic equivalence

Exponent Conditions Algebraic degree Inverse determined in

Gold 2r + 1 t odd, gcd(r , n)=2 r < n/2 2 [10], This paper

Kasami 22r − 2r + 1 t odd, gcd(r , n)=2 r < n/2 r + 1 This paper

Inverse 2n − 2 n − 1 Obvious

Bracken–Leander 22r + 2r + 1 4r=n, r odd 3 This paper

all (infinitely many) Kasami exponents. In fact, just determining the binary weight of the
inverses of Kasami exponents is mentioned as an open problem in [10].

As mentioned earlier, invertible APN exponents do not exist in even dimension. In fact,
no APN permutations in even dimension n �= 6 have been discovered yet, so permutations
in even dimension with differential uniformity 4 are of great interest and have been the
subject of much research. In this case, it is also interesting to consider monomials with
differential uniformity 4. For a complete list of known families of 4−differentially uniform
permutation monomials in even dimension see Table 2. In the next section, we will find
the binary representation of the inverses of all invertible Gold exponents and in the fourth
section, we will also determine the binary representation of the inverse of the Bracken–
Leander function. With this, the inverses of all known exponents that produce monomials
with differential uniformity 2 in odd dimension or 4 in even dimension are determined.

Our approach in this paper is new and uses as the key tool the modular add-with-carry
approach that was first formally introduced by Hollmann and Xiang [7].

Theorem 1 [7, Theorem 13] Let a, s ∈ {1, . . . , 2n − 2} and l ∈ N. We denote by a =
(an−1, . . . , a0) and s = (sn−1, . . . , s0) the binary expansions of a and s. Let l = ∑

j t j2
j

with t j ∈ Z. Further, let t+ = ∑
j,t j>0 t j and t− = ∑

j,t j<0 t j . The following are equivalent:

(a) s ≡ l · a (mod 2n − 1)
(b) There exists a sequence c = (cn−1, . . . , c0) with ci ∈ {t−, t− + 1, . . . , t+ − 1} (called

the carry sequence) such that

2ci − ci−1 + si =
∑

j

t j ai− j (1)

holds for all i . Here, the indices are seen as elements in Zn.

The carry sequence in (b) is unique.

Remark 1 Note that the representation l = ∑
j t j2

j with integer coefficients t j in Theorem 1
is not unique. In fact, this is one of the strengths of this theorem since it makes it possible
to choose a representation that has more structure than the (usual) binary representation.
This makes a big difference especially for the Kasami exponents. Indeed, the r -th Kasami
exponent Kr can be written (as it is done usually) as Kr = 22r −2r +1, i.e. with t2r = t0 = 1
and tr = −1. This is certainly a much simpler representation than the binary representation
that has r + 1 ones. In the general case, it seems to be desirable to choose a representation
such that both t+ and t− have low absolute value so that the range of possible values for the
carry sequence is small.

The basic idea of finding the inverse of some value l modulo 2n − 1 is now quite simple:
We use Theorem 1 and set s = 1. Then we try to find sequences a and c that satisfy
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Eq. (1). While we apply the approach in this paper only to the Gold, Kasami and Bracken–
Leander exponents, the idea can in principle be used for arbitrary values of l. However,
the corresponding sequences a and c are highly dependent on the choice of l, so a general
treatment seems to be impossible. Still, this approach gives a good framework to find inverses
in Z2n−1.

2 The Gold exponents

To “warm up” and to illustrate our method using Theorem 1, we (re-)derive the inverses
of the invertible Gold exponents Gr = 2r + 1 in Z2n−1. The inverses of the APN Gold
exponents (i.e. with the condition gcd(r , n) = 1) are explicitly given in [14]. Moreover, the
algebraic degree of the inverses of all Gold exponents is known [10, Theorem 3.7.]. However,
the explicit binary expansion of the inverses of the non-APN Gold exponents has not been
determined yet. In this section, we apply the add-with-carry approach to find the binary
expansion of the inverses of all invertible Gold exponents.

Applied to the Gold exponent, Theorem 1 yields the following.

Theorem 2 Let a, s ∈ {1, . . . , 2n − 2} and Gr = 2r + 1 be the r-th Gold exponent. We
denote by a = (an−1, . . . , a0) and s = (sn−1, . . . , s0) the binary expansions of a and s. The
following are equivalent:

(a) s ≡ Gr · a (mod 2n − 1)
(b) There exists a carry sequence c = (cn−1, . . . , c0) with ci ∈ {0, 1} such that

2ci − ci−1 + si = ai−r + ai (2)

holds for all i . Here, the indices are seen as elements in Zn.

The carry sequence in (b) is unique.

The following lemma characterizes all invertible Gold exponents.

Lemma 1 (e.g. [12, Lemma 11.1.]) Let r and n be positive integers. The Gold exponent
Gr = 2r + 1 is invertible in Z2n−1 if and only if

n
gcd(n,r) is odd.

2.1 The APN Gold exponents

We first deal with the APN Gold exponents Gr = 2r + 1 over F2n with gcd(r , n) = 1.
We will use some notation from [11], where the modular add-with-carry approach was used
to find the Walsh support of the Kasami functions. In particular, we will use the notion of
r -ordered sequences.

Since gcd(r , n) = 1 we can reorder the sequences a and c in Theorem 2 in the following
way:

a0, a−r , a−2r , . . . , a−(n−1)r and c0, c−r , c−2r , . . . , c−(n−1)r .

Here, we view again the indices as elements in Zn . This ordering is technically a decimation
of the sequence by−r . Since wewill be using this ordering a lot, we will call it the r-ordering
of a sequence and also denote these sequences by

a0, a1, a2, . . . , an−1 and c0, c1, c2, . . . , cn−1,
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On the inverses of Kasami and Bracken–Leander exponents 2601

where we will always make sure to specify whether we use the regular ordering or the
r -ordering.

By Lemma 1, Gr is invertible if and only if n is odd. We denote by e the least positive
residue of the inverse of r modulo n. Using r -ordered sequences, the key equation in Theorem
2 takes on the following simpler form:

Theorem 3 Let n ∈ N, a ∈ {1, . . . , 2n−2}andGr be the r-thGold exponentwithgcd(r , n) =
1. Let e be the least positive residue of the inverse of r modulo n and (a0, . . . , an−1) be the
r-ordered sequence of the binary representation of a, i.e. a ≡ ∑n−1

i=0 ai2−ir (mod 2n − 1).
The following are equivalent:

(a) a is the inverse of Gr modulo 2n − 1.
(b) There exists an r-ordered carry sequence c = (c0, c1, . . . , cn−1) with ci ∈ {0, 1} such

that

2c0 − ce + 1 = a1 + a0 (3)

2ci − ci+e = ai+1 + ai (4)

holds for all i ∈ Zn, i �= 0.

The carry sequence in (b) is unique.

Now, we can use Theorem 3 to give a simple alternative proof for the inverse of the
APN Gold exponents. As pointed out earlier, the idea is to guess the structure of the carry
sequence from examples for low n and then compute the inverse from the carry sequence.
We will make a detailed example to give an intuition for this process. Note that the case of
APN Gold functions is easier than other cases (especially the Kasami cases in later section),
but the approach will always remain the same.

Example 1 Let n = 7, r = 3 and consider the invertible APN Gold exponent G3 = 23 +1 =
9. We have 3 · 5 ≡ 1 (mod 7), so e = 5. The inverse of 9 modulo 27 − 1 is 113 =
26 + 25 + 24 + 20, and the binary sequence of 113 in regular ordering is (a6, a5, . . . , a0) =
(1, 1, 1, 0, 0, 0, 1) and in r -ordering (a0, . . . , a6) = (1, 1, 0, 1, 0, 1, 0). We have a1 = a0 =
1 so by Eq. (3) necessarily c0 = c5 = 1. If i �= 0 we have ai + ai+1 = 1 and thus by Eq. (4)
ci = ci+5 = 1. We conclude that the carry sequence consists exclusively of ones.

From this example (and possibly other examples for low n) we guess that the carry sequence
always consists only of ones. Let us now consider the Eqs. (3) and (4) for c0 = c1 =
· · · = cn−1 = 1 and arbitrary n. It necessarily yields a1 = a0 = 1 and ai+1 + ai = 1.
From this, we immediately conclude that the r -ordered sequence of the inverse G−1

r is
(a0, . . . , an−1) = (1, 1, 0, 1, 0, 1, . . . , 0, 1, 0). Since both Eqs. (3) and (4) are satisfied, this
must be the r -ordered sequence of the inverse of the Gold exponent. We have thus proven
the following:

Proposition 1 [14, Proposition 5] Let Gr = 2r + 1 with gcd(r , n) = 1 and n odd. Then Gr

is invertible in Z2n−1 and the least positive residue of its inverse is

G−1
r =

n−1
2∑

i=0

22ir .

In particular, wt(G−1
r ) = n+1

2 , so the algebraic degree of x �→ xG
−1
r over F2n is

n+1
2 .

123



2602 L. Kölsch

Proof By the considerations above, the r -ordered sequence of the inverse G−1
r is

(a0, . . . , an−1) = (1, 1, 0, 1, 0, 1, . . . , 0, 1, 0). We conclude

G−1
r ≡ 1 +

∑

i∈{0,...,n−1}
i odd

2−ir ≡
∑

i∈{0,...,n−1}
i even

2ir ≡
n−1
2∑

i=0

22ir (mod 2n − 1).


�
The main takeaway from the example is that the carry sequence has a simpler structure

than the sequence (a0, . . . , an−1) of the inverse. This observation will also hold for all other
exponents considered in this paper. Indeed, while it is still possible to discern the structure of
the APN Gold exponents with relative ease without looking at the carry sequence, this will
be close to impossible in the case of the Kasami exponents.

2.2 The non-APN Gold exponents

We now deal with the more general case of Gold exponents Gr with gcd(r , n) > 1.
Since gcd(n, r) > 1, we cannot use the r -ordering of sequences that we used in the

previous proposition. We expand the concept in a natural way.

Definition 2 Let a = (an−1, . . . , a0) be a sequence of integers and r be a positive integer.
Set d = gcd(n, r). We define the associated (d × n

d )-matrix Ma,r by

Ma,r =

⎛

⎜
⎜
⎜
⎜
⎝

a0 a−r a−2r . . . a−( nd −1)r

a1 a1−r a1−2r . . . a1−( nd −1)r
...

...

ad−1 ad−1−r ad−1−2r . . . ad−1−( nd −1)r

⎞

⎟
⎟
⎟
⎟
⎠
,

where the indices are seen as elements in Zn . We call Ma,r the r -matrix of a. If a is a binary
sequence, then we call Ma,r also the r -matrix of the corresponding element in Z2n−1 or
{0, 1, . . . , 2n − 2}.

Since the r -matrices are constructed from sequences, we use the slightly unusual con-
vention of indexing from 0, i.e. the first row/column will be called row/column 0. With this
convention, the r -ordered sequences considered in the previous section are just a special case
of r -matrices with only one row. Again in accordance to the notation used earlier, we denote
by e the least positive residue of the inverse of r

gcd(n,r) modulo n
gcd(n,r) .

We now use r -matrices to rephrase Theorem 2.

Theorem 4 Let a ∈ {1, . . . , 2n − 2}, n ∈ N and Gr be the r-th Gold exponent with
gcd(r , n) = d and e be the least positive residue of the inverse of r

d modulo n
d . Moreover, let

Ma,r =

⎛

⎜
⎜
⎜
⎜
⎝

a0,0 a0,1 a0,2 . . . a0, nd −1

a1,0 a1,1 a1,2 . . . a1, nd −1
...

...

ad−1,0 ad−1,1 ad−1,2 . . . ad−1, nd −1

⎞

⎟
⎟
⎟
⎟
⎠

be the r-matrix of a, i.e. a ≡ ∑d−1
i=0

∑ n
d −1
j=0 ai, j2i− jr (mod 2n − 1). The following are

equivalent:
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(a) a is the inverse of Gr modulo 2n − 1.
(b) There exists an r-matrix for the carry sequence c of the form

Mc,r =

⎛

⎜
⎜
⎜
⎜
⎝

c0,0 c0,1 c0,2 . . . c0, nd −1

c1,0 c1,1 c1,2 . . . c1, nd −1
...

...

cd−1,0 cd−1,1 cd−1,2 . . . cd−1, nd −1

⎞

⎟
⎟
⎟
⎟
⎠

with ci, j ∈ {0, 1} such that the following equations hold:

2c0,0 − cd−1,e + 1 = a0,1 + a0,0 (5)

2c0, j − cd−1, j+e = a0, j+1 + a0, j for all j ∈ {1, . . . , n
d

− 1} (6)

2ci, j − ci−1, j = ai, j+1 + ai, j for all i ∈ {1, . . . , d − 1}, j ∈ {0, . . . , n
d

− 1}.
(7)

The carry sequence (and thus its associated r-matrix) in (b) is unique.

Proof The Theorem follows immediately from Theorem 2 and the definition of the r -matrix.
The predecessor of the values c−k1r is determined as follows: Observe that c−k1r−1 =
cgcd(n,r)−1−k2r if and only if −k1r − 1 ≡ gcd(n, r) − 1 − k2r (mod n), which is equiv-
alent to−(k1 −k2)

r
gcd(n,r) ≡ 1 (mod n

gcd(n,r) ), so the predecessor of c−k1r is cgcd(n,r)−1−k2r

with k2 = k1 + e. 
�
With Theorem 4, we can give the explicit binary representation of all inverses of Gold

exponents.

Proposition 2 Let n ∈ N and Gr be the r-th Gold exponent with gcd(r , n) = d > 1 and n
d

odd. Let e be the least positive residue of the inverse of rd . ThenG
−1
r ≡ ∑d−1

i=0
∑ n

d −1
j=0 ai, j2i− jr

(mod 2n − 1) where the values ai, j are the entries of the (d × n
d )-matrix

Ma,r =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 1 0 . . . 0 1
0 0 1 0 1 0 . . . 0 1
...

0 0 1 0 1 0 . . . 0 1
1 1 0 1 0 1 . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

In particular, wt(G−1
r ) = n−d+2

2 .

Proof The r -matrix of the corresponding carry sequence is the (d × n
d )-matrix

Mc,r = (ci, j ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 . . . 1
0 1 1 1 . . . 1
...

...

0 1 1 1 . . . 1
1 1 1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Wenow just have to verify Eqs. (5) to (7). For Eq. (5), we get 2c0,0−cd−1,e+1 = a0,1+a0,0 =
0. For Eq. (6), we have 2c0, j − cd−1, j+e = a0, j+1 + a0, j = 1 for all values of j > 0. For
Eq. (7), we have 2ci, j − ci−1, j = ai, j+1 + ai, j = 0 if j = 0 and 0 < i < d − 1,
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2604 L. Kölsch

2ci, j−ci−1, j = ai, j+1+ai, j = 2 if j = 0 and i = d−1 and2ci, j−ci−1, j = ai, j+1+ai, j = 1
in all other possible cases. Thus, all equations are satisfied.

The value of wt(G−1
r ) can be determined easily by counting the ones in the matrix

Ma,r . 
�
Recall that all invertible Gold exponents satisfy n

gcd(r ,n) odd by Lemma 1, so Propositions 1
and 2 cover all invertible Gold exponents.

Note that the gcd(r , n) = 1 case can even be recovered as a special case fromProposition 2.
Indeed, the last row of the r -matrices Ma,r and Mc,r are precisely the r -sequences we saw
in the gcd(r , n) = 1 case in Proposition 1.

3 The Kasami exponents

Applied to the Kasami exponent Kr = 22r − 2r + 1, Theorem 1 yields the following.

Theorem 5 Let a, s ∈ {1, . . . , 2n − 2} and Kr be the r-th Kasami exponent. We denote by
a = (an−1, . . . , a0) and s = (sn−1, . . . , s0) the binary expansions of a and s. The following
are equivalent:

(a) s ≡ Kr · a (mod 2n − 1)
(b) There exists a carry sequence c = (cn−1, . . . , c0) with ci ∈ {−1, 0, 1} such that

2ci − ci−1 + si = ai−2r − ai−r + ai (8)

holds for all i . Here, the indices are seen as elements in Zn.

The carry sequence in (b) is unique.

We extend the definition of the weight of a sequence to the sum of all of its elements. For
binary sequences, this corresponds exactly to its binary weight. In particular, this allows us
to talk about the weight of the carry sequence. Using this convention, the following Lemma
gives an additional condition on the carry sequence.

Lemma 2 [7, Lemma 5] With the notation of Theorem 5, we have the following:

(a) ci + ci−r ∈ {−1, 0, 1}. In particular, |wt(c)| ≤ n
2 .

(b) wt(c) + wt(s) = wt(a). In particular, for s = 1 we have wt(c) = wt(a) − 1.

The following Proposition shows when a Kasami exponent is invertible modulo 2n − 1.

Proposition 3 [10, Lemma 3.8] Let n be a positive integer and Kr = 22r − 2r + 1 be the
r-th Kasami exponent. Kr is invertible modulo 2n −1 if and only if one of the following cases
occurs:

• n
gcd(r ,n) is odd,

• n
gcd(r ,n) is even, r is even and gcd(r , n) = gcd(3r , n).

We first deal with the case gcd(r , n) = 1, then with the case n
gcd(r ,n) odd and finally with

the case n
gcd(r ,n) even. Technically, the case gcd(r , n) = 1 is included in the case n

gcd(r ,n)
odd. However, we single out this case for two reasons: Firstly, it is particularly interesting
since those Kasami exponents are precisely the APN exponents. Secondly, the case n

gcd(r ,n)
odd is very technical, but can be described much easier by applying the results for the special
case gcd(r , n) = 1.
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3.1 The case gcd(r, n) = 1

Wefirst deal with the APNKasami exponents Kr = 22r −2r +1 overF2n with gcd(r , n) = 1.
For this case, the modular add-with-carry approach was already applied in [11] to determine
the Walsh support of the Kasami function x �→ xKr .

By Proposition 3, Kr is invertible if and only if n is odd. We denote by e the least positive
residue of the inverse of r modulo n. Observe that Kr and Kn−r are cyclotomic equivalent
exponents on F2n . Indeed, (22(n−r) − 2n−r + 1)22r ≡ 22r − 2r + 1 (mod 2n − 1). Then
K−1
r ≡ 2−2r K−1

n−r (mod 2n − 1), so it suffices to determine the inverse of one of these two
values. Since n is odd, we can thus assume without loss of generality that e is odd.

Since gcd(r , n) = 1 we can reorder the sequences a and c in Theorem 5 using the r -
sequences introduced in the previous section. Using r -ordered sequences, the key equation
for the Kasami exponents in Theorem 5 takes on the following form:

Theorem 6 Let n ∈ N, a ∈ {1, . . . , 2n − 2} and Kr be the r-th Kasami exponent with
gcd(r , n) = 1. Let (a0, . . . , an−1) be the r-ordered sequence of the binary representation of
a, i.e. a ≡ ∑n−1

i=0 ai2−ir (mod 2n − 1). The following are equivalent:

(a) a is the inverse of Kr modulo 2n − 1.
(b) There exists an r-ordered carry sequence c = (c0, c1, . . . , cn−1) with ci ∈ {−1, 0, 1}

such that

2c0 − ce + 1 = a2 − a1 + a0 (9)

2ci − ci+e = ai+2 − ai+1 + ai (10)

holds for all i ∈ Zn, i �= 0.

The carry sequence in (b) is unique.

Experimental results show that the inverses of the APN Kasami exponents often have
binary weight n+1

2 . In this case, Lemma 2 immediately shows that the r -ordered carry
sequence has weight n−1

2 and must be a cyclic shift of the sequence (0, 0, 1, 0, 1, . . . , 0, 1).
Since the carry sequence of the inverse uniquely determines the inverse, these cases can then
be solved with comparatively little effort.

In this section, we will always use r -ordered sequences to represent inverses of Kasami
exponents because this notation makes the description much easier. Consequently, the
inverses will be written in the form K−1

r ≡ ∑n−1
i=0 ai2−ir (mod 2n − 1) for a sequence

a = (a0, . . . , an−1). Of course, a translation into the more standard binary representation
is easy by reordering the sequence a, i.e. K−1

r ≡ ∑n−1
i=0 a−ie2i (mod 2n − 1) (recall that e

denotes the inverse of r modulo n).

Proposition 4 Let n odd, Kr be the r-th Kasami exponent with gcd(r , n) = 1. Let e be the
least positive residue of the inverse of r modulo n. The inverse of Kr modulo 2n − 1 is

K−1
r ≡

n−1∑

i=0

ai2
−ir (mod 2n − 1),

where a = (a0, . . . , an−1) is determined as follows:

• If e = 6k + 1, then a = (1, x, y) and x = (1, 0, 1, 0, . . . , 1, 0, 1, 0) is a sequence of
length n − e and y = (1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, . . . , 1, 1, 1, 0, 0, 0) is a sequence
of length 6k.
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2606 L. Kölsch

• If e = 6k + 5, then a = (0, x, 1, 1, y) and x = (0, 1, 0, 1, . . . , 0, 1, 0, 1) is a sequence
of length n − e + 2 and y = (0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, . . . , 0, 0, 0, 1, 1, 1) is a
sequence of length 6k.

In both cases, we have wt(K−1
r ) = n+1

2 .

Proof Let e = 6k + 1. Set c = (0, 1, 0, 1, . . . , 0, 1, 0, 1, 0), i.e. ci = 0 if i is even, and
ci = 1 otherwise. We show that a and c satisfy the conditions in Theorem 6. Equation (9)
can be easily verified. For Eq. (10), we have the following:
Case 1: i odd, i + e < n: We have ci = 1, ci+e = 0, ai = ai+2 = 1 and ai+1 = 0.
Case 2: i even, i + e < n: We have ci = 0, ci+e = 1, ai = ai+2 = 0 and ai+1 = 1.
Case 3: i odd, i + e ≥ n: We have ci = ci+e = 1. Depending on the value of i , the triple
(ai , ai+1, ai+2) takes on the values (1, 0, 0), (0, 0, 1) or (1, 1, 1).
Case 4: i even, i + e ≥ n: We have ci = ci+e = 0. Depending on the value of i , the triple
(ai , ai+1, ai+2) takes on the values (0, 0, 0), (0, 1, 1) or (1, 1, 0).
So Eq. (10) holds for all i .

Now let e = 6k + 5. Set c = (0, 0, 1, 0, 1, 0, 1, 0, 1, . . . , 0, 1), i.e. ci = 0 if i = 0 or i
odd and ci = 1 otherwise. We again show that Eqs. (9) and (10) are satisfied. Observe that
Eq. (9) holds. We check the following cases of Eq. (10) for i > 0:
Case 1: i odd, i + e ≤ n: We have ci = 0, ci+e = 1, ai = ai+2 = 0 and ai+1 = 1.
Case 2: i even, i + e ≤ n: We have ci = 1, ci+e = 0, ai = ai+2 = 1 and ai+1 = 0.
Case 3: i odd, i + e > n: We have ci = ci+e = 0. Depending on the value of i , the triple
(ai , ai+1, ai+2) takes on the values (0, 0, 0), (0, 1, 1) or (1, 1, 0).
Case 4: i even, i + e > n: We have ci = ci+e = 1. Depending on the value of i , the triple
(ai , ai+1, ai+2) takes on the values (1, 0, 0), (0, 0, 1) or (1, 1, 1).

So Eq. (10) holds for all i . 
�
The Kasami APN functions and their inverses are also almost bent functions. It is known

that the algebraic degree of almost bent functions is at most n+1
2 [2]. We have shown that the

inverses of the Kasami APN functions defined by the exponents considered in Proposition 4
attain this bound.

The only case left to check is e = 6k+3 (recall that we could assume e odd without loss of
generality). This case is a lot more involved and has to be divided into several subcases. The
key difference to the cases considered above is that wt(K−1

r ) < n+1
2 for e = 6k+3, so finding

the correct carry sequence is more complicated. However, the strategy of the proof remains
the same: Based on experimental results, we guess a carry sequence that then determines the
inverse.

Proposition 5 Let n odd, Kr be the r-th Kasami exponent with gcd(r , n) = 1. Let e = 6k+3
be the least positive residue of the inverse of r modulo n. Define s, t ∈ N by n = se + t with
0 ≤ t < e. Further, let x1 = (0, 0, 0, 1, 1, 1), x2 = (0, 1, 1, 1, 0, 0) be sequences of length
6 and

x = (0, 1, 1, x1, . . . , x1︸ ︷︷ ︸
k-times

, 0, 0, 0, x2, . . . , x2︸ ︷︷ ︸
k-times

)

y = (0, 0, 0, x2, . . . , x2︸ ︷︷ ︸
k-times

, 0, 1, 1, x1, . . . , x1︸ ︷︷ ︸
k-times

)

be sequences of length 2e. Then

K−1
r ≡

n−1∑

i=0

ai2
−ir (mod 2n − 1),
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where a = (a0, . . . , an−1) is determined as follows:

(a) If t = 6u + 1 then

a = (x1, . . . , x1︸ ︷︷ ︸
u-times

, y, . . . , y
︸ ︷︷ ︸

(s−2)/2-times

, 0, 0, 0, x2, . . . , x2︸ ︷︷ ︸
k-times

, 0, 1, 1, x1, . . . , x1︸ ︷︷ ︸
u-times

, z, 0) + (1, 0, . . . , 0),

where z = (0, 1, 0, 1, . . . , 0, 1, 0, 1) is a sequence of length e − 3 − 6u.
(b) If t = 6u + 2 then

a = (0, 1, x1, . . . , x1︸ ︷︷ ︸
u-times

, y, . . . , y
︸ ︷︷ ︸

(s−1)/2-times

, 0, 0, z, 1, z2),

where z = (1, 0, 1, 0 . . . , 1, 0, 1, 0) is a sequence of length 6u and z2 = (x2, x1, . . . , x1︸ ︷︷ ︸
(e−6u−9)/6

-times

)

is a sequence of length e − 6u − 3.
(c) If t = 6u + 4 then

a = (0, 0, 0, x2, . . . , x2︸ ︷︷ ︸
u-times

, x, . . . , x
︸ ︷︷ ︸

(s−1)/2-times

, 0, 1, 1, 0, z, 1, 0, 1, 1, 1, x1, . . . , x1︸ ︷︷ ︸
(e−6u−9)/6

-times

, 0)

where z = (0, 1, 0, 1, . . . , 0, 1, 0, 1) is a sequence of length 6u.
(d) If t = 6u + 5 then

a = (0, 1, 1, 0, 0, x2, . . . , x2︸ ︷︷ ︸
u-times

, x, . . . , x
︸ ︷︷ ︸

(s−2)/2-times

, 0, 1, 1, x1, . . . , x1︸ ︷︷ ︸
k-times

, 0, x1, . . . , x1︸ ︷︷ ︸
u-times

, z)

where z = (0, 1, 0, 1, . . . , 0, 1, 0, 1) is a sequence of length e − 1 − 6u.

In the cases (a) and (d) we have wt(K−1
r ) = n−s+1

2 and in the cases (b) and (c) wt(K−1
r ) =

n−s
2 .

Proof For all four cases, we explicitly give the carry sequence c (in r -ordering) and check
that Eqs. (9) and (10) are satisfied. The carry sequences for all cases are quite similar and
are composed of the same “building blocks”. The verification is simple but tedious, so we
will show the correctness of the first case in detail and for the other cases we will just
state the carry sequence and omit the verification. We define the auxiliary sequences s1 =
(0, 1, 0, 1, . . . , 0, 1) of length 6u and s2 = (0, 0, 1, 0, 1, 0, 1, 0, 1, . . . , 0, 1) of length e =
6k + 3.
Case (a): Set

c = (s1, s2, . . . , s2︸ ︷︷ ︸
s-times

, 0).

Equation (9) can be easily verified. For Eq. (10) we have to distinguish (many) different cases
depending on the value of i . We go through each block in the sequence a.
Case a.1: i > 0 is in the first block of x1’s. If i is even then we have ci = ci+e = 0
and (ai , ai+1, ai+2) ∈ {(0, 1, 1), (1, 1, 0), (0, 0, 0)}. If i is odd then ci = ci+e = 1 and
(ai , ai+1, ai+2) ∈ {(0, 0, 1), (1, 1, 1), (1, 0, 0)}.
Case a.2: i is in the block of y’s. Let i = 6u + q . If q ≡ 1, 2, e + 1, e + 2 (mod 2e) then
ci = ci+e = 0. In these first two cases we have (ai , ai+1, ai+2) = (0, 0, 0) and in the latter
two (ai , ai+1, ai+2) = (0, 1, 1) and (ai , ai+1, ai+2) = (1, 1, 0), respectively. Let q1 be the
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least positive residue of q modulo 2e. If 3 ≤ q1 ≤ e and q1 odd we have ci = ci+e = 0
and (ai , ai+1, ai+2) ∈ {(0, 1, 1), (1, 1, 0), (0, 0, 0)}. If 3 ≤ q1 ≤ e and q1 even, we have
ci = ci+e = 1 and (ai , ai+1, ai+2) ∈ {(0, 0, 1), (1, 1, 1), (1, 0, 0)}. If q1 > e+2 and q1 odd
we have ci = ci+e = 1 and (ai , ai+1, ai+2) ∈ {(0, 0, 1), (1, 1, 1), (1, 0, 0)} and if q1 > e+2
and q1 even we have ci = ci+e = 0 and (ai , ai+1, ai+2) ∈ {(0, 1, 1), (1, 1, 0), (0, 0, 0)}.
Case a.3: i is in the position of the three zeros after the block of y’s. For the first two
zeros (i.e. i = 6u + e(s − 2) and i = 6u + e(s − 2) + 1) we have ci = ci+e = 0 and
(ai , ai+1, ai+2) = (0, 0, 0). For i = 6u + e(s − 2) + 2 we have ci = ci+e = 1 and
(ai , ai+1, ai+2) = (0, 0, 1).
Case a.4: i is in the block of x2’s, i.e. i ∈ {6u + e(s − 2)+ 3, . . . , 6u + e(s − 2)+ 6k + 2}.
If i is odd, we have ci = ci+e = 1 and (ai , ai+1, ai+2) ∈ {(0, 0, 1), (1, 1, 1), (1, 0, 0)} and
if i is even ci = ci+e = 0 and (ai , ai+1, ai+2) ∈ {(0, 1, 1), (1, 1, 0), (0, 0, 0)}.
Case a.5: i ∈ {6u+e(s−2)+6k+3, . . . , 6u+e(s−2)+6k+5}. If i = 6u+e(s−2)+6k+3
then ci = 0, ci+e = cn−1 = 0 and (ai , ai+1, ai+2) = (0, 1, 1). For i = 6u+e(s−2)+6k+4
we have ci = 0, ci+e = c0 = 0 and (ai , ai+1, ai+2) = (1, 1, 0) and for i = 6u + e(s − 2)+
6k + 5 we have ci = 1, ci+e = c1 = 1 and (ai , ai+1, ai+2) = (1, 0, 0).
Case a.6: i is in the second block of x1’s, i.e. i ∈ {6u + e(s − 2) + 6k + 6, . . . , 12u +
e(s − 2) + 6k + 5}. If i is even, we have ci = ci+e = 1 and (ai , ai+1, ai+2) ∈
{(0, 1, 1), (1, 1, 0), (0, 0, 0)}. If i is odd and i �= 12u+e(s−2)+6k+5wehave ci = ci+e = 0
and (ai , ai+1, ai+2) ∈ {(0, 0, 1), (1, 1, 1), (1, 0, 0)}. If i = 12u + e(s − 2) + 6k + 5 then
ci = 1, ci+e = 0 and (ai , ai+1, ai+2) = (1, 0, 1).
Case a.7: i is in the subsequence z, i.e. i ∈ {12u+e(s−2)+6k+5, 6u+e(s−1)+6k+1}.
If i is even then ci = 0, ci+e = 1 and (ai , ai+1, ai+2) = (0, 1, 0). If i is odd then ci = 1,
ci+e = 0 and (ai , ai+1, ai+2) = (1, 0, 1).
So Eq.(10) holds for all i �= 0.
We state the r -ordered carry sequences for the other cases:
Case (b):

c = (−1, 1, s1, s2, . . . , s2︸ ︷︷ ︸
s-times

).

Case (c):

c = (0, 0, 1, s1, s2, . . . , s2︸ ︷︷ ︸
s-times

, 0).

Case (d):

c = (0, 0, 1, 0, 1, s1, s2, . . . , s2︸ ︷︷ ︸
s-times

).


�
Note that Proposition 5 lists all possible options. Indeed, the cases t = 6u and t = 6u + 3

do not occur because in these cases n = se + t is divisible by 3, so e = 6k + 3 is never
invertible modulo n.

Corollary 1 Let n ∈ N and Kr be the r-th Kasami exponent with gcd(n, r) = 1. Let K−1
r be

the inverse of Kr modulo 2n − 1. Then wt(K−1
r ) = n+1

2 for n ≡ 0 (mod 3). Moreover, we
have

wt(K−1
r ) ≥

{
n+2
3 if n ≡ 1 (mod 3)

n+1
3 if n ≡ 2 (mod 3).
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The lower bound is attained if and only if e = 3.

Proof If n ≡ 0 (mod 3) then e is not divisible by 3 since gcd(e, n) = 1. The result then
follows from Proposition 4.

For the other cases, using the notation of Proposition 5, the binary weight wt(K−1
r ) is

minimal when s is maximal. For n = se + t with 0 < t < e this clearly implies minimizing
e, so e = 3 and t ∈ {1, 2}. For these cases we have

wt(K−1
r ) =

⎧
⎨

⎩

n− n−1
3 +1
2 = n+2

3 if t = 1
n− n−2

3
2 = n+1

3 if t = 2

and the result follows. 
�
It is known that a vectorial Boolean function f is always CCZ-equivalent to its inverse f −1.
It is however not clear when a function is EA-equivalent to its inverse. Since EA equivalence
preserves the algebraic degree, we get the following easy corollary.

Corollary 2 Let n ∈ N odd and Kr be the r-th Kasami exponent with gcd(n, r) = 1 and
r < n

2 . Let f = xKr be the r-th Kasami function on F2n . If n ≡ 0 (mod 3) and r �= n−1
2

then f is not EA equivalent to f −1. If n �≡ 0 (mod 3) and r < n−2
3 then f is not EA-

equivalent to f −1.

3.2 The case n
gcd(n,r) odd

We now deal with the Kasami exponents Kr with gcd(n, r) > 1 and n
gcd(n,r odd. While these

Kasami exponents are not APN, they still have some interesting properties. For example, for
gcd(r , n) = 2 and n

2 odd, the function x �→ xKr (and thus also its inverse) is a permutation
with differential uniformity 4 (see Table 2).

Since gcd(n, r) > 1, we cannot use the r -ordering of sequences that we used in the previ-
ous section. Just like in the case of Gold functions, we will thus use r -matrices (introduced
in Definition 2).

In accordance to the notation used in the previous subsection, we denote by e the least
positive residue of the inverse of r

gcd(n,r) modulo n
gcd(n,r) . Since gcd(n, r) = gcd(n − r , r),

n
gcd(n,r) odd and Kr is cyclotomic equivalent to Kn−r , it again suffices to determine the
inverses of Kr where e is odd.

Using r -matrices, Theorem 5 takes on the following form.

Theorem 7 Let a ∈ {1, . . . , 2n − 2}, n ∈ N and Kr be the r-th Kasami exponent with
gcd(r , n) = d and e be the least positive residue of r

d modulo n
d . Moreover, let

Ma,r =

⎛

⎜
⎜
⎜
⎜
⎝

a0,0 a0,1 a0,2 . . . a0, nd −1

a1,0 a1,1 a1,2 . . . a1, nd −1
...

...

ad−1,0 ad−1,1 ad−1,2 . . . ad−1, nd −1

⎞

⎟
⎟
⎟
⎟
⎠

be the r-matrix of a, i.e. a ≡ ∑d−1
i=0

∑ n
d −1
j=0 ai, j2i− jr (mod 2n − 1). The following are

equivalent:

(a) a is the inverse of Kr modulo 2n − 1.
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(b) There exists an r-matrix for the carry sequence c of the form

Mc,r =

⎛

⎜
⎜
⎜
⎜
⎝

c0,0 c0,1 c0,2 . . . c0, nd −1

c1,0 c1,1 c1,2 . . . c1, nd −1
...

...

cd−1,0 cd−1,1 cd−1,2 . . . cd−1, nd −1

⎞

⎟
⎟
⎟
⎟
⎠

with ci, j ∈ {−1, 0, 1} such that the following equations hold:

2c0,0 − cd−1,e + 1 = a0,2 − a0,1 + a0,0 (11)

2c0, j − cd−1, j+e = a0, j+2 − a0, j+1 + a0, j for all j ∈ {1, . . . , n
d

− 1} (12)

2ci, j − ci−1, j = ai, j+2 − ai, j+1 + ai, j for all i ∈ {1, . . . , d − 1}, j ∈ {0, . . . , n
d

− 1}. (13)

The carry sequence (and thus its associated r-matrix) in (b) is unique.

Proof The Theorem follows immediately from Theorem 5 and the definition of the r -matrix.
The process is identical to the corresponding case for the Gold function in Theorem 4. 
�

Again, we find Ma,r and Mc,r such that Eqs. (11)–(13) hold. These verifications become
quite tedious (especially since we have to distinguish several cases). However, the basic
idea does not change: The r -matrices of the carry sequences have a visible structure that
can be used to determine the inverse. It turns out that the inverse of Kr on modulo 2n − 1
with gcd(r , n) = d is closely related to the inverse of K r

d
modulo 2

n
d − 1 which was

already determined in the previous section. To improve readability, we first deal with the
case n

gcd(n,r) = 6v + 3 for a v ∈ N0 separately.

Proposition 6 Let n ∈ N and Kr be the r-th Kasami exponent with gcd(r , n) = d > 1
and n

d = 6v + 3. Let e be the least positive residue of the inverse of r
d modulo n

d . Then

K−1
r ≡ ∑d−1

i=0
∑ n

d −1
j=0 ai, j2i− jr (mod 2n − 1) where the values ai, j are the entries of the

matrix Ma,r

Ma,r =

⎛

⎜
⎜
⎜
⎝

a1
...

a1
a2

⎞

⎟
⎟
⎟
⎠
,

where the rows a1 and a2 are defined as follows:

(a) If e = 6k + 1:

a1 = (0, 0, x1, . . . , x1︸ ︷︷ ︸
n/d−e−2

6 -times

, x2 . . . , x2︸ ︷︷ ︸
k -times

, 0)

a2 = (1, x3, x4 . . . , x4︸ ︷︷ ︸
k -times

).

(b) If e = 6k + 5:

a1 = (0, 1, 0, 0, 0, x4, . . . , x4︸ ︷︷ ︸
n/d−e−4

6 -times

, 1, 1, 0, 0, x6 . . . , x6︸ ︷︷ ︸
k -times

, 0)
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a2 = (0, x5, x2 . . . , x2︸ ︷︷ ︸
k -times

),

where x1 = (0, 0, 1, 1, 1, 0), x2 = (0, 0, 0, 1, 1, 1), x4 = (1, 1, 1, 0, 0, 0), x6 =
(0, 1, 1, 1, 0, 0) are sequences of length 6, x3 = (1, 0, 1, 0 . . . , 1, 0, 1, 0) is a sequence
of length n

d − e and x5 = (0, 1, 0, 1, . . . , 0, 1) is a sequence of length n
d − e.

In both cases we have wt(K−1
r ) = n−3d+4

2 .

Proof Case (a): The r -matrix of the corresponding carry sequence is

Mc,r = (ci, j ) =

⎛

⎜
⎜
⎜
⎝

c′
...

c′
c′′

⎞

⎟
⎟
⎟
⎠

where c′′ = (c0, . . . , c n
d −1) = (0, 1, 0, 1, . . . , 0, 1, 0, 1, 0) and c′ = (ce − 1, ce+1, . . . ,

c n
d −1, c0, c1, . . . , ce−1).
Using Theorem 7, we just have to verify Eqs. (11)–(13). For our choice of Mc,r , we have

in Eq. (11) 2c0,0 − cd−1,e + 1 = 2(ce − 1)− ce + 1 = ce − 1. Similarly, in Eq. (13) we have
for 0 < i < d − 1 and j = 0 the relation 2ci, j − ci−1, j = 2(ce − 1) − (ce − 1) = ce − 1.
From these two observations, we conclude

ce − 1 = ai,2 − ai,1 + ai,0 for all i ∈ {0, . . . , d − 2}. (14)

For j �= 0we have for i = 0 (consulting Eq. (12)) 2c0, j−cd−1,e+ j = 2(ce+ j )−ce+ j = ce+ j .
Looking at Eq. (13) for j �= 0 and i �= 0, we have 2ci, j − ci−1, j = 2ce+ j − ce+ j = ce+ j .
We conclude

ce+ j = ai, j+2 − ai, j+1 + ai, j for all i ∈ {0, . . . , d − 1}, j ∈ {1, . . . , n
d

− 1}. (15)

Let us now consider the case i = d − 1, j �= 0. Then Eq. (13) becomes 2cd−1, j − cd−2, j =
2c j − ce+ j and we get

2c j − ce+ j = ad−1, j+2 − ad−1, j+1 + ad−1, j for all j ∈ {1, . . . , n
d

− 1}. (16)

Finally, for the case i = d − 1 and j = 0 we have (again considering Eq. (13)) 2cd−1,0 −
cd−2,0 = 2c0 − (ce − 1) = 2c0 − ce + 1. We conclude

2c0 − ce + 1 = ad−1,2 − ad−1,1 + ad−1,0 (17)

Observe that, by Proposition 4, a2 is the r -ordered sequence of the inverse of K r
d
modulo

2
n
d − 1 with the corresponding carry sequence c′′. Theorem 6 then shows that Eqs. (16)

and (17) are satisfied. We check Eqs. (14) and (15) by hand. In both equations we do not
consider the last row of Ma,r and since all but the last row in Ma,r are identical, it suffices to
check the first row.

Equation (14) holds because ce = 1 and a0,2 = a0,1 = a0,0 = 0.We check Eq. (15): If e+
j < n and j odd, then ce+ j = 0 and (a0, j , a0, j+1, a0, j+2) ∈ {(0, 0, 0), (1, 1, 0), (0, 1, 1)}. If
e+ j < n and j even, then ce+ j = 1and (a0, j , a0, j+1, a0, j+2) ∈ {(1, 0, 0), (1, 1, 1), (0, 0, 1)}.
If e+ j ≥ n and j is odd then ce+ j=1and (a0, j , a0, j+1, a0, j+2)∈{(1, 0, 0), (1, 1, 1), (0, 0, 1)}
and if e + j ≥ n and j is even then ce+ j = 0 and (a0, j , a0, j+1, a0, j+2) ∈
{(0, 0, 0), (1, 1, 0), (0, 1, 1)}.
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Case (b): The proof is similar to the proof of the first case. We define the r -matrix of the
corresponding carry sequence

Mc,r = (ci, j ) =

⎛

⎜
⎜
⎜
⎝

c′
...

c′
c′′

⎞

⎟
⎟
⎟
⎠

where c′′ = (c0, . . . , c n
d −1) = (0, 0, 1, 0, 1, 0, 1, . . . , 0, 1, 0, 1) and c′ = (ce −

1, ce+1, . . . , c n
d −1, c0, c1, . . . , ce−1). This leads to precisely the same equations (14)–(17).

Again, by Proposition 4, a2 and c′′ are the r -ordered sequences of the inverse of the Kasami
exponent K r

d
modulo 2

n
d −1 and the corresponding carry sequence, respectively. The validity

of Eqs. (16) and (17) follows. Equations (14) and (15) can be checked just as in the previous
case; we omit the calculations.

By adding all entries in Mc,r , we see that in both cases the weight of the carry sequence
is d n/d−3

2 + 1 = n−3d+2
2 . Lemma 2 then implies wt(K−1

r ) = n−3d+4
2 . 
�

Note that the case e = 6k + 3 does not occur because e is invertible modulo n
d = 6v + 3.

We now deal with the remaining cases n
d = 6v + 1 and n

d = 6v + 5.

Proposition 7 Let n ∈ N and Kr be the r-th Kasami exponent with gcd(r , n) = d and n
d odd.

Let e be the least positive residue of the inverse of r
d modulo n

d and n
d = se + t , 0 ≤ t < e.

Then K−1
r ≡ ∑d−1

i=0
∑ n

d −1
j=0 ai, j2i− jr (mod 2n − 1) where the values ai, j are the entries of

the matrix

Ma,r =

⎛

⎜
⎜
⎜
⎝

a1
a2
...

a2

⎞

⎟
⎟
⎟
⎠
.

Here, a1 is the sequence of the inverse of K r
d
modulo 2

n
d −1 in r-ordering as determined in the

previous section and a2 is as follows. We use the auxiliary sequences x1 = (0, 0, 0, 1, 1, 1),
x2 = (1, 1, 0, 0, 0, 1), x3 = (0, 1, 1, 1, 0, 0) of length 6 and

y = (0, 0, 0, x3, . . . , x3︸ ︷︷ ︸
k-times

, 0, 1, 1, x1, . . . , x1︸ ︷︷ ︸
k-times

)

z = (0, 1, 1, x1, . . . , x1︸ ︷︷ ︸
k-times

, 0, 0, 0, x3, . . . , x3︸ ︷︷ ︸
k-times

)

of length 12k + 6.

(a) If e = 6k + 1 and n
d = 6v + 1

a2 = (x1, . . . , x1︸ ︷︷ ︸
v-times

, 0).

(b) If e = 6k + 1 and n
d = 6v + 5

a2 = (x2, . . . , x2︸ ︷︷ ︸
v-times

, 1, 1, 0, 0, 0).
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(c) If e = 6k + 5 and n
d = 6v + 1

a2 = (0, x1, . . . , x1︸ ︷︷ ︸
v-times

).

(d) If e = 6k + 5 and n
d = 6v + 5

a2 = (0, 1, 1, x1, . . . , x1︸ ︷︷ ︸
v-times

, 0, 0).

(e) If e = 6k + 3 and t = 6u + 1

a2 = (x1, . . . , x1︸ ︷︷ ︸
u-times

, y, . . . , y
︸ ︷︷ ︸

s
2 -times

, 0).

(f) If e = 6k + 3 and t = 6u + 2

a2 = (0, 1, x1, . . . , x1︸ ︷︷ ︸
u-times

, y, . . . , y
︸ ︷︷ ︸
s−1
2 -times

, 0, 0, 0, x3, . . . , x3︸ ︷︷ ︸
k-times

).

(g) If e = 6k + 3 and t = 6u + 4

a2 = (0, 0, 0, x3, . . . , x3︸ ︷︷ ︸
u-times

, z, . . . , z
︸ ︷︷ ︸
s−1
2 -times

, 0, 1, 1, x1, . . . , x1︸ ︷︷ ︸
u-times

, 0).

(h) If e = 6k + 3 and t = 6u + 5

a2 = (0, 1, 1, 0, 0, x3, . . . , x3︸ ︷︷ ︸
u-times

, z, . . . , z
︸ ︷︷ ︸
s
2 -times

).

In the cases (a)-(d) we have wt(K−1
r ) = n−d+2

2 , in the cases (e) and (h) wt(K−1
r ) =

n−d(s+1)+2
2 and in cases (f) and (g) wt(K−1

r ) = n−d(s+2)+2
2 .

Proof In all cases the r -matrix of the carry sequence c has identical rows, i.e.

Mc,r =
⎛

⎜
⎝

c′
...

c′

⎞

⎟
⎠ ,

where c′ = (c0, . . . , c n
d −1) is the r -ordered carry sequence for the inverse of K r

d
modulo

2
n
d − 1 determined in the proofs of Propositions 4 and 5. With this carry sequence, the

Eqs. (11)–(13) of Theorem 7 take on the following form:

2c0 − ce + 1 = a0,2 − a0,1 + a0,0 (18)

2c j − c j+e = a0, j+2 − a0, j+1 + a0, j for all j ∈ {1, . . . , n
d

− 1} (19)

c j = ai, j+2 − ai, j+1 + ai, j for all i ∈ {1, . . . , d − 1}, j ∈ {0, . . . , n
d

− 1}.
(20)

The validity of Eqs. (18) and (19) follows from Theorem 6 and the choice of a1 and c′. So
we only need to verify Eq. (20) for each case. We will show the verification for the first case,
the other cases are identical in nature.
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In Case (a) we have c′ = (0, 1, 0, 1, . . . , 0, 1, 0) from Proposition 4, i.e. c j is 0 if j is even
and 1 of j is odd. When j is odd, then (ai, j , ai, j+1, ai, j+2) ∈ {(0, 0, 1), (1, 1, 1), (1, 0, 0)}
and if j is even then (ai, j , ai, j+1, ai, j+2) ∈ {(0, 0, 0), (1, 1, 0), (0, 1, 1)} for all i > 0, so
Eq. (20) holds.

Using Lemma 2, we have

wt(K−1
r ) = wt(c) + 1 = d wt(c′) + 1 = d(wt(K−1

r
d
) − 1) + 1,

where K−1
r
d

is the least positive residue of the inverse of K r
d
modulo 2

n
d − 1. The results

on the binary weights then follow from the results in Propositions 4 and 5. For example for

the cases (a)-(d), Proposition4yieldswt(K−1
r
d
) = n

d +1
2 . This leads towt(K−1

r ) = d
n
d −1
2 +1 =

n−d+2
2 . 
�

Propositions 6 and 7 show that K−1
r has a strong structure because its r -matrix has d − 1

identical rows. By the definition of the r -matrix, this means that K−1
r has n

d runs of (d − 1)
consecutive ones or zeroes.

The results presented in this section yield the following result for the binary weight of the
inverse of Kasami exponents.

Corollary 3 Let n ∈ N and Kr be the r-th Kasami exponent with gcd(n, r) = d and n
d odd.

Let K−1
r be the inverse of Kr modulo 2n − 1. Then wt(K−1

r ) = n−3d+4
2 for n ≡ 0 (mod 3)

and wt(K−1
r ) ≤ n−d+2

2 for n �≡ 0 (mod 3). Moreover, we have

wt(K−1
r ) ≥

{
n−d+3

3 if n
d ≡ 1 (mod 3)

n−2d+3
3 if n

d ≡ 2 (mod 3).

Proof For n ≡ 0 (mod 3) the result follows from Proposition 6.
For the other cases, using the notation of Proposition 7, the binary weight wt(K−1

r ) is
minimal when e is divisible by 3 and s is maximal. For n/d = se + t with 0 < t < e this
clearly implies minimizing e, so e = 3 and t ∈ {1, 2}. With Case (e) and (f) from Proposition
7, we have

wt(K−1
r ) ≥

{
1
2 (n − n+2d

3 + 2) = n−d+3
3 if t = 1

1
2 (n − n+4d

3 + 2) = n−2d+3
3 if t = 2

and the result follows. 
�

3.3 The case n
gcd(n,r) even

We now deal with the case n
gcd(n,r) even. Proposition 3 implies that if Kr is invertible modulo

2n − 1 then both n and r are even and n
gcd(n,r) is not divisible by 3. We will again denote by

e the inverse of r
gcd(n,r) modulo n

gcd(n,r) . Note that since
n

gcd(n,r) is even, e must be odd.

Proposition 8 Let n ∈ N and Kr be the r-th Kasami exponent with gcd(r , n) = d, r even, n
d

even and not divisible by 3. Then K−1
r ≡ ∑d−1

i=0
∑ n

d −1
j=0 ai, j2i− jr (mod 2n − 1) where the
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values ai, j are the entries of the matrix

Ma,r =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1
x
y
...

x
y
x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

where a1, x, y are as follows. We use the auxiliary sequences x1 = (1, 1, 0, 0, 0, 1) and
x2 = (1, 0, 0, 0, 1, 1) of length 6.

(a) If n
d = 6k + 2 then

a1 = (1, 1, x1, . . . , x1︸ ︷︷ ︸
k -times

), x = (1, 0, 1, 0, . . . , 1, 0), y = (0, 1, 0, 1, . . . , 0, 1).

(b) If n
d = 6k + 4 then

a1 = (1, 0, 1, 1, x2, . . . , x2︸ ︷︷ ︸
k -times

), x = (0, 1, 0, 1, . . . , 0, 1), y = (1, 0, 1, 0, . . . , 1, 0).

In both cases we have wt(K−1
r ) = n+2

2 .

Proof Case (a): The r -matrix of the carry sequence is

Mc,r = (ci, j ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 1 . . . 0 1
1 0 1 0 . . . 1 0
...

...

0 1 0 1 . . . 0 1
1 0 1 0 . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

We check Eqs. (11)–(13) from Theorem 7.
Equation (11) holds because c0,0 = 0, cd−1,e = 0 (recall that e is odd) and a0,2 = a0,1 =

a0,0 = 1.
We verify Eq. (12): If j is odd then c0, j = cd−1, j+e = 1 and (a0, j , a0, j+1, a0, j+2) ∈

{(1, 0, 0), (1, 1, 1), (0, 0, 1)}. If j > 0 is even, then c0, j = cd−1, j+e = 0 and
(a0, j , a0, j+1, a0, j+2) ∈ {(1, 1, 0), (0, 1, 1), (0, 0, 0)}.

Lastly, we verify Eq. (13): If i + j is even then ci, j = 0, ci−1, j = 1, ai, j+2 = ai, j = 0
and ai, j+1 = 1. If i + j is odd then ci, j = 1, ci−1, j = 0, ai, j+2 = ai, j = 1 and ai, j+1 = 0.

Case (b): In this case, the r -matrix of the carry sequence is

Mc,r = (ci, j ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1
...

...

1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Equation (11) is valid since c0,0 = 1, cd−1,e = 1 and a0,0 = a0,2 = 1 and a0,1 = 0. The
verification process for Eqs. (12) and (13) is identical to Case (a) with odd and even swapped.


�
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3.4 Kasami inverses with special structure

Wenow investigate caseswhere the inverses ofKasami exponents have some special structure.
These cases will also illustrate the results in the previous sections and show how to get from
the representation using r -matrices to the “usual” binary representation.

In [10, Proposition 3.13], it was shown that the inverse of Kr modulo 25r −1 is cyclotomic

equivalent to the Kasami exponent K2r . It was conjectured that K−1
r modulo 2

5r
b − 1 for

b|r and 5 � b is always cyclotomic equivalent to a Kasami exponent. This conjecture can be
proven using Proposition 7.

Proposition 9 Let d = r
b with b|r , n = 5d and K−1

r be the least positive residue of the
inverse of Kr modulo 2n − 1. Then

K−1
r ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

22d K2d (mod 2n − 1) if b ≡ 1 (mod 5)

22d Kd (mod 2n − 1) if b ≡ 2 (mod 5)

22(d−r)Kd (mod 2n − 1) if b ≡ 3 (mod 5)

22(d−r)K2d (mod 2n − 1) if b ≡ 4 (mod 5).

Proof We use the notation of Proposition 7. We have d = gcd(n, r) = r
b and n

d = 5. Further,
we have r

d = b. The only two possible odd values for e are e = 1 and e = 3 that are attained
for b ≡ 1 (mod 5) and b ≡ 2 (mod 5), respectively. These correspond to case (b) and (f)
in Proposition 7. We get K−1

r ≡ ∑d−1
i=0

∑4
j=0 ai, j2

i− jr (mod 2n − 1) where the values ai, j
are the entries of the matrix M1 if e = 1 and M2 if e = 3:

M1 =

⎛

⎜
⎜
⎜
⎝

1 1 0 1 0
1 1 0 0 0
...

...

1 1 0 0 0

⎞

⎟
⎟
⎟
⎠
,M2 =

⎛

⎜
⎜
⎜
⎝

0 1 0 0 1
0 1 0 0 0
...

...

0 1 0 0 0

⎞

⎟
⎟
⎟
⎠
.

We now write K−1
r in its usual binary representation. To do this, we write from right to left

in the following way: We start with the first column, and then proceed in steps of length e to
the left (cyclically). So, for the case e = 1, we start with column 0 of M1, then column 4,
then 3, then 2 and then 1, resulting in:

K−1
r = (1, 1, . . . , 1, 1

︸ ︷︷ ︸
d-times

, 0, 0, . . . , 0, 0
︸ ︷︷ ︸

2d−1-times

, 1, 0, 0, . . . , 0, 0
︸ ︷︷ ︸

d-times

, 1, 1, . . . , 1, 1
︸ ︷︷ ︸

d-times

)

and for the case e = 3 the order of the columns is 0, 2, 4, 1, 3, resulting in:

K−1
r = (0, 0, . . . , 0, 0

︸ ︷︷ ︸
d-times

, 1, 1, . . . , 1, 1
︸ ︷︷ ︸

d-times

, 0, 0, . . . , 0, 0
︸ ︷︷ ︸

d−1-times

, 1, 0, 0, . . . , 0, 0
︸ ︷︷ ︸

2d-times

)

In the first case, we have K−1
r ≡ 22d K2d (mod 2n−1) and in the second case K−1

r ≡ 22d Kd

(mod 2n − 1). If e = 2 and e = 4 (corresponding to the values b ≡ 3 (mod 5) and b ≡ 4
(mod 5)) we use the relation K−1

r ≡ 2−2r K−1
n−r (mod 2n−1) and apply the procedure above

to Kn−r . 
�
In fact, in [10] several nice formulas for the inverses of Kr modulo 2kr − 1 for small

fixed values of k have been found. Our framework gives an explanation why these inverses
have a strong structure: We have kr

gcd(r ,kr) = k, so the r -matrices always have k columns. By
Propositions 6 and 7, all but one row in the r -matrix are identical, so we get long runs of
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zeroes and ones (as observed in the proof of Proposition 9). All of these formulas can also
be obtained using our framework. In particular, it was shown in [10] that if n = 3r

b with
b|r and gcd(3, b) = 1 then the inverse of Kr modulo 2n − 1 has the lowest possible weight
2. Using the results we obtained in the previous sections, we give an alternative proof and
show additionally that (apart from sporadic cases for low values of n) these are the only cases
where the inverses of Kasami exponents have weight 2.

Proposition 10 Let Kr be invertible modulo 2n −1 with n ≥ 6 and K−1
r be the least positive

residue of the inverse of Kr modulo 2n − 1. Then wt(K−1
r ) = 2 if and only if n = 3r

b with
b|r and gcd(b, 3) = 1. In these cases we have

K−1
r ≡

{
2n−1 + 2

n
3 −1 (mod 2n − 1) if b ≡ 1 (mod 3)

2n−1 + 2
2n
3 −1 (mod 2n − 1) if b ≡ 2 (mod 3).

Proof We go through the results in the earlier sections and check when wt(K−1
r ) = 2 is

fulfilled. In Proposition 6, we have wt(K−1
r ) = n−3d+4

2 where d = gcd(r , n). We have
n−3d+4

2 = 2 if and only if n = 3d . So, n = 3r
b for some b with gcd(b, 3) = 1. We

differentiate the two possible cases e = 1 and e = 2 corresponding to b ≡ 1 (mod 3) and
b ≡ 2 (mod 3), respectively. If e = 1, we are in Case (a) of Proposition 6 and the matrix
Ma,r looks as follows:

Ma,r =

⎛

⎜
⎜
⎜
⎝

0 0 0
...

...

0 0 0
1 1 0

⎞

⎟
⎟
⎟
⎠
.

Consequently, K−1
r ≡ 2

n
3 −1 + 2

n
3 −1−r ≡ 2n−1 + 2

n
3 −1 (mod 2n − 1). Here we used that

r ≡ n
3 (mod n) since b ≡ 1 (mod 3). If e = 2, we apply the same procedure to Kn−r , so

K−1
n−r ≡ 2

n
3 −1 + 2

n
3 −1−(n−r) ≡ 2n−1 + 2

n
3 −1 (mod 2n − 1) since here r ≡ 2n

3 (mod n).

Then K−1
r ≡ 2−2r K−1

n−r ≡ 2n−1 + 2
2n
3 −1 (mod 2n − 1).

We now check Proposition 7. In the Cases (a)-(d) we have wt(K−1
r ) = n−d+2

2 , so
wt(K−1

r ) = 2 if and only if d = n − 2. Since d|n and n > 4, this is not possible.
In the Cases (e) and (h) we have (using the notation from the proposition) wt(K−1

r ) =
n−d(s+1)+2

2 , so wt(K−1
r ) = 2 if and only if n − d(s + 1) = 2. Since d|n, this implies d|2.

Using the bound in Corollary 3, we infer that wt(K−1
r ) > 2 if n ≥ 6. In the Cases (f) and (g)

we have wt(K−1
r ) = n−d(s+2)+2

2 . Again we get d|2 and the same argument as before yields
wt(K−1

r ) > 2.
In Proposition 8 the inverses have always binary weight n+2

2 , so no new cases
are found. 
�
Note that the condition n ≥ 6 is necessary. Indeed, for n = 5 we get sporadic cases: Consider
K2 = 13 over F25 . We have gcd(5, 2) = 1 and 2 · 3 ≡ 1 (mod 5), so e = 3 and the inverse
of 13 modulo 25 − 1 has weight 2 by Corollary 1.

4 The Bracken–Leander exponent

We now determine the inverse of the Bracken–Leander exponent BLr = 22r +2r +1modulo
24r − 1 with r odd. In this case, the exponent is not independent from the field size. Because
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of this, finding the inverse is much easier.We again use themodular add-with-carry approach.
Theorem 1 applied to the Bracken–Leander exponents yields the following condition for the
carry sequence.

Theorem 8 Let r odd, n = 4r , a ∈ {1, . . . , 2n − 2} and BLr be the Bracken–Leander
exponent. We denote by a = (an−1, . . . , a0) the binary expansion of a. The following are
equivalent:

(a) a is the inverse of BLr modulo 2n − 1.
(b) There exists a carry sequence c = (cn−1, . . . , c0) with ci ∈ {0, 1, 2} such that

2c0 − c−1 + 1 = a−2r + a−r + a0 (21)

2ci − ci−1 = ai−2r + ai−r + ai for all i > 0. (22)

Here, the indices are seen as elements in Zn.

The carry sequence in (b) is unique.

Observe that gcd(r , n) = r and n
gcd(r ,n) = 4. The case here is thus similar to the n

gcd(r ,n)
even case of the Kasami functions. We again use r -matrices so that Eqs. (21) and (22) have
an easier structure.

Theorem 9 Let r odd, n = 4r , a ∈ {1, . . . , 2n −2} and BLr = 22r +2r +1 be the Bracken–
Leander exponent. We denote by a = (an−1, . . . , a0) the binary expansion of a. Moreover,
let

Ma,r =

⎛

⎜
⎜
⎜
⎝

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
...

...

ar−1,0 ar−1,1 ar−1,2 ar−1,3

⎞

⎟
⎟
⎟
⎠

be the r-matrix of a, i.e. a ≡ ∑r−1
i=0

∑3
j=0 ai, j2

i− jr (mod 2n − 1). The following are equiv-
alent:

(a) a is the inverse of Kr modulo 2n − 1.
(b) There exists an r-matrix for the carry sequence c of the form

Mc,r =

⎛

⎜
⎜
⎜
⎝

c0,0 c0,1 c0,2 c0,3
c1,0 c1,1 c1,2 c1,3
...

...

cr−1,0 cr−1,1 cr−1,2 cd−1,3

⎞

⎟
⎟
⎟
⎠

with ci, j ∈ {0, 1, 2} such that the following equations hold:

2c0,0 − cr−1,1 + 1 = a0,2 + a0,1 + a0,0 (23)

2c0, j − cr−1, j+1 = a0, j+2 + a0, j+1 + a0, j for j ∈ {1, 2, 3} (24)

2ci, j − ci−1, j = ai, j+2 + ai, j+1 + ai, j for all i ∈ {1, . . . , r − 1}, j ∈ {0, 1, 2, 3}.
(25)

The carry sequence (and thus its associated r-matrix) in (b) is unique.

It is easy to derive some strong necessary conditions from the equations. For example
Eq. (25) implies that, if ci, j = 0 for some i > 0, then necessarily ci−1, j = ai, j+2 =
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ai, j+1 = ai, j = 0, which inductively leads to ci ′, j = ai ′, j+2 = ai ′, j+1 = ai ′, j = 0 for
all 0 < i ′ < i . With some examples for small values of n, it is then quite easy to guess the
correct r -matrices for the sequence a and its associated carry sequence c.

Proposition 11 Let r odd, n = 4r and BLr = 22r +2r +1 be the Bracken–Leander exponent.
Then BL−1

r ≡ ∑r−1
i=0

∑3
j=0 ai, j2

i− jr (mod 2n − 1) where the values ai, j are the entries of
the matrix

Ma,r =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0
0 0 0 0
1 1 1 1
0 0 0 0
...

...

1 1 1 1
0 0 0 0
1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We have wt(BL−1
r ) = n+2

2 .

Proof The r -matrix of the corresponding carry sequence is

(ci, j ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 2 2 2
1 1 1 1
2 2 2 2
1 1 1 1
...

...

2 2 2 2
1 1 1 1
2 2 2 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We verify Eqs. (23)–(25). Equation (23) holds because c0,0 = cr−1,1 = 2 and a0,0 = a0,1 =
a0,2 = 1. Equation (24) holds because c0, j = cr−1, j+1 = 2 and (a0, j , a0, j+1, a0, j+2) ∈
{(1, 1, 0), (1, 0, 1), (0, 1, 1)} if j ∈ {1, 2, 3}.

It only remains to check Eq. (25). For i odd, we have ci, j = 1, ci−1, j = 2 and ai, j =
ai, j+1 = ai, j+2 = 0. For i > 0 even, we have ci, j = 2, ci−1, j = 1 and ai, j = ai, j+1 =
ai, j+2 = 1, so Eq. (25) is satisfied.

To determine wt(BL−1
r ), we count the number of ones in Ma,r , so wt(BL−1

r ) = 4 r+1
2 −

1 = n+2
2 . 
�

5 Conclusion

In this paper, we introduced a new approach to find inverses of elements in Z2n−1, using the
modular add-with-carry approach.With this technique, we determined the inverse of all Gold
exponents Gr = 2r + 1 and Kasami exponents Kr = 22r − 2r + 1 modulo 2n − 1 (if they
exist) as well as the inverse of the Bracken–Leander exponent BLr = 22r + 2r + 1 modulo
24r − 1 with r odd. With our contribution, the binary representations of the inverses of all
knownAPN exponents as well as the inverses of all exponents that give rise to 4-differentially
uniform permutations in even dimension are found. The more general problem of inverting
a given element l in Z2n−1 for all n is still not well understood. It is a natural question if the
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approach using the modular add-with-carry algorithm can be generalized to other exponents.
For every invertible l, we can find a defining set of equations for the binary representation of
l−1 and the corresponding carry sequence in the style of Eq. (1) in Theorem 1. The difficulty
then lies in finding the sequences that satisfy the equations. This has to be done on a case by
case basis.

Inversion in Z2n−1 is not only interesting for questions relating to differential uniformity.
For example, if l is a complete permutation polynomial (CPP) exponent over Fq (i.e. there
exists an a ∈ Fq such that axl and axl + x are permutation polynomials), then also its inverse
l−1 modulo q −1 is a CPP exponent [13]. Several CPP exponents in even characteristic have
been found (e.g. [3,16,17]). For a complete classification of CPP exponents, finding explicit
formulas for the corresponding inverses is an interesting research problem.

Themodular add-with-carry approach canbe easilymodified towork also in the ringZpn−1

for a prime p > 2 [5, Theorem 4.1]. In particular, it can be used to tackle the problem of
inversion inZpn−1 (corresponding to inversion ofmonomials in odd characteristic). However,
the equations in the style of Eq. (1) that have to be checked become more complicated.
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