
Designs, Codes and Cryptography (2020) 88:2313–2335
https://doi.org/10.1007/s10623-020-00783-2

On post-processing in the quantum algorithm for computing
short discrete logarithms

Martin Ekerå1,2

Received: 31 March 2020 / Revised: 24 June 2020 / Accepted: 29 June 2020 / Published online: 6 August 2020
© The Author(s) 2020

Abstract
We revisit the quantum algorithm for computing short discrete logarithms that was recently
introduced by Ekerå and Håstad. By carefully analyzing the probability distribution induced
by the algorithm, we show its success probability to be higher than previously reported.
Inspired by our improved understanding of the distribution, we propose an improved post-
processing algorithm that is considerably more efficient, enables better tradeoffs to be
achieved, and requires fewer runs, than the original post-processing algorithm. To prove
these claims, we construct a classical simulator for the quantum algorithm by sampling the
probability distribution it induces for given logarithms. This simulator is in itself a key contri-
bution.We use it to demonstrate that Ekerå–Håstad achieves an advantage over Shor, not only
in each individual run, but also overall, when targeting cryptographically relevant instances
of RSA and Diffie–Hellman with short exponents.

Keywords Discrete logarithms · Factoring · RSA · Shor’s algorithms

Mathematics Subject Classification 68Q12 · 81P68 · 94A60

1 Introduction

As in [4,5], let G under � be a group of order r generated by g, and let

x = [d] g = g � g � · · · � g
︸ ︷︷ ︸

d times

.

Given g and x the discrete logarithm problem (DLP) is to compute d = logg x . In the
general DLP 0 ≤ d < r , whereas d is smaller than r by some order of magnitude in the

Communicated by D. Stebila.

B Martin Ekerå
ekera@kth.se

1 KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

2 Swedish NCSA, Swedish Armed Forces, 107 85 Stockholm, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-020-00783-2&domain=pdf
http://orcid.org/0000-0002-7061-2374

2314 M. Ekerå

short DLP. The order r may be assumed to be known or unknown. Both cases are crypto-
graphically relevant.

1.1 Earlier works

In 2016 Ekerå [4] introduced a modified version of Shor’s algorithm [16,17] for computing
discrete logarithms that is more efficient than Shor’s original algorithmwhen the logarithm is
short. This work was originally motivated by the use of short discrete logarithms in instantia-
tions of cryptographic schemes based on the computational intractability of the DLP in finite
fields. A concrete example is the use of short exponents in the Diffie–Hellman key exchange
protocol when instantiated with safe-prime groups.

This work was subsequently generalized by Ekerå and Håstad [5] so as to enable tradeoffs
between the number of times that the algorithm needs to be executed, and the require-
ments it imposes on the quantum computer. These ideas parallel earlier ideas by Seifert [15]
for making tradeoffs in Shor’s order finding algorithm; the quantum part of Shor’s general
factoring algorithm.

Ekerå and Håstad furthermore explained how the RSA integer factoring problem may be
expressed as a short DLP. This gives rise to a new algorithm for factoring RSA integers that
does not rely directly on order-finding, and that imposes less requirements on the quantum
computer in each run compared to Shor’s or Seifert’s general factoring algorithms.

1.2 Background on quantum cost metrics

The hard partwhen implementing Shor’s algorithms and their various derivatives in practice is
to exponentiate group elements in superposition. The algorithms of Seifert, Ekerå and Ekerå–
Håstad reduce the requirements on the quantum computer compared to Shor by reducing the
exponent length in each run.

In virtually all practical implementations, an exponent length reduction translates into a
reduction in the number of controlled group operations that need to be evaluated quantumly.1

This in turn translates into a reduction in the number of logical qubit operations, the circuit
depth, the runtime and the required coherence time. The number of logical qubits required
is typically not reduced, however. This is because control qubits can be recycled [10,11] in
implementations.

When accounting for the need for quantum error correction, the number of physical qubits
required may nevertheless be reduced as a result of reducing the exponent length, and it is
physical rather than logical qubit counts that matter in practice. To understand why physical
qubits may be saved, note that quantum error correcting codes, such as the surface code (see
[6] for a good overview), use an array of physical qubits to construct each logical qubit. In
simple terms; the fewer the number of operations that need be performed with respect to a
logical qubit, for some fixed maximum tolerable probability of uncorrectable errors arising,
the fewer the number of physical qubits needed to construct said logical qubit.

Quantum spacetime volume, the product of the runtime and the number of physical qubits
required, is sometimes used as a complexity metric in the literature. For the reasons explained
above, a reduction in the exponent length typically gives rise to a reduction in the spacetime
volume in each run, and in some cases overall.

1 Square-and-multiply (or double-and-add) exponentiation is typically employed, with classically pre-
computed powers (or multiples) of the group element to exponentiate.

123

On post-processing when computing short discrete logarithms 2315

1.3 Our contributions

To compute an m bit short discrete logarithm d , the quantum algorithm of Ekerå and Håstad
exponentiates group elements in superposition to m + 2m/s bit exponents for s ≥ 1 an
integer. Given a set of s good outputs, the classical post-processing algorithm in [5] recovers
d by enumerating vectors in an s + 1-dimensional lattice. The probability of observing a
good output in a run is lower bounded by 1/8 in [5], so we expect to find s good outputs after
at most about 8s runs. As good outputs cannot be efficiently recognized, d is recovered in
[5] by exhaustively post-processing all subsets of s outputs from a set of about 8s outputs.

We refer to s as the tradeoff factor, as it controls the tradeoff between the number of runs
required and the exponent length in each run. Tominimize the exponent length we would like
to select s large. However, the fact that the post-processing complexity grows exponentially
in s limits the achievable tradeoff. Furthermore, the fact that we expect to have to perform
about 8s runs implies that an overall reduction in the number of group operations performed
quantumly may not be achieved, even if the number of operations in each run is reduced.

In this work, we analyze and capture the probability distribution induced by the quantum
algorithm of Ekerå and Håstad. This analysis allows us to tightly estimate the probability of
observing a good output, and to show that it is significantly higher than the lower bound of
1/8 in [5] guarantees.

More importantly, the fact that we can capture the probability distribution induced by the
quantum algorithm of Ekerå and Håstad for known d enables us to classically simulate the
quantum algorithm by sampling the distribution. This simulator is in itself a key contribution.
Inspired by our improved understanding of the distribution, we design an improved and
considerably more efficient classical post-processing algorithm.We then use the simulator to
heuristically estimate the number of runs required to solve for d for different tradeoff factors,
and to practically verify the heuristic estimates by post-processing simulated outputs.

With our new post-processing and analysis, Ekerå–Håstad’s algorithm achieves an advan-
tage over Shor’s algorithms, not only in each individual run, but also overall, when targeting
cryptographically relevant instances of RSA andDiffie–Hellmanwith short exponents.When
making tradeoffs, Ekerå–Håstad’s algorithm with our new post-processing furthermore out-
performs Seifert’s algorithm in practice when factoring RSA integers. To the best of our
knowledge, this makes Ekerå–Håstad’s algorithm the currently most efficient polynomial
time quantum algorithm for breaking the RSA cryptosystem [12], and DLP-based cryp-
tosystems such as Diffie–Hellman [3] when instantiated with safe-prime groups with short
exponents, as in TLS [7], IKE [8] and standards such as NIST SP 800-56A [2].

For example, compared to Shor’s original algorithms, Ekerå–Håstad can achieve a reduc-
tion in the number of group operations that are evaluated quantumly in each run, of a factor
6.1 or 14.2 for FF-DH-2048 in safe-prime groups with 224 bit exponents, and of a factor 1.35
or 3.6 for RSA-2048, depending on whether tradeoffs are made. When not making tradeoffs,
a single run of Ekerå–Håstad in general suffices. For other options and technical details,
please see Appendix A.

Both RSA and Diffie–Hellman are widely deployed cryptosystems. It is important to
understand the complexity of attacking these systems quantumly to project the remaining
lifetime of confidential information protected by these systems, and to inform migration
strategies. This paper helps further this understanding.

123

2316 M. Ekerå

1.4 Overview

The remainder of this paper is structured as follows:
We recall the quantum algorithm of Ekerå and Håstad in Sect. 2 and we analyze the prob-

ability distribution it induces in Sects. 3–4. In particular, we derive a closed form expression
for the probability of observing a given output.

In Sect. 5 we use the closed form expression to generate a high resolution histogram
for the probability distribution, and describe how it may be sampled to classically simulate
the quantum algorithm, for known d . In Sect. 6 we introduce our improved post-processing
algorithm. We furthermore use the simulator to heuristically estimate and experimentally
verify the number of runs required to solve for d . We summarize and conclude the paper in
Sect. 7. Concrete cost estimates for RSA and Diffie–Hellman are given in Appendix A.

1.5 Notation

Before proceeding, we introduce notation used throughout this paper:

– u mod n denotes u reduced modulo n constrained to 0 ≤ u mod n < n.
– {u}n denotes u reduced modulo n constrained to −n/2 ≤ {u}n < n/2.
– �u�, �u� and �u� denotes u rounded up, down and to the closest integer.
– |a + ib| = √

a2 + b2 where a, b ∈ R denotes the Euclidean norm of a + ib.
– |u | denotes the Euclidean norm of the vector u = (u0, . . . , un−1) ∈ R

n .
– u ≪ v is used to denote that u is less than v by some order of magnitude.
– u ∼ v is used to denote that u and v are approximately of similar size.

2 The quantum algorithm

Recall that given a generator g of a finite cyclic group of order r and x = [d]g, where d is
such that 0 < d < 2m ≪ r , the quantum algorithm of Ekerå and Håstad in [5] computes
the logarithm d = logg x by inducing the system

1

22�+m

2�+m−1
∑

a, j=0

2�−1
∑

b,k=0

exp

[

2π i

2�+m
(aj + 2mbk)

]

| j, k, [e = a − bd]g 〉 (1)

where � ∼ m/s is an integer for s ≥ 1 the tradeoff factor. Observing (1) yields a pair (j, k)
for j and k integers on the intervals 0 ≤ j < 2�+m and 0 ≤ k < 2�, respectively, and some
group element y = [e]g ∈ G.

3 The probability distribution

The quantum system in (1) collapses to y = [e]g and (j, k) with probability

1

22(2�+m)

∣

∣

∣

∣

∣

∑

a

∑

b

exp

[

2π i

2�+m
(aj + 2mbk)

]
∣

∣

∣

∣

∣

2

123

On post-processing when computing short discrete logarithms 2317

where the sums are over all a and b such that e ≡ a − bd (mod r). Assuming that
r ≥ 2�+m + (2� − 1)d , this simplifies to e = a − bd . Summing over all e, we obtain
the probability P of observing the pair (j, k) over all e as

P = 1

22(2�+m)

∑

e

∣

∣

∣

∣

∣

∣

b1(e)−1
∑

b=b0(e)

exp

[

2π i

2�+m
((e + bd) j + 2mbk)

]

∣

∣

∣

∣

∣

∣

2

= 1

22(2�+m)

∑

e

∣

∣

∣

∣

∣

∣

b1(e)−1
∑

b=b0(e)

exp

[

2π i

2�+m
b{d j + 2mk}2�+m

]

∣

∣

∣

∣

∣

∣

2

where we have introduced the functions b0(e) and b1(e) that determine the length of the
summation interval in b. For more information, see Sect. 3.1.

The above analysis implies that the probability P of observing a given pair (j, k) is
determined by its argument α or, equivalently, by its angle θ , where

α(j, k) = {d j + 2mk}2�+m and θ(α) = 2πα

2�+m

and the probability

P(θ) = 1

22(2�+m)

∑

e

∣

∣

∣

∣

∣

∣

b1(e)−1
∑

b= b0(e)

eiθb

∣

∣

∣

∣

∣

∣

2

= 1

22(2�+m)

∑

e

∣

∣

∣

∣

∣

∣

#b(e)−1
∑

b= 0

eiθb

∣

∣

∣

∣

∣

∣

2

︸ ︷︷ ︸

ζ(θ, #b(e))

where #b(e) = b1(e) − b0(e). If θ = 0, then

ζ(0, #b(e)) =
∣

∣

∣

∣

∣

∣

#b(e)−1
∑

b= 0

eiθb

∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

∣

#b(e)−1
∑

b= 0

1

∣

∣

∣

∣

∣

∣

2

= (#b(e))2.

Otherwise, if θ �= 0 then

ζ(θ, #b(e)) =
∣

∣

∣

∣

∣

∣

#b(e)−1
∑

b= 0

eiθb

∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

eiθ #b(e) − 1

eiθ − 1

∣

∣

∣

∣

∣

2

= 1 − cos (θ #b(e))

1 − cos θ
.

3.1 The summation interval for a given e

Recall that e = a − bd where 0 < d < 2m , 0 ≤ a < 2�+m and 0 ≤ b < 2�. This implies
that e is an integer on the interval

−(2� − 1)d ≤ e = a − bd < 2�+m . (2)

Divide the interval for e into three regions, and denote these regions A, B and C,
respectively. Define the middle region B to be the region in e where #b(e) = 2� or
equivalently 0 = b0(e) ≤ b < b1(e) = 2�. Then by (2) region B spans the interval
0 ≤ e < 2�+m − (2� − 1)d . This is easy to see, as for all b on the interval 0 ≤ b < 2� there
must exist an a on 0 ≤ a < 2�+m such that e = a − bd .

123

2318 M. Ekerå

A B C

e

#b(e) = b1(e) − b0(e)

1

2

3

4

-39

−
(2

−
1
)d

=

-26

−
2

d
=

-13

−
d

=

0 25

2
+

m
−

(2
−

1)
d
=

38

2
+

m
−

2
d

=

51

2
+

m
−

d
=

64

2
+

m
=

Fig. 1 The interval length #b(e) = b1(e) − b0(e) for m = 4, � = 2 and d = 13. Similar staircase-like plots
arise irrespective of how the parameters are selected

It follows that region A to the left of B spans −(2� −1)d ≤ e < 0 and that region C to the
right of B spans 2�+m − (2� − 1)d ≤ e < 2�+m . Regions A and C are hence both of length
(2� − 1)d . Regions A and C are furthermore both divided into 2� − 1 plateaus of length d ,
as there is, for each multiple of d that is subtracted from e in these regions, one fewer values
of b for which there exists an a such that e = a − bd . The situation that arises is depicted
in Fig. 1.

3.2 The probability of observing (j, k) summed over all e

We may now sum ζ(θ, #b(e)) over all e to express

P(θ) = 1

22(2�+m)

2�+m−1
∑

e= −(2�−1)d

ζ(θ, #b(e))

on closed form by first using that if the sum is split into partial sums over the regions A, B
and C, respectively, it follows from the previous two sections that the sums over regions A
and C must yield the same contribution.

Furthermore, region B is rectangular, and each plateau in regions A and C is rectangular.
Closed form expressions for the contribution from these rectangular regions may be trivially
derived. This implies that

22(2�+m) P(θ) =
−1
∑

e=−(2�−1)d

ζ(θ, #b(e))

︸ ︷︷ ︸

region A

+
2�+m−(2�−1)d−1

∑

e= 0

ζ(θ, #b(e))

︸ ︷︷ ︸

region B

+
2�+m−1
∑

e= 2�+m−(2�−1)d

ζ(θ, #b(e))

︸ ︷︷ ︸

region C

123

On post-processing when computing short discrete logarithms 2319

= (2�+m − (2� − 1)d) · ζ(θ, 2�)
︸ ︷︷ ︸

region B

+ 2d ·
2�−1
∑

#b=1

ζ(θ, #b)

︸ ︷︷ ︸

regions A and C

.

If θ = 0 then

2�−1
∑

#b= 1

ζ(0, #b) =
2�−1
∑

#b= 1

(#b)2 = 2�

6
(2� − 1)(2�+1 − 1)

so the probability of observing the pair (j, k) over all e is

P(0) = 1

22(2�+m)
·
(

(2�+m − (2� − 1)d) · 22� + 2�d

3
(2� − 1)(2�+1 − 1)

)

.

Otherwise, if θ �= 0 then

2�−1
∑

#b= 1

ζ(θ, #b) =
2�−1
∑

#b= 1

1 − cos (θ · #b)
1 − cos θ

= 1

1 − cos θ

[

(2� − 1) − 1

2

(

cos((2� − 1)θ) − cos 2�θ

1 − cos θ
− 1

)]

so the probability of observing the pair (j, k) over all e is

P(θ) = 1

22(2�+m)
· 1

1 − cos θ
·
(

(2�+m − (2� − 1)d) · (1 − cos 2�θ)

+ 2d ·
[

(2� − 1) − 1

2

(

cos((2� − 1)θ) − cos 2�θ

1 − cos θ
− 1

)])

.

3.3 The distribution of pairs (j, k)with argument˛

We now proceed to analyze the distribution and multiplicity of angles θ , or equivalently of
arguments α, to complete our analysis.

Definition 1 Let κ denote the greatest integer such that 2κ divides d .

Definition 2 An argument α is said to be admissible if there exists (j, k) ∈ Z
2 where

0 ≤ j < 2�+m and 0 ≤ k < 2� such that α = {d j + 2mk}2�+m .

Claim 1 All admissible arguments α = {d j + 2mk}2�+m are multiples of 2κ .

Proof As 2κ | d < 2m and the modulus is a power of two the claim follows. ��
Lemma 1 There are 2�+m−κ admissible α that each occurs with multiplicity 2�+κ .

Proof Let d = 2κd ′. Fix some α′ on 0 ≤ α′ < 2�+m−κ . For any k with 0 ≤ k < 2�

the equivalence α′ ≡ d ′ j ′ + 2m−κk (mod 2�+m−κ) has a unique solution in j ′ with
0 ≤ j ′ < 2�+m−κ . For any such j ′, there are 2κ values of j on 0 ≤ j < 2�+m with
j ≡ j ′ (mod 2l+m−κ). Hence there are 2�+κ pairs (j, k) with α = {d j + 2mk}2�+m . By
Claim 1, these are the only admissible α, and so the lemma follows. ��

123

2320 M. Ekerå

3.4 The probability of observing a pair (j, k)with argument˛

It follows from Lemma 1 that the probability �(θ(α)) of observing one of the pairs (j, k)
with argument α is �(α) = N (α) · P (θ(α)) where the multiplicity

N (α) =
{

2�+κ if α is admissible
0 otherwise.

4 Understanding the probability distribution

In this section, we introduce the notion of t-good pairs, prove upper bounds on the probability
of obtaining a t-good pair, and show how the pairs are distributed as a function of t to build
an understanding for the distribution.

Definition 3 A pair (j, k) is said to be t-good, for t an integer, if
{

2t−1 ≤ | α(j, k) | < 2t when 0 < t < � + m
α(j, k) = 0 when t = 0.

Definition 4 Let ρ(t) denote the probability of observing a t-good pair.

Lemma 2 For 0 < t < � + m, the probability ρ(t) ≤ 21−|m−t |.

Proof For 0 < t < � + m, the probability

ρ(t) =
∑

(j, k) :
2t−1≤| α(j, k) |<2t

�(α(j, k)) = 1

22(2�+m)

∑

2t−1≤| α |<2t

N (α)
∑

e

ζ(θ(α), #b(e)) (3)

where the first sum is over all pairs (j, k) such that 0 ≤ j < 2�+m , 0 ≤ k < 2� and
2t−1 ≤ | α(j, k) | < 2t . The second sum is over at most 2t−κ admissible arguments α that
each occurs with multiplicity N (α) = 2�+κ . The third sum is over at most 2�+m+1 values of
e. It therefore follows from (3) that

ρ(t) ≤ 2−2(2�+m) · 2t−κ · 2�+κ · 2�+m+1
︸ ︷︷ ︸

= 21−2l−m+t

max
e, α:

2t−1≤|α |<2t

ζ(θ(α), #b(e)). (4)

As ζ(θ, #b(e)) ≤ 22�, it follows immediately from (4) that

ρ(t) ≤ 21−2l−m+t · 22� = 21−(m−t). (5)

Furthermore, as 1 − cos (θ · #b(e)) ≤ 2, and as 1 − cos θ ≥ 2(θ/π)2 for | θ | ≤ π ,

ζ(θ, #b(e)) = 1 − cos (θ · #b(e))
1 − cos θ

≤ π2

θ2
. (6)

As | θ(α) | = 2π | α | /2�+m ≥ 2tπ/2�+m , it follows from (4) and (6) that

ρ(t) ≤ 21−2l−m+t · π2

θ2
≤ 21−2l−m+t · π2

(2tπ/2�+m)2
= 21+(m−t) (7)

and so, by combining (5) and (7), the lemma follows. ��
Corollary 1 The probability of observing a t-good (j, k) for t such that |m − t | ≤ Δ, and
Δ some positive integer, is lower-bounded by 1 − 22−Δ − 21−m+κ .

123

On post-processing when computing short discrete logarithms 2321

Proof The probability of observing a t-good (j, k) for t > m + Δ is

�+m−1
∑

t = Δ+m+1

ρ(t) ≤
�+m−1
∑

t = Δ+m+1

21+m−t =
�−1
∑

t = Δ+1

21−t ≤
∞
∑

t = Δ+1

21−t = 21−Δ,

while the probability of observing a t-good (j, k) for 0 < t < m − Δ is

m−Δ−1
∑

t = 1

ρ(t) ≤
m−Δ−1
∑

t = 1

21+t−m ≤
m−Δ−1
∑

t =−∞
21+t−m =

−Δ−1
∑

t = −∞
21+t = 21−Δ,

where we have used Lemma 2, and that the sum is a geometric series. Finally, the probability
of observing a t-good (j, k) such that t = 0 is

ρ(0) = 1

22(2�+m)
N (0)

∑

e

ζ(0, #b(e)) ≤ 2�+κ · 2�+m+1 · 22�
22(2�+m)

= 21−m+κ ,

where we have used that N (0) = 2�+κ , that the sum is over at most 2�+m+1 values of e, and
that ζ(0, #b(e)) ≤ 22�, as in the proof of Lemma 2. Hence, the probability of observing a
t-good (j, k) such that |m − t | ≤ Δ is 1 − 2 · 21−Δ − 21−m+κ , where we have used that
ρ(t) sums to one, and so the corollary follows. ��

Recall that ρ(t) is a probability distribution, and hence normalized, whilst Lemma 2 states
thatρ(t) is exponentially suppressed as |m−t |grows large for 0 < t < �+m. The probability
mass is hence concentrated on the t-good pairs for t ∼ m, except for artificially large κ as
t = 0 then attracts a non-negligible fraction of the probability mass. This is formally stated
in Corollary 1.

This implies that each pair (j, k) observed yields∼ � bits of information on d , aswe expect
| α(j, k) = {d j + 2mk}2�+m | ∼ 2m , whilst for random (j, k) we expect | α(j, k) | ∼ 2�+m .
The situation that arises for different d is visualized in Fig. 2.

In the region denoted A in Fig. 2, d is odd and hence κ is zero. As d decreases from 2m −1
to 2m−1 + 1, the probability mass is redistributed towards slightly smaller values of t . This
reflects the fact that it becomes easier to solve for d as d decreases in size in relation to 2m .
The redistributive effect weakens if d is further decreased: The histogram in region B where
d = 2m−5 − 1 is roughly representative of the distribution that arises when d is smaller than
2m by a few orders of magnitude. Further decreasing d has no significant effect.

In the region denoted C in Fig. 2, d is selected to be divisible by a great power of two
to illustrate the redistribution that occurs when κ is close to maximal. As the admissible
arguments are multiples of 2κ , it follows that ρ(t) = 0 for 0 < t < κ , so the corresponding
histogram entries are forced to zero and the probability mass redistributed. This effect is only
visible for artificially large κ . It does not arise in cryptographic applications where d may be
presumed to be random.

Recall that [5] introduces the notion of a “good” pair (j, k), which in our vocabulary is a
pair (j, k) such that | α(j, k) | ≤ 2m−2, and that it establishes a lower bound of 1/8 on the
probability of observing a good pair. The quantum algorithm is therefore run 8s times and
all subsets of s outputs post-processed.

Compared to the original analysis in [5], our new analysis is much more precise: It indi-
cates that the probability of observing a good pair is significantly higher that the 1/8 bound
guarantees. Empirically, it is at least 3/10 for random d . This immediately gives rise to an
efficiency gain when exhausting subsets.

123

2322 M. Ekerå

0.1

0.2

0.3

0.4

ρ(t)
d = 2m−1 ⇒ κ = m − 1

t
0 m

0.1

0.2

0.3

0.4

ρ(t)
d = 2m−1 + 2m−3 ⇒ κ = m − 3

t
0 m

0.1

0.2

0.3

0.4

ρ(t)
d = 2m−1 + 2m−2 ⇒ κ = m − 2

t
0 m

0.1

0.2

0.3

0.4

ρ(t)
d = 2m−1 + 2m−2 + 2m−3 ⇒ κ = m − 3

t

C 0 m

0.1

0.2

0.3

0.4

ρ(t)
d = 2m−5 − 1 ⇒ κ = 0

t
mB

0.1

0.2

0.3

0.4

ρ(t)
d = 2m−1 + 1 ⇒ κ = 0

t
m

0.1

0.2

0.3

0.4

ρ(t)
d = 2m−1 + 2m−3 + 1 ⇒ κ = 0

t
m

0.1

0.2

0.3

0.4

ρ(t)
d = 2m−1 + 2m−2 + 1 ⇒ κ = 0

t
m

0.1

0.2

0.3

0.4

ρ(t)
d = 2m−1 + 2m−2 + 2m−3 + 1 ⇒ κ = 0

t
m

0.1

0.2

0.3

0.4

ρ(t)
d = 2m − 1 ⇒ κ = 0

t
mA

Fig. 2 Histograms for ρ(t) for various d. The histograms were computed form = � = 256. Virtually identical
histograms arise for any choice of sufficiently large m and �

123

On post-processing when computing short discrete logarithms 2323

More importantly, as is stated formally in Corollary 1, our new analysis shows that essen-
tially all observed pairs (j, k) are “somewhat good”, in that they yield∼ � bits of information
on d . This fact enables us to altogether forego exhausting subsets, giving rise to the improved
post-processing algorithm in Sect. 6.

5 Simulating the quantum algorithm

In this section, we combine results from the previous sections to construct a high-resolution
histogram for the probability distribution for a given d . We furthermore describe how the
histogram may be sampled to simulate the quantum algorithm.

5.1 Constructing the histogram

To construct the high-resolution histogram, we divide the argument axis into regions and
subregions and integrate �(α) numerically in each subregion.

First, we subdivide the negative and positive sides of the argument axis into 30+μ regions
whereμ = min(�−2, 11). Each region thus formedmay be uniquely identified by an integer
η by requiring that for all α in the region

2|η| ≤ | α | ≤ 2|η|+1 and sgn(α) = sgn(η)

wherem−30 ≤ | η | < m+μ−1. Then, we subdivide each region into subregions identified
by an integer ξ by requiring that for all α in the subregion

2|η|+ξ/2ν ≤ | α | ≤ 2|η|+(ξ+1)/2ν

for ξ an integer on 0 ≤ ξ < 2ν and ν a resolution parameter. We fix ν = 11 to obtain a high
degree of accuracy in the tail of the histogram.

For each subregion, we compute the probability mass contained within the subregion by
applying Simpson’s rule, followed by Richardson extrapolation to cancel the linear error
term. Simpson’s rule is hence applied 2ν(1 + 2) times in each region. Each application
requires �(α) to be evaluated in up to three points (the two endpoints and the midpoint).
When evaluating �(α), we divide the result by 2κ to account for the density of admissible
pairs.

Note that as the distribution is symmetric around zero, we need only compute one side
in practice. Note furthermore that the above approach to constructing the histogram is only
valid provided κ is is not artificially large in relation to m, as we must otherwise account for
which α are admissible. This is not a concern in cryptographic applications as d may then
be presumed random.

5.2 Sampling the distribution

To sample an argument α from the histogram for the distribution, we first sample a subregion
and then sample α uniformly at random from the set of all admissible arguments in this sub-
region. To sample the subregion, we first order all subregions in the histogram by probability,
and compute the cumulative probability up to and including each subregion in the resulting
ordered sequence. Then, we sample a pivot uniformly at random from [0, 1) ⊂ R, and return
the first subregion in the ordered sequence for which the cumulative probability is greater

123

2324 M. Ekerå

than or equal to the pivot. The sampling operation fails if the pivot is greater than the total
cumulative probability.

To sample a pair (j, k) from the distribution, we first sample an admissible argument α

as described above, and then sample (j, k) uniformly at random from the set of all integer
pairs (j, k) yielding α using Lemma 3 below.

Lemma 3 The set of integer pairs (j, k) on 0 ≤ j < 2�+m and 0 ≤ k < 2� that yield the
admissible argument α is given by

j =
(

α − 2mk

2κ

(

d

2κ

)−1

+ 2�+m−κ t

)

mod 2�+m

as t runs through all integers on 0 ≤ t < 2κ and k through all integers on 0 ≤ k < 2�.

Proof As α ≡ d j + 2mk mod 2�+m , it follows by solving for j as in Lemma 1 that

j = ((α − 2mk)d−1 + 2�+m−κ t) mod 2�+m,

as k and t run through 0 ≤ k < 2� and 0 ≤ t < 2κ , enumerates the 2�+κ distinct pairs (j, k)
that yield the admissible argument α. By dividing both α − 2mk and d by 2κ , so as to show
that the required inverse exists, the lemma follows. ��

More specifically, we sample integers t, k uniformly at random from 0 ≤ t < 2κ and
0 ≤ k < 2�, and then compute j from α and t, k as in Lemma 3.

6 Our improved post-processing algorithm

We are now ready to introduce our improved post-processing algorithm.
In analogy with the post-processing algorithm in [5], it recovers d from a set

{(j1, k1), . . . , (jn, kn)} of n pairs produced by executing the quantum algorithm n times.
However, where the original post-processing sets n = s and requires subsets of s pairs from
a larger set of about 8s pairs to be exhaustively solved for d , we allow n to assume larger
values and simultaneously solve all n pairs for d .

Note that we may admit larger n because of the analysis in Sect. 4 which shows that
even if a pair is not good by the definition in [5], then it is close to being good with
overwhelming probability, in the sense that all pairs (ji , ki) have associated arguments
αi = α(ji , ki) = {d ji + 2mki }2�+m of size | αi | ∼ 2m . This implies that virtually all pairs
(ji , ki) yield ∼ � bits of information on d .

In analogy with the original post-processing algorithm in [5], the set of n pairs is used
to form a vector v = ({−2mk1}2�+m , . . . , {−2mkn}2�+m , 0) ∈ Z

D and a D-dimensional
integer lattice L with basis matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎣

j1 j2 · · · jn 1
2�+m 0 · · · 0 0
0 2�+m · · · 0 0
...

...
. . .

...
...

0 0 · · · 2�+m 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

123

On post-processing when computing short discrete logarithms 2325

where D = n + 1. For some constants m1, . . . , mn ∈ Z, the vector

u = ({d j1}2�+m + m12
�+m, . . . , {d jn}2�+m + mn2

�+m, d) ∈ L

is such that the distance

R = |u − v | =
√

√

√

√

n
∑

i=1

({d ji }2�+m + mi2�+m − {−2mki }2�+m

)2 + d2

=
√

√

√

√

√

√

n
∑

i=1

{d ji + 2mki }22�+m
︸ ︷︷ ︸

α2
i

+ d2 =
√

√

√

√

n
∑

i=1

α2
i + d2 .

This implies that u and hence d may be found by enumerating all vectors in L within a
D-dimensional hypersphere of radius R centered on v. The volume of such a hypersphere is

VD(R) = πD/2

Γ (D2 + 1)
RD . (8)

For comparison, the fundamental parallelepiped in L contains a single lattice vector and
is of volume det L = 2(�+m)n . Heuristically, we therefore expect the hypersphere to contain
approximately v = VD(R) / det L lattice vectors. The exact number depends on placement
of the hypersphere in Z

D and on the shape of the fundamental parallelepiped in L .
Assuming v to be sufficiently small for it to be computationally feasible to enumerate all

lattice vectors in the hypersphere in practice, the above algorithm may be used to recover d .
As the volume quotient v decreases in n, the number of vectors that need to be enumerated
may be reduced by running the quantum algorithm more times and including the resulting
pairs in L . However, there are limits to the number of pairs that may be included in L , as a
reduced basis must be computed to enumerate L , and the complexity of computing such a
basis grows fairly rapidly in the dimension of L .

In what follows, we show how to heuristically estimate the minimum number of runs n
required to solve a specific known problem instance for d with minimum success probability
q , for a given tradeoff factor s, and for a given bound on the number of vectors v that we at
most accept to enumerate in L .

6.1 Estimating theminimum n required to solve for d

The radius R depends on the pairs (ji , ki) via the arguments αi . For fixed n and fixed
probability q , we may estimate the minimum radius ˜R such that

Pr

⎡

⎣ R =
√

√

√

√

n
∑

i = 1

α2
i + d2 ≤ ˜R

⎤

⎦ ≥ q

by sampling αi from the probability distribution as in Sect. 6.2. Then

Pr

[

v = VD(R)

det L
≤ VD(˜R)

2(�+m)n

]

≥ q, (9)

providing a heuristic bound on the number of lattice vectors v that at most have to be enu-
merated that holds with probability at least q .

123

2326 M. Ekerå

Given an upper limit on the number of lattice vectors that we accept to enumerate, equation
(9) may be used as an heuristic to estimate the minimum value of n such that v is below this
limit with probability at least q .

To compute the estimate in practice, we use the heuristic to compute an upper bound on
v for n = 1, 2, . . . and return the minimum n for which the bound is below the limit on the
number of vectors that we accept to enumerate.

As the volume quotient v decreases by approximately a constant factor for every increment
in n, the minimum n may be found efficiently via interpolation once the heuristic bound on
v has been computed for a few values of n.

6.2 Estimating ˜R

To estimate ˜R form, s and n, explicitly known d , and a given target success probability q , we
sample N sets of n arguments {α1, . . . , αn} from the probability distribution as described in
Sect. 5.2. For each set, we compute R, sort the resulting list of values in ascending order, and
select the value at index �(N − 1) q� to arrive at our estimate for ˜R. Note that the constant
N controls the accuracy of the estimate. For N sufficiently large in relation to q , and to the
variance of the arguments, we expect to obtain sufficiently good estimates. Note furthermore
that the sampling of arguments may fail. This occurs when the argument being sampled is
not in the regions of the argument axis covered by the histogram.

If the sampling of at least one argument in a set fails, we err on the side of caution and
over-estimate ˜R by letting R = ∞ for the set. The entries for the failed sets will then all be
sorted to the end of the list. If the value of ˜R selected from the sorted list is ∞, no estimate
is produced.

6.3 Results and analysis

To illustrate the efficiency of our new post-processing algorithm, we heuristically estimate n
as a function of m and various s for the hard case d = 2m − 1, and verify the estimates in
practical simulations, in this section:

To this end, we let � = �m/s� and fix q = 0.99. We fix N = 106 when estimating ˜R, and
record the smallest n for which the volume quotient v < 2. Note that the latter requirement
ensures that the lattice need not be enumerated. If v < 2 it heuristically suffices to reduce
a single basis of dimension D = n + 1 and to then apply Babai’s nearest plane algorithm
[1] to recover u and hence d from v. We verify the estimate by sampling M = 103 sets of n
pairs {(j1, k1), . . . , (jn, kn)} and solving each set for d with our improved post-processing
algorithm. If d is thus recovered, the verification succeeds, otherwise it fails. We record the
smallest n such that at most M(1 − q) = 10 verifications fail.

Table 1 was produced by executing the procedure described above. As may be seen in
the table, the heuristically estimated values of n are in general verified by the simulations,
except when v is close to two, in which case the values may differ slightly. Note that for large
tradeoff factors s in relation tom, increasing or decreasing n typically has a small effect on v.
This may lead to slight instabilities in the estimates, as v may be close to two for several
values of n. Note furthermore that the difference in the sample sizes N and M may of course
also give rise to slight discrepancies when verifying the estimates.

Compared to the post-processing algorithmoriginally proposed in [5], that required 8s runs
to be performed and all subsets of s outputs from the resulting 8s outputs to be exhaustively
solved for d , the new post-processing algorithm is considerably more efficient and achieves

123

On post-processing when computing short discrete logarithms 2327

Table 1 The estimated (A) and simulated (B) number of pairs n required for u to be the closest vector to v
in L allowing d to be recovered via Babai’s algorithm. If A = B, we only print A, otherwise we print B/A.
Dash indicates no information

Logarithm size m
128 256 512 1024 2048 4096 8192

s

1 2 2 2 2 2 2 2

2 3 3 3 3 3 3 3

3 4 4 4 4 4 4 4

4 6 5 5 5 5 5 5

5 7/8 6 6 6 6 6 6

6 10 8 7 7 7 7 7

7 13 10/9 8 8 8 8 8

8 18 11 10 9 9 9 9

10 –/32 15 12 11 11 11 11

20 – –/71 32/31 24 22 21 21

30 – – –/60 41/40 35 32 31

40 – – – –/62 50/48 45/44 42

50 – – – – –/65 58/57 54/53

60 – – – – – –/69 65

70 – – – – – – –/76

considerably better tradeoffs. It furthermore requires considerably fewer quantum algorithm
runs. Asymptotically, the number of runs required n tends to s + 1 as m tends to infinity for
fixed s, when we require a solution to be found without enumerating the lattice, as may be
seen in Table 1. If we accept to enumerate a limited number of vectors in the lattice, this may
potentially be slightly improved. In particular, a single run then suffices for s = 1.

To reduce the lattice bases, we used the LLL [9] and BKZ [13,14] algorithms, as imple-
mented in fpLLL 5.2, with default parameters and for BKZ a block size of min(10, n + 1)
for all combinations of m, s and n. For these parameter choices, a basis in general takes at
most minutes to reduce and solve for d in a single thread, except when using BKZ for the
largest combinations of m and s.

6.4 Further improvements

Above,we conservatively fixed a highminimum success probability q = 0.99 and considered
the hard case d = 2m − 1. Furthermore, we required that mapping v to the closest vector in
L should yield u without enumerating L .

In practice, some of these choices may be relaxed: Instead of requiring u to be the closest
vector to v in L , we may enumerate all vectors in a hypersphere of limited radius centered on
v. In cryptographic applications, the logarithm d may in general be assumed to be randomly
selected. If not, the logarithm may be randomized; solve x � [c] g for d + c with respect to
the basis g for some random c.

123

2328 M. Ekerå

7 Summary and conclusion

We have introduced a new efficient post-processing algorithm that is practical for greater
tradeoff factors, and requires considerably fewer quantum algorithm runs, than the original
post-processing algorithm in [5]. To develop the new post-processing algorithm, and to esti-
mate the number of runs it requires, we have analyzed the probability distribution induced
by the quantum algorithm, and developed a method for simulating it when d is known.

With our new analysis and post-processing, Ekerå–Håstad’s algorithm achieves an advan-
tage over Shor’s algorithms, not only in each individual run, but also overall, when targeting
cryptographically relevant instances of RSA andDiffie–Hellmanwith short exponents.When
making tradeoffs, Ekerå-Håstad’s algorithm with our new post-processing furthermore out-
performs Seifert’s algorithm when factoring RSA integers. To the best of our knowledge,
this makes Ekerå–Håstad’s algorithm the currently most efficient polynomial time quantum
algorithm for breaking the RSA cryptosystem [12], and DLP-based cryptosystems such as
Diffie–Hellman [3] when instantiated with safe-prime groups with short exponents, as in
TLS [7], IKE [8] and standards such as NIST SP 800-56A [2]. The reader is referred to
Appendix A for a detailed analysis supporting these claims.

Acknowledgements Open access funding was provided by KTH, the Royal Institute of Technology. I am
grateful to Johan Håstad for valuable comments and advice, to Lennart Brynielsson, and other colleagues, for
their comments on early versions of this manuscript, and to the anonymous reviewers, for their constructive
criticism. Funding and support for this work was provided by the Swedish NCSA that is a part of the Swedish
Armed Forces. Computations were performed at PDC at KTH. Access was provided by SNIC.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Quantifying the advantage

In this appendix, we analyze the advantage of Ekerå–Håstad with our improved post-
processingwhen targetingRSAorDiffie–Hellman in safe-prime groupswith short exponents.

A.1 Diffie–Hellman

The portions of the NIST SP 800-56A recommendation [2] that pertain to Diffie–Hellman
key exchange in G ⊂ F

∗
p were recently revised.

The previous versionmandated the use of randomly selected Schnorr groups and supported
moduli p of length up to 2048 bits. The new version supports moduli of length up to 8192
bits. For lengths exceeding 2048 bits, it mandates the use of a fixed set of safe-prime groups,
originally developed for TLS and IKE [7,8].

Migrating from Schnorr groups to safe-prime groups with full length exponents would
result in a significant performance penalty. NIST therefore permits the use of short exponents;
the exponent length m must be on 2z ≤ m ≤ ⌈

log2 r
⌉

, where z is the strength level of the
group and r = (p − 1)/2 is the group order.

123

http://creativecommons.org/licenses/by/4.0/

On post-processing when computing short discrete logarithms 2329

Table 2 Estimated complexity of computing short discrete logarithms in the FIPS 800-56A safe-prime groups
originally developed for TLS and IKE
⌈

log2 p
⌉

Strength level z m s n v In each run Overall
#Ops Adv #Ops Adv

2048 112 224 1 1 1.3 · 103 672 6.1 672 6.1

7 10 6.5 · 10−4 288 14.2 2880 1.4

3072 128 256 1 1 1.3 · 103 768 8.0 768 8.0

8 11 2.4 · 10−1 320 19.2 3520 1.7

4096 152 304 1 1 1.3 · 103 912 9.0 912 9.0

9 12 4.8 · 10−1 372 22.0 4464 1.8

6144 176 352 1 1 1.4 · 103 1056 11.6 1056 11.6

10 13 4.5 · 10−2 424 29.0 5512 2.2

8192 200 400 1 1 1.3 · 103 1200 13.7 1200 13.7

11 14 7.5 474 34.6 6636 2.5

In Table 2 we provide estimates of the complexity of computing short discrete logarithms
in these standardized safe-prime groups. The estimates were computed as in Sect. 6.3, for
maximal d = 2m − 1 and ≥99% success probability, except that we accept to enumerate
a limited number of vectors in L . We tabulate m, s and n, for s = 1, and for s the greatest
tradeoff factor such that n − s ≤ 3 with v close to two.

The number of group operations that need to be computed, in each run of the quantum
algorithm, and overall in n runs, are tabulated for each tuple m, s and n, along with the
advantage, defined as the quotient between 2

⌈

log2 r
⌉

, a low estimate of the number of group
operations in each run of Shor’s algorithm for general discrete logarithms, and the number of
group operations, in each run or overall, in Ekerå–Håstad with our improved post-processing.

Note that the advantage is intentionally slightly underestimated as Ekerå–Håstad with
our improved post-processing has ≥ 99% probability of recovering d after n runs. More
than one run of Shor’s algorithm may be required to achieve a comparably high success
probability, or a fewmore than 2

⌈

log2 r
⌉

group operations may need to be computed in each
run. The success probability depends on how the control registers are initialized, their lengths
in relation to r , and on how the output from the quantum algorithm is post-processed.

As may be seen in Table 2, Ekerå–Håstad with our improved post-processing reduces the
number of group operations in each run by up to a factor of 34.6 for these m, s and n. It
achieves an advantage, not only in each run, but also overall, even for large tradeoff factors.
We have verified the estimates by post-processing simulated outputs.

To aid interpretation, when an advantage is achieved in each run, it implies that Ekerå–
Håstad’s algorithm is easier to fit on a large-scale but constrained quantum computer
compared to Shor’s algorithm. Furthermore, it also implies that Ekerå–Håstad can be paral-
lelized to achieve a reduction in the time required to solve a given problem instance.When an
overall advantage is achieved, it implies that Ekerå–Håstad’s algorithm requires less group
operations to be computed overall in the n runs compared to a single run of Shor’s algorithm.

123

2330 M. Ekerå

Table 3 Estimated complexity of factoring RSA integers with � = �m/s� and s ≥ 2 in multiple runs, with
≥ 99% success probability and maximal d = 2m − 1
⌈

log2 N
⌉

m s n v in each run overall
#ops adv #ops adv

2048 1023 2 2 1.4 · 105 2047 2.0 4094 1.0

17 20 3.3 · 10−7 1145 3.6 22,900 0.18

3072 1535 2 2 1.4 · 105 3071 2.0 6142 1.0

21 24 5.7 · 10−9 1683 3.6 40,392 0.15

4096 2047 2 2 1.4 · 105 4095 2.0 8190 1.0

24 27 1.0 · 10−10 2219 3.7 59,913 0.14

6144 3071 2 2 1.4 · 105 6143 2.0 12,286 1.0

31 34 8.2 · 10−7 3271 3.8 111,214 0.11

8192 4095 2 2 1.4 · 105 8191 2.0 16,382 1.0

34 37 5.1 · 10−14 4337 3.8 160,469 0.10

A.2 RSA

Let p, q be two large distinct primes of length l bits. Then N = pq is said to be an RSA
integer. To factor N into p and q , we follow [5] and execute the below procedure:

Pick an element g, of unknown order r , uniformly at random from Z
∗
N . Let

p̃ = (p − 1)/2 and q̃ = (q − 1)/2. Then r divides 2 p̃q̃ / gcd(p̃, q̃). Let
f (N) = (N − 1)/2 − 2l−1 = 2 p̃q̃ + p̃ + q̃ − 2l−1. Compute x = g f (N) ≡ gd for d
on 0 ≤ d < r . Then d = f (N) mod r = p̃ + q̃ − 2l−1, assuming r > 2l−1, which holds
with overwhelming probability. The discrete logarithm d is then short. To factor N , it suffices
to compute d using the quantum algorithm of Ekerå andHåstad. Given d wemay immediately
solve p + q = 2(d + 2l−1 + 1) and pq = N for p and q .

Recall that in our analysis of the probability distribution, we required d to be on the
interval 0 < d = p̃ + q̃ − 2l−1 < 2m , which implies m = l − 1. Furthermore, we required
r ≥ 2�+m + (2� − 1)d , where we let � = �m/s� for s an integer. This implies that we must
select s ≥ 2 if the requirement on the size of r is to be respected with high probability.

In Table 3 we provide estimates of the complexity of factoring RSA integers. Again
the estimates were computed as described in Sect. 6.3, for ≥ 99% success probability and
maximal d = 2m − 1. We tabulate m, s and n, for s = n = 2, and for s the greatest tradeoff
factor such that n − s ≤ 3 whilst keeping v sufficiently small to avoid enumerating L .

The estimates are otherwise tabulated as described in Sect. A.1, except that we compute
the advantage with respect to a single run of Shor’s order finding algorithm.We have verified
the estimates by post-processing simulated quantum algorithm outputs.

As may be seen in Table 3, an advantage is achieved in each run of the algorithm. For
s = 2, we perform the same number of operations overall in the two runs, as Shor’s algorithm
does in a single run. Hence, the benefit of having a reduced circuit in each individual run
comes at no cost in terms of the overall number of operations that need to be performed. For
s > 2, we obtain a greater advantage in each individual run of the algorithm, at the expense
of performing a greater number of operations overall than Shor’s algorithm does in a single

123

On post-processing when computing short discrete logarithms 2331

Table 4 Estimated complexity of
factoring RSA integers with
� = m − δ for δ = 20 in a single
run, with ≥ 99% success
probability and maximal
d = 2m − 1

⌈

log2 N
⌉

m � n v #ops Adv

2048 1023 1003 1 1.4 · 109 3029 1.35

3072 1535 1515 1 1.4 · 109 4565 1.35

4096 2047 2027 1 1.4 · 109 6101 1.34

6144 3071 3051 1 1.4 · 109 9173 1.34

8192 4095 4075 1 1.4 · 109 12,245 1.34

The advantage tends to 4/3

run. Compared to the advantage Seifert’s algorithm [15] achieves over Shor, Ekerå–Håstad
with our improved post-processing achieves a further advantage by up to a factor of two.

A.2.1 Breaking RSA with an advantage in a single run

In the previous section, and in [5], we had to select s ≥ 2 to respect the requirement that
r ≥ 2�+m + (2� − 1)d where we let � = �m/s�. Assume that we instead let � = m − δ,
for some small positive integer δ. If δ is sufficiently large, then the requirement that
r ≥ 2�+m + (2� − 1)d is respected with high probability. At the same time, if δ is not
too large, we only need to enumerate a moderately large set of vectors in L in the classical
post-processing.

Let us consider how δ affects the probability of respecting the requirement on r : The
requirement that r ≥ 2�+m+(2�−1)d may be simplified to r ≥ 2�+m+1 = 22l−δ−1, by using
that � = m − δ wherem = l − 1 and d < 2m . Also 22(l−1) ≤ φ(N) = (p− 1)(q − 1) < 22l ,
where φ is Euler’s totient function, as p, q are large distinct l bit primes.

By Lemma 4 in the next section, that operates under slightly different assumptions that
p, q are primes drawn from [2, x] as x → ∞ for proof-technical reasons, the probability that
r ≥ φ(N)/2τ is lower-bounded by PN (τ). It is reasonable to assume that this result carries
over to our situation where p, q are of large fixed length. This assumption is supported by
simulations where N = pq and g ∈ Z

∗
N are sampled and r estimated, see Sect. A.2.3. Under

this assumption, we have that r ≥ 22(l−1)−τ with probability at least PN (τ).
Equating this to the requirement that r ≥ 22l−δ−1, we have that 2(l − 1) − τ =

2l − δ − 1, which in turn implies τ = δ − 1. Let us pick δ = 20. We then have that
PN (τ = δ − 1) ≥ 0.9998. This is a very high probability of respecting the requirement on r .

At the same time, for δ = 20, we expect to have to enumerate at most v = 1.4 · 109
vectors in L in the classical post-processing to recover d with success probability ≥ 99%,
see Table 4 where we have again estimated v as in Sect. 6.3 for maximal d = 2m − 1.

Such an enumeration is easy to perform in practice. It is facilitated by the lattice being
two-dimensional, and by the last component of the vector sought being d . The facts that
0 < d ≤ 2m and d ≡ (N − 1)/2 (mod 2) may hence be used to prune the enumeration. We
have verified that this slightly tweaked version of Ekerå–Håstad’s algorithm achieves≥ 99%
success probability by post-processing simulated outputs.

Note that we tweaked the algorithm to ensure that r ≥ 2�+m + (2� − 1)d . This require-
ment serves to prevent modular reductions from occurring in our analysis of the probability
distribution. It may be possible to relax this requirement, at the expense of carrying out a
more complicated analysis. We circumvent this complication by letting � = m − δ.

123

2332 M. Ekerå

A.2.2 On the probability of picking a generator with sufficiently large order

In this section we analyze the probability of picking g ∈ Z
∗
N with sufficiently large order.

Lemma 4 Let N = pq for p, q distinct primes drawn uniformly at random from [2, x]. Pick
g uniformly at random from Z

∗
N . Let r be the order of g. For fixed τ > 1, and x sufficiently

large as a function of τ , the probability that r ≥ φ(N)/2τ is lower-bounded by PN (τ) where

τ 10 15 16 17 18 19 20

PN (τ) 0.9756 0.9985 0.9992 0.9995 0.9997 0.9998 0.9999

The bound is asymptotically correct in the limit as x tends to infinity.

Proof As Z∗
N is isomorphic to Z+

p−1 × Z
+
q−1 the order r ≤ φ(N)/ gcd(p − 1, q − 1) where

φ(N) = (p − 1)(q − 1). The order r is hence always reduced by a factor gcd(p − 1, q − 1)
compared to φ(N) due to shared factors. It may be further reduced: This depends on g, and
on how p− 1 and q − 1 factor. To understand the distribution of r , we therefore first seek an
expression for the probability of a factor z dividing p − 1, and q − 1, respectively.

To this end, we use Siegel–Walfisz’ theorem [18,19]. In essence it states that as x → ∞
the probability over all primes p ≤ x that p ≡ a (mod z) is 1/φ(z), for z ∈ [2, lnc(x)] a
fixed integer, where c is an arbitrary positive constant, and a a fixed residue coprime to z. For
a = 1 this implies that p− 1 ≡ 0 (mod z), i.e. z divides p− 1, with probability 1/φ(z). The
same holds for q − 1. Furthermore, as φ(z1z2) = φ(z1) · φ(z2) for z1, z2 coprime factors,
we may independently analyze the reductions caused by distinct prime powers.

To obtain the lower bound PN (τ) on the probability of r ≥ φ(N)/2τ , we let F be the set
of all primes less than 2τ , andF ′ the set of all primes greater than 2τ , and proceed as follows:

In Part 1 of the proof, we compute all reductions φ(N)/r ≤ 2τ to which combinations
of powers of factors in F give rise, and sum up the associated probabilities, to obtain the
probability ρN (τ). In Part 2, we upper-bound the probability of factors in F ′ giving rise to a
reduction in the order greater than 2τ , and subtract it from ρN (τ) to obtain PN (τ).
Part 1 For each f ∈ F , let n be the greatest power of f such that f n ≤ 2τ . As f e divides
p − 1, or equivalently q − 1, with probability 1/φ(f e), we have that

�(e, f) =
⎧

⎨

⎩

1 − 1/(f − 1) e = 0
(1 − 1/ f)/((f − 1) f e−1) e ∈ [1, n]
1/((f − 1) f n) e = n + 1

is the probability that f e is the greatest power of f to divide p − 1, or equivalently q − 1,
for e ∈ [0, n], and the probability that f n+1 divides p − 1, or equivalently q − 1, when
e = n + 1.

For pairwise combinations of ep, eq ∈ [0, n + 1], the probability is �(ep, f) · �(eq , f)
that f ep and f eq divide p−1 and q −1, respectively, in the special manner described above.

In the formulation of this lemma, we pick g uniformly at random from Z
∗
N , and

consider the order of g. This is equivalent to selecting gp and gq uniformly at ran-
dom from the cyclic groups Z

+
p−1 and Z

+
q−1, respectively, and considering the order of

(gp, gq) ∈ Z
+
p−1 × Z

+
q−1 � Z

∗
N .

123

On post-processing when computing short discrete logarithms 2333

The probability of selecting gp such that f u p is the greatest power of f to divide gp for
u p ∈ [0, ep), leading to a reduction in the order of gp by a factor f u p , or such that f u p

divides gp for u p = ep , leading to a reduction in the order of gp by a factor f u p when
ep ≤ n, or by at least a factor f u p when ep = n + 1, is �(u p, ep, f), where

�(u, e, f) =
{

(1 − 1/ f)/ f u u ∈ [0, e) and e > 0,
1/ f e u = e.

Analogously, the probability of selecting gq that is divisible by f uq in the above spe-
cial manner for uq ∈ [0, eq], leading to corresponding reductions in the order of gq ,
is �(uq , eq , f).

For the gp and gq selected, the order of (gp, gq) is hence reduced by a factor f u p+uq+u pq

for ep, eq ∈ [0, n] due to f ∈ F , where u pq = min(ep − u p, eq − uq). The additional
reduction by f u pq is due to shared factors in the orders of gp and gq . If ep = n + 1
and/or eq = n + 1, the reduction is at least f u p+uq+u pq ; it may be greater, but only if
f u p+uq+u pq > 2τ , and all such cases may be treated jointly. Hence, we may model the order
φ(N) as being reduced by a factor f u p+uq+u pq due to f ∈ F with probability �(ep, f) ·
�(u p, ep, f) · �(eq , f) · �(uq , eq , f).

Given this analysis, the probability ρN (τ) that a factor at most 2τ is lost due to prime
factors in F can be evaluated numerically by computer: Exhaust all products of reductions
that combinations of factors in F can give rise to, with the restriction that the product must
not exceed 2τ , and sum up the probabilities associated with each reduction, to obtain ρN (τ).

Part 2 For factors f ∈ F ′, we upper-bound the probability of the order φ(N) being reduced
by at least a factor f > 2τ as follows: Let P(f) denote the probability that a factor f divides
p − 1, and analogously q − 1. If f divides both p − 1 and q − 1, the order is reduced by at
least a factor f > 2τ . The total probability of this event is P(f)2. If f divides p − 1 but not
q − 1, or vice versa, the order is reduced by a factor f > 2τ with probability 1/ f . The total
probability of this event is P(f)(1 − P(f))(1/ f) ≤ P(f)/ f .

To summarize, the probability of reducing the order φ(N) by more than 2τ via f ∈ F ′,
when f ≤ lnc(x) so that P(f) = 1/φ(f) by Siegel–Walfisz’ theorem, is upper-bounded by

∑

f ∈F ′

(

1

φ(f)2
+ 2

f φ(f)

)

≤
∑

f ∈F ′

3

(f − 1)2
≤

∞
∑

z=2τ +1

3

(z − 1)2
≤
∫ ∞
2τ

3

(z − 1)2
dz = 3

2τ − 1
.

To handle the contribution from factors f > lnc(x), wemay instead use that P(f) ≤ ln(x)/ f
by Claim 2, to obtain the upper bound

∑

f

(

ln2(x)

f 2
+ 2 ln(x)

f 2

)

≤
∫ ∞

lnc(x)−1

3 ln2(x)

z2
dz = 3 ln2(x)

lnc(x) − 1

which, for any c > 2, may be seen to tend to zero in the limit as x → ∞.
The table in the lemma results from the execution of the procedure described above, with

PN (τ) = ρN (τ)−3/(2τ −1) and for a selection of values of τ , and so the lemma follows. ��
Claim 2 For p a prime drawn uniformly at random from [2, x], and z ≥ 2 an integer, the
probability that z divides p − 1 is upper-bounded by ln(x)/z in the limit as x → ∞.

Proof The number of primes on [2, x] is x/ ln(x) in the limit as x → ∞ by the prime number
theorem, so the above claim only states that there are at most (x/ ln(x)) · (ln(x)/z) = x/z
primes p on [2, x] such that z divides p− 1. This is true, as x/z is the number of integers up
to x that are divisible by z in the limit as x → ∞, and so the claim follows. ��

123

2334 M. Ekerå

In Lemma 4 above, we consider N = pq with p, q distinct primes drawn uniformly
at random from [2, x] as x → ∞. In practice, we would instead like to select p, q �= p
uniformly at random from the set of all primes of length l bits, so that N is an RSA integer by
the definition in this paper. In practice, we may also wish to require that N must be a 2l bit
number. Imposing such restrictions on the sizes of p and q should not have any significant
impact on the outcome of the analysis, for the reasons elaborated on in the next section.

If other special requirements are imposed on p and q , the analysis may however need to
be adapted to meet these requirements. In particular, this is the case if it is required that p−1
and q − 1 have no small divisors besides two. The success probability then increases.

A.2.3: Supplementary supporting simulations

The primary obstacle to selecting p, q as l bit primes in Lemma 4 is the unknown constant
in the error term in Siegel–Walfisz’ theorem. Asymptotically, the error term goes to zero
regardless of the value of the constant, allowing us to state that z divides p−1with probability
1/φ(z) in Lemma 4 for p selected uniformly at random on [2, x] as x → ∞.

For large fixed x , taking the probability to be 1/φ(z) is a reasonable approximation.
However, without a good explicit bound on the error in the approximation, technical problems
arise if one seeks to follow the approach taken in Lemma 4. In particular, problems arise
when exhausting all combinations of products of small prime factor powers in Part 1 of
the proof.

One way to obtain an estimate anyway is to instead run numerical simulations: Draw two
distinct primes p, q uniformly at random from (2l−1, 2l]. Compute N = pq and select a
generator g uniformly at random from Z

∗
N . Let r = φ(N)/ gcd(p − 1, q − 1). For all prime

factors f ≤ 2η for some sufficiently large η, test if f divides r . If so, and if gr/ f ≡ 1, reduce
r by a factor of f . Go back and test again recursively if f still divides r . Otherwise, process
the next factor. The order r thus computed is a good heuristic estimate of the order of g.

We have run such experiments, in which we repeated the simulation procedure 106 times,
for l = 1024, τ = 19 and η = 24. On average, only ∼ 130 problem instances failed to
meet the requirement that r ≥ φ(N)/2τ . This is in agreement with the asymptotic bound. It
furthermore indicates that the success probability is high already for 2048 bit RSA integers.

References

1. Babai L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13
(1986).

2. Barker E., et al.: NIST SP 800-56A: Recommendation for Pair-Wise Key-Establishment Schemes Using
Discrete Logarithm Cryptography, 3rd revision (2018).

3. Diffie W., Hellman M.E.: New Directions in Cryptography. IEEE Trans. Inf. Theory 22(6), 644–654
(1976).

4. EkeråM.:Modifying Shor’s algorithm to compute short discrete logarithms. IACR ePrint Archive, Report
2016/1128 (2016).

5. Ekerå M., Håstad J.: Quantum algorithms for computing short discrete logarithms and factoring RSA
integers. In: PQCrypto. Lecture Notes in Computer Science, vol. 10346, pp. 347–363. Springer, Cham
(2017).

6. Fowler A.G., Mariantoni M., Martinis J.M., Cleland A.N.: Surface codes: towards practical large-scale
quantum computation. Phys. Rev. A 86(3), 032324 1–48 (2012).

7. Gillmor D.: RFC 7919: Negotiated Finite Field Diffie–Hellman Ephemeral Parameters for Transport
Layer Security (TLS) (2016).

8. Kivinen T., Kojo M.: RFC 3526: More Modular Exponentiation (MODP) Diffie–Hellman groups for
Internet Key Exchange (2003).

123

On post-processing when computing short discrete logarithms 2335

9. Lenstra A.K., Lenstra H.W., Lovász L.: Factoring polynomials with rational coefficients. Math. Ann. 261,
515–534 (1982).

10. Mosca M., Ekert A.: The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Com-
puter. In: Proceeding from the First NASA International Conference, Quantum Computing and Quantum
Communications, vol. 1509, pp. 174–188 (1999).

11. Parker S., Plenio M.B.: Efficient factorization with a single pure qubit and log N mixed qubits. Phys. Rev.
Lett. 85(14), 3049–3052 (2000).

12. Rivest R.L., Shamir A., Adleman L.: A method for obtaining digital signatures and public-key cryptosys-
tems. Commun. ACM 21(2), 120–126 (1978).

13. Schnorr C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci.
53(2–3), 201–224 (1987).

14. Schnorr C.-P., EuchnerM.: Lattice basis reduction: improved practical algorithms and solving subset sum
problems. Math. Program. 66(1–3), 181–199 (1994).

15. Seifert J.-P.: Using fewer qubits in Shor’s factorization algorithm via simultaneous diophantine approx-
imation. In: CT-RSA. Lecture Notes in Computer Science, vol. 2020, pp. 319–327. Springer, Berlin
(2001).

16. Shor P.W.:Algorithms for quantumcomputation: discrete logarithms and factoring. In: SFCS. Proceedings
of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer
Society, Washington DC (1994).

17. Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26(5), 1484–1509 (1997).

18. Siegel C.L.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1(1), 83–86 (1935).
19. Walfisz A.: Zur additiven Zahlentheorie. II. Math. Z. 40(1), 592–607 (1936).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	On post-processing in the quantum algorithm for computing short discrete logarithms
	Abstract
	1 Introduction
	1.1 Earlier works
	1.2 Background on quantum cost metrics
	1.3 Our contributions
	1.4 Overview
	1.5 Notation

	2 The quantum algorithm
	3 The probability distribution
	3.1 The summation interval for a given e
	3.2 The probability of observing (j, k) summed over all e
	3.3 The distribution of pairs (j, k) with argument α
	3.4 The probability of observing a pair (j, k) with argument α

	4 Understanding the probability distribution
	5 Simulating the quantum algorithm
	5.1 Constructing the histogram
	5.2 Sampling the distribution

	6 Our improved post-processing algorithm
	6.1 Estimating the minimum n required to solve for d
	6.2 Estimating widetildeR
	6.3 Results and analysis
	6.4 Further improvements

	7 Summary and conclusion
	Acknowledgements
	Appendix A: Quantifying the advantage
	A.1 Diffie–Hellman
	A.2 RSA
	A.2.1 Breaking RSA with an advantage in a single run
	A.2.2 On the probability of picking a generator with sufficiently large order
	A.2.3: Supplementary supporting simulations

	References

