
Designs, Codes and Cryptography (2020) 88:471–486
https://doi.org/10.1007/s10623-019-00687-w

Discrete antiderivatives for functions over Fn
p

Ana Sălăgean1

Received: 8 February 2019 / Revised: 12 July 2019 / Accepted: 3 October 2019 /
Published online: 12 November 2019
© The Author(s) 2019

Abstract
In the design of cryptographic functions, the properties of their discrete derivatives have to
be carefully considered, as many cryptographic attacks exploit these properties. One can
therefore attempt to first construct derivatives with the desired properties and then recover
the function itself. Recently Suder developed an algorithm for reconstructing a function (also
called antiderivative) over the finite field F2n given its discrete derivatives in up to n linearly
independent directions. Pasalic et al. also presented an algorithm for determining a function
over Fpn given one of its derivatives. Both algorithms involve solving a pn × pn system
of linear equations; the functions are represented as univariate polynomials over Fpn . We
show that this apparently high computational complexity is not intrinsic to the problem,
but rather a consequence of the representation used. We describe a simpler algorithm, with
quasilinear complexity, provided we work with a different representation of the functions.
Namely they are polynomials in n variables over Fp in algebraic normal form (for p >

2, additionally, we need to use the falling factorial polynomial basis) and the directions
of the derivatives are the canonical basis of Fn

p . Algorithms for other representations (the
directions of the derivatives not being the canonical basis vectors or the univariate polynomials
over Fpn mentioned above) can be obtained by combining our algorithm with converting
between representations. However, the complexity of these conversions is, in the worst case,
exponential. As an application, we develop a method for constructing new quadratic PN
(Perfect Nonlinear) functions. We use an approach similar to the one of Suder, who used
antiderivatives to give an alternative formulation of the methods of Weng et al. and Yu et al.
for searching for new quadratic APN (Almost Perfect Nonlinear) functions.

Keywords Discrete derivative · Antiderivative · Algebraic normal form · Planar function ·
PN function · APN function

Mathematics Subject Classification 94A60 · 11T55

Communicated by P. Charpin.

B Ana Sălăgean
A.M.Salagean@lboro.ac.uk

1 Department of Computer Science, Loughborough University, Loughborough, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-019-00687-w&domain=pdf

472 A. Sălăgean

1 Introduction

A function f with an n-bit input and n-bit output can be represented in various ways. In
cryptographic applications, it is often represented as a univariate polynomial of degree up
to 2n − 1 over F2n , the finite field with 2n elements. More generally, functions over Fpn

can be represented as univariate polynomials of degree up to pn − 1 over Fpn . Another
representation, which is the one we will mostly use here, is as a function f : Fn

p → F
m
p

(which includes the more general possibility of m different from n), f = (f1, . . . , fm) with
each component function fi : Fn

p → Fp being a polynomial in n variables over Fp , of degree
at most p − 1 in each variable; the polynomials are usually represented in ANF (Algebraic
Normal Form), i.e. as a sum of monomials, each monomial being a constant multiplied by
the product of powers of some of the variables.

Many cryptographic attacks (e. g. differential attacks, higher order differential attacks)
exploit properties of the discrete derivatives of the functions. The discrete derivative (also
called simply derivative when no danger of confusion exists) of a function f in the direction
a is defined as the function Da f (x) = f (x + a) − f (x).

Recently Suder [4] considered a natural problem: reconstruct a function f over F2n from
its discrete derivatives in n (or fewer) linearly independent directions. This operation can be
called antiderivative, or integration, in analogy to its continuous counterpart. The proposed
algorithm involves solving a 2n × 2n system of linear equations; it is stated [4, Sect. 3.1] that
the matrices are sparse and easy to compute with, but no complexity analysis is presented.
Pasalic et al. [2] consider the problem of determining a function over Fpn given one of its
derivatives; similarly, their algorithm involves solving a pn × pn system of linear equations.
Earlier, Xiong et al. [6] determined some necessary conditions for a function to be the discrete
derivative of another function. In all these papers the functions are represented as univariate
polynomials over Fpn .

While the representation as univariate polynomials over Fpn is very useful for some
purposes, it turns out that for computing the antiderivative the second representation
above is much more convenient; when p > 2, additionally, we have to modify the alge-
braic normal form by using falling factorials instead of powers of variables, i.e. using
xd = x(x − 1) · · · (x − (d − 1)) instead of xd ; it is well known that such a representa-
tion is more convenient for discrete differentiation. When the directions of the derivatives are
vectors in the canonical basis and the input polynomials are represented as the list of their
monomials, we present an algorithm which is quasilinear in the size of the input polynomials
(see Sect. 3). Hence the apparently exponential computational complexity of the previous
algorithms is not intrinsic to the problem, but rather a consequence of the representation used.
Our algorithm is similar to the one used in calculus for reconstructing a function from its
gradient/partial derivatives (see for example the textbook [3, Section 15.8]). This is possible
(despite obvious differences between the classical derivative from calculus and the discrete
derivative) because for multivariate polynomial functions over Fp represented as described
above, the discrete derivative behaves similarly to the formal derivative.

Algorithms for other representations can be obtained by combining our algorithm with
converting between representations.When the functions are represented asmultivariate poly-
nomials but the directions of the derivatives are arbitrary, our algorithm can be combined
with linear changes of coordinates (using n × n matrices) which transform those directions
into the canonical basis directions; changes of coordinates can, in the worst case, cause the
number of monomials in the algebraic normal form representation to increase exponentially.

123

Discrete antiderivatives for functions over Fnp 473

If the functions are given as univariate polynomials over Fpn , as considered in the work
of Suder [4] and of Pasalic et al. [2], we can obtain an alternative to their antiderivative
algorithm; namely we transform the function into its multivariate polynomial representation,
apply our quasilinear antiderivative algorithm, and then transform the result back to the
univariate representation (see Sect. 4). Unfortunately, the conversion between representations
has exponential worst case complexity.

As applications of the antiderivative construction, Pasalic et al. [2] prove results regarding
the degree of planar functions, whereas Suder [4] prove results regarding the construction of
APN (Almost Perfect Nonlinear) functions. Both these classes of functions are defined by
the properties of their derivatives. Differential attacks on cryptographic functions exploit the
situation where there is a direction a such that the derivative Da f (x) takes a particular value
significantly more often than other values. To withstand such attacks, we can require that
Da f is bijective (only possible when p ≥ 3) or 2-to-1 (for p = 2). In the first situation the
function f is called PN(Perfect Nonlinear), or planar, and in the second situation it is called
APN (Almost Perfect Nonlinear).

Weng et al. [5] and of Yu et al. [7] independently presented a method of constructing
quadratic APN functions by constructing n × n matrices over F2n with certain properties.
Using this characterisation and a computer search they obtain numerous new quadratic APN
functions. Suder [4] applies his method to obtain an alternative approach to the methods in
[5,7]. He also suggested that antiderivatives could be used more generally, for other degrees
and for other properties of the derivatives. Following these lines, we revisit and expand such
applications in Sect. 5.

We give an analogue of [7, Theorem 1] for characterising quadratic APN functions in
multivariate ANF representation. More interestingly, we present a similar result concerning
quadratic PN functions. This leads to a method of constructing potentially new PN functions
either from scratch (for example, we computed exhaustively all PN functions for n = 3 and
p ≤ 7 up to extended affine equivalence) or by modifying known PN functions in a manner
similar to Yu et al. [7]. A more extensive investigation of this direction will be a topic of
further research.

2 Preliminaries

We recall definitions and known results needed for the rest of the paper. The finite field with
pn elements will be denoted Fpn , where p is a prime. When K is any field, we denote the
canonical basis of the vector space Kn by e1, . . . , en , i.e. the vector ei has a 1 in position i
and zeroes everywhere else; we denote by 0 the all-zero vector. In general we will denote
vectors by boldface font.

Boolean functions in n variables can be viewed as functions f : Fn
2 → F2.More generally,

we can consider functions f : Fn
p → Fp . It is well known that any such function can be

uniquely represented in its ANF (Algebraic Normal Form) i.e. as a polynomial function
described by a polynomial in Fp[x1, . . . , xn] of degree at most p − 1 in each variable,

f = ∑
t ct t where ct ∈ Fp and t ranges over all the power products xi11 xi22 · · · xinn with

i1, . . . , in ∈ {0, 1, . . . , p − 1}. We denote by deg(f) the degree of this polynomial (also
called algebraic degree of f) and by degxi (f) the degree in the variable xi . By convention,
the degree of the zero polynomial is −1.

Recall that the falling factorial is defined as xd = x(x − 1) · · · (x − (d − 1)), for d ≥ 0
an integer (with x0 = 1). Note that if we view this expression as a polynomial in x , then

123

474 A. Sălăgean

deg(xd) = deg(xd) = d . It iswell known that polynomials (over any field) can be represented
in a basis consisting of falling factorials. In our case, multivariate polynomials of degree at
most p − 1 in each variable can be represented as f = ∑

t ct t where ct ∈ Fp and t ranges
over all the terms x1

i1x2
i2 · · · xnin with i1, . . . , in ∈ {0, 1, . . . , p − 1}. We will call this

representation the falling factorial ANF. Obviously, for p = 2 this is the same as the ANF.
More generally, we consider functions f : Fn

p → F
m
p with f = (f1, . . . , fm), fi : Fn

p →
Fp , and each component fi written in itsANFor in the falling factorialANF, so fi = ∑

t c
(i)
t t .

For a compact notation we can write f as one multivariate polynomial f = ∑
t ct t , where

this time the coefficients ct ∈ F
m
p are vectors ct = (c(1)

t , . . . , c(m)
t). When we evaluate the

polynomial, each variable takes values in Fp so the coefficients will only be multiplied by a
scalar. By abuse of terminology we will call this the ANF of f , or the falling factorial ANF
of f , respectively. This representation also allows us to define the degree of f as the highest
degree of a term t for which ct �= 0 (it will also equal the highest degree of the components
f1, . . . , fm).

Example 1 Let f : F3
2 → F

2
2 be the function given by

f (x1, x2, x3) = (x1x2x3 + x1x2 + x1x3 + x3, x1x3 + x3 + 1).

We can write this compactly as a polynomial

f (x1, x2, x3) = (1, 0)x1x2x3 + (1, 0)x1x2 + (1, 1)x1x3 + (1, 1)x3 + (0, 1).

Evaluating at, say, (1, 1, 0) we obtain f (1, 1, 0) = (1, 0) + (0, 1) = (1, 1).

Alternatively, functions with n bits input and n bits output are often viewed as f : F2n → F2n

represented as univariate polynomials over F2n of degree up to 2n − 1. In Sect. 4 we will
consider this representation and the conversion between the representations.

We recall the definition of (discrete) derivative/ differentiation:

Definition 1 Let K be a field and f : Kn → Km be a function in n variables x1, . . . , xn . Let
a = (a1, . . . , an) ∈ Kn \ {0}. The differentiation operator in the direction of a associates to
each function f its discrete derivative Da f : Kn → Km defined as

Da f (x1, . . . , xn) = f (x1 + a1, . . . , xn + an) − f (x1, . . . , xn).

Denoting x = (x1, . . . , xn) we can also write Da f (x) = f (x + a) − f (x).
Repeated differentiation in the directions a1, . . . , ak ∈ Kn will be denoted D(k)

a1,...,ak f =
Da1Da2 . . .Dak f .

The inverse of the (discrete) differentiation has been considered in [4,6]:

Definition 2 Let K be a field a1, . . . , ak ∈ Kn \ {0} and g1, . . . , gk : Kn → Km . If there is
a function f : Kn → Km such that Dai f = gi for i = 1, . . . , k, then f is called a (discrete)
antiderivative (or integral) of g1, . . . , gk . The set of such functions f will be denoted

Antiderivative(n, k, (g1(x), . . . , gk(x)), (a1, . . . , ak))

Note that an antiderivative might not exist, and when it does exist it is not unique, e.g. the
addition of a constant preserves the property. Other antiderivatives exist when k < n; this
will be discussed later.

We recall a few useful well-known properties of the discrete derivative. They are straight-
forward to prove; for point (v) see [1].

123

Discrete antiderivatives for functions over Fnp 475

Proposition 1 Let f , f1, f2 : Fn
p → F

m
p , a,b ∈ F

n
p \{0} and c1, c2 ∈ Fp.

(i) Differentiation is a linear operator, i.e. Da(c1 f1 + c2 f2) = c1Da f1 + c2Da f2.
(ii) Dei xi

d = dxi d−1

(iii) Da+b f (x) = Da f (x + b) + Db f (x)
(iv) If M is an invertible n × n matrix over Fp and g is obtained from f by the linear

invertible change of coordinates described by M, i.e. g(x) = f (Mx), then Dag(x) =
(DMa f)(Mx).

(v) deg(Da f) ≤ deg(f) − 1.
(vi) degxi (Dei f) = degxi (f) − 1.
(vii) DaDb f = DbDa f .
(viii) D(p)

a,...,a f = 0.

For any c ∈ Fp , applying inductively Proposition 1(iii) for b = ia, we obtain

Dca f (x) =
c−1∑

j=0

Da f (x + ja).

Furthermore, we can express the derivative in an arbitrary direction in terms of the derivatives
in the canonical directions:

Proposition 2 Let f : F
n
p → F

m
p and a ∈ F

n
p \{0}. Assume a = ∑k

i=1 cibi for some
c1, . . . , ck ∈ Fp and some b1, . . . ,bk ∈ F

n
p \{0}. Then

Da f (x) =
k∑

i=1

ci−1∑

j=0

(Dbi f)

(

x + jbi +
k∑

s=i+1

csbs

)

. (1)

In particular for a = (a1, . . . , an) = ∑n
i=1 aiei we have

Da f (x) =
n∑

i=1

ai−1∑

j=0

(Dei f)

(

x + jei +
n∑

s=i+1

ases

)

. (2)

For p = 2 the two equations above become:

Da f (x) =
k∑

i=1

(ciDbi f)

(

x +
k∑

s=i+1

csbs

)

.

and

Da f (x) =
n∑

i=1

(aiDei f)

(

x +
n∑

s=i+1

ases

)

.

3 Antiderivatives for functions over Fn
p

We consider the problem of retrieving a function f : Fn
p → F

m
p when we know its derivatives

g1, . . . , gk in k ≤ n linearly independent directions a1, . . . , ak , i.e. we want to compute the
antiderivative. Note that it suffices to consider directions which are linearly independent; if
we were given, additionally, the derivative g in a direction a which is a linear combination
of a1, . . . , ak , that would not provide any additional information about f , as g could be
computed from g1, . . . , gk using Proposition 2(1).

123

476 A. Sălăgean

In order for a solution to exist, the gi have to satisfy certain compatibility conditions (see
[4,6])). The first set of conditions is

D(p−1)
ai ,...,ai gi = 0 for all i = 1, . . . , k (3)

which is necessary in a field of characteristic p as gi = Dai f (see Proposition 1(viii)). The
second set of conditions is

Dai g j = Da j gi for all i, j = 1, . . . , k (4)

as both sides should be equal to DaiDa j f = Da jDai f , see Proposition 1(vii). The fact that
these conditions are not only necessary, but also sufficient, will follow from the construction
of f below.

3.1 Antiderivatives in the directions of the canonical basis

First we consider the case when the directions are vectors in the canonical basis a1 =
e�1 , . . . , ak = e�k . In this case the compatibility condition (3) means that degx�i

(gi) ≤
p − 2. (see Proposition 1(vi)). Algorithm 1 constructs the antiderivative when p = 2 and
Algorithm 2 for arbitrary p. These algorithms are similar to the method used in calculus for
reconstructing a function from its gradient (see for example the textbook [3]).

Algorithm 1 AD2(n, k, (g1, . . . , gk), (e�1 , . . . , e�k))

Input: n, k, (g1(x), . . . , gk (x)), (e�1 , . . . , e�k)with gi : Fn2 → F
m
2 , degx�i

gi ≤ 0 and De�i
g j = De� j

gi for

all i �= j
Output: f : Fn2 → F

m
2 such that De�i

f = gi for all i = 1, . . . , k
1: f ← 0
2: for i = 1 to k do
3: h ← gi − De�i

f
4: f ← f + x�i h
5: end for
6: return f

Algorithm 2 AD(n, k, (g1, . . . , gk), (e�1 , . . . , e�k))

Input: n, k, (g1(x), . . . , gk (x)), (e�1 , . . . , e�k) with gi : Fnp → F
m
p represented in falling factorial ANF,

degx�i
gi ≤ p − 2 and De�i

g j = De� j
gi for all i �= j

Output: f : Fnp → F
m
p such that De�i

f = gi for all i = 1, . . . , k
1: f ← 0
2: for i = 1 to k do
3: h ← gi − De�i

f

4: for all ct monomial in h do
5: d ← degx�i

(t)

6: f ← f + c(d + 1)−1(x�i − d)t
7: end for
8: end for
9: return f

123

Discrete antiderivatives for functions over Fnp 477

Theorem 1 Algorithms 1 and 2 are correct. If f is the output of the algorithm, then

Antiderivative(n, k, (g1(x), . . . , gk(x)), (e�1 , . . . , e�k))

= { f + u|u a polynomial function which does not depend on x�1 , . . . , x�k }.

Proof For ease of notation, and without loss of generality, let us assume �1 = 1, . . . , �k = k.
Note that for p = 2 Algorithm 2 becomes Algorithm 1, so it suffices to prove the correctness
of Algorithm 2.

For convenience we will use the following notation Ai (x1
d1 · · · xndn) = (di +

1)−1x1
d1 · · · xi di+1 · · · xndn and we extend Ai by linearity to any polynomial expressed in

falling factorial ANF. Note that for any polynomial g we have Dei (Ai (g)) = g and for any
j �= i we have De j (Ai (g)) = Ai (De j (g)). To prove both these facts it suffices to verify for
monomials (which is left as an exercise, using Proposition 1(ii)), since both operators Ai and
De j are linear.

Let us denote by f (0) the initial value of f and by f (i) the value of f at the end of the
i th run of the outer for loop. We prove by induction on i that De j f

(i) = g j for all j ≤ i .
Looking at the inner for loop we see that it computes f (i) = f (i−1) + Ai (h). For the base
case, i = 1, we have De1 f

(1) = De1(A1(h)) = h = g1. Now assume the statement holds for
i − 1 and we prove it for i . We have:

Dei f
(i) = Dei f

(i−1) + Dei (Ai (h)) = Dei f
(i−1) + h = gi .

For any j < i , using the induction hypothesis and the compatibility conditions De j gi =
Dei g j we have:

De j f
(i) = De j f

(i−1) + De j (Ai (h))

= g j + De j (Ai (gi)) − De j (Ai (Dei (f
(i−1))))

= g j + Ai (De j (gi)) − Ai (DeiDe j f
(i−1))

= g j + Ai (De j gi) − Ai (Dei g j)

= g j .

Let F be another function F such that Dei F = gi for all i = 1, . . . , k. Therefore Dei (F −
f) = 0 for all i . This happens if and only if F − f has degree zero in each of the variables
x1, . . . , xk (see Proposition 1(vi)), i.e. it does not depend on those variables. �	

Remark 1 We treated the case p = 2 separately in Algorithm 1 no only because the formula-
tion becomes simpler, but also because, unlike Algorithm 2, the polynomials for Algorithm 1
do not even need to be given in ANF. They could be given as polynomials which are not in
normal form, or even as black box functions (such functions are often considered in attacks
on symmetric stream ciphers; they model well the situation when the ANF is too large to be
written explicitly).

For k = n we can use Algorithm 1 to obtain by induction an explicit formula for f :

f =
n∑

i=1

xi gi −
∑

1≤i1<i2≤n

xi1xi2Dei1
gi2 +

∑

1≤i1<i2<i3≤n

xi1xi2 xi3D
(2)
ei1 ,ei2

gi3 + · · ·

=
n∑

s=1

(−1)s−1
∑

1≤i1<i2<...<is≤n

xi1 . . . xisD
(s−1)
ei1 ,...eis−1

gis . (5)

123

478 A. Sălăgean

Keeping in mind that f has to satisfy gi = Dei f , this is equivalent to the following known
result (see [1, Proposition 1]):

f =
n∑

i=1

xiDei f −
∑

1≤i1<i2≤n

xi1xi2D
(2)
ei1 ,ei2

f +
∑

1≤i1<i2<i3≤n

xi1xi2 xi3D
(3)
ei1 ,ei2 ei3

f + · · ·

=
n∑

s=1

(−1)s−1
∑

1≤i1<i2<...<is≤n

xi1 . . . xisD
(s)
ei1 ...eis

f .

The complexity of Algorithms 1 and 2 depends on how we represent the polynomial
functions. If we represent them in falling factorials ANF, with each polynomial represented
as the set of its monomials, the algorithm becomes even simpler, see Algorithm 3.

Algorithm 3 AD-set(n, k, (g1(x), . . . , gk(g1(x)), (e�1 , . . . , e�k))

Input: n, k, g1, . . . , gk , e�1 , . . . , e�k , with gi : Fnp → F
m
p , degx�i

gi ≤ p − 2 and De�i
g j = De� j

gi for all

i, j = 1, . . . , k. Polynomials are represented as the set of monomials that appear in their falling factorial
ANF

Output: f : Fnp → F
m
p such that De�i

f = gi for all i = 1, . . . , k
1: for i = 1 to k do
2: Gi ← {c(d + 1)−1(x�i − d)t | ct monomial, ct ∈ g�i , degx�i

(t) = d, }
3: end for
4: f ← ⋃k

i=1 Gi
5: return f

Theorem 2 Algorithm 3 is correct. Assume each polynomial is represented as the list of
monomials cx1d1 · · · xndn appearing in its falling factorial ANF, ordered in lexicographical
order of (d1, . . . , dn) (or any other admissible monomial order). Then the time complexity
of the algorithm is quasilinear in the size of its input. Namely if the total size of the k input
polynomials g1, . . . , gk is s bits, the algorithm has complexity O(s log k).

Proof For ease of notation, and without loss of generality, let us assume �1 = 1, . . . , �k = k.
It can be easily checked, using Proposition 1(ii) that Dei Gi = gi . By the construction of

Gi , we know that all monomials of Gi do contain xi .
Consider a term t = x1

d1 · · · xndn which appears in at least one of the polynomials
G1, . . . ,Gk . We prove that t appears in all the polynomials Gi for which i has the property
di ≥ 1, and moreover it appears with the same coefficient. Without loss of generality, assume
that t appears in G1 and that G2, . . . ,Gs are the other polynomials Gi for which i has the
property di ≥ 1.

Let ci be the coefficient of t in Gi , for i = 1, . . . , s (at this moment we only know c1 �= 0,
the other could be zero).

Let j ∈ {2, . . . , s}. The term x1
d1−1x2

d2 · · · x j d j−1 · · · xndn appears in De1De j G j with
coefficient d1d jc j , whereas in De1De j G1 it appears with coefficient d1d jc1. On the other
hand, De1De j G j = De1g j and De1De j G1 = De j g1, so using the compatibility condition
De j g1 = De1g j we have that c j = c1.

We have therefore proved that taking the union of the sets
⋃k

i=1 Gi maintains the condition
that all monomials in the set have different power products.

For the correctness, we need to prove Dei f = gi for i = 1, . . . , k; since we represent
polynomials as the sets of their monomials, wewill prove equality of sets. Fix an i . Let ct ∈ f

123

Discrete antiderivatives for functions over Fnp 479

with t = x1
d1 · · · xndn . If di = 0 then Dei t = 0. If di ≥ 1 then, as shown above, ct ∈ Gi ,

so Dei ct ∈ Dei Gi = gi . Conversely, let ct ∈ gi . We therefore have c(di + 1)−1(xi − d)t ∈
Gi ⊆ f , hence Dei (c(di + 1)−1(xi − d)t) = ct ∈ Dei f .

For the complexity of the algorithm, note, firstly, that the sorted list of monomials in Gi

is obtained in linear time from the sorted list of monomials in gi , because all exponents are
changed by increasing the exponent of xi by one, which preserves the lexicographical order.
Secondly, computing the union of k sets, when each set is a sorted list, can be achieved by
an algorithm similar to the merging phase of Mergesort, by log k rounds of merging pairs of
lists (ensuring entries which appear in both lists are introduced only once in the merged list),
and each merging round having linear complexity in the sizes of the merged lists. �	
Example 2 Let p = 2, n = k = 3,m = 2 and

g1(x1, x2, x3) = (1, 0)x2x3 + (1, 0)x2 + (1, 1)x3
g2(x1, x2, x3) = (1, 0)x1x3 + (1, 0)x1
g3(x1, x2, x3) = (1, 0)x1x2 + (1, 1)x1 + (1, 1).

One can verify that they satisfy the compatibility conditions. Applying Algorithm 3 we
compute Gi = xi gi for i = 1, 2, 3:

x1g1(x1, x2, x3) = (1, 0)x1x2x3 + (1, 0)x1x2 + (1, 1)x1x3
x2g2(x1, x2, x3) = (1, 0)x1x2x3 + (1, 0)x1x2
x3g3(x1, x2, x3) = (1, 0)x1x2x3 + (1, 1)x1x3 + (1, 1)x3.

Finally we collect all the monomials in x1g2, x2g2, x3g3 to obtain f :

f (x1, x2, x3) = (1, 0)x1x2x3 + (1, 0)x1x2 + (1, 1)x1x3 + (1, 1)x3

Example 3 Let p = 7, n = k = 2,m = 1 and

g1(x1, x2) = 3x1
2x2

5 + 6x1
5 + 2x2

4

g2(x1, x2) = 5x1
3x2

4 + x1x2
3 + 2x2

2 + 3x2.

One can verify that they satisfy the compatibility conditions. UsingAlgorithm 3we compute:

G1(x1, x2) = x1
3x2

5 + x1
6 + 2x1x2

4

G2(x1, x2) = x1
3x2

5 + 2x1x2
4 + 3x2

3 + 5x2
2.

Finally computing the union of G1 and G2 we obtain f :

f (x1, x2) = x1
3x2

5 + 2x1x2
4 + x1

6 + 3x2
3 + 5x2

2.

3.2 Antiderivatives in arbitrary directions

Next let us consider the general case where we are given the discrete derivatives g1, . . . , gk
in k ≤ n arbitrary linearly independent directions a1, . . . , ak .

The following Theorem presents two possible approaches to computing the antiderivative.

Theorem 3 Let a1, . . . , ak ∈ F
n
p with k ≤ n be linearly independent vectors and let

g1, . . . , gk : F
n
p → F

m
p be such that D(p−1)

ai ,...,ai gi = 0 and Dai g j = Da j gi for all
i, j = 1, . . . , k.

123

480 A. Sălăgean

(i) Let A be an invertible n×n matrix overFp having the first k columns equal to a1, . . . , ak .
Then

Antiderivative(n, k, (g1(x), . . . , gk(x)), (a1, . . . , ak)) =
(Antiderivative(n, k, (g1(Ax), . . . , gk(Ax)), (e1, . . . , ek)))(A−1x) (6)

and the right hand side Antiderivative can be computed using one of Algorithms 1–3 and
Theorem 1.

(ii) If k = n, write e1, . . . , en in the basis a1, . . . , an as ei = ∑n
j=1 bi ja j . Denoting

hi (x) =
n∑

j=1

bi j−1∑

v=0

⎛

⎝g j

⎛

⎝x + va j +
n∑

s= j+1

bisas

⎞

⎠

⎞

⎠ (7)

we have

Antiderivative(n, n, (g1(x), . . . , gk(x)), (a1, . . . , ak)) =
Antiderivative(n, n, (h1(x), . . . , hn(x)), (e1, . . . , en)) (8)

and the right hand side Antiderivative can be computed using one of Algorithms 1-3 and
Theorem 1.

Proof (i) This first approach involves a change of coordinates. Obviously Aei = ai and
A−1ai = ei for all i . Let f be an element of the set on the right hand side of Eq. (6), i.e.
f (x) = g(A−1x) for some
g ∈ Antiderivative(n, k, (g1(Ax), . . . , gk(Ax)), (e1, . . . , ek)). Proposition 1(iv) gives for
all i

(Dai f)(x) = (DA−1ai g)(A
−1x) = (Dei g)(A

−1x) = gi (AA
−1x) = gi (x)

hence f does belong to the set on the left side of the Eq. (6).
Conversely, let f be an element of the set on the left hand side ofEq. (6). Let g(x) = f (Ax).

Again, Proposition 1(iv) gives for all i

(Dei g)(x) = (DAei f)(Ax) = (Dai f)(Ax) = gi (Ax)

hence g ∈ (Antiderivative(n, k, (g1(Ax), . . . , gk(Ax)), (e1, . . . , ek))), so f does belong
to the set on the right side of the Eq. (6).

(ii) This second approach consists of computing the derivatives in the canonical directions
from the derivatives in arbitrary directions. Let f be an element of the set on the left hand
side of Eq. (8). Therefore, Dai f (x) = gi (x) for all i . Using Proposition 2(1) and the fact
that ei = ∑n

j=1 bi ja j : we have that Dei f = hi with hi as computed in Eq. (7). Hence f
is indeed in the set on the right side of Eq. (8). Any other element f1 in the set on the right
hand side of Eq. (8) differs from f by a constant c ∈ F

m
p , see Algorithm 2 and Theorem 1.

Therefore Dai f1 = Dai (f + c) = Dai f = g1, so f1 belongs to the set on the left hand side
of Eq. (8). �	

Note that in both approaches in the Theorem above, the complexity of computing the
intermediate polynomials g1(Ax), . . . , gk(Ax) or h1, . . . , hn may be exponential compared
to the size of the input polynomials g1, . . . , gk . (For the first approach, note that a linear
change of coordinates applied to a monomial of degree d can result in up to nd monomials;
a similar problem appears when we compute hi in the second approach.) If the size of the
output f is exponential compared to the size of the input, any algorithm for computing f in

123

Discrete antiderivatives for functions over Fnp 481

ANF would take exponential time. When the size of f is polynomial in the size of the input,
it may still be possible that the computation of intermediate polynomials is exponential and
therefore the whole algorithm is exponential.

In [4,Definition 8], an equivalence relation on the class of functions is defined,whereby for
a fixed vector space V , two functions f1, f2 are called differentially equivalent with respect
to V if Dv f1 = Dv f2 for all v ∈ V . Obviously, is suffices to check whether Dai f1 = Dai f2
for some basis a1, . . . , ak of V . (see Proposition 2(1)). A characterisation of differential
equivalence similar to [4, Proposition 2 and Eq. (6)] follows:

Corollary 1 Let a1, . . . , ak ∈ F
n
p with k ≤ n be linearly independent vectors. Two functions

f1, f2 : Fn
p → F

m
p have the same derivatives in the directions a1, . . . , ak , i.e.Dai f1 = Dai f2

for i = 1, . . . , k, if and only if f1(x) − f2(x) = h(A−1x) for some function h : Fn
p → F

m
p

which does not depend on the variables x1, . . . , xk and some invertible matrix A having the
first k columns equal to a1, . . . , ak .

Proof Since Dai (f1 − f2) = 0 for i = 1, . . . , k, by Theorem 3(i) we have

f1 − f2 ∈ Antiderivative(n, k, (0, . . . , 0), (a1, . . . , ak))

= (Antiderivative(n, k, (0, . . . , 0), (e1, . . . , ek)))(A−1x).

We then use Theorem 1. �	

4 Antiderivatives of functions over Fpn

4.1 Converting between representations

We will first recall how to convert a function between different representations. For the
conversion from univariate to multivariate representation we will work along the lines of [7].
Let g : Fpn → Fpn be represented as a univariate polynomial over Fpn of degree at most
pn − 1. Fix a basis α = {α1, . . . , αn} for Fpn , viewed as a vector space of dimension n over
Fp . The isomorphism ϕα : Fpn → F

n
p associates to each element in Fpn its coordinates in the

basis α. We then consider n new variables x1, . . . , xn representing the coordinates of x in the
basis α; note that these new variables are thought of as taking values in Fp , whereas x was
taking values in Fpn . Substituting x by α1x1 + . . . + αnxn and keeping in mind that x p

i = xi
we convert g(x) into a multivariate polynomial in x1, . . . , xn , with coefficients in Fpn . By
further applying ϕα to each coefficient we obtain the multivariate polynomial representation
described in Sect. 2; we will denote it by ϕα(g). We can then represent this polynomial in
ANF or falling factorial ANF.

To convert the representations in the other direction, let f : F
n
p → F

n
p viewed as a

polynomial in n variables with coefficients in F
n
p . First we convert to coefficients to Fpn

by applying ϕ−1
α . We then consider a new variable x = α1x1 + . . . + αnxn . Keeping in

mind that xi ∈ Fp means x p
i = xi , we have the equations x pi = α

pi

1 x1 + . . . + α
pi
n xn for

i = 0, . . . , n−1. Defining Mα as the n×nmatrix having α
pi−1

j in position i, j , this becomes

⎛

⎜
⎜
⎜
⎝

x
x p

...

x pn−1

⎞

⎟
⎟
⎟
⎠

= Mα

⎛

⎜
⎜
⎜
⎝

x1
x2
...

xn

⎞

⎟
⎟
⎟
⎠

123

482 A. Sălăgean

We therefore have

⎛

⎜
⎜
⎜
⎝

x1
x2
...

xn

⎞

⎟
⎟
⎟
⎠

= M−1
α

⎛

⎜
⎜
⎜
⎝

x
x p

...

x pn−1

⎞

⎟
⎟
⎟
⎠

which gives n equations expressing each xi as a linear combination of x, x p, . . . , x pn−1
with

coefficients in Fpn . Substituting all xi in f using these equations we obtain a polynomial g in
x . One can verify that ϕα(g) = f ; we denote therefore g = ϕ−1

α (f). For computing M−1
α it

is convenient to have a basis β which is dual to α; we then have MT
β = M−1

α (see [7, Section
2.1]).

Once we fix a basis of Fpn , differentiation does not depend on the representation, as
differentiation only uses the additive group, and (Fpn ,+) and (F

n
p,+) are isomorphic. More

precisely, we have:

Lemma 1 Let α = {α1, . . . , αn} be a basis of Fpn as a vector space over Fp. Let f : Fpn →
Fpn be a univariate polynomial function and a ∈ Fpn \{0}. Then

ϕα(Da f) = Dϕα(a)ϕα(f).

4.2 Algorithm for antiderivatives of functions over Fpn

We can now give an alternative to the antiderivative algorithms of Suder [4] and of Pasalic
et al. [2] for functions over Fpn . Using the changes of representation discussed in Sect. 4.1
and Lemma 1 we have:

Theorem 4 Let a1, . . . , ak ∈ Fpn be linearly independent over Fp and let g1, . . . , gk :
Fpn → Fpn . There exists a function f : Fpn → Fpn such thatDai f = gi for all i = 1, . . . , k
iff the following conditions are satisfied:

(i) D(p−1)
ai ,...,ai gi = 0 for all i = 1, . . . , k.

(ii) Dai g j = Da j gi for all i, j = 1, . . . , k.
If these conditions are satisfied then the set of such functions f can be computed as

ϕ−1
α (Antiderivative(n, k, (ϕα(g1(x)), . . . , ϕα(gk(x))), (e1, . . . , ek)))

where the basis α = {α1, . . . , αn} is chosen so that α1 = a1, . . . , αk = ak and the function
Antiderivative is computed using one of Algorithms 1–3.

Note that although Algorithm 3 is quasilinear, the transformations ϕα and ϕ−1
α have expo-

nential worst case complexity, so the total complexity of computing the antiderivative for
functions given in their univariate representation using Theorem 4 is exponential.

In Theorem 4 we could choose an arbitrary basis α, in which case the set would be:

ϕ−1
α (Antiderivative(n, k, (ϕα(g1(x)), . . . , ϕα(gk(x))), (ϕα(a1), . . . , ϕα(ak)))).

and we would need to apply Theorem 3 in addition to Algorithms 1-3 to compute
Antiderivative.

123

Discrete antiderivatives for functions over Fnp 483

5 Applications to PN and APN functions

We recall the definitions of PN and APN functions:

Definition 3 A function f : Fn
p → F

n
p is called PN (Perfect Nonlinear) or planar if for all

a ∈ F
n
p \{0} its derivative Da f in direction a is bijective.

Note that PN functions only exist when p > 2. For p = 2 only a weaker condition can be
achieved:

Definition 4 A function f : Fn
2 → F

n
2 is called APN (Almost Perfect Nonlinear) if for all

a ∈ F
n
2 \{0} its derivative Da f in direction a is 2-to-1, i.e. for any b ∈ F

n
2 the equation

Da f (x) = b has either two or zero solutions.

Both the PN and APN properties are invariant to extended affine equivalence (EA-
equivalence); two functions f , g : Fn

p → F
n
p are called EA-equivalent if f = L1◦g◦L2+H

for some affine functions (i.e. of algebraic degree at most 1) L1, L2, H : Fn
p → F

n
p with

L1, L2 being invertible.
Suder [4] pointed out that antiderivatives can be used in the construction of quadratic APN

functions (reinterpreting [5,7]) and also suggested they can be used for other degrees and
other properties. We expand this direction.

Assume that we want to construct a function f : F
n
p → F

n
p , in ANF representation,

such that all its derivatives satisfy some property P (being bijective in the case of PN
functions or being 2-to-1 in the case of APN functions; other properties can also be con-
sidered). It suffices to construct n functions g1, . . . , gn such that degxi (gi) ≤ p − 2 and
Dei g j = De j gi for all i, j = 1, . . . , n and, moreover each gi has property P and also for

all (a1, . . . , an) ∈ F
n
p \{0} the function ∑n

i=1
∑ai−1

j=0 ((Dei f)(x + jei + ∑n
k=i+1 akek)) has

property P . Once such functions g1, . . . , gn have been found, f can be constructed efficiently
by computing Antiderivative(n, n, (g1(x), . . . , gn(x)), (e1, . . . , en)) using one of the Algo-
rithms 1-3. Using Proposition 2(2) we see that indeed all the derivatives of f have property
P .

One important case is the one of quadratic functions. The construction above becomes so
much simpler that we do not even need to use antiderivatives explicitly. We give the multi-
variate ANF equivalent of the characterisation of quadratic APN functions [7, Theorem 1] (in
fact Yu et al. [7] use implicitly the transformation from univariate polynomials to multivariate
ANF):

Theorem 5 Let f : Fn
2 → F

n
2 be a quadratic function in ANF, f = ∑

1≤i< j≤n bi j xi x j . We
have that f is APN if and only if the n × n matrix C = (ci j)i, j=1,...,n with entries in F

n
2

defined as c j i = ci j = bi j for i < j and ci i = 0 has the properties:

(i) Each row of C, consists of n elements of Fn
2 that span a space of dimension n − 1.

(ii) Each linear combination (with coefficients in F2) of the rows in C consists of n vectors
in F

n
2 that span a space of dimension n − 1 (condition (i) is subsumed by (ii) but for

convenience we wrote them separately).

Remark 2 Note that the Theorem above could also be formulated for differential uniformity.
Recall that a function f over Fn

2 has differential δ-uniformity if for any a,b ∈ F
n
2, a �= 0 the

equation Da f (x) = b has at most δ solutions. The Theorem above still holds if we replace
APN by 2k-uniformity and “dimension n − 1” by “dimension at least n − k”.

We present a similar characterisation for quadratic PN (planar) functions:

123

484 A. Sălăgean

Theorem 6 Let f : F
n
p → F

n
p, with p > 2, be a quadratic function in ANF, f =

∑n
i=1 bi i x

2
i + ∑

1≤i< j≤n bi j xi x j . We have that f is a PN function if and only if the n × n
matrix C = (ci j)i, j=1,...,n with entries in F

n
p defined as c j i = ci j = bi j for i < j and

ci i = 2bi i has the properties:

(i) Each row of C consists of n elements of Fn
p which are linearly independent over Fp.

(ii) Each linear combination (with coefficients in Fp) of the rows in C consists of n vectors
in F

n
p which are linearly independent over Fp (condition (i) is subsumed by (ii) but for

convenience we wrote them separately).

Proof (for both Theorems 6 and 5) Here we can use either the APN form or the falling
factorial APN form, as x2i and xi

2 differ by a polynomial of algebraic degree one, so they are
EA-equivalent. For any a = (a1, . . . , an) ∈ F

n
p \{0} using Proposition 2(2) and the fact that

Dei f is affine (since f is quadratic) we have, for some constant c ∈ F
n
2:

Da f (x) =
n∑

i=1

ai−1∑

j=0

(

(Dei f)

(

x + jei +
n∑

k=i+1

akek

))

=
n∑

i=1

(aiDei f)(x) + c

=
n∑

i=1

⎛

⎝ai

n∑

j=1

ci j x j

⎞

⎠ + c

=
n∑

j=1

(
n∑

i=1

aici j

)

x j + c.

Finally, we use the fact that a linear function g : Fn
p → F

n
p , g = c1x1+· · ·+cnxn is bijective

iff c1, . . . , cn are linearly independent; for p = 2, g is 2-to-1 if and only if c1, . . . , cn span
a space of dimension n − 1. �	
The theorem above can be used for constructing PN functions from scratch, as shown in
Example 4 below. It can also be used similarly to the construction in Yu et al. [7], namely we
can start with a known quadratic PN function (obtained by some other technique), construct
the associated matrix C and then attempt to modify only a few of the entries of C while
preserving the property required by Theorem 6. This approach will be the subject of further
work.

Example 4 Let n = 3. Due to invariance under EA-equivalence, we can assume that the first
row (and column) of C consists of the canonical basis vectors:

C =
⎛

⎝
e1 e2 e3
e2 u v
e3 v w

⎞

⎠

For small p we can find all values of u, v andwwhich satisfy Theorem 6 using an exhaustive
computer search. For p = 3 there are 288 solutions; one example solution is u = e3, v =
e1 +e2,w = e2 +e3. The corresponding quadratic PN function can be constructed explicitly
as

f = 2e1x21 + e2x1x2 + e3x1x3 + 2e3x22 + (e1 + e2)x2x3 + 2(e2 + e3)x23
= (2x21 + x2x3, 2x

2
3 + x1x2 + x2x3, 2x

2
2 + 2x23 + x1x3).

123

Discrete antiderivatives for functions over Fnp 485

For p = 5 there are 8000 solutions and for p = 7 there are 65856 solutions. One solution,
for both p = 5 and p = 7, is u = e3, v = e1 + e3,w = e1 + e2 + e3 which gives the PN
function

f (x1, x2, x3) = (2−1x21 + 2−1x23 + x2x3, 2
−1x23 + x1x2, 2

−1x22 + 2−1x23 + x1x3 + x2x3).

For p = 11 an example solution is u = e3, v = e1 + 4e3,w = 5e1 + 3e2.

We also look at examples that use Theorem 5 for constructing APN functions.

Example 5 Let p = 2. For constructing APN functions, due to invariance to EA-equivalence
we can assume that the first row (and column) of C consists of vectors in the canonical basis.
For n = 3 we can assume therefore that

C =
⎛

⎝
0 e2 e3
e2 0 u
e3 u 0

⎞

⎠

It is easy to check that for u = e1 this matrix does satisfy the conditions of Theorem 5, so
it corresponds to an APN function, which can be explicitly constructed as f = e2x1x2 +
e3x1x3 + e1x2x3 = (x2x3, x1x2, x1x3). If u is in the vector space generated by e2, e3 then
one can easily see that C does not satisfy Theorem 5. Therefore, up to EA-equivalence, the
function above is the only APN function in 3 variables.

Note that in Suder [4, Section5], the equivalent of Theorem 5 above reads: “Furthermore, if
the linear combinations of these affine derivatives are also 2-to-1, i.e. the columns...span a
subspace of dimensions n − 1 over F2n , then we have a quadratic APN function.” While the
first part of the statement is correct, the second part can be misleading, as it seems to imply
that it is sufficient that each column of C (which, due to symmetry is the same as a each row
of C) spans a space of dimension n − 1, in other words, only condition (i) from Theorem 5
need to be satisfied, and not (ii). Condition (i) is necessary, but not sufficient, as the following
counterexample demonstrates:

Example 6 For p = 2 and n = 4 consider the matrix:

C =

⎛

⎜
⎜
⎝

0 e2 e3 e4
e2 0 u v
e3 u 0 w
e4 v w 0

⎞

⎟
⎟
⎠

If u = e4, v = e1 and w = e2 then the elements of each row span a space of dimension 3 so
condition (i) of Theorem 5 is satisfied. One can also verify that for any sum of two or three
rows, the resulting elements also span a space of dimension 3. However, the sum of all four
rows consists of the vectors e2 + e3 + e4, e1 + e2 + e4, e2 + e3 + e4, e1 + e2 + e4 which span
a space of dimension only 2. So the function f = (x2x4, x1x2 + x3x4, x1x3, x1x4 + x2x3)
corresponding to this matrix does not satisfy condition (ii) of Theorem 5, therefore it is not
APN. Indeed the derivative of f in the direction (1, 1, 1, 1) is not 2-to-1.

One choice which does give an APN function is u = e4, v = e3 + e4 and w = e1,
corresponding to f = (x3x4, x1x2, x1x3 + x2x4, x1x4 + x2x3 + x2x4).

123

486 A. Sălăgean

6 Conclusion

For computing the antiderivative (i.e. retrieving a function from its derivatives) for functions
with n bits input and n bits output (or more generally integers modulo a prime p instead
of bits), it turns out that representing the function as n multivariate polynomial functions
in algebraic normal form over Fp is particularly convenient. For this representation we
developed a simple algorithm, which is in general more efficient (quasilinear if the directions
of the derivatives are in the canonical basis) compared to previous algorithmswhich represent
the functions as univariate polynomial functions over Fpn and involve solving a system of
linear equations of size pn × pn .

The connection pointed out by Suder [4] between antiderivatives and the methods of of
Yu et al. [7] and of Weng et al. [5] for constructing new quadratic APN (Almost Perfectly
Nonlinear) functions is preserved and simplifiedbyour approach to antiderivatives.Moreover,
we develop a similar technique which can be used to construct new quadratic PN (Perfect
Nonlinear) functions.

Acknowledgements Wewould like to thank Ferruh Özbudak for useful discussions. We also thank the anony-
mous referees for several suggestions that led to improvements to the paper.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

1. Lai X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E., Costello, D.J. Jr., Maurer,
U., Mittelholzer, T. (eds) Communications and Cryptography. Springer International Series in Engineering
and Computer Science, vol. 276, pp. 227–233. Springer, New York (1994).

2. Pasalic E., Muratović-Ribić A., Hodzić S., Gangopadhyay S.: On derivatives of polynomials over finite
fields through integration. Discret. Appl. Math. 217(2), 294–303 (2017).

3. Salas S.L., Etgen G.J., Hille E.: Calculus: One and Several Variables. Wiley, New York (2007).
4. Suder V.: Antiderivative functions over F2n . Des. Codes Cryptogr. 82(1), 435–447 (2017).
5. Weng G., Tan Y., Gong G.: On quadratic almost perfect nonlinear functions and their related algebraic

object. In: Workshop on Coding and Cryptography, pp. 57–68 (2013).
6. Xiong H., Qu L., Li C., Li Y.: Some results on the differential functions over finite fields. Appl. Algebra

Eng. Commun. Comput. 25(3), 189–195 (2014).
7. Yu Y., WangM., Li Y.: A matrix approach for constructing quadratic APN functions. Des. Codes Cryptogr.

73(2), 587–600 (2014).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Discrete antiderivatives for functions over mathbbFpn
	Abstract
	1 Introduction
	2 Preliminaries
	3 Antiderivatives for functions over mathbbFpn
	3.1 Antiderivatives in the directions of the canonical basis
	3.2 Antiderivatives in arbitrary directions

	4 Antiderivatives of functions over mathbbFpn
	4.1 Converting between representations
	4.2 Algorithm for antiderivatives of functions over mathbbFpn

	5 Applications to PN and APN functions
	6 Conclusion
	Acknowledgements
	References

