
Designs, Codes and Cryptography (2020) 88:1723–1740
https://doi.org/10.1007/s10623-020-00721-2

Permutations on finite fields with invariant cycle structure on
lines

Daniel Gerike1 · Gohar M. Kyureghyan2

Received: 3 September 2019 / Revised: 31 December 2019 / Accepted: 16 January 2020 /
Published online: 14 February 2020
© The Author(s) 2020

Abstract
Westudy the cycle structure of permutations F(x) = x+γ f (x)onFqn ,where f : Fqn → Fq .
We show that for a 1-homogeneous function f the cycle structure of F can be determined by
calculating the cycle structure of certain induced mappings on parallel lines of γ Fq . Using
this observation we describe explicitly the cycle structure of two families of permutations
over Fq2 : x + γ Tr(x2q−1), where q ≡ −1 (mod 3) and γ ∈ Fq2 , with γ 3 = − 1

27 and

x + γ Tr

(
x

22s−1+3·2s−1+1
3

)
, where q = 2s , s odd and γ ∈ Fq2 , with γ (q+1)/3 = 1.
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A permutation can be expressed as a unique product of disjoint cycles (up to reordering).
The cycle decomposition of a permutation on a finite field provides information on both
algebraic as well as combinatorial properties of the permutation. Much of that information
is retained in the cycle structure of the permutation, which lists the lengths of the cycles
and their frequencies in the cycle decomposition. Two permutations have the same cycle
structure exactly if they lie in the same conjugacy class of the symmetric group. One of
the main current challenges in the research on permutations of finite fields is finding the
cycle structure for interesting families of permutation polynomials, and vice versa, given
a conjugacy class of the symmetric group over a finite field, find a nice member of it. At
present, the cycle structure is studied for very few families of permutation polynomials. In
[1] the cycle structure of monomials xk over Fq is determined. It directly depends on the
multiplicative order of the exponent k modulo the divisors of q − 1. In [10] formulas for
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1724 D. Gerike, G. M. Kyureghyan

the cycle structure of Dickson polynomials Dn(x, a) with parameter a = 1 or a = −1
are given. The cycle structure of Dickson polynomials is similar to the cycle structure of
monomials. In [12] the cycle structure of q-linearized polynomials over Fqn is considered.
The authors give a formula for the cycle structure of the restriction of a linearized polynomial
to certain subspaces of Fqn . Further they show how to combine these results to get the cycle
structure on the whole field. Applying this method to a given family of linearized permutation
polynomials is often challenging. However it can be used to compute the cycle structure of
an explicitly given linearized permutation polynomial using a computer algebra system, e. g.
SAGE or MAGMA. In [13] functional graphs of mappings of finite fields are considered.
This approach leads to a refinement of the results obtained in [12]. In [2] the authors show
that any permutation polynomial Pn with Carlitz rank n can be written as Pn = Cn ◦ Rn ,
where Cn is a single cycle of length n and Rn is a Möbius transformation. They use this fact
to determine the cycle structure of permutation polynomials with low Carlitz rank.

In this paper we study the cycle structure of permutation polynomials of shape x +γ f (x)
onFqn , where γ ∈ F

∗
qn and f : Fqn → Fq . In particular we show that if f is 1-homogeneous,

then it suffices to consider the induced permutations on certain lines. We use this observation
to describe the cycle structure of two families of permutations on Fq2 : x + γ Tr(x2q−1),

where q ≡ −1 (mod 3), γ ∈ Fq2 , γ
3 = − 1

27 and x+γ Tr

(
x

22s−1+3·2s−1+1
3

)
, where q = 2s ,

s odd and γ ∈ Fq2 , with γ (q+1)/3 = 1.

1 Induced permutations on lines and subspaces

Let q = ps with p a prime number and s ∈ N. In this paper we consider Fqn as an Fq -
vector space. Similarly all mentioned vector spaces are over Fq . The following result is
straightforward.

Lemma 1 Let F(x) = x + γ f (x), where f : Fqn → Fq and γ ∈ Fqn . Then F maps every
line α + γ Fq , α ∈ Fqn into itself.

Proof Let α + γ u ∈ α + γ Fq , then

F(α + γ u) = α + γ u + γ f (α + γ u) = α + γ (u + f (α + γ u)) ∈ α + γ Fq .

So F maps α + γ Fq into itself. ��
The next lemma shows that the converse of the above lemma is also true.

Lemma 2 Let γ ∈ F
∗
qn . If F : Fqn → Fqn maps every line α + γ Fq , α ∈ Fqn into itself, then

F(x) = x + γ f (x) for an appropriate mapping f : Fqn → Fq .

Proof By assumption, for any α ∈ Fqn there exists a mapping fα : Fq → Fq such that

F(α + γ u) = α + γ (u + fα(u)) = α + γ u + γ fα(u)

for u ∈ Fq . Let now A be a system of representatives for the cosets of the line γ Fq in Fqn .
Then every x ∈ Fqn can be uniquely written as α + γ u with α ∈ A, u ∈ Fq . For x = α + γ u
with α ∈ A and u ∈ Fq we define f (x) = u + fα(u). Then clearly

F(x) = F(α + γ u) = α + γ u + γ fα(u) = x + γ f (x),

where f : Fqn → Fq , with f (x) = u + fα(u). ��
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Permutations on finite fields with invariant cycle structure on lines 1725

Remark 1 Let F(x) = x + γ f (x), where f : Fqn → Fq and γ ∈ F
∗
qn . Further let L be a

subspace of Fqn containing γ . Then γ Fq ⊆ L and L = ⋃
α∈L(α + γ Fq) is a union of cosets

of γ Fq . Hence any coset β + L = ⋃
α∈L(α + β + γ Fq). Since F maps any of those lines

into themselves it also maps any coset of L into itself.

As an immediate corollary of Lemma 1 we get the following result.

Theorem 1 Let F : Fqn → Fqn , F(x) = x + γ f (x), where f : Fqn → Fq and γ ∈ F
∗
qn .

Then F permutes Fqn if and only if it permutes every line α + γ Fq with α ∈ Fqn .

The next observation follows directly from Theorem 1.

Proposition 1 Let f : Fqn → Fq and γ ∈ F
∗
qn . If F(x) = x + γ f (x) is a permutation of

Fqn , then every cycle in its cycle decomposition has a length not exceeding q.

Let SA denote the symmetric group of a set A. Two permutations π : A → A and
π ′ : B → B are called conjugate , if there exists a bijectionϕ : A → B, withπ = ϕ−1◦π ′◦ϕ.
The next well known fact is used often in the sequel.

Proposition 2 Let A, B be finite sets with |A| = |B| and F ∈ SA and G ∈ SB. Then F
and G have the same cycle structure if and only if there exists a bijection ϕ : A → B, with
F = ϕ−1 ◦ G ◦ ϕ.

Recall that amapping g : Fqn → Fq is called homogeneous of degree 1 or 1-homogeneous,
if g(ux) = ug(x) for any u ∈ Fq and x ∈ Fqn . Next we consider a special class of
permutations F(x) = x + γ f (x), where f is homogeneous of degree 1. The following
theorem shows that the cycle structure of such permutations has an interesting regularity.

Theorem 2 Let f : Fqn → Fq be 1-homogeneous and γ ∈ F
∗
qn . Further let L and M be

subspaces of Fqn such that γ ∈ L, L � M and dim(L) = dim(M)−1. If F(x) = x+γ f (x)
permutes Fqn , then F has the same cycle structure on all cosets m + L �= L of L in M.

Proof Let α ∈ M \ L be fixed. Then for any m ∈ M \ L , the coset m + L can be represented
as αt + L with t ∈ F

∗
q . By Remark 1, the mapping F is a permutation on the coset tα + L .

Let now l ∈ L . Then for a fixed t , we get

F(tα + l) = tα + l + γ f (tα + l) = tα + Gt (l)

with Gt (l) : L → L , Gt (l) = l + γ f (tα + l). Since Gt (l) = F(tα + l)− tα = τ−1 ◦ F ◦ τ ,
where τ : L → tα + L , with τ(l) = l + tα, Proposition 2 shows that Gt (l) is a permutation
of L that has the same cycle structure as F on tα + L . To complete the proof, it remains to
show, that the cycle structure of Gt is independent of t . Since f is homogeneous of degree
1, we have

t−1Gt (tl) = t−1(tl + γ f (tα + tl)) = t−1(tl + γ f (t(α + l))

= t−1(tl + tγ f (α + l)) = l + γ f (α + l) = G1(l).

This shows that Gt and G1 are conjugate permutations in the symmetric group SL and
consequently have the same cycle structure. ��

For the choice L = γ Fq and M any two dimensional subspace of Fqn containing γ ,
Theorem 2 implies that the cycle structure of the permutation F(x) = x + γ f (x) is the
same on all parallel lines m + γ Fq �= γ Fq contained in M . This is a key observation for
understanding the cycle structure of permutations of shape x + γ f (x) which we summarize
in the following theorem.
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1726 D. Gerike, G. M. Kyureghyan

Theorem 3 Let f : Fqn → Fq be 1-homogeneous and γ ∈ F
∗
qn . Suppose F(x) = x+γ f (x)

is a permutation on Fqn . Then the following holds:

(a) If M is a two dimensional subspace of Fqn containing γ , then the cycle structure of F
is the same on every line m + γ Fq �= γ Fq lying in M.

(b) There are at most 1 + (qn−1 − 1)/(q − 1) lines in Fqn such that the cycle structure of
F is pairwise different on them.

Proof The statement follows from Theorem 2 with M of dimension 2 and the observation
that qn−1−1

q−1 is the number of pairwise different two dimensional subspaces containing γ . We
need to consider the cycle structure of F on the line γ Fq separately. ��
Remark 2 Example 1 shows that there are permutations x + γ Trqn/q(xk), for which there
exist two dimensional subspaces M of Fqn , such that the cycle structure of F is not the same
on every line m + γ Fq �= γ Fq lying in M .

The following permutations are from [8], they do not belong to a known infinite family.

Example 1 Let q = 9, n = 3, k ∈ {11, 19} and γ ∈ Fq , where γ 4 = −1. Let F(x) =
x + γ Trq3/q(x

k). Then the cycle structure of F on γ Fq is 19. And for the 80 lines l ‖ γ Fq ,
l �= γ Fq , it holds, that

on 8 the cycle structure of F is 33,
on 36 the cycle structure of F is 1142,
on 36 the cycle structure of F is 1181.

Since a two dimensional subspace of F93 , containing γ F9, contains 8 further lines and 8 � 36,
there exists a two dimensional subspace of F93 , containing γ Fq , that contains at least two
lines with different cycle structures.

In the next sections we demonstrate applications of Theorem 3.

2 The case F(x) = x + � Trqn/q(xk)

In this section we consider the case f (x) = Trqn/q(xk) with k ∈ N and Trqn/q : Fqn → Fq ,

where Trqn/q(x) = x + xq +· · ·+ xq
n−1

is the trace mapping. The study of permutations x +
γ Trqn/q(xk)was originated in [3], where the complete characterization of such permutations
for q = 2 is achieved. Several families of such permutations are found in [4,8,9,11]. In this
paper we concentrate on the cases n = 2 and n = 3. The currently known families of such
non-linear permutations for n = 2 and n = 3 are given in Theorem 4. Cases 1-5 for odd q
and cases 6, 16 and 17 are from [8]. Cases 1-5 for even q and cases 7-14 are from [9]. Case
15 is from [11].

Theorem 4 The polynomial F(x) = x +γ Trqn/q(xk) is a permutation polynomial over Fqn

in each of the following cases.

1. n = 2, q ≡ 1 (mod 3), γ = −1/3, k = 2q − 1,
2. n = 2, q ≡ −1 (mod 3), γ 3 = −1/27, k = 2q − 1,
3. n = 2, q ≡ 1 (mod 3), γ = 1, k = (q2 + q + 1)/3,
4. n = 2, q = Q2, Q > 0, γ = −1, k = Q3 − Q + 1,
5. n = 2, q = Q2, Q > 0, γ = −1, k = Q3 + Q2 − Q,
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Permutations on finite fields with invariant cycle structure on lines 1727

6. n = 2, q ≡ 1 (mod 4), (2γ )(q+1)/2 = 1, k = (q + 1)2/4,
7. n = 2, q = 2s , s even, γ 3 = 1, k = (3q − 2)(q2 + q + 1)/3,
8. n = 2, q = 2s , s odd, γ 3 = 1, k = (3q2 − 2)(q + 4)/5,
9. n = 2, q = 2s , γ ∈ Fq , s. t. x3 + x + γ −1 has no root in Fq , k = 22s−2 + 3 · 2s−2,
10. n = 2, q = 2s , s ≡ 1 (mod 3), γ = 1, k = (2q2 − 1)(q + 6)/7,
11. n = 2, q = 2s , s ≡ −1 (mod 3), γ = 1, k = −(q2 − 2)(q + 6)/7,
12. n = 2, q = 2s , s odd, γ (q+1)/3 = 1, k = (22s−1 + 3 · 2s−1 + 1)/3,
13. n = 2, q = 2s , s even, γ = 1, k = (q2 − 2q + 4)/3,
14. n = 2, q = Q2, Q = 2s , γ ∈ F

∗
Q, k = 24s−1 − 23s−1 + 22s−1 + 2s−1,

15. n = 2, q = 3s , s ≥ 2,γ (q−1)/2 = (γ − 1)(q−1)/2, k = 32s−1 + 3s − 3s−1,
16. n = 3, q odd, γ = 1, k = (q2 + 1)/2,
17. n = 3, q odd, γ = −1/2, k = q2 − q + 1.

It can be easily seen that in all cases of Theorem 4 the integers k and n satisfy k ≡ 1
(mod q − 1), implying.

Proposition 3 If q and k appear in one of the cases of Theorem 4, then xk = x for any
x ∈ Fq , and hence the function Trqn/q(xk) is homogeneous of degree 1.

Consequently every permutation listed in Theorem 4 fulfills the conditions of Theorem 3.
Thus to determine the cycle structure of these permutations, it is enough to find the cycle
structure of the induced permutations on lines parallel to γ Fq . By Theorem 3(b), for n = 2
there are at most two lines with different cycle structure, and for n = 3 there are at most
q + 2 such lines. One of the lines for which we need to compute the cycle structure is γ Fq .

Remark 3 Let F(x) = x + γ Trqn/q(xk) be one of the cases appearing in Theorem 4. Then
the cycle structure of F on γ Fq is easy to determine. Indeed, for any γ u ∈ γ Fq it holds
F(γ u) = γ (1 + Trqn/q(γ k))u, and hence the cycle containing γ u has length equal to the
multiplicative order of (1 + Trqn/q(γ k)) in Fq .

Note that in several of the cases listed in Theorem 4 there are multiple choices for γ

defining permutations. However in some of these cases the choice of γ does not impact the
cycle structure of permutations.

Proposition 4 Let i ∈ {2, 6, 8, 12} be fixed and Fi,γ be a permutation of Fq2 described in
case i of Theorem 4. Further let γ1, γ2 ∈ Fq2 be such, that Fi,γ1 and Fi,γ2 are permutations.
Then Fi,γ1 and Fi,γ2 are conjugate in the symmetric group over Fq2 and hence they have the
same cycle structure. Further the cycle structure of Fi,γ1 on γ1Fq is the same as the cycle
structure of Fi,γ2 on γ2Fq and for any α1 ∈ Fq2 \ γ1Fq , α2 ∈ Fq2 \ γ2Fq , the cycle structure
of Fi,γ1 on α1 + γ1Fq is the same as the cycle structure of Fi,γ2 on α2 + γ2Fq .

Since the proofs are similar, we present only a proof for case 2.

Proof F2,γ (x) = x + γ Trq2/q(x
2q−1), where γ 3 = − 1

27 . One possible choice for γ is

− 1
3 . Set F

∗(x) = x − 1
3 Trq2/q(x

2q−1). In the following we proceed similar to the proof of
Theorem 3.2 from [8]. Let ω := −3γ , then ω3 = 1 and consequently ω2q−1 = 1. Then

F2,γ (ωx) = ωx − 1

3
ω Trq2/q(ω

2q−1x2q−1) = ω(x − 1

3
Trq2/q(x

2q−1))

= ωF∗(x). (1)
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1728 D. Gerike, G. M. Kyureghyan

This shows that F2,γ is a conjugate of F∗ for any γ with γ 3 = − 1
27 , that is the cycle structure

of F2,γ is the same for every γ , such that F2,γ is a permutation.
Since ϕ : Fq → γ Fq , ϕ(x) = ωx is a bijection, (1) also shows, that the cycle structure

of F2,γ on γ Fq is the same as the cycle structure of F∗ on Fq .
Let β0 ∈ Fq2 \ Fq be fixed and α0 = ωβ0 ∈ Fq2 \ γ Fq . Then ϕ0 : β0 + Fq →

α0 + γ Fq , ϕ0(x) = ωx is one-to-one. Consequently (1) also shows, that the cycle structure
of F2,γ on α0 + γ Fq is the same as the cycle structure of F∗ on β0 + Fq . By Theorem 3 for
any α ∈ Fq2 \ γ Fq , the cycle structure of F2,γ on α + γ Fq is the same as the cycle structure
of F2,γ on α0 + γ Fq . These two facts together show that for any α ∈ Fq2 \ γ Fq , the cycle
structure of F2,γ on α + γ Fq is the same as the cycle structure of F∗ on β0 + Fq . ��

Tables 1 and 2 contain numerical results on the cycle structure on affine lines l parallel to
γ Fq and l �= γ Fq for permutations obtained by Theorem 4. Let mr1

1 m
r2
2 . . .mri

i denote the
cycle structure of a permutation with r1 cycles of length m1, r2 cycles of length m2, …and
ri cycles of length mi , where m1 < m2 < · · · < mi .

Recall that Theorem 3 shows that for n = 3, there are at most q + 2 different kinds of
lines, where “different” means, that on those lines the considered permutation has different
cycle structures. One of those lines is γ Fq , which we do not consider in the tables. So the
upper bound for different lines in the tables is q +1. Observe that Table 2 shows in particular
that in cases 16 and 17 of Theorem 4 this upper bound q + 1 is not achieved. Instead for
q = 81 there are only 8 different lines in case 16, and 9 different lines in case 17; and for
q = 125 there are 9 different lines in case 16, and 14 different lines in case 17.

The cycle structures marked with ∗∗ in Table 1 look particularly simple. Based on our
numerical results we believe that the following statements hold.

Conjecture Permutations listed in Theorem 4 fulfill:

1. For fixed q, the cycle structures of the permutations in case 1 are the same as the cycle
structures of the permutations in case 3.

2. Let Fγ be as described in case 9 and m be the largest integer with 2m ≤ s. Then there
exists an element γ , such that Fγ has 2s−(m+1) cycles of length 2m+1 on every line
α + γ Fq , where α ∈ Fq2 \ γ Fq .
If 2m = s, then this is the case for γ = 1. For this special case, we have a technical proof
which will be published in [5].

3. Let Fγ be as described in case 14. If 4 � s, then there exists an element γ , such that Fγ

has 4 cycles of length 2s−2 on every line α + γ Fq , where α ∈ Fq2 \ γ Fq .
4. Let Fγ be as described in case 15. Then there exists an element γ , such that Fγ has 1

fixed point and 1 cycle of length q − 1 on every line α + γ Fq , where α ∈ Fq2 \ γ Fq .

For the permutations considered in the previous conjecture, it is easy to describe their
cycle structure on the line γ Fq . We state this in the next proposition. Note that in cases 9, 14
and 15, γ ∈ Fq and thus γ Fq = Fq .

Proposition 5 Let ord(x) be the multiplicative order of x in Fq .

(a) In cases 1 and 3 the permutations have q fixed points on γ Fq , if q is even, and 1 fixed
point and (q − 1)/ ord(3) cycles of length ord(3) on γ Fq , if q is odd.

(b) In cases 9 and 14 the permutation Fγ reduces to the identity mapping on γ Fq and
consequently has q fixed points on γ Fq .

(c) In case 15 the permutation Fγ reduces to F(u) = (2γ + 1)u on γ Fq and consequently
has one fixed point and (q − 1)/ ord(2γ + 1) cycles of length ord(2γ + 1) on γ Fq .

123



Permutations on finite fields with invariant cycle structure on lines 1729

Table 1 Examples of cycle structure on lines for n = 2

Case q γ Cycle struct. on any line l ‖ γ Fq ,l �= γ Fq

1 289 11422810

1024 418252014020

2∗ 125 1321304

1103 131822822524

3 289 11422810

1024 418252014020

4 289 1141122142281622801

1024 4114018801

5 289 15811945211481

1024 14140224015001

6 289 114541285

2197 11099325231566

7 1024 1 14112019204210

�= 1 1430270280226014001

4096 1 82726120614424406

�= 1 4161212230225213604 5614

8 2048 122011221441 66588511011322 176119812421

8192 127782663910525654 91161041411741304 1432156620842601 3641

9 1024 1 416017

a 21656211865

a99 1664 ∗ ∗
10 1024 14102205354606 4001

8192 212625223902 101412574136661

11 2048 21224552138111652

16384 142834074225534 1141445722

12∗ 2048 1682212262

32768 1109226130728

13 1024 224530280132015401

16384 22142561170143081 34024

14 1024 1 411252063656051802

b 2564 ∗ ∗
15 243 c 112421 ∗ ∗

c4 112161132262 782

Here a is a root of x10 + x6 + x5 + x3 + x2 + x + 1 in F1024, b is a root of x5 + x2 + 1 in F32 and c is a root
of x5 − x + 1 in F243. ∗We determine the cycle structure for these cases completely in Theorems 7 and 10
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1730 D. Gerike, G. M. Kyureghyan

Table 2 Examples of cycle
structure on lines for n = 3

Case q A B

16 81 316194123 1

112646114 3

1121315365152 6

112141101114201 12

112191111221361 12

113191271411 12

115391103351 12

113151141281301 24

125 1221324162123211 421 9

21111342441 9

2179101501 9

21145531 9

5161183601 9

144691 9

324291183242 18

1279102202 27

122132416191125361 27

17 81 316194123 1

132366123 3

4291322 6

1331417191221331 12

13316171271351 12

213171101141451 12

21361431 12

181631 12

191621 12

125 1122317191131151 201531 9

11314171181391531 9

223181481621 9

125191461631 9

12111161301661 9

6181441671 9

142251121291711 9

251261741 9

81411761 9

223281261811 9

2251331831 9

1122314281151861 9

1122718191961 9

12811151 9

Here column A contains the cycle structure on lines l ‖ γFq , l �= γFq and
B the number of planes P > γFq with such lines
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Remark 4 At present we have no explanation for the cycle structure of case 16. In [6] we
describe explicitly the cycle structure of the composition of this mapping with xq

2+q−1, that
is for xq

2+q−1 +Trq3/q(x). The possible cycle lengths are only 1, the multiplicative order of
4 modulo p and twice the multiplicative order of 4 modulo p, where p is the characteristic
of Fq .

3 Determining the cycle structure of x + � Trq2/q(x
2q−1).

Numerical results for case 2 of Theorem 4 show that the cycle structure of these permutations
on lines l ‖ γ Fq , l �= γ Fq is the same as the cycle structure of x3 on Fq . The next Theorem
byAhmad describes the cycle structure of permutation polynomials xk .We denote by ordt (k)
the order of k modulo t , i. e. the smallest positive integer m with km ≡ 1 (mod t).

Theorem 5 ([1]) The polynomial xk , gcd(k, q − 1) = 1, permuting F
∗
q has a cycle of length

t if and only if t = ordm(k), where m | (q − 1). The number Nt of t-cycles satisfies

t · Nt = gcd(kt − 1, q − 1) −
∑

i |t,i �=t

i · Ni and N1 = gcd(k − 1, q − 1).

Remark 5 On Fq , xk has the additional fixed point x = 0 and thus N1 + 1 fixed points in
total.

Let Tr(x) = Trq2/q(x) = x + xq be the trace map from Fq2 to Fq . We use this notation
for the remainder of the paper. In this section we determine the cycle structure of case
2 of Theorem 4, which is F(x) = x + γ Tr(x2q−1) on Fq2 , where q ≡ −1 (mod 3) and

γ 3 = − 1
27 .We do this by showing, that indeed the cycle structure of F(x) = x+γ Tr(x2q−1)

on lines l ‖ γ Fq , l �= γ Fq is the same as the cycle structure of x3 on Fq .
By Proposition 4 for all admissible choices of γ the cycle structure of F as well as its

cycle structure on the lines parallel to γ Fq is the same. Hence we consider the case γ = − 1
3 ,

for which γ Fq = Fq holds, because in this case γ ∈ Fq .
First we determine the cycle structure of F on Fq .

Lemma 3 Let q ≡ −1 (mod 3) and p be the characteristic of Fq . Then

(a) If q is even, the permutation F(x) = x − 1
3 Tr(x

2q−1) reduces to F(x) = x on the line
Fq . Consequently it has q fixed points on Fq .

(b) If q is odd, the permutation F(x) = x − 1
3 Tr(x

2q−1) reduces to F(x) = 1
3 x on the line

Fq . Consequently, it has one fixed point and
q−1

ordp(3)
cycles of length ordp(3) on Fq .

Proof If q is even and x ∈ Fq , then clearly F(x) = x . If otherwise q is odd and x ∈ Fq ,
then

F(x) = x − 1

3
Tr(x2q−1) = x − 1

3
Tr(x) = x − 2

3
x = 1

3
x .

So x = 0 is a fixed point and them-th iterate of F is
( 1
3

)m
x . Therefore if x �= 0 it is contained

in the cycle
(
x, 1

3 x, . . . ,
( 1
3

)k−1
x
)
where k = ordp

( 1
3

) = ordp(3). ��
To determine the cycle structure of F on the other lines parallel to Fq , by Theorem 3, we

only need to pick one of them and find the cycle structure on it. The following claim will be
used for a suitable choice of this line.
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1732 D. Gerike, G. M. Kyureghyan

Claim 1 If q ≡ 5 (mod 6), then − 1
3 is a non-square of Fq .

Proof Let q = ps with p prime. Then p ≡ 5 (mod 6) and s is odd. Hence − 1
3 is a non-

square of Fq if and only if − 1
3 is a non-square in Fp . The rest follows from the observation

that − 1
3 is a non-square in a prime field Fp with p ≡ 5 (mod 6). The latter follows directly

from the Quadratic Reciprocity Law. ��
Now we are ready to determine the rest of the cycle structure of F .

Theorem 6 Let q ≡ −1 (mod 3) and α ∈ Fq2 \ Fq . Then the permutation F(x) = x −
1
3 Tr(x

2q−1) has the same cycle structure on α + Fq as the permutation x3 on Fq .

Proof According to Theorem 3 the cycle structure of F on the line α+Fq does not depend on
the choice of α ∈ Fq2 \ Fq . As in the proof of Theorem 2 for any α and l ∈ Fq the following
holds: F(α + l) = α + Gα(l) and Gα(l) := l + γ Tr((α + l)2q−1) permutes Fq and has the
same cycle structure as F on α +Fq . Next we show that for a particular choice of α, and thus
for any choice of α by Theorem 3, the permutation Gα is a conjugate of m(x) = x3 in SFq .

If q is even, then γ = − 1
3 = 1 ∈ F2. Let α ∈ F4 ≤ Fq2 , α /∈ F2. Since q = 2s , with s

odd, α /∈ F2s . This α satisfies

α2 = α + 1, α3 = 1, Tr(α) = αq + α = α2 + α = 1,

Tr(α2) = Tr(α + 1) = Tr(α) = 1, Tr(α3) = Tr(1) = 0

and

(α + l)q+1 = (α + l)(αq + l) = (α + l)(α + 1 + l)

= α2 + α + αl + αl + l + l2 = l2 + l + 1.

Using the above equations we get

Gα(l) = l + Tr((α + l)2q−1) = l + Tr

(
(αq + l)2

α + l

)

= l + (αq + l)2

α + l
+ (α + l)2

αq + l
= l + (αq + l)3 + (α + l)3

(α + l)(αq + l)

= l + Tr((α + l)3)

(α + l)q+1 = l + 2l3 + 3l2 Tr(α) + 3l Tr(α2) + Tr(α3)

l2 + l + 1

= l + l2 + l

l2 + l + 1
= l3 + l2 + l + l2 + l

l2 + l + 1
= l3

l2 + l + 1
.

Nowwe can show thatGα = ϕ−1◦m◦ϕ, or equivalently ϕ◦Gα = m◦ϕ for the permutation

ϕ(l) := lq−2 + 1 =
{

1
l + 1, l �= 0,

1, l = 0.

We have

(ϕ ◦ Gα)(0) = f (0) = 1 = m(1) = (m ◦ ϕ)(0).

If l �= 0 then

(ϕ ◦ Gα)(l) = l2 + l + 1

l3
+ 1 = 1

l3
+ 1

l2
+ 1

l
+ 1 =

(
1

l
+ 1

)3

= (m ◦ ϕ)(l).
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This proves the theorem for even q .
If q is odd, then by Claim 1, − 1

3 is a non-square of Fq , so there is α ∈ Fq2 \ Fq with

α2 = − 1
3 . This α satisfies (αq)2 = (α2)q = α2 and thus

αq = −α, Tr(α) = Tr(−α) = 0, Tr(α2) = 2α2, Tr(α3) = α2 Tr(α) = 0.

Using these equations we obtain

Gα(l) = l − 1

3
Tr((α + l)2q−1) = l − 1

3
(α + l)2(q+1) Tr

(
1

(α + l)3

)

= l − 1

3

[
(αq + l)(α + l)

]2 (
1

(α + l)3
+ 1

(αq + l)3

)

= l − 1

3
(l2 − α2)2 · (α + l)3 + (αq + l)3

(l2 − α2)3
= l − 1

3
· Tr((l + α)3)

l2 − α2

= l − 1

3
· 2l

3 + 3l2 Tr(α) + 3l Tr(α2) + Tr(α3)

l2 − α2

∗= l − 1

3
· 2l

3 + 6lα2

l2 − α2 = l − 1

3
· 2l

3 − 2l

l2 + 1/3

= l − l(2l2 − 2)

3l2 + 1
= l(3l2 + 1) − l(2l2 − 2)

3l2 + 1
= l(l2 + 3)

3l2 + 1
,

where * follows from α2 = − 1
3 . Next we show that Gα = ϕ−1 ◦ m ◦ ϕ, or equivalently

ϕ ◦ Gα = m ◦ ϕ for the permutation

ϕ(l) :=
(
1

2
l + 1

2

)q−2

− 1 =
{

1−l
1+l , l �= −1,

−1, l = −1.

We have

(ϕ ◦ Gα)(−1) = ϕ

(−1(1 + 3)

3 + 1

)
= ϕ(−1) = −1 = m(−1) = (m ◦ ϕ)(−1).

If l �= −1 then

(ϕ ◦ Gα)(l) = 1 − l(l2+3)
3l2+1

1 + l(l2+3)
3l2+1

= 1 − 3l + 3l2 − l3

1 + 3l + 3l2 + l3
=

(
1 − l

1 + l

)3

= (m ◦ ϕ)(l).

Consequently F has the same cycle structure on α + Fq as x3 on Fq . ��
We summarize the results of this section by describing explicitly the cycle structure of F

in the general case.

Theorem 7 Let q ≡ −1 (mod 3), p be the characteristic ofFq and γ ∈ Fq2 with γ 3 = − 1
27 .

Let Nt be defined by the following recursion

N1 = gcd(2, q − 1)

and

t · Nt = gcd(3t − 1, q − 1) −
∑

i |t,i �=t

i · Ni .
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1. Let q be even. Then the permutation F(x) = x + γ Tr(x2q−1) of Fq2 has q fixed points
on γ Fq . Further, on any affine line α + γ Fq , α ∈ Fq2 \ γ Fq , the permutation F(x) has
N1 + 1 = 2 fixed points and Nt cycles of length t for every t > 1, such that t = ordm(3)
for a divisor m of q − 1.

2. Let q be odd. Then the permutation F(x) = x + γ Tr(x2q−1) of Fq2 has one fixed

point and q−1
ordp(3)

cycles of length ordp(3) on γ Fq . Further, on any affine line α + γ Fq ,

α ∈ Fq2 \ γ Fq , the permutation F(x) has N1 + 1 = 3 fixed points and Nt cycles of
length t for every t > 1, such that t = ordm(3) for a divisor m of q − 1.

Proof The theorem follows from Lemma 3 and Theorems 6 and 5. ��
Corollary 1 Let q ≡ −1 (mod 3) and γ ∈ Fq2 with γ 3 = − 1

27 . Then the permutation
F(x) = x + γ Tr(x2q−1) has 3q − 2 fixed points on Fq2 .

Proof If q is even, there are q fixed points on γ Fq and 2 fixed points on any of the q − 1
affine lines α + γ Fq , so in this case F has q + 2(q − 1) = 3q − 2 fixed points in total.

If q is odd, there is 1 fixed point on γ Fq and there are 3 fixed points on any of the q − 1
affine lines α + γ Fq , so in this case F has 1 + 3(q − 1) = 3q − 2 fixed points in total.

4 Determining the cycle structure of x + � Trq2/q

(
x

22s−1+3·2s−1+1
3

)
.

In this section we determine the cycle structure of case 12 of Theorem 4, which is F(x) =
x + γ Tr

(
x

22s−1+3·2s−1+1
3

)
on Fq2 , where q = 2s , s odd and γ (q+1)/3 = 1. Recall, that by

Tr(x), we denote Trq2/q(x) = xq + x . By Proposition 4 for all admissible choices of γ the
cycle structure of F as well as its cycle structure on the lines parallel to γ Fq is the same.
Hence it is enough to consider γ = 1, for which γ Fq = Fq holds.

We first determine the number of fixed points of F on Fq2 .

Lemma 4 Let q = 2s and s be odd. Then the permutation

F(x) = x + Tr

(
x

22s−1+3·2s−1+1
3

)

of Fq2 has
q2−1
3 + 1 fixed points.

Proof Note that x is a fixed point of F if and only if Tr

(
x

22s−1+3·2s−1+1
3

)
= 0. Since

22s−1 + 3 · 2s−1 + 1

3
= (2s−1 + 1)

q + 1

3
and gcd(2s−1 + 1, 22s − 1) = 1,

Tr

(
x

22s−1+3·2s−1+1
3

)
has the same number of zeros as Tr

(
x

q+1
3

)
. Clearly 0 is a zero of

Tr
(
x

q+1
3

)
. If x �= 0, then

Tr
(
x

q+1
3

)
= x

q+1
3 + x

q+1
3 q = 0
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if and only if

1 + x
q2−1
3 = 0.

Since 1+x
q2−1
3 splits completely over Fq2 , this shows that Tr

(
x

22s−1+3·2s−1+1
3

)
has q2−1

3 +1

zeros, and consequently F has q2−1
3 + 1 fixed points in Fq2 . ��

The next lemma describes the cycle structure of F on the line Fq .

Lemma 5 Let q = 2s and s be odd. Then the permutation

F(x) = x + Tr

(
x

22s−1+3·2s−1+1
3

)

reduces to the identity on the line Fq . Consequently it has q fixed points on Fq .

Proof Clearly F(x) = x for x ∈ Fq . ��
Lemma 6 Let q = 2s and s be odd. Let α ∈ Fq2 \ Fq . Then the permutation F(x) =
x + Tr

(
x

22s−1+3·2s−1+1
3

)
has 2s−2

3 fixed points on the line α + Fq .

Proof By Lemma 4 F has q2−1
3 + 1 fixed points and by Lemma 5 we have that q of them

are on the line Fq . By Theorem 3, the permutation F has the same number of fixed points on
every line α + Fq , where α ∈ Fq2 \ Fq . So on any of those lines the number of fixed points
is (

22s − 1

3
+ 1 − 2s

)
/(2s − 1) = 2s − 2

3
.

��
Todetermine the cycle structure of F on the lines parallel but not equal toFq , byTheorem3

it suffices to pick one of them and find the cycle structure on it.

Theorem 8 Let q = 2s and s be odd. Let α ∈ Fq2 \Fq and β ∈ (F4 \F2) ⊆ (Fq2 \Fq). Then

the permutation F(x) = x+Tr

(
x

22s−1+3·2s−1+1
3

)
has the same cycle structure onα+Fq as the

permutation Gβ(x) = x + Ps(x)(x2
s−1 + x + 1) on Fq , where Ps(x) = Tr

(
s−1∏
k=0

(x2
k + β)

)
.

In particular Gβ(x) has 2s−2
3 fixed points.

Proof By Theorem 3 the cycle structure of F on the line α + Fq does not depend on the
choice of α ∈ Fq2 \ Fq . Here we choose α = β and as in Theorem 6 conclude, that the
considered cycle structure is the same as that of

Gβ : Fq → Fq , Gβ(x) = x + Tr

(
(x + β)

22s−1+3·2s−1+1
3

)
.

Since β ∈ F4 \ F2, we have that

β2 = β + 1, β3 = 1, β4 = β, βq = β2.
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Note that

22s−1 + 3 · 2s−1 + 1

3
= 2s−1 + 4s−1 − 4s−1 − 1

3
= 2s−1 + 4s−1 −

s−2∑
k=0

4k,

and therefore

Gβ(x) = x + Tr

(
(x + β)2

s−1
(x + β)4

s−1

∏s−2
k=0(x

4k + β)

)
.

Since for x ∈ Fq

s−1∏
k=0

(x4
k + β) =

(s−1)/2∏
k=0

(x2
2k + β)

s−1∏
k=(s−1)/2+1

(x2
2k + β)

=
(s−1)/2∏
k=0

(x2
2k + β)

(s−1)/2∏
k=1

(x2
2k−1 + β) =

s−1∏
k=0

(x2
k + β),

we get

s−2∏
k=0

(x4
k + β) =

∏s−1
k=0(x

2k + β)

x4s−1 + β

and

Gβ(x) = x + Tr

(
x2

s−1 + β2∏s−2
k=0(x

2k + β)

)
= x + x2

s−1 + β∏s−2
k=0(x

2k + β2)
+ x2

s−1 + β2∏s−2
k=0(x

2k + β)

= x +
∏s−1

k=0(x
2k + β) + ∏s−1

k=0(x
2k + β2)∏s−2

k=0(x
2k + β2)(x2k + β)

= x +
Tr

(∏s−1
k=0(x

2k + β)
)

∏s−2
k=0((x

2 + x)2k + 1)
.

Further, note that

s−2∏
k=0

((x2 + x)2
k + 1) =

2s−1−1∑
j=0

(x2 + x) j = (x2 + x)2
s−1 + 1

x2 + x + 1
= x2

s−1 + x + 1

x2 + x + 1

and hence

Gβ(x) = x + (x2 + x + 1)Ps(x)

x2s−1 + x + 1
= x + Ps(x)(x

2s−1 + x + 1),

where Ps(x) = Tr

(
s−1∏
k=0

(x2
k + β)

)
. ��

The following properties of Ps(x) will allow us to determine the cycle structure of Gβ

explicitly. For s = 3m · l, where 3 � l, we define ν3(s) := m.

Lemma 7 Let β ∈ F4 \ F2, x ∈ F2s and s be odd. Let t | s, u ∈ F2t and Gβ(x) =
x + Ps(x)(x2

s−1 + x + 1), where Ps(x) = Tr

(
s−1∏
k=0

(x2
k + β)

)
. Then
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(a) Ps(x) ∈ F2,

(b) Ps(u) =
{
0, 3 | (s/t)

Pt (u), 3 � (s/t)
(c) Gβ(x) = x if and only if Ps(x) = 0,
(d) #{x ∈ F2s | Ps(x) = 0} = 2s−2

3 ,

(e) #{x ∈ F2s | Ps(x) = 1} = 2s+1+2
3 ,

(f) #{u ∈ F2t |Ps(u) = 1} =
{
0, ν3(t) < ν3(s),
2t+1+2

3 , ν3(t) = ν3(s).

Proof The fact that
(
s−1∏
k=0

(x2
k + β)

)4

=
s−1∏
k=0

(x4·2k + β) =
s−1∏
k=0

(x2
k + β), shows that

s−1∏
k=0

(x2
k + β) ∈ F4.

Thus

Ps(x) = Tr22s/2s

(
s−1∏
k=0

(x2
k + β)

)
= Tr4/2

(
s−1∏
k=0

(x2
k + β)

)
∈ F2,

which is (a). Further note that u2
k + β �= 0 and

s−1∏
k=0

(u2
k + β) =

(
t−1∏
k=0

(u2
k + β)

)s/t

=

⎧⎪⎨
⎪⎩
1, s/t ≡ 0 (mod 3)∏t−1

k=0(u
2k + β), s/t ≡ 1 (mod 3)∏t−1

k=0(u
2k + β2), s/t ≡ 2 (mod 3)

and, because βq = β2,

Trq2/q

(
t−1∏
k=0

(u2
k + β2)

)
= Trq2/q

(
t−1∏
k=0

(u2
k + β)

)
= Pt (u).

This shows (b). Since s is odd, x2
s−1 + x + 1 has no root in F2s , which implies (c). By

Theorem 8, the permutation Gβ has 2s−2
3 fixed points. With (c), we see that #{x ∈ F2s |

Ps(x) = 0} = 2s−2
3 , which is (d). By (a), we know that Ps(x) ∈ F2, so

#{x ∈ F2s | Ps(x) = 1} = 2s − #{x ∈ F2s | Ps(x) = 0} = 2s − 2s − 2

3
= 2s+1 + 2

3
.

This is (e). With (b) we obtain

#{u ∈ F2t |Ps(u) = 1} =
{
0, 3 | (s/t)

#{u ∈ F2t |Pt (u) = 1}, 3 � (s/t)

=
{
0, 3 | (s/t)
2t+1+2

3 , 3 � (s/t)
.

Since 3 � (s/t) if and only if ν3(t) = ν3(s), (f) follows. ��

Now we are ready to determine the cycle structure of Gβ .
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Theorem 9 Let q = 2s with s odd and β ∈ F4 \ F2. Let Ps(x) = Tr

(
s−1∏
k=0

(x2
k + β)

)
. Then

the permutation Gβ(x) = x + Ps(x)(x2
s−1 + x + 1) of Fq has q−2

3 fixed points and Nt

cycles of length 2t for every t | s with ν3(t) = ν3(s). The numbers Nt are positive and satisfy

2t Nt = 2t+1 + 2

3
−

∑
d|t,d<t,

ν3(d)=ν3(s)

2dNd and 2 · 3mN3m = 23
m+1+2
3 , where m = ν3(s).

Proof By Lemma 7(c), x ∈ Fq is a fixed point of Gβ if and only if Ps(x) = 0 and then
Lemma 7(d) shows that Gβ has q−2

3 fixed points. Let Gn
β = G ◦ · · · ◦ G︸ ︷︷ ︸

n

denote the n-th

iterate of Gβ .
Consider now an x0 ∈ Fq that is not fixed by Gβ , i. e. an x0 ∈ Fq with Ps(x0) �= 0. Then

Ps(x0) = 1 by Lemma 7(a). Consequently on the cycle containing x0 the permutation Gβ

reduces to

Gβ(x) = x + x2
s−1 + x + 1 = x2

s−1 + 1

and thus has its inverse given by

G−1
β (x) = x2 + 1.

As a result an even number of iterations of G−1
β yields

G−2t
β (x) = x2

2t
,

while an odd number of iterations gives

G−(2t+1)
β (x) = x2

2t+1 + 1.

Since s is odd, x2
2t+1 + x + 1 has no roots in Fq , so

x0 �= x2
2t+1

0 + 1 = G−(2t+1)
β (x0), and thus G2t+1

β (x0) �= x0.

Hence the cycle length is even, say 2t . Since t is minimal with x0 = G−2t
β (x0) = (x2

t

0 )2
t
, it

must hold that x0 ∈ F2t . This forces t | s.
Suppose now t | s and Gβ has Nt cycles of length 2t . Then it must hold that

2t Nt = #{u ∈ F2t | Ps(u) = 1 and u is not in a subfield of F2t }
= #{u ∈ F2t | Ps(u) = 1} −

∑
d|t
d<t

#

{
u ∈ F2d

∣∣∣∣ Ps(u) = 1 and u is not
in a subfield of F2d

}
.

Combining this with Lemma 7(f), we get

2t Nt =

⎧⎪⎨
⎪⎩
0, ν3(t) < ν3(s)
2t+1+2

3 − ∑
d|t
d<t

2dNd , ν3(t) = ν3(s).

Note that 2dNd = 0 if d | s with ν3(d) < ν3(s). Finally observe that for any t | s with
ν3(t) = ν3(s), the number Nt is positive. Indeed, by Lemma 7 (e) there are proper elements
u of F2t with Ps(u) = 1. These numbers satisfy then
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2t Nt = 2t+1 + 2

3
−

∑
d|t,d<t,

ν3(d)=ν3(s)

2dNd .

For t = 3m with m = ν3(s), the sum is empty and thus 2 · 3mN3m = 23
m+1+2
3 . ��

We summarize the results of this section by describing explicitly the cycle structure of F
in the general case.

Theorem 10 Let q = 2s and s be odd. Let γ ∈ Fq2 with γ (q+1)/3 = 1. For t | s, with
ν3(t) = ν3(s), let Nt be defined by the following recursion

N3m = 23
m+1 + 2

2 · 3m+1 , for m = ν3(s)

and

2t Nt = 2t+1 + 2

3
−

∑
d|t,d<t,

ν3(d)=ν3(s)

2dNd .

Then the permutation F(x) = x + γ Tr

(
x

22s−1+3·2s−1+1
3

)
of Fq2 has

1. q fixed points on γ Fq and

2. q−2
3 fixed points and Nt cycles of length2t on every affine lineα+γ Fq withα ∈ Fq2\γ Fq ,

where t is an arbitrary divisor of s satisfying ν3(t) = ν3(s).

Proof Part 1 follows from Lemma 5 and part 2 follows from Theorems 8 and 9. ��
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