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Abstract
Known-key distinguishers have been introduced by Knudsen and Rijmen in 2007 to better
understand the security of block ciphers in situations where the key can not be considered to
be secret, i.e. the “thing between secret-key model and hash function use-cases”. Trying to
find a rigorous model to fit this intuition is still ongoing. The most recent advance by Gilbert
(Asiacrypt 2014) describes a new model that—even if it is well justified—seemingly does
not match this intuition. AES is often considered as a target of such analyses, simply because
AES or its building blocks are used in many settings that go beyond classical encryption.
Consider AES-128. Results in the secret-key model cover up to 6 rounds, while results in
the chosen-key model reach up to 9 rounds. Gilbert however showed a result in the known-
key model that goes even further, covering 10 rounds. Does it mean that the use cases
corresponding to the cryptanalysis of hash-function use-cases are inherently less efficient, or
is it rather an artifact of the new model? In this paper we give strong evidence for the latter.
In Gilbert’s work, two types of arguments or rather conjectures are put forward suggesting
that the new model is meaningful. Firstly that the number of “extension rounds” due to the
new model is limited to two. And secondly that only a distinguisher that exploits the uniform
distribution property can be extended in such way. We disprove both conjectures and arrive
at the following results: First, we are also able to show that more than two extension rounds
are possible. As a result of this, we describe the first known-key distinguishers on 12 rounds
of AES that fit into Gilbert’s model. The second conjecture is disproven by showing that the
technique proposed by Gilbert can also be used to extend a known-key distinguisher based on
another property: truncated differentials. A potential conclusion of this work would be that
the counter-intuitive gap between Gilbert’s known-key model and the chosen-key model is
wider than initially thought. We however conclude that results in Gilbert’s model are due to
an artifact in the model. To remedy this situation, we propose a refinement of the known-key
model which restores its original intent to fit the original intuition.

Communicated by T. Iwata.

B Lorenzo Grassi
lgrassi@science.ru.nl

1 IAIK, Graz University of Technology, Graz, Austria

2 Know-Center, Graz, Austria

3 Digital Security Group, Radboud University, Nijmegen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-020-00756-5&domain=pdf


1402 L. Grassi, C. Rechberger

Keywords Block cipher · Permutation · AES · Known-Key Distinguisher

Mathematics Subject Classification 68P25 · 94A60

1 Introduction

Block ciphers play an important role in symmetric cryptography, providing a basic tool for
encryption. They are (probably) the most scrutinized cryptographic tools, and they are often
used as the underlying tool to construct other cryptographic algorithms, whose proofs of
security are performed under the assumption that the underlying block cipher is ideal.

The concept of known-key distinguishers was introduced by Knudsen and Rijmen in [20].
In the classical single secret-key setting, the attacker does not know the randomly generated
key and aims to recover it or to build a (secret-key) distinguisher that allows to distinguish
the cipher from a random permutation. The security model in known-key attacks is quite
different though: the attacker knows the randomly drawn key the block cipher operates with
and aims to find a structural property for the cipher under the known key—a property which
an ideal cipher (roughly speaking, a permutation drawn at random) would not have. For
completeness, we mention that a more relaxed version – called chosen-key distinguisher—
can be considered, where the adversary is assumed to have a full control over the key. This
model was introduced in [5], and has been extended to a related-key attack on the full-round
AES-256, while the best chosen-key distinguisher for AES-128 [14] currently present in the
literature covers 9 rounds out of 10. In this paper however we focus on the known-key model
and do not allow/assume related keys.

Since their introductions, known-key attacks have been a major research topic in the
symmetric-key community. Only to provide some examples besides AES, known-key dis-
tinguishers have been proposed for full PRESENT [9] (one of the most studied lightweight
block cipher proposed at CHES 2007) and for Feistel networks [29]. This is justified by the
fact that if known-key distinguishers could be considered less relevant than secret-key ones,
they anyway allow to learn something about the security margin of a cipher. For example, if it
is not possible to find distinguishers for a block cipher when the key is given, then one cannot
find a distinguisher when the key is secret. Secondly and more importantly, hash functions
can be built from block ciphers, and vice versa. For example, given a hash function, it is
always possible to set up a block cipher using the Feistel construction. Vice versa, e.g. the
Davies-Meyer construction or the Miyaguchi-Preneel construction can transform a secure
block cipher into a secure compression function. In a hash setting, block cipher security
models such as the known-key model (or the chosen-key model) make sense since in practice
the attacker has full access and control over the internal computations. Finally, an attack in
these models depicts a structural flaw of the cipher, while it should be desired to work with
a primitive that does not have any flaw, even in the most generous security model for the
attacker. A classical example is the devastating effect on the compression function security
of weak keys for a block cipher [34], which are usually considered as a minor flaw for a block
cipher if the set of these weak-keys is small. Therefore, the security notions to consider for
a block cipher will vary depending on whether this block cipher is used in a hash function
setting or not.

Despite this cumulative impact in the symmetric-key community over the last years,
known-key attacks have been known to be difficult to formalize since [1] proposed the notion
of known-key indifferentiability to capture the security of block ciphers under a known key.
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Revisiting Gilbert’s known-key distinguisher 1403

In particular, they focus on known-key distinguishers for block ciphers based on idealized
primitives such as randomly drawn functions or permutations, that is block ciphers for which
the round function looks like an ideal primitive and where the adversary can have access
to this underlying ideal primitive. Later on, in [27] the impact of attacks in the known-key
model on hash functions is studied.

Citing Knudsen and Rijmen [20], “imagine a block cipher” for which a known-key distin-
guisher exists, “but where no efficient attacks are known in the traditional black-box model.
Should we recommend the use of such a cipher? We do not think so!”

1.1 Known-key distinguishers for AES: the state of the art

The known-key model. In the known-keymodel, a full access to an instance of the encryption
function associated with a known random key and its inverse is given. The purpose is to
simultaneously control the inputs and the outputs of the primitive, i.e. to achieve input-output
correlations that one could not efficiently achieve with inputs and outputs of a perfect random
permutation to which one would have an oracle access. A formal definition of a known-key
distinguisher is provided in Sect. 3, wherewe propose and describe in detail a generic scenario
for known-key distinguishers. We emphasize that all known-key distinguishers currently
present in the literature—including the ones presented in this paper – implicitly exploit (and
can be described in) the scenario proposed in Sect. 3.2.

Known-key distinguishers for AES. AES and related constructions served as a benchmark
for cryptanalytic techniques since the very introduction of thismodel byKnudsen andRijmen
[20] with a 7-round result. Subsequently, 8-round results were obtained using truncated
differentials [17], which were later on improved in [19]. Currently, this last one—which
exploits the rebound technique [22] and the so called “multiple limited-birthday problem”—
is the best 8-round known-key distinguisher in the literature. At Asiacrypt 2014 Gilbert [16]
found a way to extend an 8-round known-key distinguisher (using a novel representation of
AES) into a more intricate 10-round distinguisher and hence presented for the first time a
known-key distinguisher for full AES-128.

All the known-key distinguishers on AES currently present in the literature are briefly
recalled in Sect. 3 using the “subspace trail notation”1, recently introduced at FSE/ToSC
2017. In Table 1 we list the known-key distinguishers for AES, including our main results.

On Gilbert’s Approach. As we will describe in more detail in Sect. 3.1, the approach of [16]
makes use of a freedom in the known-key model that was actually always there but never
spelled out explicitly. In more detail, there is always the role of a “verifier”, in addition to
a “shortcut-player” and a “generic player”. In [16] the verifier has perhaps for the first time
some non-negligible computations to do. The details of Gilbert’s approach are such that it
is still not possible to simply “peel-off” an arbitrary number of rounds, on the contrary it
seems that only the detection of a very specific property (the so called “uniform distribution
property”) could take advantage of computations of the verifier.

1 Our choice to use the subspace trail notation is due to the fact that it allows in some cases an easier and
more formal description than the original notation.

123



1404 L. Grassi, C. Rechberger

Table 1 AES known-key distinguishers

Rounds Computations Memory Property KK Gil-KK Reference

7 256 256 Zero-Sum � [20]

7 224 216 Differential Trail � [25]

7 220 216 Multiple Diff. Trail � Appendix E.1

8 264 264 Uniform Distribution � [16] - Appendix C

8 248 232 Differential Trail � [17]

8 244 232 Multiple Diff. Trail � [19]

8 242.6 213 Statistical Integral � [10]

8 223 216 extended 7-Round MultDT � Appendix E.2

10 264 264 extended 8-Round Unif. Dist. � [16]

10 259.6 259 extended 8-Round Stat. Integral � [10]

10 250 232 extended 8-Round MultDT � Sect. 5

12 282 232 extended 8-Round MultDT � Sect. 6

12 266 264 extended 8-Round Unif. Dist. � Sect. 7

The computation cost is the sum of the computational cost to generate N -tuples of plaintexts/ciphertexts and
the verification cost. Here we show which known-key distinguishers are defined in Gilbert’s model proposed
in [16]—denoted by Gil-KK—and which are defined in the “classical” known-key model—denoted by KK.
We recall that the latter ones exploit a property directly on the plaintexts/cipheretxts which is independent of
the details of the cipher E(·) and of the secret key. For distinguishers which exploit the technique introduced
by Gilbert [16], we highlight the distinguisher used as starting point and extended with the technique (initially)
proposed in [16]. As remarked in the main text, such distinguishers are meaningful only under the assumption
of validity of Gilbert’s model.MultDT multiple differential trail

1.2 Our contributions

Systematization of known-key distinguisher

First of all, we begin with recapitulating the literature about the concept of known-key
distinguisher in Sect. 3. By doing so, we propose and describe a generic scenario for a known-
key distinguisher by interpreting it as a game between two players—a “shortcut-player” and
a “generic player”—that face the same cipher. The idea is that the player who knows the
key—namely, the “shortcut-player”—must be able to generate a set of plaintexts/ciphertexts
(that satisfies a required property) faster than the other player who does not know the key
(or equivalently, that faces an ideal cipher)—namely, the “generic-player”. Then we recall
the known-key distinguishers present in the literature in the above scenario. In particular, we
focus on Gilbert’s distinguisher proposed in [16], and we show that it can be easier explained
using the “subspace trail notation” proposed at ToSC/FSE 2017 than using the “twisted
representation”.

Analysis of Gilbert’s known-key distinguisher: refuting both conjectures via progress in
cryptanalysis

Aswe already recalled, at Asiacrypt 2014Gilbert proposed a newknown-key distinguisher on
full AES-128 [16], by extending an 8-round known-key distinguisher based on the so-called
uniform distribution property into a more intricate 10-round distinguisher. In the conclusion
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of his paper, Gilbert claims that it seems technically difficult to use a stronger property than
the uniform distribution one to extend an 8-round known-key distinguisher to a 10-round
one:

1st Conjecture: “while we do not preclude that the use of the stronger property that several
pairs satisfying the differential relation of [17] [i.e. truncated diff. relations
exploited by the rebound distinguisher] can be derived might potentially
result in a 10-round distinguisher that outperforms the 10-round dis-
tinguisher presented above, giving a rigorous proof seems technically
difficult.”

In particular, he left “the investigation of improved 10-round known-key distinguishers and
associated proofs—or even plausible heuristic arguments if rigorous proofs turn out to be
too difficult to obtain—as an open issue.”

In this paper, we pick up this challenge, and using a strategy similar to the one proposed
by Gilbert in [16], we show how to construct a more efficient 10-round distinguisher, by
exploiting known-key distinguishers based on truncated differential trails. In particular, we
use as a starting point the 8-round known-key distinguisher presented in [19], and we extend
it at the end and at the beginning using the strategy proposed by Gilbert. This allows to set
up a 10-round known-key distinguisher for AES (see Sect. 5) with a time complexity of
approximately 250.

As one of the main (cryptanalytic) results, in Sect. 6 we show that it is possible to extend
our 10-round distinguisher up to 12 rounds. Moreover, exploiting a similar strategy, in Sect. 7
we extend Gilbert’s 10-round distinguisher based on the uniform distribution property up to
12 rounds. These 12-round AES known-key distinguishers provide counter-examples of the
claim made in [16] about the (im)possibility to use Gilbert’s technique to extend an 8-round
distinguisher by more than 2 rounds:

2nd Conjecture “The reader might wonder whether the technique we used to derive a
known-key distinguisher for the 10-round AES from a known-key distin-
guisher for the 8-round AES does not allow to extend this 8-round known
distinguisher by an arbitrary number of rounds. It is easy however to see
that the argument showing that 10-round relation R is efficiently check-
able does not transpose for showing that the relations over r > 10 rounds
one could derive from the 8-round relation by expressing that the r-round
inputs and outputs are related by r − 8 > 2 outer rounds to intermediate
blocks that satisfy the 8-round relation are efficiently checkable.”

Our results are summarized in Table 2.

Table 2 1st/2nd Conjectures and AES Gilbert’s known-key distinguishers

Rounds Property 1st Conjecture 2nd Conjecture References

10 Extended 8-Round Unif. Dist. [16]

10 Extended 8-Round Stat. Integral � [10]

10 Extended 8-Round MultDT � Sect. 5

12 Extended 8-Round MultDT � � Sect. 6

12 Extended 8-Round Unif. Dist. � Sect. 7

Referring to the 1st and the 2nd conjectures given in the main text, in this table we emphasize which ones of
our results disprove them.MultDT multiple differential trail
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A proposal of a “New” model for known-key distinguishers

The second main contribution is the high level insight that the details of the known-key
model need to be changed if we aim to restore the original intent of the known-key model.
The reason is that with our new result the difference between the chosen-key model and what
is currently thought of as the known-key model is counter-intuitive: As we show it is now
possible to have cryptanalytic results on more rounds of AES in the known-key model than
in the chosen-key model and this is true for more than a single property. Hence we propose
a simple restriction of the verifier in the known-key model to remedy the situation.

Firstly, we remark and emphasize that the goal of this paper is to discuss the validity
of Gilbert’s model independently of its (possible) practical applications. In particular, even
if Gilbert’s known-key distinguisher leads to statements on more rounds of AES than ever
before (without related keys) that seem meaningful, then it is not clear if such statements can
become useful in the sense of e.g. having an impact on the case where a block cipher is used
to construct a hash function. This has also been noticed in [16], where it is pointed out that
even if the strategy proposed by Gilbert allows to set up efficient known-key distinguishers,
its “impact on the security of [...] AES when used as a known key primitive, e.g. in a hash
function construction, is questionable” (see abstract of [16]).

To achieve our goal, under the assumption of the validity of such model, we set up dis-
tinguishers based on the truncated differential property instead of the uniform distribution
one in Gilbert’s framework, and we show that it is also possible to extend them for up to 12-
round AES, that is two rounds beyond the claim given by Gilbert in [16]. Using these results
as a starting point, we propose—with more confidence than would be possible without our
results—a (new) definition of known-key distinguisher model that rules out Gilbert’s and our
attacks proposed in this paper. As our results show, this seems necessary for better capturing
the original idea of known-key distinguishers as something “between secret-key model and
hash function use-cases”. For this reason, we conclude in Sect. 8, with a discussion of the
results and a proposal of a refinement of the known-key model which restores its original
intent (in which the role of the verifier gets back to being marginal).

2 Preliminary

2.1 Preliminary—description of AES

The Advanced Encryption Standard [13] is a Substitution-Permutation network that supports
key sizes of 128, 192 and 256 bits. The 128-bit plaintext initializes the internal state as a
4 × 4 matrix of bytes that are interpreted as values in the finite fields F256, defined using
the irreducible polynomial X8 + X4 + X3 + X + 1. Depending on the version of AES, Nr

round are applied to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14
for AES-256. An AES round applies four operations to the state matrix:

– SubBytes (S-Box): applying the same 8-bit to 8-bit invertible S-Box 16 times in parallel
on each byte of the state (it provides non-linearity in the cipher);

– ShiftRows (SR): cyclic shift of each row to the left;
– MixColumns (MC): multiplication of each column by a constant 4× 4 invertible matrix

MMC (MC and SR provide diffusion in the cipher2);
– AddRoundKey (ARK ): XORing the state with a 128-bit subkey.

2 SR makes sure column values are spread, MC makes sure each column is mixed.
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One round of AES can be described as R(x) = K ⊕ MC ◦ SR ◦ S-Box(x). In the first
round an additional AddRoundKey operation (using a whitening key) is applied, and in the
last round the MixColumns operation is omitted. Finally, as we do not use the details of the
AES key schedule in this paper, we refer to [13] for a complete description.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an intermediate state
or a key. Then xi, j with i, j ∈ {0, ..., 3} denotes the byte in the row i and in the column j . We
denote by kr the subkey of the r -th round. If only the key of the final round is used, then we
denote it by k to simplify the notation. Finally, we denote by R one round of AES, while we
denote r rounds of AES by Rr . We sometimes use the notation RK instead of R to highlight
the round key K . As a last thing, in this paper we often use the term “partial collision” (or
“collision”) when two texts belong to the same coset of a given subspace X .

2.2 Preliminary—subspace trails

Invariant subspace cryptanalysis can be a powerful cryptanalytic tool, and subspace trails
[18] – introduced at ToSC/FSE 2017—are a recent generalization of it.

Let F denote a round function in an iterative block cipher and let V ⊕ a denote a coset of
a vector space V . Then if F(V ⊕ a) = V ⊕ a we say that V ⊕ a is an invariant coset of the
subspace V for the function F . This concept can be generalized to trails of subspaces.

Definition 1 ([18]) Let (V1, V2, ..., Vr+1) denote a set of r + 1 subspaces with dim(Vi ) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai ∈ Vi , there exist ai+1 ∈ Vi+1 such that
F(Vi ⊕ ai ) ⊆ Vi+1 ⊕ ai+1, then (V1, V2, ..., Vr+1) is a subspace trail of length r for the
function F . If all the previous relations hold with equality, the trail is called a constant-
dimensional subspace trail.

This means that if Ft denotes the application of t rounds with fixed keys, then Ft (V1 ⊕
a1) = Vt+1 ⊕ at+1. We refer to [18] for more details about the concept of subspace trails.
Our treatment here is however meant to be self-contained.

Subspace trails of AES

In this section, we recall the subspace trails of AES presented in [18]. For the following, we
only work with vectors and vector spaces over F4×4

28
, and we denote by {e0,0, ..., e3,3} the

unit vectors of F4×4
28

(e.g. ei, j has a single 1 in row i and column j). We also recall that given
a subspace X , the cosets X ⊕ a and X ⊕ b (where a �= b) are equal (that is X ⊕ a ≡ X ⊕ b)
if and only if a ⊕ b ∈ X .

Definition 2 The column spaces Ci are defined as Ci = 〈e0,i , e1,i , e2,i , e3,i 〉.
For instance, C0 corresponds to the symbolic matrix

C0 =
{
⎡
⎢⎢⎣
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

⎤
⎥⎥⎦

∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
≡

⎡
⎢⎢⎣
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

⎤
⎥⎥⎦ .

Definition 3 The diagonal spaces Di and the inverse-diagonal spaces IDi are respec-
tively defined as Di = SR−1(Ci ) ≡ 〈e0,i , e1,i+1, e2,i+2, e3,i+3〉 and IDi = SR(Ci ) ≡
〈e0,i , e1,i−1, e2,i−2, e3,i−3〉, where the indexes are taken modulo 4.
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For instance, D0 and ID0 correspond to the symbolic matrices

D0 ≡

⎡
⎢⎢⎣
x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

⎤
⎥⎥⎦ , ID0 ≡

⎡
⎢⎢⎣
x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0

⎤
⎥⎥⎦ .

Definition 4 The i-th mixed spaces Mi are defined as Mi = MC(IDi ).

For instance, M0 corresponds to the symbolic matrix

M0 ≡

⎡
⎢⎢⎣
0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2

⎤
⎥⎥⎦ .

Definition 5 For I ⊆ {0, 1, 2, 3}, let CI , DI , ID I and MI be defined as

CI =
⊕
i∈I

Ci , DI =
⊕
i∈I

Di , ID I =
⊕
i∈I

IDi , MI =
⊕
i∈I

Mi .

As shown in detail in [18]:

– for any coset DI ⊕ a, there exists a unique b ∈ C⊥
I such that R(DI ⊕ a) = CI ⊕ b;

– for any coset CI ⊕ a, there exists a unique b ∈ M⊥
I such that R(CI ⊕ a) = MI ⊕ b.

Theorem 1 For each I and for each a ∈ D⊥
I , there exists one and only one b ∈ M⊥

I such
that

R2(DI ⊕ a) = MI ⊕ b. (1)

We refer to [18] for a complete proof of this theorem. Observe that b depends on a (the
constant that defines the initial coset of DI ) and on the secret key k.

Moreover, note that if X is a generic subspace, X ⊕ a is a coset of X and x and y are two
elements of the (same) coset X ⊕ a, then x ⊕ y ∈ X . It follows that:

Lemma 1 For all x, y and for all I ⊆ {0, 1, 2, 3}:
Prob(R2(x) ⊕ R2(y) ∈ MI | x ⊕ y ∈ DI ) = 1. (2)

As demonstrated in [18], we finally recall that for each I , J ⊆ {0, 1, 2, 3}:
MI ∩ DJ = {0} if and only if |I | + |J | ≤ 4, (3)

Theorem 2 Let I , J ⊆ {0, 1, 2, 3} such that |I | + |J | ≤ 4. For all x �= y:

Prob(R4(x) ⊕ R4(y) ∈ MI | x ⊕ y ∈ DJ ) = 0. (4)

We remark that all these results can be re-described using a more “classical” truncated
differential notation, as formally pointed out in [8,23]. For example, if two texts t1 and t2

are equal except for the bytes in the i-th diagonal3 for each i ∈ I , then they belong in the
same coset ofDI . A coset ofDI corresponds to a set of 232·|I | texts with |I | active diagonals.
Again, two texts t1 and t2 belong in the same coset of ID I if the bytes that lie in the i-th
anti-diagonal for each i /∈ I are equal to zero. Similar considerations hold for the column
space CI and the mixed space MI .

3 The i-th diagonal of a 4 × 4 matrix A is defined as the elements that lie on row r and column c such that
r − c = i mod 4. The i-th anti-diagonal of a 4 × 4 matrix A is defined as the elements that lie on row r and
column c such that r + c = i mod 4.
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3 Known-key security of block ciphers

Firstly, we give a formal definition of the known-key distinguisher scenario, recalling the one
proposed in [16] by Gilbert as a starting point.

3.1 Definition of known-key distinguisher

Informally, a known-key distinguisher exploits the fact that it is in general harder for an
adversary who does not know the key to derive an N -tuple of input blocks of a given block
cipher E that is “abnormally correlated” with the corresponding N -tuple of output blocks
than for one who knows the secret key. This difficulty is well expressed by the T -intractable
definition, expressed by Gilbert as follows:

Definition 6 Let E : (K , X) ∈ {0, 1}k × {0, 1}n → EK (X) ∈ {0, 1}n denote a block cipher
of block size n bits. Let N ≥ 1 and R denote an integer and any relation over the set S of
N -tuples of n-bit blocks.R is said to be T -intractable relatively to E if, given any algorithm
A that is given an oracle access to a perfect random permutation Π of {0, 1}n and its inverse,
it is impossible forA to construct in time T ′ ≤ T two N -tuplesX = (Xi ) and Y = (Yi ) such
that Yi = Π(Xi ), i = 1, ..., N and X RY with a success probability p ≥ 1/2 over Π and
the random choices ofA. The computing time T ′ of A is measured as an equivalent number
of computations of E , with the convention that the time needed for one oracle query to Π or
Π−1 is equal to 1. Thus if q denotes the number of queries of A to Π or Π−1, then q ≤ T ′.

Definition 7 Let E : (K , X) ∈ {0, 1}k × {0, 1}n → EK (X) ∈ {0, 1}n denote a block cipher
of block size n bits. A known-key distinguisher (R,A) of order N ≥1 consists of (1) a relation
R over the N -tuples of n-bit blocks (2) an algorithm A that on the input of a k-bit key K
produces in time TA, i.e. in a time equivalent to TA computations of E , an N -tupleX = (Xi )

i = 1, ..., N of plaintext blocks and an N -tuple Y = (Yi ) i = 1, ..., N of ciphertext blocks
related by Yi = EK (Xi ) and by X RY . The two following conditions must be met:

– The relation R must be TA-intractable relatively to E ;
– The validity of R must be efficiently checkable.

To formalize the last requirement, we incorporate the time for checkingwhether two N -tuples
are related by R in the computing time TA of algorithm A.

We emphasize that while the algorithm A takes a random key K as input, the relation R
satisfied by the N -tuples of input and output blocks constructed by A or A′ is the same for
all values of K (in other words, it is independent of K ) and must be efficiently checkable
without knowing K .

3.2 The known-key distinguisher scenario

To better understand these definitions, we propose and describe in more detail a generic
scenario for a known-key distinguisher, which is depicted in Fig. 1. This scenario is composed
of five characters, which are a key generator, an oracle, two players and a verifier. We assume
that the oracle is instantiated by an ideal cipher Π defined as4

Π : (k, p) ∈ {0, 1}k × {0, 1}n → c = Π(k, p) ∈ {0, 1}n

4 The parameters k and n are the same that defines the encryption scheme E , that is E : (K , p) ∈ {0, 1}k ×
{0, 1}n → c = EK (p) ∈ {0, 1}n .
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1410 L. Grassi, C. Rechberger

Fig. 1 A Known-Key Distinguisher Scenario. First, we assume a relationship R is chosen and fixed. Step
(1): the secret key is given to the Oracle Π/Π−1, to the Shortcut Player A and to the Verifier. Step (2): the
Shortcut Player A and the Generic Player A′ generate the N -tuples that satisfy the required relationship R.
Step (3): the Verifier receives the N -tuple and checks if R is satisfied or not. The fastest player to generate
the N -tuple wins the “game”

such that Π(k, ·) is a permutation for each fixed k ∈ {0, 1}k . Equivalently, Π is chosen
uniformly at random among all ciphers with a k-bit key and an n-bit input/output. Moreover,
we assume that the verifier knows the details both of E and of Π .

After fixing a relation R defined as in Def. 6, the known-key distinguisher scenario can
be described as follows:

1st) step: the key generator generates a key, which is given to the oracle and to one of the
two player. In the following:

• “shortcut player” denotes the player who knows the key and faces the encryption scheme
E ;

• “generic player” denotes the player who does not know the key and faces the ideal cipher
Π .

Referring to the previous definitions by Gilbert, the generic player can be identified by the
algorithm A′, while the shortcut player can be identified by the algorithm A;

2nd) step: the two players generate the N -tuple of (plaintexts, ciphertexts) which satisfy
the required relation R. Since the generic player does not know the key, he must
ask the oracle (identified with Π and/or Π−1 in the previous definitions) for the
encryption (resp. decryption) of chosen plaintexts (resp. ciphertexts). We stress
that this step does not consist only in the generation of (plaintext, ciphertext)
pairs, but also includes any computational cost that the player must do in order
to find the N -tuple with the required property;

3rd) step: when a player finds the N -tuple which satisfies the required relationR, he sends
it to the verifier. The verifier finally checks if (1) the relation Y ′

i = EK (X ′
i ) (case

of shortcut player) or Y ′
i = Π(X ′

i ) (case of generic player) is satisfied for each i
and if (2) the N -tuple satisfies the relation R. The first/fastest player who sends
the N -tuple with the required property R wins the “game”.

A distinguisher is meaningful if the cost of the generic player—assuming that the cost of
one oracle-query is equal to the cost of one encryption—to generate the N-tuple is higher
than the cost of the shortcut player, when the probability of success is equal for the two
players. Equivalently, a distinguisher is meaningful if the probability of the generic player
to win the game is higher than the probability of the shortcut player, when the number of
(plaintext, ciphertext) pairs that the two players can generate is fixed and equal for both
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players. In other words, in the first version one considers the computational costs of the
two players to generate the N -tuples with a fixed probability of success (equal for both the
players). In the second version, the computational cost (equivalent to the number of oracle
queries for the generic player and the number of N -tuple generated by the shortcut one) is
fixed and one considers the probabilities of success of the two players to win the game.

Before going further, we emphasize that the role of the verifier is only to prevent one or
both of the two players from cheating. In other words, in the case of honest players, the verifier
can be omitted, and the winner of the game is simply the first/fastest player that claims to
have found the N -tuple of (plaintexts, ciphertexts) which satisfy the required relationR. We
highlight that such a verifier is implicitly present in all the distinguishers currently present
in the literature.

Verification Step. Both for the distinguishers that we are going to present and for Gilbert’s
one, the computational cost of the verification step is not negligible. To clarify, we identify
the verification cost5 only as the cost to check that the relation R holds. Thus, in order to
compare our distinguishers to the others present in the literature, we define the cost of the
distinguisher as the sum of the cost of the verification step (i.e. the cost of the verifier) and
of the cost to construct the set of plaintexts/ciphertexts with the required property. For this
reason, we assume for the following that a relationshipR is efficiently checkable if and only
if the computational cost of the verifier is negligible with respect to the players’ ones. This
implies that the cost of the distinguisher can be approximated with the computational cost
of the shortcut player (since the cost of the other player is always higher in the case of a
meaningful distinguisher).

What about the cost of the Generic Player? Since the generic player depends on the oracle
to generate the N -tuple (i.e. he cannot work alone to generate it), two possible settings can
be analyzed. In the first one, only the number of oracle queries is considered to determine
the computational cost of this player, that is the number of encryptions/decryptions required
by the generic player to the oracle. In the second one, both the number of oracle queries
and any other computational cost of the generic player (which is in general not negligible)
are considered. Intuitively this second setting is weaker than the first one, in the sense that a
known-key distinguisher in the first setting works also in the second one but not vice-versa.
In other words, one can expect that the required number N of tuples is in general higher (or
at least equal) in the first setting than in the second one.

For the goal of this paper, in the following we limit ourselves to consider only the first
scenario.

Role of the Ideal Cipher in the Known-Key Scenario. For completeness, note that the
ideal cipher in the previous model can be replaced by the encryption scheme E faced by the
shortcut player if such a cipher is a Strong PseudoRandom Permutation (see Appendix A for
more details).

4 State of the art of known-key distinguishers for AES-128

Herewe review themost relevant distinguishers forAES in the above scenario, with particular
attention to the ones proposed by Gilbert in [16]. For simplicity, we assume that the relations

5 In otherwords, the cost of checking that the relationsYi = EK (Xi ) (case of shortcut player) andYi = Π(Xi )
(case of generic player) are satisfied for each i is not considered/included. In the following, we assume that
such relations are always satisfied.
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Fig. 2 7- and 8-round differential paths for AES-128

Yi = EK (Xi ) (case of shortcut player) and Yi = Π(Xi ) (case of generic player) are always
satisfied for each i , that is that the two players do not cheat about these relations.

4.1 Distinguishers based on the Rebound Technique

4.1.1 7- and 8-Round known-key distinguisher & the rebound attack

For the case of the 7- and8-roundknown-keydistinguishers proposed in [25] and [17], the goal
of the two players is to find two pairs of (plaintexts, ciphertexts)—i.e. (p1, c1) and (p2, c2)—
s.t. (1) the two plaintexts are equal in one fixed diagonal—equivalently, belong to the same
coset of Di for a fixed i ∈ {0, 1, 2, 3} (i.e. p1 ⊕ p2 ∈ Di )—and (2) the two ciphertexts are
equal in one fixed anti-diagonal (if the finalMixColumns operation is omitted)—equivalently,
belong to the same coset of Mi for a fixed i ∈ {0, 1, 2, 3} (i.e. c1 ⊕ c2 ∈ Mi ).

In the above known-key distinguisher setting, the best technique that the shortcut player
(i.e. the player who knows the key) can exploit to win the game is the Rebound Attack. The
rebound attack is a differential attack and it was proposed in [26] for the cryptanalysis of
AES-based hash functions. Since it is a differential attack, one needs a “good” (truncated)
differential trail in order to exploit it. Examples of truncated differential trails used for 7-
and 8-round AES are depicted in Fig. 2. The rebound attack consists of two phases, called
inbound and outbound phase. In the first one, the attacker uses the knowledge of the key
to find pairs of texts that satisfy the middle rounds of the truncated differential trail. In the
second one, he propagates the solutions found in the first phase in the forward and in the
backward directions, and checks if at least one of them satisfies the entire differential trail.

As proved in [17], for the AES case and using the rebound attack, the shortcut player
needs approximately 248 computations in order to find the two (plaintexts, ciphertexts) pairs
(p1, c1) and (p2, c2) with the required properties (besides a memory cost of 16× 232 = 236

bytes). Instead, in the case of an ideal cipher, the generic player needs approximately 264

operations in order to find them with the same probability.

4.1.2 Multiple limited-birthday 8-round known-key distinguisher

An improvement of the previous known-key distinguisher on 8-round of AES was proposed
in [19]. Using the subspace trail notation, in this modified version of the 8-round known-
key distinguisher, the goal of the two players is to find two pairs of (plaintexts, ciphertexts)
such that the two plaintexts belong to the same coset of Di for an arbitrary i and the two
ciphertexts belong to the same coset of M j for an arbitrary j , where i and j are not fixed
in advance and it is not required that they are equal (i.e. no condition is imposed on i and
j). A concrete example is depicted in Fig. 3. For arbitrary initial and final subspaces, the
computational cost of the shortcut player is reduced from 248 to 244 (note that there are 4
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Fig. 3 8-round differential characteristic for known-key distinguisher of AES-128

initial and final different subspacesDi andM j , for a total of 42 = 24 possibilities) while the
required memory is still 232, as shown in detail in [19]. In Appendix E.1 we show that the
same technique can be exploited to improve the 7-round known-key distinguisher presented
in [25].

4.2 Gilbert’s known-key distinguishers

4.2.1 Uniform distribution 8-round known-key distinguisher

Another 8-round known-key distinguisher for AES is based on the uniform distribution
property and it was proposed by Gilbert in [16]. In this case, the goal of the two players is
to find a set of 264 (plaintext, ciphertext) pairs—that is, (pi , ci ) for i = 0, ..., 264 − 1—such
that the bytes of the plaintexts and of the ciphertexts are uniformly distributed:

– for each j, k ∈ {0, 1, 2, 3} and for each x ∈ F28 , there are 2
56 plaintexts pi for i ∈ I ⊆

{0, ..., 264 − 1} with |I | = 256 that satisfy pij,k = x for all i ∈ I ;

– for each j, k ∈ {0, 1, 2, 3} and for each x ∈ F28 , there are 2
56 ciphertexts ci for i ∈ I ⊆

{0, ..., 264 − 1} with |I | = 256 that satisfy cij,k = x for all i ∈ I .

Using the subspace trail notation, it is possible to re-formulate the goal of the two players as
follows: find a set of 264 (plaintext, ciphertext) pairs—that is, (pi , ci ) for i = 0, ..., 264−1—
such that

– for each I ⊆ {0, 1, 2, 3} with |I | = 3 the plaintexts are uniformly distributed in cosets of
the diagonal spaceDI , or equivalently, for each I with |I | = 3 and for each a ∈ D⊥

I there
are 232 plaintexts p j for j ∈ J ⊆ {0, ..., 264 − 1} with |J | = 232 such that p j ∈ DI ⊕ a
for all j ∈ J ;

– for each I ⊆ {0, 1, 2, 3} with |I | = 3 the ciphertexts are uniformly distributed in cosets
of the mixed space MI , or equivalently, for each I with |I | = 3 and for each a ∈ M⊥

I
there are 232 ciphertexts c j for j ∈ J ⊆ {0, ..., 264 − 1} with |J | = 232 such that
c j ∈ MI ⊕ a for all j ∈ J .

If the final MixColumns is omitted, an equivalent condition holds on the ciphertexts by
replaying the mixed space MI with the inverse-diagonal one ID I . To be more formal:

Definition 8 Consider 264 texts t i ∈ F
4×4
28

for i = 0, ..., 264 −1, and let I ⊆ {0, 1, 2, 3} with
|I | = 3 fixed. These 264 texts t i are “uniformly distributed” in cosets of MI if
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– for each cosetMI⊕a fora ∈ M⊥
I , there exists a setTa of 232 textsTa := {t j } j=0,...,232−1

such that t j ∈ MI ⊕ a for each t j ∈ Ta ;
– given sets Ta and Tb just defined for two different cosets MI ⊕ a and MI ⊕ b where

(a ⊕ b) ∈ M⊥
I , then Ta ∩ Tb = ∅.

Before going further, we prove that the two previous formulations are equivalent, namely that
the bytes of the plaintexts are uniformly distributed if and only if the plaintexts are uniformly
distributed in cosets of the diagonal space DJ for each J with |J | = 3 (analogous for the
ciphertexts). Consider the case in which the plaintexts are uniformly distributed in cosets of
the diagonal space DJ , which means that for each a ∈ D⊥

1,2,3 ≡ D0, there are 232 plaintexts

p̂i for i ∈ I ⊆ {0, ..., 264 − 1} and |I | = 232 that belong e.g. to the same coset of D1,2,3 ⊕ a
(analogous for the other spaces DJ with |J | = 3). For each fixed a ∈ D⊥

1,2,3 ≡ D0, this
means that

∀i ∈ I , ∀ j ∈ {0, 1, 2, 3} : p̂i ∈ D1,2,3 ⊕ a if and only if p̂ij, j = a j, j .

Working at byte level, note that for each x ∈ F28 and for each index j , there are 224 different
a ∈ D⊥

1,2,3 ≡ D0 s.t. a j, j = x . It follows that there are 224 · 232 = 256 plaintexts pi s.t.

pij, j = x , which means that the bytes of the given plaintexts are uniformly distributed. To
complete the proof, it is sufficient to use a similar strategy and the definition of D in order
to prove that, given plaintexts whose bytes are uniformly distributed, they are uniformly
distributed in cosets of the diagonal space DJ for each J with |J | = 3.

Finally, for the follow-up we highlight that the uniform distribution property implies the
balance/zero-sum property6 both on the plaintexts and on the ciphertexts.

The strategy of the shortcut player. Here, we briefly re-propose the best strategy that the
shortcut player can use to win the game using the subspace trails notation instead of the
Super -SB notation (Super -SB(·) ≡ S-Box ◦ARK ◦ MC◦ S-Box(·))—see Appendix C for
more details. The idea is to start in themiddlewith a setSof texts defined asS := Di⊕M j⊕c
for a constant c, where |S| = 264. Observe that

S = Di ⊕ M j ⊕ c ≡
⋃

b∈Di⊕c

M j ⊕ b =
⋃

a∈M j⊕c

Di ⊕ a, (5)

i.e. the set S can be re-written as the union of cosets of the space Di or as the union of
cosets of the space M j . The ciphertexts are given by the 4-round encryption of S, and the
plaintexts by the 4-round decryption of S.

After encrypting S for 4 rounds, the texts are uniformly distributed in each coset of MI

of dimension 12 (i.e. |I | = 3). That is, after 4 rounds, each coset ofMI for |I | = 3 contains
exactly 232 elements. Indeed, by Theorem 2 note that given two elements in the same coset of
DI , they can not belong to the same coset ofMJ for |I |+ |J | ≤ 4 after 4-round. Thus, given
a coset of Di with |i | = 1, after 4 rounds each element is distributed in a different cosets of
MJ for |J | = 3. Since a coset of Di contains 232 elements and since there are exactly 232

cosets ofMJ , the elements of Di ⊕M j are uniformly distributed in each coset ofMI . The
same happens if one decrypts S for 4 rounds. In this case, after decrypting S for 4 rounds,
the texts are uniformly distributed in each coset of DI of dimension 12 (i.e. |I | = 3), that is
each coset of DI for |I | = 3 contains exactly 232 elements.

On the meaningfulness of this distinguisher.What is theminimumnumber N ≡ 264+M >

264 of random (plaintext, ciphertext) pairs s.t. there is a subset of 264 pairs whose bytes

6 The set of texts {t i }i∈I satisfies the balance property if and only if
⊕

i∈I t i = 0.
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are uniformly distributed both on the plaintexts and on the ciphertexts with non-negligible
property?

First of all, note that 264 texts satisfy the uniform distribution on each bytewith probability

p =
[
255∏
i=0

(
264 − i · 256

256

)
· (2−8)264

]16

=
(

264!(
256!)256 · (2−8)264

)16

.

Indeed, consider the following problem. Given N texts and 2 sets, assume that each text
belongs to one of the two sets with probability 2−1. It follows that the N texts are uniformly
distributed among the two sets with prob.

( N
N/2

) · 2−N . In a similar way, given d ≥ 2 sets,

they are uniformly distributed with probability7
∏d−1

i=0

(N−i ·N/d
N/d

) · d−N .

Using Stirling’s formula n! � nn · e−n ·√2π · n, this probability is well approximated by

p =
(

264!(
256!)256 · (2−8)264

)16

�
(

1

249 · π

)128

· (256!)−1/2 � 2−7328.1 ≡ 2−212.84 . (6)

In other words, given 264 plaintexts whose bytes are uniformly distributed, this represents
the probability that the bytes of the corresponding ciphertexts are uniformly distributed8.

Given 264 + M texts, it is possible to construct(
264 + M

264

)
� 1√

2π · M ·
(
264 + M

M

)M

different sets of 264 texts (where the approximation is given using Stirling’s formula and
by the assumption M � 264). This number is always bigger than p−2 ≡ 22

13.84
for each

M ≥ 212. Thus, given 264+212 randompairs, there is a good probability to find 264 (plaintext,
ciphertext) pairs for which the bytes of the plaintexts and of the ciphertexts are uniformly
distributed. It follows that if the cost of the generic player is approximated by the number
of oracle queries, then his cost is approximately of 264 + 212 � 264 encryptions versus 264

encryption of the shortcut player.
So,why is this distinguishermeaningful? Instead of focusing on the cost of the two players,

the idea is to show that the probability of the generic player to win the game given 264 texts
is negligible. To do this, authors of [16] claim that this probability is upper bounded by the
probability of the following game: “given 264 − 1 (plaintext, ciphertext) pairs whose bytes
are ‘almost uniform’—see the definition in the following, find a text for which the bytes of the
corresponding 264 texts are uniformly distributed”. Since this probability is upper bounded
by 2−127—see proof of Prop. 4 of [16] – and since this second game is (strongly) “related”
to the original one, the conclusion follows immediately. For completeness, we emphasize
that no formal proof is provided in [16] that supports this second claim. In other words, it is
not formally proved that the fact that this second game is “hard” implies the hardness of the
original game, and/or viceversa.

Finally,we formally definewhat “almost uniform”means. Consider 264−1 texts t i ∈ F
4×4
28

for i = 0, ..., N − 2. We say that the bytes of 264 − 1 texts t i are “almost uniform” if for

7 Consider the case N = 264 and d = 256. The product of the binomial coefficients is explained as follows.
For each one of the 16 bytes, there must exist 264/256 = 256 texts for each one of the 256 possible values.

Thus, there are
(264
256

)
possible sets of 256 texts for which the byte as value 0,

(264−256

256
)
possible sets of 256

texts for which the byte as value 1 and so on.
8 For comparison, note that given 264 plaintexts whose sum is zero, then the sum of the corresponding
ciphertexts is equal to zero with probability 2−128.
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each row and column j, k = 0, 1, 2, 3 (1) there exists x ∈ F28 s.t. there are 2
56 − 1 texts that

satisfy t ij,k = x and (2) for each y ∈ F28 \ x , there are 256 texts that satisfy t ij,k = y. More
generally:

Definition 9 Consider 2N − d texts t i ∈ F
4×4
28

for i = 0, ..., N − d − 1 for d ≥ 1. The bytes

of these 2N − d texts t i are “almost uniform” if for each row and column j, k = 0, 1, 2, 3:

– there exists a set X ≡ {x1, ..., xs ∈ F28} with cardinality s ≤ d such that for each xl ∈ X
with 1 ≤ l ≤ s there are 2N−8 − d ≤ ŝl ≤ 2N−8 − s texts that satisfy t ij,k = xl where∑s

l=1 ŝl = d;
– for each y ∈ F28 \ X , there are 2N−8 texts that satisfy t ij,k = y.

Note that, given a set of 2N texts whose bytes are uniformly distributed, then the bytes of each
subset of 2N − d texts (for each d ≥ 1) are “almost uniform” distributed w.r.t. the previous
definition.

4.2.2 Extension to 10 rounds of AES

The previous distinguisher is the starting point used by Gilbert in order to set up the first 10-
round known-key distinguisher forAES. The basic idea is to extend this 8-round distinguisher
based on the uniform distribution property adding one round at the end and one at the
beginning. In the known-key distinguisher scenario presented above, the players have to
send to the verifier 264 (plaintext, ciphertext) pairs, that is (pi , ci ) for i = 0, ..., 264 −1, such
that :

1. there exists a key k0 s.t. the bytes of {Rk0(p
i )}i are uniformly distributed, or equivalently

s.t. the texts {Rk0(p
i )}i are uniformly distributed among the cosets of DI for each I

with |I | = 3;
2. there exists a key k10 s.t. the bytes of {R−1

k10
(ci )}i are uniformly distributed, or equiv-

alently s.t. the texts {R−1
k10

(ci )}i are uniformly distributed among the cosets of MJ for
each J with |J | = 3.

We emphasize that it is not required that k0 and k10 are equal to the “real” subkeys (generated
by the key-generator – see before) that define EK (·), that is kr can be different from the r -th
subkey. In other words, it is only required that such keys exist, and not that they are equal to
the real subkeys9. The same assumption holds for all Gilbert’s like distinguishers presented
in this paper and in the literature. Moreover, in this game, the subkeys k0 and k10 are assumed
to be independent—no key-schedule holds (argumentation are given by Gilbert to show that
the same distinguisher is applicable also to the case in which the key-schedule holds—we
discuss this topic in details in the following).

Since uniform distribution implies balance property (vice-versa is not true in general),
for the follow-up we highlight that if the plaintexts and the ciphertexts satisfy the previous
properties, then they also have the zero-sum property respectively after one round encryption

w.r.t. the key k0 (that is,
⊕264−1

i=0 Rk0(p
i ) = 0) and after one round decryption w.r.t. the key

k10 (that is,
⊕264−1

i=0 R−1
k10

(ci ) = 0).

On the meaningfulness of this distinguisher. What is the probability that given a set of 264

texts there exists a key k̂ such that the bytes of 1-round encryption (resp. decryption) of such

9 For this and the following distinguishers, we abuse the notation kr to denote a key of a certain round r . In
general, it is not required that in a Gilbert’s-like distinguisher such subkey kr is equal to the real secret subkey.
In order to simplify the notation, we decided to abuse the notation kr to denote both cases.
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texts are uniformly distributed? Using the calculation proposed for the 8-round distinguisher
and since there are 2128 different keys, this probability is equal to 2128 · p � 2128 ·2−7328.1 =
2−7200.1 ≡ 2−212.81 where p is defined in (6). Similar to the 8-round case, it follows that
264 + 212 � 264 (plaintext, ciphertext) pairs are sufficient to have good probability to win
the game.

Again,why is this distinguisher meaningful?Working as for the 8-round case and in order
to support this distinguisher, authors of [16] show that the probability of the generic player
to win the game given 264 texts is negligible. To do this, a claim is made about the fact that
this probability is upper bounded by the probability of the following game: “given 264 − d
(plaintext, ciphertext) pairs for d ≥ 5 – that is, (pi , ci ) for each i = 0, ..., 264 − d − 1 –
with the property that there exist a set of keys k0 and k10 for which the bytes of Rk0(p

i )

and of MC−1 ◦ R−1
k10

(ci ) (that is 1-round encryption of pi and the 1-round decryption of the
ciphertexts) are ‘almost uniform’ distributed, find the remaining d texts for which the bytes of
the corresponding 264 texts after 1-round encryption/decryption are uniformly distributed”.

Since this probability is upper bounded by (2128)2 ×
(

516

2128−264+1

)3 � 2−16.5—see proof of

Prop. 6 in [16]— and since this second game is “related” to the original one, the conclusion
follows immediately.

Strategy of the verifier, of the shortcut player and of the generic one. Since the keys
k0 and k10 for which the relation R is satisfied can be different from the real subkeys, the
verifier has no information of the keys for which the relation R is satisfied, and her task is
to check if they exist. It follows that one must show that the above conditions are efficiently
checkable. The only way to verify these requirements is to find these two subkeys in an
efficient way, which is not possible using a brute force attack (k0 and k10 have 128 bits).
Under Gilbert’s assumption—no key-schedule holds, the verifier can work independently on
k0 and k10. Instead of checking all the 2 · 2128 = 2129 possible values of k0 and k10, the idea
proposed in [16] is to check uniform distribution working on single columns of SR(ci ) and of
SR−1(pi ) (the strategy proposed by Gilbert10 is similar to the one proposed in Algorithm 1).
In this way, the verifier must guess only 32 bits instead of 128, and she has to repeat this
operation 4 times (one for each anti-diagonal/diagonal) for each key. In the following, we
discuss a way to improve this procedure working independently on each byte of k0 and k10

instead of entire anti-diagonal/diagonal. The idea is simply to use integral attack [11,21] to
filter wrong keys (much) faster.

About the shortcut player (i.e. the one who knows the key), he can construct these 264

(plaintext, ciphertext) pairs using the same strategy just discussed for the 8 rounds distin-
guisher (note that in this case the keys k0 and k10 correspond to the secret sub-keys). As
a result, the distinguisher can be considered meaningful (w.r.t. the definition given before)
since (1) the probability that the generic player (i.e. the one who does not know the secret
key) successfully outputs (input, output) pairs that satisfy the previous properties (both in
the input and in the output) is upper bounded by 2−16.5 and since (2) the verifier can find the
keys k0 and k10 that satisfy the required property (if they exist) with a computational cost
which is smaller than the cost of the two players.

10 Algorithm 1 is presented in order to propose a 12-round distinguisher based on the uniform distribution
property as extension of 10-round Gilbert’s distinguisher. The difference between this algorithm and the one
proposed in [16] is the fact that in our case some wrong-key candidates can be eliminated using the zero-sum
property. In other words, in order to turn our algorithm into the one proposed in [16], it is sufficient to check
all the keys k ≡ (k0,0, k1,3, k2,2, k3,1) from (0x00, 0x00, 0x00, 0x00) to (0x f f , 0x f f , 0x f f , 0x f f ), and
not only the ones found by Algorithm 2.
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4.2.3 Generic considerations on Gilbert’s 10-round distinguisher

The previous 10-round distinguisher proposed in [16] is different from all the previous dis-
tinguishers up to 8 rounds present in the literature. For all distinguishers up to 8-round, the
relation R that the N -tuple of (plaintexts, ciphertexts) must satisfy does not involve any
operation of the block cipher E . As a consequence, it allows the verifier to check whether the
N -tuple of (plaintexts, ciphertexts) satisfy the required relationRwithout knowing anything
of the key. When R does not re-use operations of E , this provides some heuristic evidence
that this distinguisher can be considered meaningful.

On the other hand, the previous 10-round distinguisher and the ones that we are going
to propose do not satisfy this requirement, i.e. in these cases the relation R involves and
re-uses some operations of E . The novelty of Gilbert’s work is not just the possibility to
extend the distinguisher up to 10-round AES, but rather the introduction of a new distin-
guisher model. Requiring the existence of round keys for which the 1-round encryption of
the plaintexts (respectively, 1-round decryption of the ciphertexts) satisfy the relation R, or
in other words considering relationsR that depend on some operations of E , allows to set up
new distinguishers that penetrate more round of the block cipher. For a detailed discussion
on the reasons why such known-key distinguishers should not be systematically ruled out as
if they were artificial we refer to Sect. 3 of [16].

A variant of Gilbert’s distinguisher.Before going further, we highlight a variant ofGilbert’s
distinguisher—that also applies to all our proposed distinguishers present in the paper –which
allows to better understand it. Consider the case in which the two players have to send to the
verifier the N -tuple that verify the required relation R together with the subkeys for which
such a relation is satisfied. As an example, in the 10-round distinguisher just presented, the
players have to send 264 (plaintexts, ciphertexts) pairs (pi , ci ) and the two subkeys k0 and
k10 such that the bytes of Rk0(p

i ) and MC−1 ◦ R−1
k10

(ci ) are uniformly distributed. Thus,
since the task of the verifier is to check that the relation R is satisfied only for the keys she
received, it follows that her computational cost is negligible. On the other hand, we show in
details in Appendix B that such variant of the distinguisher is meaningless, since it can be
set up for any number of rounds of AES.

4.2.4 Another strategy for the verifier

In order to extend Gilbert’s distinguisher on 12-round AES by exploiting the uniform dis-
tribution property, we present another possible strategy that allows to check the existence
of keys k0 and k10 for which the required property R is verified. The goal of the following
strategy is not to improve the computational cost of the verifier, but to show the possibility
to check the existence of such keys working independently on each byte of the keys instead
of combinations of 4 bytes. The idea is simply to first filter wrong key candidates using the
integral attack [11,21]: in this way, the verifier limits herself to check the uniform distribu-
tion property only on the keys that satisfy the zero-sum property. In other words, instead of
checking directly the uniform distribution property as done in [16], we first filter wrongly
guessed key by checking the zero-sum property.

In more detail, instead of working on 4 bytes of the subkeys k0 and k10 simultaneously
(as proposed in [16]), we highlight that it is actually possible to work at byte level, finding
k0 and k10 on single bytes (independently of the others) as in a classical integral/zero-sum
attack. The idea is to exploit the fact that uniform distribution implies zero-sum property:
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Data: 264 texts t i for i = 0, ..., 264 − 1
Result: One anti-diagonal of k - e.g. (k0,0, k1,3, k2,2, k3,1) - s.t. each byte of MC−1 ◦ Rk (t

i ) is
uniformly distributed

Let A[0, ..., 232 − 1] and B1[0, ..., 255], B2[0, ..., 255], B3[0, ..., 255], B4[0, ..., 255] five arrays
initialized to zero;
for i from 0 to 264 − 1 do

x ← t i0,0 + 28 · t i3,1 + 216 · t i2,2 + 224 · t i3,1;
A[x] ← A[x] + 1;

end
Use Algorithm 2 to find k0,0, k1,3, k2,2, k3,1 - i.e. to filter wrong candidates;
for each k ≡ (k0,0, k1,3, k2,2, k3,1) found using Algorithm 2 do

for s from (0x00, 0x00, 0x00, 0x00) to (0x f f , 0x f f , 0x f f , 0x f f ) do
Let s ≡ (s0, s1, s2, s3) ∈ F

4
28

be a column of 4 bytes;

Compute x ≡ MC−1 ◦ Rk (s) ; // partial decryption of s w.r.t. to k -

note: x ≡ (x1, x2, x3, x4) ∈ F
4
28

is a column of 4 bytes

Increment B1, B2, B3, B4[x]: B j [x j ] ← B j [x j ] + A[x] for each j = 1, 2, 3, 4;
end
if uniform distribution - i.e. B j [x] = 256 for each x = 0, ..., 255 and for each j = 1, 2, 3, 4 then

identify k as possible candidate;
end

end
return candidates for (k0,0, k1,3, k2,2, k3,1).

Algorithm 1: Verifier Strategy: find one anti-diagonal (e.g. the first one) of the last round-
key k - equivalent for the other anti-diagonals and for the first round key - such that the bytes
ofMC−1◦R−1

k (t i ) are uniformly distributed. For simplicity, we omit the finalMixColumns.

Data: 264 texts t i for i = 0, ..., 264 − 1
Result: One byte of k - e.g. k0,0 - s.t.

⊕
i S-Box

−1(pi0,0 ⊕ k0,0) = 0

Let A[0, ..., 28 − 1] an array initialized to zero;
for i from 0 to 264 − 1 do

A[t i0,0] ← (A[t i0,0] + 1) mod 2; // A[x] denotes the value stored in the x-th

address of the array A
end
for k from 0x00 to 0x f f do

x ← 0;
for i from 0 to 255 do

x ← x ⊕ A[i]· S-Box−1(i ⊕ k); // A[i] can only be 0 or 1
end
if x = 0 then

identify k as candidate for k0,0;
end

end
return candidates for k0,0.

Algorithm 2: First Part of Verifier Strategy:working on each byte of the key independently
of the others, filter wrong key candidates using zero-sum property.

1st) step/filter: the verifier first looks for subkeys k0 and k10 that satisfy
⊕264−1

i=0 Rk0(p
i ) =

0 and
⊕264−1

i=0 R−1
k10

(ci ) = 0 working independently on each byte;
2nd) step/filter: only for keys that satisfy zero-sum, she then checks if the uniform property

is verified, working simultaneously on 4 bytes of the subkeys.
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We emphasize that if zero-sum is not satisfied, then also uniform distribution is not satis-
fied. Moreover, we highlight that the number of subkeys that satisfy zero-sum is very small
compared to the number of all possible keys. Indeed, note that since zero-sum is satisfied
with prob. 2−128 and since there are only 2128 keys, on average only one key passes the first
step/filter. This also implies that “checking uniform distribution once that zero-sum property
is satisfied” has negligible cost compared to the total cost. A pseudo-code of this strategy is
proposed in Algorithm 2.

Just for completeness, wemention that using this proposed strategy11, the verification cost
is a little smaller than the one given in the original strategy proposed in [16] (approximately12

2·264 vs 10·264 look-ups table, that is 257.36 vs 259.7 ten-round encryptions assuming 1 S-Box
look-up ≈ 1 table look-up). One more time, we emphasize that the goal of this strategy is to
show the possibility to work on single byte of the key independently of the others in order to
find k0 and k10: this allows us in the following to set up a distinguisher on 12-round AES.

4.3 Statistical integral distinguisher withmultiple structures

Finally, we mention for completeness that at ACISP 2017 the distinguishers proposed by
Gilbert in [16] has been improved by T. Cui, L. Sun, H. Chen and M. Wang [10]. In this
paper, authors turn both the 8- and 10-round Gilbert’s distinguishers into “statistical integral
ones” [32] with the goal to reduce the data/time complexity.

5 New 10-round distinguisher of AES—Full AES-128

Using the same strategy proposed by Gilbert in [16], we set up our 10-round distinguisher by
extending the 8-round one presented in [19] and recalled in Sect. 4.1.2 both at the beginning
and at the end. In the above defined known-key distinguisher scenario, the players have to send
to the verifiern ≥ 64different tuples of (plaintext, ciphertext) pairs, that is {(p1i , c1i ), (p2i , c2i )}
for i = 0, ..., n − 1, s.t.:

1. there exists a key k0 s.t. for each tuple there exists j for which the two plaintexts belong
to the same coset of D j after one round, that is

∃ k0 s.t. ∀i ∈ {0, ..., n − 1}, ∃ j ∈ {0, ..., 3} s.t. Rk0(p
1
i ) ⊕ Rk0(p

2
i ) ∈ D j ;

2. there exists a key k10 s.t. for each tuple there exists l for which the two ciphertexts
belong to the same coset of Ml one round before, that is

∃ k10 s.t. ∀i ∈ {0, ..., n − 1}, ∃l ∈ {0, ..., 3} s.t. R−1
k10

(c1i ) ⊕ R−1
k10

(c2i ) ∈ Ml .

We stress that the keys k0 and k10 must be equal for all the tuples. In other words, if there
exist two different tuples (c0, c1) and (c2, c3) such that R−1

k (c0) ⊕ R−1
k (c1) ∈ Ml and

R−1
k̃

(c2) ⊕ R−1
k̃

(c3) ∈ Ml̃ for two different keys k �= k̃, then the above defined relationR is

not satisfied. Note that without this request on the secret keys k0 and k10, it is extremely easy

11 Note that all the arrays A defined in Algorithms 1 and 2 can be computed simultaneously and stored, and
that we expect that only few (on average only one) keys pass Algorithms 2. Thus, the cost of the verification
step is well approximated by the cost to compute the array A.
12 Note that both Algorithm 1 and 2 can be optimized such that it is possible to compute the array A simul-
taneously for each row and column of the text t i , for a total cost of 264 table look-ups. It follows that the cost
of our strategy corresponds to the cost to prepare the array A for the two algorithm, that it 265 table look-ups.
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to construct tuples such that the two ciphertexts belong to the same coset of Ml one round
before. Indeed, as we are going to show, given two ciphertexts c1 and c2, on average there
exist 4 · (28)4 = 234 different keys k such that R−1

k (c1) ⊕ R−1
k (c2) ∈ Ml for a certain l.

As a result, it is straightforward to construct n different tuples that satisfy the above defined
relationship R without any condition on the key k.

We also observe that the claim “the transposition of our technique to the 8-round distin-
guisher of [17] does not allow to derive a valid 10-round distinguisher” made in [16] is
justified only when just n = 1 tuple of pairs is used and/or no assumption on the key k is
done. In other words, the above defined relationR—for which we consider n ≥ 64 different
tuples of pairs of texts—together with the requirement of uniqueness of the key k allows to
extend the 8-round distinguisher of [17] exploiting the same strategy proposed in [16].

Key-schedule vs Independent Subkeys. Before we go on, it is also important to emphasize
that no condition on the keys k0 and k10 is imposed, except that they exist and they are equal
for all the tuples. That is,we do not require that these keys are equal to the real secret subkeys.
The same consideration holds also for the next distinguishers presented in this paper, and for
the 10-round distinguisher presented by Gilbert in [16].

Moreover, as in [16], two possible scenarios can be considered and studied:

1. no key-schedule holds—k0 and k10 are independent;
2. AES key-schedule among k0 and k10.

Intuitively, the second case (i.e. with key schedule) is harder than the first one (i.e. without
key schedule) for the generic player, since a further property must be verified. In other words,
the time required by this player to generate the tuples for the second scenario is not smaller
than for the first one, that is the probability of success in the second scenario is not higher
than in the first one.

In the following, we limit ourselves to consider the case of independent subkeys. To
justify this choice, we recall the strategy adopted by Gilbert in [16] to set up his 10-round
distinguisher. First he considers the case of AES with independent subkeys (denoted by
AES�

10), and he presents a 10-round known-key distinguisher for AES�. Then, he simply
observes that this known-key distinguisher on AES�

10 “is obviously applicable without any
modification toAES10, i.e. the full AES-128” (see [16, Sect. 4.2 - page 221]). Using the same
argumentation, we can easily conclude that also our distinguisher can be applied to real AES,
i.e. to the case in which the key schedule holds. Indeed, as we are going to highlight in the
following, nothing changes for the shortcut player (i.e. the one who knows the key), while
this scenario is more complicated for the generic player, since a further condition on k0 and
k10 (that is, the key schedule) is imposed.

About the “Number n of Different Tuples of (plaintext, ciphertext) Pairs”. In the fol-
lowing we present the distinguisher in the case of independent subkeys. To obtain a suitable
value for n, we consider the best strategy that the generic player can adopt to win the game.

A value of n is suitable when the computational cost of the generic player is worse than the
one of the other player. To find such a value, one has to consider the numbers of oracle-queries
done by the two players (and potentially any further cost of the generic player). In particular,
if only the number of oracle-queries is taken in account, then n must be equal or greater
than 8, which implies that the computational cost for the shortcut player is of 247 and for
the generic player is (approximately) of 248.9. In order to make the advantage of the shortcut
player more significant, we have chosen an (arbitrary) value of n = 64, which implies a cost
for the shortcut player of 250 computations and (approximately) of 265.6 computations for
the generic player.
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5.1 The verifier

Given n tuples, the verifier has to check the existence of keys k0 and k10 as defined previously.
Since the subkeys are independent (no key schedule is considered), the idea is simply to work
independently on the plaintexts (in order tofind k0) andon the ciphertexts (in order tofind k10).

Let’s work for simplicity on the ciphertexts (analogous for the plaintexts). The idea is to
find the key k10 (if it exists) using the the low-data truncated differential attack13 on 3-round
AES-128 presented in [18]. In the following, we briefly recall such an attack, opportunely
modified with respect to the one presented in [18] due to the different scope of this work. In
particular, here we describe the attack on 3 rounds presented in [18] as an attack on a single
round.

Truncated differential attack [18]. Consider three texts in the same coset ofMi for i ∈
{0, 1, 2, 3} and the corresponding ciphertexts after one round, that is (p j , c j ) for j = 1, 2, 3
where c j = R(p j ) and p j ∈ Mi ⊕ a for an arbitrary (fixed) a ∈ M⊥

i . The goal of the
attack is to find the key k such that the ciphertexts belong to the same coset ofMi one round
before, that is k has to satisfy the following condition:

R−1
k (c1) ⊕ R−1

k (c2) ∈ Mi and R−1
k (c1) ⊕ R−1

k (c3) ∈ Mi . (7)

For simplicity, we assume that the final MixColumns operation is omitted (otherwise one
simply switches the final MixColumns and the final AddRoundKey operation, as usual in the
literature).

Since each column ofMi depends on different and independent variables, the idea of the
attack is to work independently on each column of Mi (and so of SR−1(k)), and to exploit
the relationships that hold among the bytes that lie in the same column of Mi .

Without loss of generality, we assume i = {0} and we present the attack only for the first
column of SR−1(k) (analogous for the others). As showed in [18], the conditions (7) are
fulfilled if the bytes of the first column of SR−1(k) satisfy the following relations:

sh0,0 = 0x02 · sh1,3, sh2,2 = sh1,3, sh3,1 = 0x03 · sh1,3, (8)

where shi, j = S-Box−1(c1i, j ⊕ ki, j )⊕ S-Box−1(chi, j ⊕ ki, j ) for h = 2, 3. For each value of

k1,3 (28 possible values in total), the idea is to find the values of k0,0, k2,2 and k3,1 that satisfy
the previous relationships. On average, 28 combinations of these four bytes (i.e. one for each
possible value of k1,3) satisfy the relations (8) for each pair of the ciphertexts. In other words,
given two texts c1 and c2, on average there are (28)4 = 232 keys k for which the condition
R−1
k (c1)⊕ R−1

k (c2) ∈ Mi is satisfied (as already mentioned before). The idea is to test them
using the second pair of ciphertexts: on average, only the right combination passes the test.
The same procedure is used for the others columns of SR−1(k).

The total computational cost of the attack iswell approximated by the cost of the first phase,
that is by the cost to find (on average) the 28 combinations of k0,0, ..., k3,1 that satisfy (8) for
the first column—similar for the others (the cost of checking themwith the second pair of texts
is negligible). In particular, the computational cost of this attack using 3 chosen plaintexts can
be approximated by 217.1 S-Box look-ups (and negligible memory cost), or approximately
211.6 table look-ups and a memory cost of 16×212 = 216 using a precomputation phase. We
refer to [18] for all the details.

Finally, we emphasize that the same attack works exactly in the same way also in the
decryption direction (chosen ciphertexts attack) with the same complexity. In this case, the

13 We emphasize that this attack has been practical verified (see [18] for details).
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Data: 2 ciphertexts pairs (c1, c2) and (c1, c3), whose corresponding plaintexts belong in the same
coset of D0.

Result: First diagonal of the secret key k (i.e. ki,i for each i = 0, ..., 3).
(Note: the same procedure with the same ciphertexts can be used to recover the other diagonals of the
key.)
for all values of k1,3 do

for all values of k0,0 do
check if sh0,0 = 0x02 · sh1,3 is satisfied for both pairs of ciphertexts, where shi, j =
S-Box−1(c1i, j ⊕ ki, j )⊕ S-Box−1(chi, j ⊕ ki, j ) for h = 2, 3

if satisfied then
identify candidates for k1,3 and k0,0;
repeat the same procedure for k2,2 and k3,1, that is check if the equivalence sh2,2 = sh1,3 and

sh3,1 = 0x03 · sh1,3 are satisfied;

end
end

end
return candidate of the first diagonal of k

Algorithm 3: Key-recovery Attack - Pseudo Code. For simplicity, in this pseudo-code, we
show how to find only the first diagonal of the secret key that verify relationship R. To
recover the entire key, it is sufficient to repeat the same attack for the other diagonals using
the same pairs of ciphertexts. For more details, see Algorithm 5 of [18].

idea is to look for a key such that the corresponding plaintexts belong to the same coset of
Di after one round (see [18] for details).

The verifier strategy.The verifier simply applies the previous strategy in order to find key
k10 (analogous for k0). First of all, given a single tuple, there exist on average 4 · (28)4 = 234

keys of the final round such that the two ciphertexts belong to the same coset of Ml one
round before for a certain l ∈ {0, 1, 2, 3}. Since the probability that two keys k10 are equal
is 2−128 and given n tuples, the probability that at least one key k10 exists (for which the
previous requirements are satisfied) is given by:

234n · 2−128(n−1) = 2−94·n+128.

By this preliminary analysis, it is already possible to deduce that the number of tuples should
be at least 2 (i.e. n ≥ 2). Indeed, for n = 1 such a key always exists (which implies that using
a random tuple it is possible to win the game), while for n = 2 the probability that such key
exists for two random tuples is only 2−60.

Thus, assume that the verifier receives n ≥ 2 tuples. Given the first tuple and working
independently on each columnas described before, the attacker finds 28 combinations for each
column of SR−1(k) and checks them immediately with the second tuple. Since she repeats
this attack for each possibleMl (i.e. 4 times), the cost of this step is of 4 ·217.1 = 219.1 S-Box
look-ups. In this way, the verifier finds on average only one key (if it exists). If at least one
possible key is found using two tuples, she simply checks if the other n− 2 tuples satisfy the
relationR for this found key. The cost of this operation is well approximated by 2 · 16 = 25

S-Box look-ups for each tuple (note that she must decrypt one round for two ciphertexts).
In conclusion, since the verifier applies the same attack on the plaintexts and on the

ciphertexts, given n ≥ 2 tuples, the cost of the verifier is well approximated by 2 × [219.1 +
(n − 2) · 25] S-Box look-ups, that is approximately 212.5 10-round encryptions if n � 214.
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5.2 The shortcut player

The shortcut player can simply use the rebound attack described in [19] and in Sect. 4.1.2 for
the known-key distinguisher on 8 rounds in order to find the n tuples that satisfy the above
defined relation R. Indeed, it is straightforward to prove that all the properties are satisfied,
since for each tuple the two plaintexts belong to the same coset of Di (for a certain i) after
1-round encryption (w.r.t. the real subkey k0) and the two ciphertexts belong to the same
coset of Ml (for a certain l) 1-round decryption (w.r.t. the real subkey k10) by construction.
Since the computational cost to build one tuple is of 244 encryptions, the cost to construct n
tuples is well approximated14 by n · 244.

Before going further, we mention that the same strategy works even if a key-schedule is
considered (that is, if the subkeys are independent), since the texts generated in the previous
way satisfied the required property w.r.t. the real subkeys k0 and k10.

5.3 The generic player

Here we analyze and present the (intuitively) best strategy that the generic player can use in
order to find n tuples with the required properties, and the corresponding computational cost.
Intuitively, the best strategy for this player is to choose tuples for which the condition on the
plaintexts is fulfilledwith probability 1. Then, the player asks the oracle for the corresponding
ciphertexts. The idea is to check if there exists a subkey k10 and n tuples such that the two
ciphertexts of each of these n tuples belong to the same coset of Ml one round before. We
remember that it is not necessary that the subkey for which this condition is satisfied is the
real one (similar for the plaintext). This process is repeated until the n tuples of pairs of texts
that satisfy the required relation R are found.

Working on the Plaintexts. To do this, the generic player must fix a random key k̂, and
computes for a certain j ∈ {0, ..., 3} and for a random a ∈ D⊥

j the following set:

Da := R−1
k̂

(D j ⊕ a). (9)

The idea is to choose plaintexts in the set Da we just defined. In this way, the property on the
plaintexts is (obviously) satisfied. The corresponding ciphertexts are simply got by oracle-
queries. Since the cardinality of a coset of D j is 232, the computation of a set Da requires
16 · 232 = 236 S-Box look-ups for each coset D j ⊕ a. Note that if the player needs more
than 232 (plaintext, ciphertext) pairs, he simply chooses another a′ ∈ D⊥

j (or/and another

j) and, using the same key k̂, he computes the corresponding set Da′ defined as before. We
emphasize that the player must always use the same key k̂ to compute these sets, in order to
fulfill the property on the plaintexts.

Working on the Ciphertexts. As we have already seen, given a single tuple there exist
on average 234 keys such that the two ciphertexts belong to the same coset ofM j one round
before. To set up a meaningful distinguisher, a value of n is suitable if the number of oracle-
queries (hence, the cost) of the generic player is higher than the cost of the shortcut player.
By previous observations, given a set of n tuples, the probability that at least a key exists for
which the property on the ciphertexts is satisfied is 2−94n+128. Thus, the idea is to estimate

14 We do not exclude the possibility of some trade-offs that could allow to reduce the computational cost to
construct n tuples, i.e. such that the total computational cost which increases less than linearly. However, for
our results, the “roughly linear” approximation is sufficient.
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the number of (plaintext, ciphertext) pairs that this player has to generate in order to win the
game (that is, in order to find with high probability n tuples with the required property). If
this number is higher than 244 · n (for a fixed n), then the other player wins the game.

Since each set Da defined as before contains 232 different plaintexts, it is possible to
construct approximately 263 different couples {(p1, c1), (p2, c2)}. Given t different sets Da ,
it is possible to construct s = 263 · t different couples. It follows that one can construct
approximately (

s

n

)
≈ sn

n!
different sets of n different tuples (i.e. n different couples {(p1, c1), (p2, c2)}), where the
previous approximation holds for n � s. Since the probability that a set of n tuples satisfies
the above defined relationR is 2−94n+128, the generic player must consider at least s different
couples such that sn/n! � 294n−128 or equivalently

s � 294−
128
n · (n!) 1

n . (10)

By this formula, for n = 8 this player has to consider approximately 279.9 different tuples,
or equivalently 248.9 (plaintext, ciphertext) pairs (that is, 216.9 initial different sets Da). In
other words, given 216.9 initial different sets Da , it is possible to construct approximately
216.9 ·263 = 279.9 different couples, that is approximately 2624 different sets of 8 tuples. Since
each one of these sets satisfies the required properties with probability 2−94·8+128 = 2−624,
he has a good probability to find 8 different tuples that satisfy the required relation. The
cost to generate these 248.9 (plaintexts, ciphertexts) pairs is of 248.9 oracle-queries (with the
assumption 1 oracle-query � 1 encryption), while the cost to generate these 8 tuples for the
shortcut player is of 8 · 244 = 247 (which is smaller). Since the cost of the generic player is
higher than the cost of the shortcut player for each n s.t. n ≥ 8,we finally choose an (arbitrary)
value of n = 64 in order to make the advantage of the shortcut player more significant.

Finally, in the case in which a key-schedule holds, the generic player has to repeat the
previous strategy until the subkeys k0 and k10—for which the texts satisfy the required
property R—satisfy the key-schedule. Since a further property must be satisfied, the game
becomes harder for the generic player (while, as we have seen before, nothing changes for
the shortcut player).

6 New 12-round distinguisher of AES

As one of the major contributions of this paper, in this section we present the first known-key
distinguisher for 12-round AES. This distinguisher is obtained by extending the previous
10-round distinguisher both at the end and at the beginning, or equivalently by extending
two times at the end and at the beginning the 8-round known-key distinguisher presented in
[19] and in Sect. 4.1.2. We highlight that this result provides a counterexample to the claims
made in [16].

In the known-key distinguisher scenario, the players have to send to the verifier n ≥ 238

different tuples of (plaintext, ciphertext) pairs, that is {(p1i , c1i ), (p2i , c2i )} for i = 0, ..., n−1,
such that:

1. there exist keys k0, k1 s.t. for each tuple there exists j for which the two plaintexts
belong to the same coset of D j after two rounds, that is

∃ k0, k1 s.t. ∀i ∈ {0, ..., n − 1}, ∃ j ∈ {0, ..., 3} s.t. R2
k0,k1(p

1
i ) ⊕ R2

k0,k1(p
2
i ) ∈ D j ;
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2. there exist keys k11, k12 s.t. for each tuple there exists l for which the two ciphertexts
belong to the same coset of Ml two rounds before, that is

∃k11, k12 s.t. ∀i ∈ {0, ..., n − 1}, ∃l ∈ {0, ..., 3} s.t. R−2
k11,k12

(c1i ) ⊕ R−2
k11,k12

(c2i ) ∈ Ml;

where R2
k0,k1

(·) = Rk1(Rk0(·)) and R−2
k11,k12

(·) = R−1
k11

(R−1
k12

(·)).
As for the known-key distinguisher for 10-round AES, here we limit ourselves to present

a known-key distinguisher for 12-round of AES with independent subkeys (that is, no key
schedule is considered). However, using similar argumentation as before, we claim that the
same distinguisher can be applied to the case in which the key schedule holds (in this case,
nothing changes for the shortcut player, while the challenge becomes much harder for the
other player).

The strategy used by the players and by the verifier is very similar to the one presented
for the 10-round distinguisher in the case of no key-schedule. For this reason, we refer to
the previous section for all the details, and we limit ourselves here to highlight the major
differences.

6.1 The shortcut and the generic player

Exactly as before, the shortcut player cangeneraten tuples of textswith the required properties
exploiting the Rebound attack, for a cost of n · 244 computations.

The generic player exploits a strategy similar to the one proposed for the 10-round distin-
guisher with no key-schedule. First he fixes random keys k̂0, k̂1 and k̂12, and using the keys k̂0

and k̂1, he computes the set Da = R−1
k̂0

(R−1
k̂1

(D j ⊕ a)). Similar to the previous case, the idea
is to work with plaintexts in the same set Da . He then gets the corresponding ciphertexts by
oracle-queries, and he simply decrypts them using the key k̂12. Then, using the same strategy
proposed for the 10-round distinguisher, he can construct n tuples that satisfy the relationR,
that is he is able to find n tuples of texts for which a common key k11 exists such that the
requirement on the ciphertexts is satisfied.

By analogous calculation as before, at least n ≥ 8 tuples are sufficient to set up a mean-
ingful distinguisher when only the number of oracle-queries is considered.

6.2 The verifier

When the verifier receives the n tuples, she can work as in the case of the 10-round distin-
guisher in order to check if the required properties are satisfied or not. First of all, since there
is no key schedule, the verifier can work independently on k0, k1 (that is on the plaintexts)
and on k11, k12 (that is on the ciphertexts). Similarly to the previous case, also for this 12-
round distinguisher the idea is to exploit a truncated differential key-recovery attack to find
(if they exist) the four keys k0, k1 and k11, k12. Such truncated differential attack—presented
on 4-round AES in [18] and recalled in Appendix D—is obtained by extending the attack
presented in the previous section for the 10-round case.

In the following, we limit ourselves to work on the ciphertexts (analogous for the plain-
texts). Given the first tuple and using the strategy described in Appendix D, the verifier
first guesses eight bytes of the final subkey k12 (two diagonals) and partially decrypts the
texts. Exploiting the same strategy proposed for the 3-round key-recovery attack described in
Sect. 5.1, she finds 234 values for eight bytes of k11, for a total of 234 ·264 = 298 candidates for
eight bytes of k11 and of k12. Then, she eliminates wrong candidates by testing them against
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the other tuples of texts—to reduce the computational cost, she can work independently on
each column of k11. Since the probability that the subkeys k11 and k12 satisfy the required
property for another tuple of texts is 4 ·2−32 = 2−30, using other four tuples the verifier finds
approximately only one pair of subkeys k11 and k12 for which the property on the ciphertexts
is satisfied (note 298 ·(2−30)4 = 2−22). The cost of this step is of 276 table look-ups (using the
pre-computation phase)—see Appendix D or in [18] for details. The remaining eight bytes
of k11 and of k12 can be found in a similar way.

As a result, given 5 different tuples, the total cost for this attack is approximately of
4 · 276 = 278 table look-ups (using the pre-computation phase). When the verifier has found
a possible candidate for the four subkeys, she checks that also the other n − 5 tuples satisfy
the relation R for the found keys. In conclusion, given n ≥ 5 tuples, the total cost for the
verifier can be approximated at 2 · (278 + 26 · (n− 5)) table look-ups in order to find the four
required subkeys. If n � 272, then the computational cost of the verifier is approximately of
271.1 twelve-round encryptions.

6.3 About the“number n of different tuples of (plaintext, ciphertext) pairs”

Due to the previous analysis, the distinguisher can be considered meaningful for n ≥ 8.
However, if n = 8 then the cost of the shortcut player (247 computations) is much smaller
than the cost of the verifier (271.1 computations), which is not consistent with the given
definition of known-key distinguisher (see Sect. 3.1). Indeed, by definition the verification
cost must be less than the cost of the shortcut player (and so less than the cost of the generic
player). In order to fulfill this condition, it is sufficient to choose a number of tuple n that
satisfy the condition n · 244 � 271.1 (and n � 272). It follows that a good (arbitrary) choice
for this distinguisher15 could be n ≥ 238.

In conclusion, to win the game, the two players have to send 238 tuples of (plaintext,
ciphertext) pairs with the required properties. The cost for the shortcut player is of 282

computations, while the verification cost is of 271.1 computations.

7 Extending Gilbert’s distinguisher to 12-round AES

In this section, we show that Gilbert’s 10-round distinguisher can be extended to 12-round
AES still exploiting the uniform distribution property. The main argumentation made in [16]
about the impossibility of such extension regards the impossibility to efficiently check the
relationship R when more than a single round is added a the beginning (resp. at the end) of
the 8-round distinguisher16. To solve this problem, we make use of the verification strategy
proposed in Sect. 4.2.4.

In the following, we first formally define the 12-round distinguisher based on the uniform
distribution property, and – after showing thatR is efficiently checkable—we prove that this
new 12-round distinguisher is meaningful using the same argumentation proposed in [16]
for the 10-round case.

15 By previous analysis, we remember that the cost of the shortcut player is always lower than the cost of the
generic player for each value of n that satisfies n ≥ 8.
16 Observe that in [16] the verifier works simultaneously on 4 bytes of the key. If one adds another round,
it follows that the only way to decrypt two rounds to check a particular property is to guess one full subkey.
This implies that the cost of the verifier is higher than 2128, that is higher than the costs of the two players.

123



1428 L. Grassi, C. Rechberger

7.1 Gilbert’s distinguisher (based on uniform distribution property) on 12-round
AES

Using Gilbert’s 10-round distinguisher as a starting point, a formal definition of the 12-
round known-key distinguisher based on the uniform distribution property is given in the
following. In the known-key distinguisher scenario, the players have to send to the verifier
n ≥ 4 different sets of 264 (plaintext, ciphertext) pairs, that is (p j

i , c
j
i ) for i = 0, ..., 264 − 1

and j = 0, ..., n − 1, such that

1. there exist keys k0, k1 such that for all j = 0, ..., n − 1 the texts {Rk1(Rk0(p
j
i ))}i are

uniformly distributed among the cosets of DI for each I ⊆ {0, 1, 2, 3} with |I | = 3,
or equivalently s.t. for all j = 0, ..., n − 1 the bytes of the texts {Rk1(Rk0(p

j
i ))}i are

uniformly distributed;
2. there exist keys k11, k12 such that for all j = 0, ..., n−1 the texts {R−1

k11
(R−1

k12
(c ji ))}i are

uniformly distributed among the cosets of MJ for each J ⊆ {0, 1, 2, 3} with |J | = 3,
or equivalently s.t. for all j = 0, ..., n − 1 the bytes of the texts {R−1

k11
(R−1

k12
(c ji ))}i are

uniformly distributed.

As for Gilbert’s distinguisher, we assume that all subkeys are independent, that is no key-
schedule holds. However, due to the same argumentation given before, we recall that the same
distinguisher works exactly in the same way also in the case in which a key-schedule holds.
Moreover, we emphasize that the keys k0, k1, k11 and k12 for which the previous properties
are satisfied must be the same for all n sets of 264 texts. In other words, given n sets s.t. the
first set satisfies the property of uniform distribution for some keys k0, k1, the second for
some other keys k̂0, k̂1 and so on, then the required properties can not be considered fulfilled.

As we are going to show, this distinguisher is meaningful for n ≥ 2: our choice of n = 4
is due in order to make the advantage of the shortcut player more significant. Using the
same strategy proposed for the 8-round distinguisher and for the 10-round one, the cost of
the shortcut player to construct the n = 4 sets of 264 (plaintext, ciphertext) pairs with the
required properties is of 4 · 264 = 266 encryptions. In the following, we show that (1) the
verification cost is smaller than 266 encryptions and that (2) the probability of victory of the
shortcut player using 266 oracle queries is negligible.

7.2 The verifier

The main problem in order to extend Gilbert’s 10-round distinguisher regards the verifica-
tion process. For this reason, here we analyze this problem in detail. In order to set up the
verification process in an efficient way, we exploit the strategy that we proposed in Sect. 4.2.4:

– in the first step, the verifier filters wrong keys by checking zero-sum property;
– in the second step, the verifier checks if the uniform distribution property is satisfied only

for those keys for which the balance property holds.

Integral attack. Consider the case in which the final MixColumns operation is omitted (if
it is not omitted, it is sufficient to swap the final MixColumns and the final AddRoundKey)
and the case in which the attacker looks for keys k11, k12 (analogous for k0, k1). Using a
classical integral attack with the extension at the end (see [13] for all the details) the verifier
guesses 5 bytes of the keys, that is 4 bytes (i.e. one anti-diagonal) of the last subkey k12 and
1 byte of the subkey k11. She first uses the 4 bytes of the last key to partially decrypt one
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round, and then she simply checks that the zero-sum property holds 2-round before (working
on each byte independently of the others).

The complete pseudo-code of this attack is given in Algorithm 4, where the verifier looks
for 4 bytes of the last subkey k12 and (simultaneously) for 4 of the subkey k11. Working on
4 bytes of k11, the zero-sum property is satisfied with prob. 2−32. Since the verifier tests 232

values of 4 bytes of k12 and 232 of 4 bytes of k11, we expect that using a single set (i.e. n = 1)
of 264 texts, then 264 ·2−32 = 232 combinations of these 8 bytes pass this first test (analogous
for the other 4 combinations of 8 bytes). The idea is to test these 232 combinations using a
second set of texts (thus, n ≥ 2). It follows that on average only 1 combination of these 8
bytes of the keys passes the test. Using the same procedure, the verifier is able to find keys
k12 and k11 for which the zero-sum property is satisfied. Finally, as for the 10-round case,
the idea is to work as described in Algorithm 1 in order to check that the uniform distribution
property is satisfied.

Computational Cost of the Verifier. First of all, given 2 sets of 264 texts the verifier must
compute the array A as defined in Algorithm 4 and Algorithm 1. The cost of this step is given
by 2 · 264 look-ups table (note that all these arrays can be computed and stored at the same
time).

In order to compute the arrays B ofAlgorithm4, the verifiermust compute 232·232·4 = 266

S-Box and 232 ·232 ·2 = 265 look-ups table. Given the arrays B, the cost to find the candidates
for 4 bytes of the key k12 and 4 bytes of key k11 is given by

232︸︷︷︸
due to k12

· 4 · 28︸ ︷︷ ︸
due to k11

·28 · 2 = 251 S-Boxes

and 251 table look-ups. Assuming that the cost of 1 S-Box look-up is equivalent to the cost of
1 table look-up17, the total cost of the verifier to compute Algorithm 4 and to find the entire
keys (i.e. k0, k1 and k11, k12) is given by 2 · 4 · (266 + 265 + 2 · 251) � 269.6 table look-ups,
or equivalently 261.8 12-round encryptions.

For the (few) candidates of the key that satisfy zero-sum, the verifier tests the uniform
distribution property. Given n sets of texts, the total cost is well approximated by 269.6+n ·264
table look-ups (note that the cost to check the uniform distribution property is basically
negligible w.r.t. the cost of finding the keys for which the zero-sum is satisfied), that is
261.8 + n · 256.1 12-round encryptions. It follows that the cost of the verifier is lower than the
costs of the two players (which is higher than n · 264 encryptions).

Partial-sum attack. Finally, we mention that the verifier can use the “Partial-Sum” key-
recovery attack [15,30] in order to find the keys k0, k1 and k11, k12 (much) faster than using
the interpolation attack described before. On the other hand, we highlight that this is out of the
scope of the paper18. Indeed, as we are going to show, the verification cost is already smaller
than the costs of the two players using the integral attack, which means that the distinguisher
can be set up using a classical integral attack for the verification phase.

17 We highlight that even if this approximation is not formally correct - the size of the table of an S-Box
look-up is lower than the size of the table used for our proposed distinguisher, it allows to give a comparison
between our proposed distinguisher and the others currently present in the literature. At the same time, we
note that the same approximation is largely used in the literature, as for example in [16].
18 Since the goal of this paper is just to prove that a 12-round Gilbert’s like distinguisher is potentially
possible, we do not present such strategy in details (and we refer to [15,30] for more details).

123



1430 L. Grassi, C. Rechberger

Data: 2 sets of 264 texts t i and t̂ i for i = 0, ..., 264 − 1
Result: One anti-diagonal of k12—e.g. (k120,0, k

12
1,3, k

12
2,2, k

12
3,1)—and one column of

k11—(k110,0, k
11
1,0, k

11
2,0, k

11
3,0)—s.t.

⊕
i R

−1
k11

◦ R−1
k12

(pi ) j,k = 0 for each j = k

Let A j [0, ..., 232 − 1] and B0
j [0, ..., 255], B1

j [0, ..., 255], B2
j [0, ..., 255], B3

j [0, ..., 255] ten arrays
initialized to zero for j = 0, 1;
for i from 0 to 264 − 1 do

x ← t i0,0 + 28 · t i1,3 + 216 · t i2,2 + 224 · t i3,1;
A0[x] ← (A0[x] + 1) mod 2; // A[x] denotes the value stored in the x-th

address of the array A x̂ ← t̂ i0,0 + 28 · t̂ i1,3 + 216 · t̂ i2,2 + 224 · t̂ i3,1;
A1[x̂] ← (A1[x] + 1) mod 2;

end
for k12 from (0x00, 0x00, 0x00, 0x00) to (0x f f , 0x f f , 0x f f , 0x f f ) do

for s from (0x00, 0x00, 0x00, 0x00) to (0x f f , 0x f f , 0x f f , 0x f f ) do
Let s ≡ (s0, s1, s2, s3) ∈ F

4
28

is a column of 4 bytes;

Compute x ≡ MC−1 ◦ Rk12 (s) ; // partial decryption of s w.r.t. to k -

note: x ≡ (x1, x2, x3, x4) ∈ F
4
28

is a column of 4 bytes

Bk
j [xk ] ← (Bk

j [xk ] + A j [i]) mod 2 for each j = 0, 1 and k = 0, 1, 2, 3;

end
for k110,0 from 0x00 to 0x f f do

x ← ⊕256
i=0 B0

0 [i]· S-Box−1(i ⊕ k110,0); // B[i] can only be 0 or 1

x̂ ← ⊕256
i=0 B0

1 [i]· S-Box−1(i ⊕ k110,0);

if x = x̂ = 0 then
Find k111,0, k

11
2,0 and k113,0 in a similar way (by repeating the last step);

if zero-sum satisfied then
Identify one anti-diagonal of k12 and one column of k11 as possible key;

end
end

end
end
return candidates for k12 and k11.

Algorithm 4: First Part of Verifier Strategy: filter wrong key candidates using zero-sum
property.

7.3 The generic player: on themeaningfulness of this distinguisher

The last problem that we have to face regards the cost of the generic player. In particular, we
have to show that the shortcut player can generate the n sets of 264 texts (with the required
property) in a more efficient way than the generic player.

What is the probability that given a set of 264 texts there exist keys k̂1 and k̂2 such that the
bytes of those texts after 2-round encryptions (resp. decryptions) are uniformly distributed?
Due to similar calculation provided in Sect. 4.2 and since there are (2128)2 = 2256 different
keys, this probability is equal to 2256 · p � 2256 · 2−7328.1 = 2−7072.1 ≡ 2−212.78 where p is
defined in (6).

More generally, given 264 random pairs of texts, the probability that keys k0, k1 and
k11, k12 exist for which the bytes of the plaintexts/ciphertexts are uniformly distributed after
2-round encryption/decryption is 2512 · 2−7328.1 = 2−6816.1 ≡ 2−212.73 . Thus, similar to the
8-round case, it follows that 264+212 � 264 random (plaintext, ciphertext) pairs are sufficient
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to have good probability to win the game19. In other words, n · (264 + 212) � n · 264 oracle
queries – with random plaintexts/ciphertets—are sufficient for the generic player in order to
win the game (note that—as done in [16]—this number does not take into account the cost
to find the required pairs of texts).

Thus, why is this distinguisher meaningful? As for the 8- and the 10-round cases, instead
of focusing on the cost of the players and using similar argumentation to the ones proposed
by Gilbert, we show that the probability of the generic player to win the game given n ≥ 2
sets of 264 texts is negligible.

To do this, we claim that this probability is upper bounded by the probability of the
following “related” game. Assume n = 2 and consider 2 sets of 264−d (plaintext, ciphertext)
pairs for d ≥ 5, that is (pi , ci ) for each i = 0, ..., 264 − d − 1, with the following property:
there is a set of keys k0, k1 and k11, k12—which can correspond to the set of the entire keys—
such that for each one of the two sets, the bytes of Rk1 ◦ Rk0(p

i ) and of R−1
k11

◦ R−1
k12

(ci ) (that is

2-round encryption of pi and the 2-round decryption of the ciphertexts) are “almost uniform”
w.r.t. the definition given before. The goal of the player is to find 2 ·d texts such that the bytes
of the 264 texts of each set after 2-round encryption/decryption are uniformly distributed. The
conclusion follows immediately since—as we are going to show – this probability is upper
bounded by 2−25 and since this second game is “related” to the original one (as assumed in
[16]).

More formally, and based on the same argumentation proposed by Gilbert—see proof of
Prop. 4 of [16], it is possible to prove the following statement.

Proposition 1 For any oracle algorithmA that makes≤ N = 2 ·264 = 265 oracle queries to
a perfect random permutation Π or Π−1 of {0, 1}128, the probability that A outputs n ≥ 2
sets of 264-tuple (Xi , Yi ) for i = 0, ..., 264 − 1 that satisfy Yi = Π(Xi ) and also satisfy R
defined previously is upper bounded by

(10
5

) × 2512 ×
(

516

2128−(264−5)

)6 ≈ 2−25.

Proof If at least one of the N pairs (Xi , Yi ) output byA does not result from a query Xi toΠ

or a query Yi toΠ−1, then the probability that for this pair Yi = Π(Xi ) and consequently the
success probability ofA is upper bounded by 1

2128−(N−1)
. So from now on we only consider

the opposite case, i.e. all the (Xi , Yi ) result from queries to Π or Π−1.
As we have already said, a set of N texts is uniformly distributed if any subset is “almost”

uniformly distributed w.r.t. the definition given before. Following the same argumentation
provided by Gilbert for the 10-round case, we consider 2 sets of 264−5 (plaintext, ciphertext)
pairs which are “almost” uniformly distributed for a set of keys k0, k1 and k11, k12 after 2-
rounds decryption/encryption, and we study the probability of the generic player to find the
remaining 2 ·5 = 10 pairs such that there exist keys k0, k1 and k11, k12 for which the bytes of
the 2 corresponding sets of 264 are uniformly distributed after 2-round encryption/decryption.

As shown in [16, Prop. 6], for each one of the two sets the probability that 5 pairs satisfy

this condition is upper bounded by
(

516

2128−(264−5)

)3
.Moreover, observe that the player does 10

oracle queries, which can be divided in
(10
5

) = 252 different sets of 5 elements. Since the 2512

four subkeys are considered to be independent and must be equal for the two sets, one gets

the claimed upper bound about the total probability of
(10
5

)×2512 ×
(

516

2128−(264−5)

)6 ≈ 2−25.
��

19 Note that if the keys schedule holds (i.e. the subkeys are not independent), then the number of different
subkeys is 2128 and not 2512.
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The same strategy applies for each n ≥ 2. In particular, if n = 4 the probability becomes

(
20

5

)
×

(
15

5

)
×

(
10

5

)
× 2512 ×

(
516

2128 − (264 − 5)

)12

≈ 2−544.7.

8 Discussion of results and proposal for a “New”model

In this paper, we improve all the known-key distinguishers (or present conjectures for such
known-key distinguishers) currently present in the literature for AES from 7 up to 10 rounds
of AES and we set up the first known-key distinguishers on 12 rounds of AES, by extending
distinguishers based on truncated differential trails and uniform distribution property (using
the technique proposed by Gilbert in [16]).

In order to extend Gilbert’s distinguisher based on the uniform distribution property up
to 12-round AES, we propose a different strategy that can be used by the verifier in order to
check that the required relationR holds, and we present a formal proof which is based on the
same argumentation proposed by Gilbert in order to justify the 8- and the 10-round distin-
guisher presented in [16]. For our new distinguishers using truncated-differential properties
the situation is different: The problem to formally prove that no generic attack is better than
those conjectured before remains open.

A“New”model: “Classical” known-key distinguisher

Taking a step back from the concrete results, what we also showed is that the gap between the
known-key model and the chosen-key model may be even larger. Among the possibilities to
remedy this counter-intuitive situation, we propose to define a new model that better capture
the desire to have something “in-between” the chosen-key and the known-key model. Our
proposal is to distinguish “classical” known-keydistinguisher—where the verifier candirectly
verify the relationR on the plaintexts and ciphertextswithout guessing any keymaterial—and
the “Gilbert” known-key distinguisher.

In particular, characterizing a meaningful—or non-trivial—known-key distinguisher for
a concrete cipher E remains an open problem. Informally, a known-key distinguisher can be
considered meaningful if the relation R (that defines it) has no “obvious connection” with
the specification of E and is independent of the value of the key.

More generally, the relation R should not “extensively” re-use the operations that define
E . Indeed, note that if one considers a relation R that depends on the details of the internal
primitives EK (·), then any concrete implementable cipher (like the AES instantiated by a
known key) can be trivially distinguished from an ideal cipher. For instance, consider the
following straightforward distinguishability attack. Assume the goal is to distinguish if an
oracle is instantiated by a cipher EK (·) or by an ideal cipher Π(K , ·) under a known/chosen
key K . Given a query X , one gets Y (which can be Y = EK (·) or Y = Π(K , X)). Since the
details of EK (·) and the key K are known, one can simply compute Y ′ = EK (X). If Y ′ = Y ,
one can conclude that the oracle is instantiated by EK (·).

“Classical” Known-Key Distinguisher: About the Relation R. In order to achieve our
goal, let us first introduce a setD of distinguishers D defined as follows:

D Set of Distinguishers: D denotes the set of all distinguishers D for which the relationR
(that defines it) has no “obvious connection”with the specification
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of E (e.g. the details of the S-Box or/and of the round-constants
etc.) and it is independent of the value of the key.

For a concrete example, note that a distinguisher that exploits the relation XRY defined as
Y = EX (X)—as the one presented before—does not belong to D. Indeed, one has to know
e.g. the details of the S-Box in order to check the relation R previously defined. The same
happens for Gilbert’s like distinguishers like [16], [10] and the ones introduced in this paper.
Instead, a distinguisher that exploits the relation (X1, X2)R(Y1, Y2) as X1 ⊕ X2 ∈ X and
Y1 ⊕ Y2 ∈ Y for particular subspaces X and Y (equivalently, X1 and X2 are equal in certain
bits/bytes/words—similar for Y1 and Y2) belongs inD, since such a relation does not exploit
any detail of E(·). Moreover, note that in this last case, X = (X1, X2) and Y = (Y1, Y2)
satisfy two independent properties, namely the fact that X1 ⊕ X2 ∈ X is independent from
the fact that Y1 ⊕ Y2 ∈ Y (for every non-trivial E(·)).

A possible way to formally define the set D is to fix the relation R in advance, as done
e.g. in [27]. In particular, consider a cipher EK (·) : FN

2 → F
N
2 for a certain N ∈ N. In [27],

authors limit themselves to work with the class of known-key distinguishers whose relation
R is defined as follows: given ϕ,ψ ⊆ {0, 1, ..., N−1}, the players have to send to the verifier
n different (plaintext, ciphertext) pairs (pi , ci ) for i = 0, ..., n − 1 such that

Bitϕ
(
p0 ⊕ ... ⊕ pn−1

)= 0 and Bitψ
(
c0 ⊕ ... ⊕ cn−1

)= 0 (11)

where Bitχ (x) outputs a string consisting of all bits of x whose index is in χ ⊆ {0, 1, ..., N −
1}. This relation allows to cover several known-key distinguisher in the literature, including
the zero-sum one initial proposed by Knudsen and Rijmen in [20] (recalled in Appendix C.1)
and the one based on the truncated diff./rebound attack proposed in [17,19,25] (recalled in
Sect. 4.1.1-4.1.2). Moreover, it satisfies the definition previously given, since such a relation
is independent of the specification of E . On the other hand, not all known-key distinguishers
in the literature can be simply described using the property (11), as for example the known-
key distinguisher on 8-round AES based on the uniform distribution property proposed in
[16] (and recalled in Sect. 4.2.1) or the ones based on linear cryptanalysis (e.g. [9]).

As a result, the problem to formalize—with a proper mathematical definition—the set D
of all distinguishers D for which the relationR (that defines it) has no “obvious connection”
with the specification of E is still open for future research.

“Classical” known-key distinguisher indifferentiability. With this in mind, we can
define what “classical known-key indifferentiability” is:

Definition 10 Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher (where (K , p) �→
c = E(K , p) = EK (p)), and let Π an ideal block cipher. Let D ∈ D be a distinguisher
with oracle access to a permutation and its inverse, and returning a single bit. The “classical
known-key indifferentiability” (class)Inf-KK advantage of D is defined as

Adv(class)Inf-KK(D) =∣∣Prob[K $←− {0, 1}k; DEK (·),E−1
K (·)(K ) = 1

]+
− Prob

[
K

$←− {0, 1}k; DΠ(K ,·),Π−1(K ,·)(K ) = 1
]∣∣.

For integers qD and t , the (class)Inf-KK advantage of E is defined as

Adv(class)Inf-KK(qD, t) = max
D∈D Adv(class)Inf-KK(D)

where the maximum is taken over all distinguishers (for which the relations R (that define
them) has no “obvious connection” with the specification of E) making at most qD oracle
queries and running in timeatmost t . E is a (q, t, ε) (class)Inf-KK if Adv(class)Inf-KK(qD, t) ≤
ε.
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Wepoint out that this definition is similar to the “known-key indifferentiability” one—denoted
Inf-KK –proposed in [1,Def. 1]. In there, authors consider known-key distinguishers for block
ciphers based on idealized primitives such as randomly drawn functions or/and permutations,
e.g. an Even-Mansour construction EMr : {0, 1}k × {0, 1}n → {0, 1}n defined as

EMr (K , x) := kr ⊕ π(... π(k1 ⊕ π(x ⊕ k0) ...)

for a fixed and ideal permutation π on n bits, where k0, ..., kr denote the round keys derived
from the master key K using some key-schedule.

However, here we point out the most important differences between these two definitions:

1. in Def. 1 of [1], the randomness is due to the fixed and ideal permutation π that defines
EMr (K , ·); conversely, note that in our definition the first probability does not contain
any randomness, but there’s a time complexity involved in D;

2. since the “round function” π that defines EMr (K , ·) is ideal in [1, Def. 1], the problem
to formalize the set of distinguisher D (previously discussed) does not arise in this
case (roughly speaking, since π is a random permutation, it is not possible to have any
“obvious connection” between it and the relation R that defines the distinguisher). On
the other hand, the security against known-key distinguishers as defined in [1, Def. 1] is
meaningless from a practical point of view, since in practice we deal with ciphers with
fixed and known/public round functions (as for the AES case). From this point of view,
our work is more practically oriented.

“Classical” Known-Key Distinguisher: Some (useful) Properties/Considerations.
Finally, we point out that

– if a cipher is a Strong PseudoRandom Permutation, then the ideal cipher in the (class)Inf-
KK definition can be replaced by the encryption scheme instantiated with an unknown
secret key;

– if a cipher is (class)Inf-KK secure, then it is also SPRP secure.

More formally:

Definition 11 Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher (where (K , p) �→ c =
E(K , p) = EK (p)), and let Π be an ideal block cipher. Let D be a distinguisher with oracle
access to a permutation and its inverse, and returning a single bit. The (Strong PseudoRandom
Permutation) SPRP-advantage of D is defined as

AdvSPRP(D) = ∣∣Prob[K $←− {0, 1}k; DEK (·),E−1
K (·) = 1

]
−Prob

[
K

$←− {0, 1}k; DΠ(K ,·),Π−1(K ,·) = 1
]∣∣.

For integers qD and t , the SPRP-advantage of E is defined as

AdvSPRP(qD, t) = max
D

AdvSPRP(D)

where the maximum is taken over all distinguishers making at most qD oracle queries and
running in time at most t . E is a (q, t, ε)−SPRP if AdvSPRP (qD, t) ≤ ε.

Proposition 2 Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a block cipher which satisfies the SPRP
(“Strong Pseudo-Random Permutation”) definition. Then, E is (q, t, ε) (class)Inf-KK if and
only if

max
D∈D

∣∣Prob[K $←− {0, 1}k; DEK (·),E−1
K (·)(K ) = 1

]−Prob
[
K

$←− {0, 1}k; DEK (·),E−1
K (·) = 1

]∣∣≤ ε
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where the maximum is taken over all distinguishers making at most qD oracle queries and
running in time at most t .

Proposition 3 If E : {0, 1}k ×{0, 1}n → {0, 1}n is (class)Inf-KK secure, then it also satisfies
the SPRP (“Strong Pseudo-Random Permutation”) definition.

Informally, if it is not possible to distinguish EK (·) from Π when the key K is known, then it
is not possible to distinguish themwhen the key is secret. Vice-versa this is not true in general.
As example, the best secret-key distinguishers on AES (independent of the key) covers 5/6
rounds [24,28], while the best known-key distinguisher covers 8 rounds (12 if one allows
Gilbert’s strategy).
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A “Classical” known-key security—details

A.1 Role of the ideal cipher in the known-key scenario

As already pointed out, if a cipher is a Strong PseudoRandom Permutation, then the ideal
cipher in the (class)Inf-KK definition can be replaced by the encryption scheme instantiated
with an unknown secret key. Informally, the ideal cipher is indistinguishable from the block
cipher for which the key has been chosen at random.

Proposition 4 Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a block cipher which satisfies the SPRP
(“Strong Pseudo-Random Permutation”) definition. Then, E is (q, t, ε) (class)Inf-KK if and
only if

max
D∈D

∣∣Prob[K $←− {0, 1}k; DEK (·),E−1
K (·)(K ) = 1

]−Prob
[
K

$←− {0, 1}k; DEK (·),E−1
K (·) = 1

]∣∣≤ ε

where the maximum is taken over all distinguishers making at most qD oracle queries and
running in time at most t .

Proof First, we prove that if E is (q, t, ε) (class)Inf-KK, then the claim holds:

∣∣Prob[K $←− {0, 1}k; DEK (·),E−1
K (·)(K ) = 1

]
− Prob

[
K

$←− {0, 1}k; DEK (·),E−1
K (·) = 1

]∣∣
≤ ∣∣Prob[K $←− {0, 1}k; DEK (·),E−1

K (·)(K ) = 1
]

− Prob
[
K

$←− {0, 1}k; DΠ(K ,·),Π−1(K ,·)(K ) = 1
]∣∣

+ ∣∣Prob[K $←− {0, 1}k; DEK (·),E−1
K (·) = 1

]
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− Prob
[
K

$←− {0, 1}k; DΠ(K ,·),Π−1(K ,·) = 1
]∣∣

The second term in the l.h.s. is smaller than ε since E is a SPRP. It follows that

∣∣Prob[K $←− {0, 1}k; DEK (·),E−1
K (·)(K ) = 1

]
− Prob

[
K

$←− {0, 1}k; DEK (·),E−1
K (·) = 1

]∣∣
≤ ∣∣Prob[K $←− {0, 1}k; DEK (·),E−1

K (·)(K ) = 1
]

− Prob
[
K

$←− {0, 1}k; DΠ(K ,·),Π−1(K ,·)(K ) = 1
]∣∣+ε.

Using the same strategy, one can prove that

∣∣Prob[K $←− {0, 1}k; DEK (·),E−1
K (·)(K ) = 1

]
− Prob

[
K

$←− {0, 1}k; DΠ(K ,·),Π−1(K ,·)(K ) = 1
]∣∣

≤ ∣∣Prob[K $←− {0, 1}k; DEK (·),E−1
K (·)(K ) = 1

]
− Prob

[
K

$←− {0, 1}k; DEK (·),E−1
K (·) = 1

]∣∣+ε.

Since the previous two equalities work for all ε ≥ 0, the thesis follows. ��

A.2 “(class)Inf-KK secure” implies SPRP

Proposition 5 If E : {0, 1}k ×{0, 1}n → {0, 1}n is (class)Inf-KK secure, then it also satisfies
the SPRP (“Strong Pseudo-Random Permutation”) definition.

Proof We are going to prove that if E is not a SPRP, then it is not inf-KK secure. If E is not
a SPRP, then by definition there exists a distinguisher D̂ such that

AdvSPRP(qD, t) ≥AdvSPRP(D̂) = ∣∣Prob[K $←− {0, 1}k; D̂EK (·),E−1
K (·) = 1

]+
− Prob

[
K

$←− {0, 1}k; D̂Π(K ,·),Π−1(K ,·) = 1
]∣∣≥ ε.

The idea is to build an (class)Inf-KK distinguisher D using D̂ that has the same advantage
in breaking E . Distinguisher D simulates the environment for D̂ as follows: firstly, a ran-

dom key K
$←− {0, 1}k is selected uniformly and D runs on the input K ; then it forward

all queries by D̂—which is independent of K—to its own oracle. If D̂ succeeds in distin-
guishing E and π , then D succeeds as well. In particular, we have Adv(class)Inf-KK(qD, t) ≥
Adv(class)Inf-KK(D) = AdvSPRP(D̂) ≥ ε. ��

B A possible variant of Gilbert’s distinguisher—details

In Sect. 4.2, we proposed a possible variant of Gilbert’s distinguisher—that also applies to
all our proposed distinguishers present in the paper—which allows to better understand it.
Consider the case in which the two players have to send to the verifier the N -tuple that
verify the required relationR together with the subkeys for which such a relation is satisfied
(here we assume that the relationshipR depends on the existence of subkey(s) such that the
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required property is not directly verified on the plaintexts or/and on the ciphertexts but one
(or more) round(s) before/after20).

In this modified variant, the task of the verifier is to check if the relation R is satisfied
(or not) only for the subkeys she received by the players. It follows that her computational
cost is negligible, in the sense that it is comparable to the computational cost of the 8-round
integral distinguisher presented in [16] where the required propertyR can be directly verified
on the plaintexts/ciphertexts (or equivalently comparable to the computational costs of the
other known-key distinguishers present in the literature up to 8 rounds). Here we show in
details why such a distinguisher is meaningless.

The main problem regards the fact that such a distinguisher can be set up for any number
of rounds. To explain this problem, consider our known-key distinguisher on r = 8 + 2 · r ′
rounds of AES, for r ′ ≥ 1 (the same considerations apply e.g. to Gilbert distinguisher). The
players have to send to the verifier n different tuples of (plaintext, ciphertext) pairs, that is
{(p1i , c1i ), (p2i , c2i )} for i = 0, ..., n − 1, and 2 · r ′ subkeys k0, ..., kr ′−1 and kr , ..., kr−r ′+1

such that

1. for each tuple there exists j ∈ {0, ..., 3} for which the two plaintexts belong to the same
coset of D j after r ′ rounds, that is

∀i ∈ {0, ..., n − 1}, ∃ j ∈ {0, ..., 3} s.t. Rk0,...,kr ′−1(p1i ) ⊕ Rk0,...,kr ′−1(p2i ) ∈ D j ;

2. for each tuple there exists l ∈ {0, ..., 3} for which the two ciphertexts belong to the same
coset of Ml r ′ rounds before, that is

∀i ∈ {0, ..., n − 1}, ∃l ∈ {0, ..., 3} s.t. R−1
kr ,...,kr−r ′+1(c

1
i ) ⊕ R−1

kr ,...,kr−r ′+1(c
2
i ) ∈ Ml ,

where Rk0,...,kr ′−1(·) = Rkr ′−1 ◦ ... ◦ Rk0(·) and R−1
kr ,...,kr−r ′+1(·) = R−1

kr−r ′+1 ◦ ... ◦ R−1
kr (·).

Consider now the costs of the verifier and of the two players. As we have already said, the
cost of the verifier is negligible, since she has to check if the relation R is satisfied only for
the received subkeys. The cost of the shortcut player is approximately of n ·244 computations
for n tuples, since she can use the rebound attack to find them (see Sect. 4.1.1 for details).
The generic player instead can use the strategy proposed in details Sect. 5 for the 10 rounds
case and in Sect. 6 for the 12 rounds one in order to win the game. Such strategy allows the
player to find plaintexts (or ciphertexts) that satisfy the required condition with negligible
computational cost. However, the only way to satisfy both the conditions (i.e. the relationR)
is to test the texts found in the first step by brute force. It follows that when the number n of
required tuples increases, the computational cost of the generic player grows faster than the
cost of the shortcut player. In other words, even if we do not exclude that a better strategy
exists, it seems hard that the cost of the generic player can be lower than the cost of the
shortcut one. By definition of known-key distinguisher given in Sect. 3.1, it follows that such
a distinguisher can be set up for any number of rounds (of AES).

20 A concrete example is obviously given by the 10-round known-key distinguisher proposed by Gilbert and
based on the balance property.
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C Known-key distinguishers for 7- and 8-round AES based on the
uniform distribution and on the balance property

C.1 Known-key distinguisher based on balance property

The 7- and the 8-round known-key distinguisher based on the balance property are a direct
application of the 3- and 4-round zero-sum secret-key distinguishers used in an inside-out
fashion.

First of all, we recall some definitions. Given a set of texts, we say that a byte X could be:

– Active (A): Every value in F28 appears the same number of times in X ;
– Balanced (B): The XOR of all values in X is 0;
– Constant (C): The value is fixed to a constant for all texts in X .

First, we formally define the 7- and the 8-round known-key distinguisher based on the
balance property. Assume there are two players—one knows the key and the other not, and
the verifier. To win the game, the players have to send to the verifier 2n (plaintext, ciphertext)
pairs, that is (pi , ci ) for i = 0, ..., 2n − 1, such that the balance property holds both on the
plaintexts and on the ciphertexts:

⊕2n−1
i=0 pi = ⊕2n−1

i=0 ci = 0. A suitable value of n is 56 for
7 rounds of AES and 64 for 8 rounds case.

What is the best strategy that the shortcut player can use to win the game? Consider 232

plaintexts with one active diagonal (i.e. 4 bytes), and all the others 12 bytes constants. It is
a well-known fact that the sum of 232 corresponding ciphertexts after four rounds is equal
to zero. A similar property holds in the decryption direction, that is the following integral
properties hold:

⎡
⎢⎢⎣
B B B B
B B B B
B B B B
B B B B

⎤
⎥⎥⎦ R−3←−−

⎡
⎢⎢⎣
A C C C
A C C C
A C C C
A C C C

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣
A C C C
C A C C
C C A C
C C C A

⎤
⎥⎥⎦ R4−→

⎡
⎢⎢⎣
B B B B
B B B B
B B B B
B B B B

⎤
⎥⎥⎦ .

Equivalent, this means that if one takes a coset of Di for a certain i , then the sum of the
corresponding ciphertexts after 4 rounds is equal to zero. Again, if one takes a coset of C j for
a certain j as the set of ciphertexts, the sum of the corresponding plaintexts 3 rounds before
is equal to 0. Thus, starting in the middle with a coset of Di ⊕ C j for a certain i and j , then
the sum of the corresponding plaintexts 3 rounds before and the ciphertexts after 4 rounds is
equal to 0:

⎡
⎢⎢⎣
B B B B
B B B B
B B B B
B B B B

⎤
⎥⎥⎦ R−3←−−

⎡
⎢⎢⎣
A C C C
A A C C
A C A C
A C C A

⎤
⎥⎥⎦

︸ ︷︷ ︸
≡ a coset of Di⊕C j

R4−→

⎡
⎢⎢⎣
B B B B
B B B B
B B B B
B B B B

⎤
⎥⎥⎦ .

This distinguisher on 7 rounds AES was proposed for the first time by Knudsen and Rijmen
in [20].

Since a coset of C j is mapped into a coset ofM j after one round with prob. 1, then given a
coset ofM j for a certain j as the set of ciphertexts, the sum of the corresponding plaintexts
4 rounds before is equal to 0. Equivalently, starting in the middle with a coset of Di ⊕ M j

for a certain i and j , then the sum of the corresponding plaintexts 4 rounds before and of the
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ciphertexts after 4 rounds is equal to 0:
⎡
⎢⎢⎣
B B B B
B B B B
B B B B
B B B B

⎤
⎥⎥⎦ R−4←−− Di ⊕ M j ⊕ a

R4−→

⎡
⎢⎢⎣
B B B B
B B B B
B B B B
B B B B

⎤
⎥⎥⎦

for a constant a.

C.2 About the validity of zero-sum known-key distinguishers

Here we analyze the validity of a zero-sum distinguisher in the scenario described in Sect. 3.
In this case, the goal of the two players is to find an N -tuple of (plaintexts, ciphertexts)
(pi , ci ) for i = 0, ..., N − 1 such that the sums of the plaintexts and of the ciphertexts are
equal to zero, i.e.

N−1⊕
i=0

pi =
N−1⊕
i=0

ci = 0.

Note that we do not require uniform-distribution of the plaintexts and/or of the ciphertexts.
As we are going to show, this problem cannot be used in order to set up meaningful

distinguishers, since the cost of the generic player (to generate the N -tuple with the required
zero-sum property) is similar to the cost of the shortcut player in the case in which both
players have the same probability of success (assuming the cost of 1 oracle-query is equal to
the cost of 1 encryption).

Shortcut Player. Assume that there exist two subspaces of texts X = {xi }i and Y = {yi }i
such that dim(X ⊕ Y ) = n and such that for each ϕ,ψ the following properties hold:⊕

x∈X⊕ϕ≡{xi⊕ϕ}i
Rs(x) and

⊕
y∈Y⊕ϕ≡{yi⊕ψ}i

R−(r−s)(y) = 0

for 0 < s < r . Since

X ⊕ Y =
⋃
y∈Y

X ⊕ y =
⋃
x∈X

Y ⊕ x

and since the shortcut player can work with intermediate states, he simply chooses texts in
a coset of X ⊕ Y (e.g. X ⊕ Y ⊕ α for an arbitrary α) and simply defines the plaintexts as
the r − s rounds decryption of X ⊕ Y ⊕ α and the corresponding ciphertexts as the s rounds
encryptions of X ⊕ Y ⊕ α. Both the plaintexts and the ciphertexts defined in this way have
the zero-sum property.

Generic player. One possible strategy that the generic player can use is the one proposed
by Wagner in [31] in order to solve the k-sum problem. Given a function f on n bits, the
k-sum problem is to find x1, . . . , xk such that

⊕k
i=1 f (xi ) = 0. A solution to this problem

is given in [31] with a running time of O(N · 2k/(1+log2 N )). This strategy has been used by
Knudsen and Rijmen in [20]—the first authors that propose a zero-sum distinguisher—in
order to estimate the computational cost of the generic player.

A more efficient way to find a solution of the analyzed problem is inspired by the attack
against XHASH proposed in [3]. Assume we are looking for a set Z = {zi } of N elements in
F2n such that

⊕
i zi = ⊕

i f (zi ) = 0. As first step, one consider N random value xi ∈ F2n
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and compute X = {xi‖ f (xi )}i where xi‖ f (xi ) ∈ F22n . Let

S =
⊕
X

[xi‖ f (xi )] ≡ [
⊕
X

xi‖
⊕
X

f (xi )].

If S is equal to zero (prob. 2−2n), then the problem is solved.
If S �= 0, for a certain M ≥ 2n, the idea is to consider other M random elements yi ∈ F2n

and compute {yi || f (yi )}i . Then, one look for binary coefficients {ai }i=1,...,M and M random
elements yi s.t. the following inequality

M⊕
i=0

ai · ([xi‖ f (xi )] ⊕ [yi‖ f (yi )]) =
M⊕
i=0

ai · [(xi ⊕ yi )‖( f (xi ) ⊕ f (yi ))] = S. (12)

is satisfied. Given M = 2n + ε, the probability that no solution is found decreases exponen-
tially by increasing ε.

Given a solution of the previous equality, the set Z = {zi } defined as

zi ≡
{
ai · yi ⊕ (1 ⊕ ai ) · xi if i ≤ M

xi if i > M

has the required zero-sum property:
⊕

zi∈Z zi = ⊕
zi∈Z f (zi ) = 0. Indeed, since ai · yi ⊕

(1 ⊕ ai ) · xi is equal to yi for ai = 1 and equal to xi otherwise, it follows that⊕
i

[zi‖ f (zi )] =
⊕
i≤M

(ai · [yi‖ f (yi )] ⊕ (1 ⊕ ai ) · [xi‖ f (xi )]) ⊕
⊕
i>M

[xi‖ f (xi )] =

=
⊕
i≤M

(ai · ([yi‖ f (yi )] ⊕ [xi‖ f (xi )]) ⊕
⊕
i

[xi‖ f (xi )] = S ⊕ S = 0.

It follows that the computational cost is well approximated by:

– N + 2n + ε encryptions;
– solve a linear system of 2n + ε equations21.

If N � 2n + ε (as in the case of AES, where n = 128 and N = 264), such a cost is well
approximated by N computations/encryptions, that is it is “similar” to the cost of the shortcut
player. As a result, it follows that such a distinguisher is not meaningful.

Final remark: zero-sum partition

Even if the zero-sum problem cannot be used in order to set up a meaningful distinguisher,
a possible way to set up a known-key distinguisher based on the balance property is by
considering the following slightly modified (but much stronger) problem:

Definition 12 (Zero-Sum Partition— [6]) Let P be a permutation from F2n to F2n . A zero-
sum partition for P of size K = 2k is a collection of K = 2k disjoint sets {X1, X2, ..., XK }
sets with the following properties:

– Xi = {x1i , ..., x2
n−k

i } ⊆ F2n for each i = 1, ..., K s.t.
⋃

i Xi = F2n ;
– for each i = 1, .., K : ⊕

x∈Xi

x =
⊕
x∈Xi

P(x) = 0.

21 The computational cost for inverting a m ×m matrix isO(m3). Since 2n + ε � N , we emphasize that the
cost of this step is negligible with respect to the cost of the first step.
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The zero-sum partition problem has been largely used in the literature in order to set up
partition zero-sumknown-keydistinguishers onKeccak- f [2,7,12] andonother permutations
like PHOTON [33]. Note that the shortcut player can use the same strategy proposed before
for the zero-sum problem in order to solve this partition zero-sum problem: it is indeed
sufficient to consider all possible disjoint coset of X ⊕Y . For completeness, we mention that
the Keccak Team published a note [4] where they confirm the validity of such distinguishers:
“[...] the zero-sum distinguishers of [2,6] are valid, albeit with a very small advantage”.

C.3 Known-key distinguisher based on uniform distribution

Finally, another possibility is to set up a known-key distinguisher on 7- and 8-round AES
based on the uniform distribution property, as done in [16]. The idea is simply to connect
two 4-round trails in the middle and to choose a middle space Di ⊕ M j for i and j fixed
(with |i | = | j | = 1). In the middle, the set Di ⊕ M j can be re-written as⋃

b∈Di

M j ⊕ b =
⋃

a∈M j

Di ⊕ a,

that is as the union of cosets of the space Di or as the union of cosets of the space M j .

Forward direction. If one encrypts Di ⊕ a for four rounds (a ∈ M j ), then the set
R(4)(Di ⊕ a) is a set of (28)4 = 232 ciphertexts where each ciphertext belongs to a different
coset of a mixed spaceMI of dimension 12. Thus if one encrypts all 232 cosets ofDi , we get
all the 232 cosets ofMI , where each coset contains exactly 232 ciphertexts. For completeness,
if the finalMixColumns operation is omitted, then the encryption of all 232 cosets ofDi results
in all the 232 cosets of ID I , where each coset contains exactly 232 ciphertexts.

Indeed, note that by Theorem 2 two elements that belong to the same coset of DI can not
belong to the same coset of MJ for |I | + |J | ≤ 4. Thus, given a coset of Di with |i | = 1,
after 4 rounds each element is distributed in a different coset of MJ for |J | = 3. Note that
Di ⊕ M j = ⋃

a∈M j
Di ⊕ a. Thus, since the coset of Di contains 232 elements and since

there are exactly 232 cosets of MJ , the elements of Di ⊕ M j are uniformly distributed in
each coset of MI .

Backward Direction. If one decrypts M j ⊕ b for four rounds (b ∈ Di ), then—due to
Theorem 2—the set R(−4)(M j ⊕ b) is a set of 232 plaintexts where each plaintext belongs
to a different coset of a diagonal space DJ of dimension 12. If one decrypts all 232 cosets of
M j , one gets all the 232 cosets of DJ , where each coset contains exactly 232 plaintexts.

D Truncated differential attack [18] on 4-round AES

To set up the first 12-round known-key distinguisher on AES, we recall (a modified version
of) the low-data complexity truncated differential attack on 4-round of AES-128 proposed in
[18], obtained by extending the attack on 3 rounds presented in Sect. 5.1 at the end.We refer to
[18, Algorithm 6] for a complete description of the attack (we assume the final MixColumns
is omitted).

Consider plaintexts in the same coset ofMi for |i | = 1 and the corresponding ciphertexts
after two rounds. The goal of the attack is to find the key such that the ciphertexts belong
to the same coset of Mi two rounds before. The idea of the attack is to guess two columns
of SR−1(k2), where k2 is the final key. Given 5 plaintexts and the corresponding ciphertexts
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(p j , c j ) for j = 1, ..., 5, for each one of the 264 possible values of these two columns of
SR−1(k2), the idea is to partially decrypt these 5 ciphertexts one round, that is to compute
the eight bytes s j := R−1

k2
(c j ) for each i = 1, ..., 5. Due to the ShiftRows operation, these 8

bytes are distributed in two columns. Thus, the idea is simply to repeat the previous attack on
3 rounds. However, since the eight bytes of si are uniformly distributed in the four columns
(i.e., two bytes for each column), for each column one can only exploit the relationship that
holds among these two bytes (see [18] for details).

Using two pairs of ciphertexts (e.g. (c1, c2) and (c1, c3)), it is possible to find (on average)
at most one combination of eight bytes of k2 for each possible guess of the eight bytes of
k2, for a total of 264 possibilities. The idea is to test these found values against other pairs
of ciphertexts, that is to check if the relationships among the bytes of the keys hold also for
these other pairs of ciphertexts22. Since each relationship is satisfied with probability 2−32

(there are four relationships, each one satisfied with probability 2−8), it is sufficient to test
the found values of k1 and k2 against only other two pairs of ciphertexts, in order to eliminate
all the wrong candidates with high probability. Thus, using 5 chosen plaintexts (i.e. 4 pairs
with a common plaintext23), it is possible to recover 8 bytes of k1 and of k2. The full key is
discovered by repeating the same procedure on the last two columns of k2.

As shown in [18], the computational cost of this attack is well approximated by 281 S-
Box look-ups (with negligible cost of memory) or 276 table look-ups and a memory cost of
16 · 212 = 216 bytes. Moreover, the same attack works also in the decryption direction, with
the same complexity. In particular, given ciphertexts in the same coset of Di for |i | = 1 and
the corresponding plaintexts two rounds before, the idea is to look for the keys such that the
plaintexts belong to the same coset of Di after two rounds.

E New 7- and 8–round AES known-key distinguishers

In this section, we propose a new 8-round known-key distinguisher for AES, which are
obtained extending at the end or/and at the beginning a 7-round known-key distinguisher for
AES. The strategy to set up them is the same used in Sect. 5. For this reason, we refer to
those sections for all the details.

E.1 7-Round known-key distinguisher

For the follow-up, we briefly recall the current best known distinguisher on 8 rounds of AES
(proposed in [19] and already presented in Sect. 4.1.2). This distinguisher is obtained starting
from the 8-round distinguisher presented in [17], and depicted in Fig. 2. Using the subspace
trail notation and the known-key distinguisher scenario, the goal of the two players in this
distinguisher is to find a pair of (plaintexts, ciphertexts)—i.e. (p1, c1) and (p2, c2)—with the
following properties: the two plaintexts belong to the same coset ofDi—i.e. p1⊕ p2 ∈ Di—

22 This step is different from the one proposed in [18]. In that case, the idea is to find the right key by a brute
force attack in order to keep the data complexity as low as possible. For our distinguisher, we propose to test
the found key against other pairs of plaintexts and ciphertexts, since it is not possible to use a brute force
attack.
23 Note that 4 different pairs can be obtained by 3 chosen plaintexts. However, such pairs are not useful for
the attack. Indeed, note e.g. that if R−1

k (c1) ⊕ R−1
k (c2) ∈ Mi and R−1

k (c1) ⊕ R−1
k (c3) ∈ Mi , it follows

that also R−1
k (c2) ⊕ R−1

k (c3) ∈ Mi since Mi is a subspace. We refer to [18] for a complete and detailed
explanation.
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Fig. 4 7-round differential characteristic for known-key distinguisher of AES-128

and the two ciphertexts belong to the same coset ofMi—i.e. c1 ⊕ c2 ∈ Mi , where the index
i is fixed. The idea proposed in [19] to improve this distinguisher is simply to not fix the
initial subspace Di and the final one M j , that is to leave i and j be completely arbitrary
(i.e. they can take any possible values). It follows that the probability that a solution of the
inbound phase of the rebound attack satisfies the outbound phase is higher, which implies
that a complexity of 244 is sufficient (instead of 248) for the shortcut player.

The same strategy can be applied to the 7 rounds distinguisher presented in [25] and
recalled in Sect. 4.1.1. In particular, using the same argumentation of [19], the computational
cost of the distinguisher illustrated in Fig. 4 is 220 instead of 224. Indeed, note that for free
Di andM j , the probability that a solution of the inbound phase satisfies the outbound phase
increases by a factor 16.

E.2 8-Round known-key distinguisher

A possible 8-round known-key distinguisher can be set up starting from the 7-round dis-
tinguisher just presented and extending it at the end (or at the beginning) using a similar
technique presented in Sect. 5 for the 10-round distinguisher. We refer to that section for a
complete discussion of this technique, and we limit ourselves here to give a formal definition
of the distinguisher and to do some considerations about the data and the computational cost.

In the known-key distinguisher scenario, the two players have to send to the verifier n
different tuples of (plaintext, ciphertext) pairs, that is {(p1i , c1i ), (p2i , c2i )} for i = 0, ..., n−1,
such that

1. for each tuple, there exists j s.t. the two plaintexts belong to the same coset of D j , that
is

∀i ∈ {0, ..., n − 1}, ∃ j ∈ {0, ..., 3} s.t. p1i ⊕ p2i ∈ D j ;
2. there exists a key k s.t. for each tuple there exists l for which the two ciphertexts belong

to the same coset of Ml one round before, that is

∃! k s.t. ∀i ∈ {0, ..., n − 1}, ∃l ∈ {0, ..., 3} s.t. R−1
k (c1i ) ⊕ R−1

k (c2i ) ∈ Ml .

Note that the only difference with the 10-round distinguisher presented in Sect. 5 regards
the strategy exploited by the generic player in order to choose the plaintexts. In particular,
instead of choosing plaintexts in sets Da = R−1(D j ⊕ a) as defined in (9), in this case the
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generic player has to consider plaintexts in cosets of D j . Moreover, the verifier can direct
check the property on the plaintexts (which is independent of the key).

If only the number of oracle-queries is considered, it is possible to prove that n ≥ 3 tuples
are sufficient to set up this distinguisher. Indeed, using the same argumentation of Sect. 5,
the generic player has to consider approximately 252.18 different couples (see (10)), that is
approximately 226.59 different (plaintexts, ciphertexts) pairs, for a cost of 226.6 oracle-queries,
in order to have good probability to construct 3 tuples with the required properties. On the
other hand, the cost for the shortcut player is only of 3 · 220 = 221.6 computations. In order
to make the advantage of the shortcut player more significant, we choose an (arbitrary) value
of n = 8, which implies a cost for the shortcut player of 223 computations and of 248.9

computations for the generic player.
For both cases, the verifier uses the same strategy presented in Sect. 5, and her cost is well

approximated by 211.6 eight-round encryptions.
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