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Abstract
We propose a generic construction for fully secure decentralized multiauthority predicate
encryption. In such multiauthority predicate encryption scheme, ciphertexts are associated
with one or more predicates from various authorities and only if a user has a set of decryption
keys that evaluates all predicates to true, the user is able to recover themessage. In our decen-
tralized system, anyone can create a new authority and issue decryption keys for their own
predicates. We introduce the concept of a multi-authority admissible pair encoding scheme
and, based on these encodings, we give a generic conversion algorithm that allows us to easily
combine various predicate encryption schemes into a multi-authority predicate encryption
variant. The resulting encryption schemes are proven fully secure under standard subgroup
decision assumptions in the random oracle model. Finally, by instantiating several concrete
multi-authority admissible pair encoding schemes and applying our conversion algorithm,
we are able to create a variety of novel multi-authority predicate encryption schemes.

Keywords Generic construction · Multi-authority predicate encryption · Pair encoding ·
Pairing-based cryptography

Mathematics Subject Classification 68P25 · 94A60

1 Introduction

Predicate encryption (PE) is a type of public-key encryption,where the outcome of decryption
is controlled by a relation R. A user possessing a decryption key associated with value y, is
only able to recover the plaintext of a ciphertext associatedwith value x , if the relation R(x, y)
holds. Many different types of PE have been proposed, each characterizable by the family
of relations they support. Examples of PE types include identity-based encryption (IBE)
[10] (where the relation is equality testing), attributebased encryption (ABE) [28] (equality
testing joined with logical and and or gates), hidden vector encryption [11] (vector equality
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testing with wildcard support), and innerproduct predicate encryption (IPPE) [18] (testing
whether two vectors are orthogonal). Evenmore advanced schemes, such as schemes capable
of evaluating relations based on regular languages, exist as well [30].

A drawback of standard PE is that a single party, the authority, is responsible for creating
the decryption keys for all users in the system. As a direct consequence, this authority can
decrypt all messages since the authority has to be able to create every possible decryption
key. Thus, relying on a single authority has not only consequences for the scalability of
the system, but also for the trust relations. In natural situations, we would rather appoint
multiple authorities, where each authority is responsible for issuing keys in their own realm.
For example, when handling data from a clinical trial, we demand that only medical doctors
affiliated to a research institute have access to the data. A hospital could then be responsible
for issuing a decryption key for “medical doctor,” while a university would be responsible
for issuing the decryption key for “researcher.”

The question whether it is possible to construct such a multi-authority scheme was first
raised by Sahai andWaters [28]. In a multi-authority predicate encryption (MA-PE) scheme,
ciphertexts are associated with one or more predicates from various authorities. Users are
then only able to decrypt the ciphertext if their keys make all predicates associated with the
ciphertext evaluate to true. Thefirst proposedMA-PEconstructions [12,13,25] either require
interaction between all authorities, or solely address the scalability problem and still require
a master secret which can be used to decrypt all messages. To address both problems at the
same time, Lewko and Waters [21] proposed a decentralized scheme. However, a limitation
of all previous proposed MA-PE constructions, is that they only address the special case of
multiauthority attribute-based encryption (MA-ABE), rather than the more general MA-PE.

We propose a generic framework for creating decentralized multi-authority predicate
encryption. Our framework supports several predicate types, such as multi-authority IBE,
multi-authority ABE, and multi-authority IPPE. We also provide an instantiation for each
of these predicate families. Since our solution is decentralized, we address both the trust
and scalability issues: no party is required to hold a master secret and new authorities can
be created without requiring any form of interaction. Lastly, we prove that the encryption
schemes resulting from our framework are fully secure.

Our construction for anMA-PE scheme can be seen as the combination ofmultiple parallel
instantiations of a (modified) single authority PE scheme with a “multi-authority layer” on
top. Basically, the MA-PE scheme first fixes the group parameters and then instantiates a
new PE scheme in this group for every new authority. To encrypt a message, a user blinds the
message with a random number and split this random number using additive secret sharing
into various shares. Next, each of the shares are encrypted using the PE scheme’s public
key. Decryption works by first decrypting all shares to recover the random number and then
unblinding the blindedmessage.However, described as such, the schemewould be vulnerable
to a collusion attack, i.e., users combining knowledge to gain access to messages they should
not have access to. To see this, assume we have a ciphertext that may only be decrypted
by students older than 21. Now, two colluding users, one with the “student” attribute and
another one with the “over-21” attribute, can each obtain part of the shares. If they combine
their shares they are able to unblind the blinded message, while neither of them should have
been able to. To prevent this attack, we make sure that during the decryption of a share,
randomness specific to the user is added. Only if the shares of the same user are combined,
this user specific randomness cancels out.

To support a variety of PE schemes for the use in a decentralized MA-PE scheme, we
introduce the concept of multi-authority admissible pair encoding schemes (MA-PESs). An
MA-PES can be “compiled” into PE scheme compatible with MA-PE scheme using our
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Amulti-authority approach to various predicate encryption types 365

conversion algorithm. The definition of an MA-PES is an extended variant of the recently
introduced concept of pair encoding schemes (PESs) [2,3,5]. Such a (multi-authority admissi-
ble) pair encoding scheme describes how a predicate can be encoded in an encryption scheme,
without having to consider the group structure the scheme is instantiated in. This separation
of encoding and group structure greatly simplifies the construction of new (multi-authority)
PE schemes since it is relatively easy to prove an MA-PES secure compared to proving the
entire encryption scheme secure. After proving the MA-PES secure, we can simply apply
our conversion algorithm to turn the secure MA-PES into a secure MA-PE scheme.

Using the proposed conversion algorithm, we are able to combine various PE schemes
for different predicates (e.g., IBE, ABE, or IPPE) into an MA-PE scheme using and gates
between the predicates. While the need for or gates can be circumvented by writing the
global policy in disjunctive normal form (DNF) and encrypting the plaintext for each of
the conjunctive clauses, we could also directly support or gates by slightly chaning the
algorithm: By using Shamir secret sharing (SSS) instead of additive secret sharing, policies
can also contain or gates [21].

We prove that applying our conversion algorithm on a secure MA-PES results in a fully
secure MA-PE scheme in the random oracle model. In our full security game for multiple
authorities, several authoritiesmay be corruptedwhile the adversarymay query the challenger
for both the creation of new authorities and for decryption keys of its choice. We use a
variant of the dual system encryption technique to prove our construction secure. The dual
system proof technique, first introduced in the seminal work by Waters [29] and later refined
by a series of subsequent work [14,20,22,23], uses semi-functional ciphertexts and keys
in the proofs. A semi-functional ciphertext can be decrypted using a normal key, and a
normal ciphertext can be decrypted by a semi-functional key (of course, in both cases we
still require that the relation R holds). However, a semi-functional ciphertext can never be
decrypted by a semi-functional key, not even if the relation R holds. To prove a scheme
secure, we use a series of hybrid games. In the final game, the adversary receives a semi-
functional challenge ciphertext and only semi-functional keys, meaning that the adversary
has no chance in correctly decrypting the challenge ciphertext, and thus making it impossible
for the adversary to gain a non-negligible advantage in winning the game.

1.1 Our contributions

Wesummarize our contributions as follows. Firstly,we introduce newmulti-authority encryp-
tion schemes with novel functionality. This newly introduced functionality has two distinct
advantages; it allows for

– the creation of ciphertexts with predicates spanning multiple authoritative domains. Our
construction allows for different predicate types per authority. For example, it allows for
policies over two authorities where one authority uses ABE, while the other uses IPPE.

– the combination of various PE types to obtain more efficient or more expressive predi-
cates. For example, combining a large-universe PE scheme with PE scheme supporting
non-monotonic access structures to allow for revocation.

Secondly, we introduce MA-PESs and their security requirement, give a conversion algo-
rithm from MA-PES to MA-PE, and prove that the resulting MA-PE scheme is fully secure.
We do so by unifying and extending several works. This leads to new insights, such as
the symmetry in the definition of EncCt and EncKey in MA-PESs. These insights help in
constructing more efficient MA-PE schemes and conversions among MA-PESs (e.g., dual
predicate).
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Finally, we give examples of various MA-PESs and also prove them secure. By applying
our construction to these examples we achieve novel types of MA-PE for IBE, ABE, and
IPPE.

1.2 Organization of the work

After the related work in Sect. 2, we continue with the preliminaries in Sect. 3, containing
the definition of an MA-PE scheme and its security. In Sect. 4, we detail the definition of our
MA-PES, and in Sect. 5, we explain how to convert an MA-PES into MA-PE scheme. The
security proof of our conversion algorithm is in Sect. 6. Finally, in Sect. 7, we give several
examples of MA-PESs for predicates of the type IBE, ABE, and IPPE.

2 Related work

Up until now, the vast majority of multi-authority predicate encryption (MA-PE) schemes
proposed in literature are MA-ABE schemes. The first MA-ABE schemes either require the
introduction of a central party that is even able to decrypt all ciphertexts [12,25] or do not
allow for the addition of new authorities once the system is set up [13]. The first practicalMA-
ABE scheme came with the introduction of decentralized MA-ABE [21]. A decentralized
MA-PE scheme does not require any central party and anyone can start a new authority
completely independent of all other parties. However, the current decentralized MA-ABE
schemes [21,26,27] only support a single fixed construction and lack the ability to be used
with any predicate family other than ABE. Moreover, in our construction, each authority
can choose its own predicate family, which allows for the combination of several predicate
systems, e.g., we can combine ABE and IPPE in a single MA-PE scheme.

In 2014, both Wee [31] and Attrapadung [5] observed that many of the schemes proven
secure under the dual system encryption technique could be split into an encoding of the
predicate and the group structure this encoding is instantiated in. Three variants of these
encodings exist: predicate encoding [31], pair encoding [5], and the later introduced tag-
based encoding [19]. Several newer works build on various improvements of the concepts of
predicate encodings [4,16] and pair encodings [2–4]. Because pair encodings are the most
general of the three, we base our work on pair encodings. For the instantiation of the group
structure, composite order and prime order groups can be used [2,14,15]. In this work, we
instantiate our decentralized MA-PE scheme in a composite order group setting, resulting in
the first genericMA-PE scheme. The previously proposed prime order group structure cannot
be directly used, since our construction uses a system based on three subgroups, instead of
the more common two subgroups.

The MA-PE schemes resulting from our conversion algorithm are fully secure, similar to
notions used before [21,26]. Our notion is slightly more permissive in the sense that not all
authorities need to be announced at the start of the game, but the adversary can query for new
authorities throughout the game. Weaker security notions, e.g., selective or static security
games [27], or the use of the generic group model often allow for simpler and more efficient
constructions at the costs of security.

A special use of our MA-PE construction is the combination of various predicate families
into a single authority PE scheme, i.e., the (single) authority creates multiple key pairs, each
for a distinct predicate family. Constructions of these combined PE schemes was first studied
for the combination of ciphertext-policy attribute-based encryption (CP-ABE) with key-
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policy attribute-based encryption (KP-ABE) [6,7]. Recently, Ambrona, Barthe, and Schmidt
[4] give generic transformations to combine arbitrary predicate encodings into a new (single
authority) predicate encoding scheme. Their approach differs from ours, since we do not
transform encodings into an encoding for a combined predicate, but convert special encodings
into an encryption scheme for combined predicates.

Our achieved functionality of decentralized multi-authority inner-product predicate
encryption (MA-IPPE) is different from the works on multi-input inner product encryption
(MI-IPE) [1,17]. In inner product encryption„ the decryption algorithm outputs the inner
product of two encrypted vectors, while in IPPE, the orthogonality of two vectors determines
whether an encrypted message can be decrypted. The work by Michalevsky and Joye [24]
achieves a specific form of MA-IPPE under a notion of decentralization that requires a semi-
honest authority and coordination among the authorities during key generation. Their paper
brings up the challenge to realize what the authors call “full decentralization” which we
tackle in this paper. Moreover, our construction achieves this type of “full” decentralization
for various MA-PE types, including MA-IPPE.

3 Preliminaries

In this work, we use lower case variables for vectors, denoted as v. For matrices we use upper
case variables such asM. We often work with vectors of group elements (gv1 , . . . , gvn ), writ-
ten as gv . To denote that we draw an element uniformly at random from a finite set S, we

use x
R←S. If an element x ∈ S is a uniformly random element from the finite set S, we

write x ∈R S. The ordered set of number {1, . . . , n} is denoted by [n], while we denote
the set {0, . . . , n} by [n]+. Computational indistinguishability is denoted by the binary rela-
tion ≈c.

We use the notation for a predicate family byAttrapadung [5]. Let P = {Pκ }κ∈Nc , for some
constant c ∈ N, denote the predicate family for relations Pκ : Xκ × Yκ → {true, false}.
Here, a relation is equivalent to a predicate function where Xκ , the ciphertext attribute space,
and Yκ , the key attribute space, are mapped to a true/false output. A predicate Pκ can be
described by its family index κ . We often use κ(a) to denote that the index is specific to an
authority a.

3.1 Composite order bilinear map

Our construction uses a composite order bilinear map.

Definition 1 (Composite order bilinear map of three primes [21]) Let G, GT be cyclic mul-
tiplicative groups of composite order N = p1 p2 p3, where p1, p2, and p3 are distinct large
primes of bit length �(λ) for some security parameter λ. The map e : G × G → GT is a
composite order bilinear map if the following two conditions hold.

– The map is bilinear; ∀g, h ∈ G a, b ∈ ZN : e(ga, hb) = e(g, h)ab.
– The map is non-degenerate; generator g of the group G is chosen such that the order of

the element e(g, g) ∈ GT equals N , the order of group GT .

We use the function G(1λ) to generate the parameters for a composite order bilinear map
for security parameter λ. We refer to the subgroups of G of prime order p1, p2, and p3,
as G1, G2, and G3, respectively. Similarly, we write g1, g2, and g3 for the generators of the
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respective subgroups. The orthogonality property of composite order bilinear groups, i.e.,
e(gi , g j ) = 1 for i �= j , is a crucial property used in the security proofs.

3.2 Multi-authority predicate encryption

A decentralized multi-authority predicate encryption (MA-PE) scheme differs from a single
authority PE scheme in several key aspects. Most importantly, any party can use the global
public parameters to create a new authority a. Using these global parameters, it creates its
own public/private key pair for a predicate indexed by κ(a).

Furthermore, since every authority has its own public key, the encryption algorithm
requires one or more public keys as input. Naturally, only the public keys of the authori-
ties A involved in the access policy are required to encrypt a message. Besides the public
keys, the algorithm also requires the ciphertext values xa for each of the authorities a ∈ A .
Note that these values may come from distinct domains, as this value space Xκ(a) depends
on the predicate index κ(a).

Finally, to prevent user collusion, every user in the system get its own globally unique
identity gid from an identity space I. Decryption keys are issued to a specific user and are
bound to their personal gid. This prevents collusion attacks in which distinct users try to
combine their key to decrypt a ciphertext that may only be decrypted by users that possess
all required keys themselves.

A decentralized multi-authority predicate encryption (MA-PE) scheme is a collection of
the following five probabilistic polynomial time algorithms.

GlobalSetup(1λ) → pp. On input of the security parameter λ, the algorithm outputs the
global public parameters pp of the scheme. The output of GlobalSetup additionally defines
the message space M, the identity space I, and a number N ∈ N (these may be implicitly
defined by pp).

AuthoritySetup(pp,para ) → (pka , aska). On input of the public parameters pp and some
additional parameters para , the algorithm outputs a public key pka and an authority secret
key aska for authority a. The algorithm AuthoritySetup (implicitly) sets κ(a) to (N ,para).

Encrypt(pp, {(pka , xa)}a∈A ,m) → ct. The algorithm Encrypt takes a set of public
keys {pka} from authorities a ∈ A , values

{
xa ∈ Xκ(a)

}
a∈A , and a message m ∈ M as

input and outputs a ciphertext ct.

KeyGen(pp, aska , y,gid) → usky,gid. The algorithm KeyGen takes an authority secret
key aska of authority a, a value y ∈ Yκ(a), and an identity gid ∈ I as input and outputs a
user secret key usky,gid.

Decrypt(pp, {usky,gid}y, ct) → {m,⊥}. On input of a set of user secret keys {usky,gid}, all
issued to the same identity gid, and a ciphertext ct, the algorithm outputs either a messagem
or the distinctive symbol ⊥.

Correctness is defined such that if all predicates Pκ(a) can be evaluated to true, the
ciphertext can be decrypted with an overwhelming probability.

Definition 2 (Correctness) A multi-authority predicate encryption (MA-PE) scheme is cor-
rect if for any combination of ciphertext ct, created using Encryptwith any messagem ∈ M
and values {xa ∈ Xκ(a)}a∈A , together with keys for the authorities a specified in the cipher-
text ct, {uskya ,gid}a∈A for any identity gid ∈ I, Pκ(a)(xa , ya) = true, then

Pr
[
Decrypt(pp, {uskya ,gid}, ct) �= m

] ≤ negl(λ),
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where the probability is taken over the coins of GlobalSetup, AuthoritySetup, Encrypt, and
KeyGen.

3.3 Multi-authority predicate encryption security

We define security in terms of an indistinguishability game where the adversary may query
for several decryption keys and has to decide on the message encrypted in the challenge
ciphertext. The adversary may also query for the creation of new authorities and also stat-
ically corrupt new authorities. The static corruption of an authority is modeled by letting
the adversary create a public/private key pair for a new authority. The adversary may then
request the challenger to encrypt the challenge message using the public keys of uncorrupted
and corrupted authorities. Note that this implies a static corruption model similar to [21], as
none of the authorities associated with the challenge ciphertext may be corrupted after the
challenge phase. The difference is that we do not require all authorities to be specified during
Setup, but allow for “Authority Setup” queries.

Definition 3 (Full security) A multi-authority predicate encryption scheme is fully secure if
any p.p.t. adversary A has at most a negligible advantage in winning the following game.

Setup The GlobalSetup algorithm is run and the challenger creates an empty set I to hold
the uncorrupted authorities in the system.

Query 1 The adversary may query the challenger for two types of queries. Additionally, it
can also create new authorities using the global parameters, i.e., without needing to query
the challenger.

– Authority setup The adversary queries for a new authority by sending the parame-
ters para (describing a predicate) to the challenger. The challenger runs AuthoritySetup
using para and gives the resulting public key pka to the adversary. Additionally, it adds a
to the set of uncorrupted authorities I .

– User secret key By sending a tuple (a, y ∈ Yκ(a),gid), where a ∈ I , to the challenger,
the adversary requests the user secret key usky,gid ← KeyGen(pp, aska , y,gid) from
the challenger. If the challenger has received a key request for the combination (a,gid)

before, it aborts the game.1 Otherwise, it returns the user secret key usky,gid.

Challenge The adversary sends a tuple (m0,m1, {x∗
a }a∈A∗) to the challenger, where A∗ is a

set of authorities chosen by the adversary. For each authority a ∈ A∗ the adversary created
itself, it also sends the public key pka to the challenger. We denote these authorities created
by the adversary by the set Ĩ = A∗ \ I .

For each gid that was used in a key query, the challenger checks if there exists an uncor-
rupted authority a ′ ∈ A∗ ∩ I , such that either no query (a ′, ya ′ ,gid) has been made, or

Pκ(a ′)(x∗
a ′ , ya ′) = false for the queried (a ′, ya ′ ,gid). If so, it chooses a bit b

R←{0, 1}
and returns the challenge Encrypt(pp, {pka}a∈A∗ , {x∗

a }a∈A∗ ,mb). Otherwise, the challenger
aborts the game.

Query 2 Same as Query 1, with the additional restriction that new key queries must not
violate the constraint described in Challenge.

1 The construction of Lewko and Waters [21] also requires that no authority may issue a key to the same user
twice, although they do not make this requirement explicit.
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Guess The adversary makes a guess b′ for bit b. We define the advantage of the adversary
in winning the game as

Pr[b′ = b] − 1

2
.

3.4 Complexity assumptions

The security of our construction relies on several instances of the family of the General
Subgroup Decision Assumption [8]. These assumptions are identical to the assumptions
used by the MA-ABE scheme of Lewko and Waters [21].

Assumption 1 Let the bilinear map parameters gp = (N = p1 p2 p3,G,GT , e, g) be gener-

ated by G(1λ) and g1
R←G1. Given g1, it is hard to distinguish ĥ

R←G from ĥ1
R←G1. That is,

the advantage of any p.p.t. adversary A in distinguishing,
∣∣∣Pr

[A((gp, g1), ĥ) = 1
] − Pr

[A((gp, g1), ĥ1) = 1
]∣∣∣ ,

is negligible in the security parameter λ.

Assumption 2 Let the bilinear map parameters gp = (N = p1 p2 p3,G,GT , e, g) be gen-

erated by G(1λ), and g1, h1, ĥ1
R←G1, h2, ĥ2

R←G2, and g3
R←G3. Given g1, h1h2, and g3,

it is hard to distinguish ĥ1 from ĥ1ĥ2. That is, the advantage of any p.p.t. adversary A in
distinguishing,

∣∣∣Pr
[A((gp, g1, h1h2, g3), ĥ1) = 1

] − Pr
[A((gp, g1, h1h2, g3), ĥ1ĥ2) = 1

]∣∣∣ ,

is negligible in the security parameter λ.

Assumption 3 Let the bilinear map parameters gp = (N = p1 p2 p3,G,GT , e, g) be gener-

ated by G(1λ), and g1, h1, ĥ1
R←G1, h′

2, ĥ2
R←G2, and h3, h′

3, ĥ3
R←G3. Given g1, h1h3, and

h′
2h

′
3, it is hard to distinguish ĥ1ĥ2 from ĥ1ĥ3. That is, the advantage of any p.p.t. adversaryA

in distinguishing,
∣∣∣Pr

[A((gp, g1, h1h3, h
′
2h

′
3), ĥ1ĥ2) = 1

] − Pr
[A((gp, g1, h1h3, h

′
2h

′
3), ĥ1ĥ3) = 1

]∣∣∣ ,

is negligible in the security parameter λ.

Assumption 4 Let the bilinear map parameters gp = (N = p1 p2 p3,G,GT , e, g) be gen-

erated by G(1λ), and g1
R←G1, g2

R←G2, g3
R←G3, and a, b, c, d, ξ

R←ZN . Given g1, g2, g3,
g a
1 , (g1g3)

b, g c
1 , and g ac

1 g d
3 , it is hard to distinguish e(g1, g1)

abc from e(g, g)ξ . That is, the
advantage of any p.p.t. adversary A in distinguishing,

∣∣∣Pr
[A((gp, g1, g2, g3, g

a
1 , (g1g3)

b, g c
1 , g ac

1 g d
3 ), e(g1, g1)

abc) = 1
]

−Pr
[A((gp, g1, g2, g3, g

a
1 , (g1g3)

b, g c
1 , g ac

1 g d
3 ), e(g, g)ξ ) = 1

]∣∣∣,

is negligible in the security parameter λ.
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4 Multi-authority admissible pair encoding

We extend the definition of a pair encoding [3,5] to amulti-authority setting. Amultiauthority
admissible pair encoding scheme (MA-PES) is defined for a single authority a. We will later
show how we can convert several MA-PESs into a single MA-PE scheme.

We choose to extend the definition of PES as defined by Agrawal and Chase [3] since
it is well-structured— although it may be a bit difficult to grasp at first. To get a better
understanding of the scheme, it is convenient to think of the encodings as the variables in the
exponents in the encryption scheme. The values b correspond to an authority’s public key,
while s, ŝ and r, r̂ correspond to the randomness used in the encryption and key generation
algorithms, respectively. The algorithms EncCt and EncKey encode the ciphertext value x and
key value y, respectively, by returning one or more multivariate polynomials of a restricted
form. The variables b1, . . . , bn can occur in both the ciphertext and the key encoding, so they
are termed common. These common variables may be multiplied with non-lone a variable si
(in a ciphertext encoding) or ri (in a key encoding). A lone variable, indicated by a hat,
e.g., r̂i , is never multiplied with a common variable, but may be added as an independent
term to the polynomial. Two special variables, α in the key encodings—corresponding to
the authority’s secret key—and ω in the ciphertext encodings, are always present in at least
one of the polynomials. Basically, the encodings of a ciphertext contain linear combinations
of monomials ω, ŝi , and si b j , while key encodings contain linear combinations of α, r̂i ,
and ri b j .

Recall that our construction can be understood as a combination of several multi-authority
admissible PE schemes using a “multi-authority layer” that withstands collusion attacks.
During the decryption of such amulti-authority admissible PE scheme, randomness specific to
the user is added to prevent collusion attacks. In ourMA-PES, this randomness is represented
in the correctness requirement by the newly added term ωr0, where r0 corresponds to the
user’s gid.

Our changes with respect to the PES definition by Agrawal and Chase [3] are highlighted
in red.

Definition 4 (Multi-authority admissible pair encoding scheme) Amultiauthority admissible
pair encoding scheme (MA-PES) for a predicate function Pκ : Xκ × Yκ → {false, true}
indexed by κ = (N ,par), where par specifies some parameters, is given by the following
four deterministic polynomial-time algorithms.

AuthorityParam(par) → n When given par as input, AuthorityParam outputs n ∈ N that
specifies the number of common variables, which we denote by b = (b1, . . . , bn).

EncCt(N , x) → (w1, w2, c(ω, s, ŝ, b)) On input N ∈ N and x ∈ X(N ,par), EncCt outputs
a vector of polynomials c = (c1, . . . , cw3) in non-lone variables s = (s0, s1, . . . , sw1) and
lone variables ω and ŝ = (ŝ1, . . . , ŝw2). For � ∈ [w3], where η�, η�,z, η�,i, j ∈ ZN , the �th
polynomial is given by

c�(ω, s, ŝ, b) = η�ω +
∑

z∈[w2]
η�,z ŝz +

∑

i∈[w1]+

∑

j∈[n]
η�,i, j si b j .

EncKey(N , y) → (m1,m2, k(α, r, r̂, b))On input N ∈ N and y ∈ Y(N ,par), EncKey outputs
a vector of polynomials k = (k1, . . . , km3) in non-lone variables and r = (r0, r1, . . . , rm1)

and lone variables α and r̂ = (r̂1, . . . , r̂m2). For � ∈ [m3], where φ�, φ�,z, φ�,i, j ∈ ZN , the
�th polynomial is given by
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k�(α, r, r̂, b) = φ�α +
∑

z∈[m2]
φ�,zr̂z +

∑

i∈[m1]+

∑

j∈[n]
φ�,i, j ri b j .

Pair(N , x, y) → (E, Ê) On input N and both x and y, Pair outputs two matrices E and Ê of
size (w1 + 1) × m3 and w3 × (m1 + 1), respectively.

For clarity, in cases where the specific MA-PES that is being used is relevant, we
index the algorithms by the authority that chooses to use the scheme, e.g., EncCta (N , x )
or EncKeya (N , y).

Definition 5 (Correctness) AnMA-PES is correct if for every κ = (N ,par), x ∈ Xκ , y ∈ Yκ

such that Pκ (x, y) = true, the following holds symbolically,

sEkT + cÊrT = αs0 − ωr0.

Note that in this extended definition EncCt and EncKey are up to the variable names
identically defined. Furthermore, ifwe setω = 0, thenwehave the definitionof pair encodings
back as defined by [3] (except for the extra term r0, however, we can see this as an alternative
numbering of the components in r).

4.1 Security

For a multi-authority pair encoding scheme to be secure, we require statistical security,
similar to the perfect security notion by Attrapadung [5]. For the security of the encoding,
it is helpful to realize that we will apply the dual system encryption technique by (partially)
replicating the scheme in the various subgroups. The security properties of the encoding will
be used in the semi-functional subgroups, allowing us to prove indistinguishability among
several variants of semi-functional ciphertexts and keys.

Instead of requiring that the value α is hidden in the adversary’s view, as required in
a PES, we require, as a security property for our MA-PES, that the value ω is hidden in
the adversary’s view. This property allows us to prove that an adversary cannot distinguish
a correctly distributed challenge ciphertext from a challenge ciphertext taken from a more
restricted distribution. The property should hold even if user secret keys are given, but only
as long as the values y associated to these keys do not let the predicate evaluate to true.

Definition 6 (Statistical security) A multi-authority admissible pair encoding scheme (MA-
PES) is statistically secure for κ = (N ,par) ∈ N

c, if for all x ∈ Xκ and y ∈ Yκ , the
values (w1, w2, c(ω, s, ŝ, b)) ← EncCt(N , x ) and (m1,m2, k(α, r, r̂, b)) ← EncKey(N , y),
if Pκ (x, y) = false, the distributions

{
s, c(0, s, ŝ, b), r, k(0, r, r̂, b)

}
and

{
s, c(ω, s, ŝ, b), r, k(0, r, r̂, b)

}

are statistically indistinguishable, where the probability is taken over b
R←Z

n
p , ω

R←Zp ,

s
R←Z

(w1+1)
p , ŝ

R←Z
w2
p , r

R←Z
(m1+1)
p , and r̂

R←Z
m2
p (i.e., the distributions need to be statisti-

cally close in the size of p), for every prime p|N .

In our security proof for the conversion algorithm (see Sect. 6), we additionally need to
restrict the output of EncKey(N , y) of an MA-PES. We require that if, for some � ∈ [m3], the
polynomial k� contains α, also r0b1 needs to be present in the polynomial. More specifically,
we require thatφ� = φ�,0,1. Note that combining this constraint with the correctness property,
we also have that η� = η�,0,1.

We give several examples of an MA-PES in Sect. 7.
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5 Conversion from encoding to encryption

A collection of statistically secure MA-PESs can be converted to a fully secure MA-PE
scheme using a generic algorithm.

The encryption algorithm can be seen as a combination of the encryption algorithms of
several (modified) PE schemes. First, we encrypt a messagem ∈ GT by blinding themessage
with a random element e(g1, g1)�. Next, we (additively) secret share � into shares δa for
each of the involved authorities a ∈ A . For each authority, we encrypt the value e(g1, g1)δa

using the randomness αasa,0. From the correctness of the MA-PES, we know that a user
having the appropriate keys can combine the ciphertext and keys in such a way that it obtains
the value αasa,0 − ωar0. Hence, the user can recover the value e(g1, g1)δa up to a newly
introduced random element that has ωar0 in the exponent. We use this randomness ωar0 to
prevent user collusion. Recall that EncCt determines the value ωa , while EncKey determines
the value r0. So, ifwe additively secret share 0 into the valuesωa and choose afixedvalue r0 for
each gid, we have that, only if a user is able to obtain e(g1, g1)δa+ωar0 for all all authorities a,
the user can combine these values to obtain the randomness used in the encryption of the
message m, e(g1, g1)

∑
a δa+0 = e(g1, g1)�.

Althoughour employed technique is similar to conversion algorithmsused in single author-
ity predicate encryption (SA-PE) [2,3,15], we use the fact that the symbol ω, an element part
of the ciphertext, is statistically hidden. In contrast, SA-PE requires α, an element part of
a key, to be statistically hidden. Therefore, in our employed proof technique, we can only
randomize ω as part of the ciphertext and not α as part of the keys. As an consequence, we
require a composite order pairing group with three subgroups, instead of the common two
subgroups. This also implies that we cannot use the existing constructions for dual system
groups [2,15].

We require that identities are random elements from the identity space I = G. We achieve
this by choosing a cryptographic hash function H : {0, 1}∗ → G and hash the gid to obtain
a random element in G. In our security proof, we require that the challenger can decide
on the image of H(gid), Im(H) = G

′ ⊆ G. This requirement is fulfilled by proving the
construction secure in the programmable random oracle model.

GlobalSetup(1λ) The GlobalSetup algorithm first runs G(1λ) to obtain gp = (N =
p1 p2 p3,G,GT , e, g) and g1

R←G1. It sets the message space M = GT and the identity
space I = G. It defines a hash function H : {0, 1}∗ → G and outputs (gp, g1, H) as the
global public parameters pp.

AuthoritySetup(pp,para ) Given an MA-PES for para , the algorithm runs Authority-

Param(para ) to obtain n. It picks v
R←Z

n
N and α

R←G1, and sets ska = g α
1 . The authority’s pka

is
(
g v
1 , e(g1, ska)

)
. The authority’s aska is (v, ska).

Encrypt(pp, {(pka , xa)}a∈A ,m) Choose an a ′ ∈ A , pick ωa
R←ZN for each authority a ∈

A \ a ′, and set ωa ′ = −∑
a∈A\a ′ ωa . Additionally, pick δa

R←ZN for all a ∈ A and define

e(g1, g1)� = ∏
a∈A e(g1, g1)δa . Blind the message m ∈ GT using e(g1, g1)� to obtain

ct0 = m · e(g1, g1)�.
Now, for each authority a ∈ A continue as follows (we frequently drop the index a—

when there is no ambiguity—to simplify notation). Run EncCta (N , x ) to obtain w1, w2, and
polynomials (c1, . . . , cw3). For k ∈ [w1 + w2]+, pick sa,k ∈ ZN , and set cta,1,i = g

sa,i
1 for

i ∈ [w1]+ and
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cta,2,� = (g ωa
1 )η� ·

∏

z∈[w2]
g

η�,z sa,w1+z

1 ·
∏

i∈[w1]+, j∈[n]

(
g

v j
1

)η�,i, j sa,i

for � ∈ [w3]. Blind the value e(g1, g1)δa by setting cta,0 = e(g1, g1)δa · e(g1, ska)sa,0 .
The complete ciphertext is

ct = (
ct0, {cta,0, cta,1,0, . . . , cta,1,w1 , cta,2,1, . . . , cta,2,w3}a∈A

)
.

KeyGen(pp, aska , y,gid) The algorithm EncKeya (N , y) is run to obtain m1, m2, and poly-

nomials (k1, . . . , km3). Set uska,1,0 = H(gid) and pick ri
R←ZN to set uska,1,i = g ri

1 for
i ∈ [m1 + m2]. Set

uska,2,� = skφ�
a ·

∏

z∈[m2]

(
uska,1,m1+z

)φ�,z ·
∏

i∈[m1]+, j∈[n]

(
usk

v j
a,1,i

)φ�,i, j

for � ∈ [m3]. The complete user secret key for y ∈ Yκ(a) is

usky,gid = (uska,1,0, . . . , uska,1,m1 , uska,2,1, . . . , uska,2,m3).

Note that uska,1,m1+z for z ∈ [m2] are not included in the complete usk.

Decrypt(pp, {usky,gid}y, ct). To decrypt the ciphertext ct, we first decrypt cta,0 for each

authority a ∈ A . Run Paira (N , xa , ya ) to obtain Ea and Êa . Now compute

cta,0 ·

⎛

⎜⎜
⎝

∏

i∈[w1]+,
�∈[m3]

e(cta,1,i , uska,2,�)Ea,i,� ·
∏

�∈[w3],
i∈[m1]+

e(cta,2,�, uska,1,i )Êa,�,i

⎞

⎟⎟
⎠

−1

= (
e(g1, g1)

δa · e(g1, ska)sa,0
) (
e(g1, g1)

αa sa,0−ωar0
)−1

= e(g1, g1)
δa · e(g1, g1)αsa,0 · e(g1, g1)−αa sa,0+ωar0

= e(g1, g1)
δa · e(g1, g1)ωar0

for some value r0 independent of a. We can now combine these results to obtain
∏

a∈A

(
e(g1, g1)

δa · e(g1, g1)ωar0
) = e(g1, g1)

∑
a∈A δa · e(g1, g1)

∑
a∈A ωar0

= e(g1, g1)
� · e(g1, g1)0r0

= e(g1, g1)
�,

and recover the plaintext m = ct0 · e(g1, g1)−�.

Remark 1 (One-use requirement) If the values b of an MA-PES are used multiple times in
the same ciphertext, they might not be statistically hidden anymore and information on ω

might be leaked. Therefore, if we want to make sure to avoid using (part) of the same b
multiple times, we may require that an authority may occur only once in a ciphertext of a
corresponding MA-PE scheme. Such a requirement is similar to the one-use requirement as
found in several ABE schemes [5,21,23] where the attributes may only occur once.

Remark 2 (Type of secret sharing) Instead of using additive secret sharing as described above,
we could have also decided to use SSS. By using SSS, we allow for combining the predicates
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from different authorities in the ciphertext using both and and or gates—like in the MA-
ABE scheme by Lewko and Waters [21]— while additive secret sharing only allows for
combining them using and gates. However, we can easily emulate or gates by writing
the desired combination of predicates for different authorities in DNF and creating a new
ciphertext for each of the conjunctive clauses. Themain advantage of choosing to use additive
secret sharing, is that it simplifies the construction and the corresponding security proofs.

6 Security of the conversion algorithm

Weprove security similarly to the dual system encryption technique [29] variant that was used
to prove MA-ABE secure before [21]. As such, we first introduce semi-functional ciphertext
and semi-functional keys. These semi-functional ciphertexts and keys are solely used in the
security proofs and not in the actual scheme.

6.1 Semi-functional ciphertext

A semi-functional ciphertext can be created by slightly modifying the encryption algorithm
for normal ciphertexts as given before.We define the various types of semi-functional cipher-
text through the algorithm Encrypt.

Encrypt(pp, {(pka , xa)}a∈A ,m; C, {ska}a∈A ). This algorithm is similar to Encrypt, but also
takes a set C ⊆ {1, 2, 3} and the authorities’ ska as input.

While in normal ciphertext, we use g ωa
1 , where

∑
a∈A ωa = 0, in semi-functional

ciphertext, we use g
ωa,1
1 g

ωa,2
2 g

ωa,3
3 and require

∑
a∈A ωa,i = 0 only for i ∈ C. For the

values i ∈ {1, 2, 3} \C, we pick ωa,i
R←ZN without any constraint on the sum of these values.

Additionally, the construction of the values cta,1,i and cta,2,� is dependent on whether
the authority a was created by the challenger (i.e., a ∈ I ) or by the adversary (i.e., a ∈ Ĩ ).
If a ∈ I , all of the encoding variables (sa , ca(ωa , sa , ŝa , ba) are mapped to elements in G.
However, if a ∈ Ĩ , only ω is mapped to an element in G (i.e., g

ωa,1
1 g

ωa,2
2 g

ωa,3
3 ), while all

other encoding variables are mapped to elements in G1 ⊂ G just like in normal ciphertext.
In the proofs, we will use several types of semi-functional ciphertext. We use Encrypt for

C = {1, 2, 3}, C = {1, 2}, and C = {1}.
Pseudo normal ciphertext In case we use C = {1, 2, 3}, we say that the ciphertext is pseudo
normal.

Nominally semi-function ciphertext In case we use C = {1, 2}, we say that the ciphertext
is nominally semi-functional.

6.2 Semi-functional keys

Besides normal keys, we define pseudo normal keys and two types of semi-functional keys.
We conveniently define these non-normal keys through the algorithm KeyGen.

KeyGen(pp, aska , y; g′, r0). The algorithm is similarly defined as KeyGen(pp, aska , y,gid),
however, instead of using the generator g1 and the hash function H : {0, 1}∗ → G, the
generator g′ and the function H : gid �→ (g′)r0 are used. As a consequence, all elements of
KeyGen(pp, aska , y; g′, r0) are elements of the group 〈g′〉.
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Game Challenge ciphertext ctx∗ Queried key usky,gid

original Encrypt(pp, {(pk,x∗)}, mb) KeyGen(pp, ask,y)
0 Encrypt(pp, {(pk,x∗)}, mb) KeyGen(pp, ask,y; g1 , ugid)

1 Encrypt(pp, {(pk,x∗)}, mb; {1, 2, 3}, {sk}) KeyGen(pp, ask,y; g1, ugid)

2,j,1 Encrypt(pp, {(pk,x∗)}, mb; {1, 2} , {sk}) KeyGen(pp, ask,y; g12 , ugid)

2,j,2 Encrypt(pp, {(pk,x∗)}, mb; {1} , {sk}) KeyGen(pp, ask,y; g13 , ugid)

3 Encrypt(pp, (pk,x∗) , random ; 1 , sk ) KeyGen(pp, ask,y; g13, ugid)

Fig. 1 Summary of the sequence of games used in the proof. An explanation of the difference between the
games is given in Sect. 6.3

Normal key Note that a normal key cannot be described using KeyGen: While we can set
g′ ∈ G1, the hash function H is defined as H : {0, 1}∗ → G and not as H : {0, 1}∗ → G1.

Pseudo normal key A pseudo normal key is created using KeyGen with g′ ∈ G1. It differs
from a normal key in that H maps to an element inG1, H : {0, 1} → G1, instead of mapping
to an element in G.

Semi-functional key of type IA semi-functional key of type I is created using KeyGenwith
g′ = g1g2, where g1 ∈ G1 and g2 ∈ G2.

Semi-functional key of type II A semi-functional key of type II is created using KeyGen
with g′ = g1g3, where g1 ∈ G1 and g3 ∈ G3.

6.3 Hybrids and proof outline

We will prove security through a series of hybrid games. Let Gameoriginal be the original
full security game as defined in Definition 3. Game0 is defined similarly, except that in this
game only pseudo normal keys are used, by both the challenger and the adversary, instead of
normal keys. In Game1 the challenger answers the challenge query with a semi-functional
ciphertext instead of a normal ciphertext as used in Game0. Let q denote the number of
distinct gids for which the adversary queries keys for. We define two types of games for
each j from 1 to q . In Game2, j,1, the queries for the first j − 1 identities are answered with
semi-functional keys of type II, while key queries for the j th identity are answered with a
semi-functional key of type I. In Game2, j,2, the challenger answers key queries for the first
j identities with a semi-functional key of type II. We define Game3 as the game where all key
queries are answered by semi-functional keys of type II and where the challenge ciphertext
is replaced by an encryption of a random message.

A summary of the sequence of games can be found in Fig. 1. In this figure, we also indicate
the exact type of semi-functional challenge ciphertext the adversary receives by specifying
the input C to Encrypt. In the cases where the values ωa,2 or ωa,3 sum to a random value (i.e.,
C = {1, 2} and C = {1}), we have to show that the adversary cannot distinguish this from the
case where the values ωa,2 and ωa,3 are guaranteed to sum to zero (i.e., C = {1, 2, 3}).

For example, in the hybrid from Game2, j,1 to Game2, j,2, we have to show that the
adversary A cannot distinguish a ciphertext created with

∑
a∈A∗ ωa,2 = 0 from a ciphertext

created with
∑

a∈A∗ ωa,2 ∈R Zp2 . In this case, we know that P
({x∗

a }a∈A∗ , {ygid,a}a∈A∗
) =

false, i.e., there exists at least one a ′ ∈ A∗ such that Pκ(a ′)(x∗
a ′ , ygid,a ′) = false or no

query for (a ′, ya ′ ,gid) has been made. Furthermore, observe that the value ωa ′,2 only occurs
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in the ciphertext part (cta ′,2,0, . . . , cta ′,2,w3) of authority a
′, corresponding to the values ca ′

of EncCta ′ . By the statistical security requirement (see Definition 6), we know that this ωa ′,2
is statistically hidden in the adversary’s view. From this fact, it clearly follows that the sum
of all ωa,2 (i.e.,

∑
a∈A∗ ωa,2) includes ωa ′,2 and thus the value of the sum is statistically

hidden in the adversary’s view as well. Hence, the adversary cannot distinguishing whether
it received a ciphertext where the ωa,2 are shares of zero, or independently random shares.

In Game2,q,2, all key queries are answered with a type II key, and we know that the
values ωa,3 do not need to sum to 0. Since there are no further constraints on ωa,3, we can

set all ωa,3
R←ZN . Thus, we essentially have that an adversary cannot distinguish whether

the ciphertext components for any authority have been randomized or not. We use this fact
to show that the sum of the values δi , as appearing in the semi-functional ciphertext, is
computationally indistinguishable from random as well.

We prove indistinguishability of the hybrids using several lemmas. Combining Lem-
mata 1, 2, 3, 4, and 5 proves the following theorem.

Theorem 1 For any collection of predicate families for authorities a ∈ A , Pa =
{Pκ(a)}κ(a)∈Nc , if each MA-PES for Pκ(a) satisfies φ� = φ�,0,1 for all � ∈ [m3] and is statisti-
cally secure (see Definition 6), then the MA-PE scheme converted from these MA-PESs (see
Sect. 5) is fully secure (seeDefinition 3) in the randomoraclemodel underAssumptions 1, 2, 3,
and 4.

Lemma 1 (Gameoriginal ≈c Game0)Any adversaryA having at most a negligible advantage
in breaking Assumption 1, has at most a negligible advantage in distinguishing Gameoriginal
from Game0.

Proof The challenger B receives {(gp, g1), T } as input, where either T ∈R G or T ∈R G1.
Now, B plays the following game with A.

Hash oracle Upon receiving oracle query gid for the hash function H , the challenger B
checks if it received the query before, and if so, answers with the same reply as before.

If A has not queried for the hash value of gid before, B picks a value ugid
R←ZN and replies

with T ugid .

Setup The challenger B sets pp = (gp, g1) and sends pp to the adversary A.

Authority queries Request for a new authority a using para are answered by the chal-
lenger by runningAuthoritySetup(pp,para ). The challenger first usesAuthorityParam(para )

to obtain n, picks v
R←Z

n
N and α

R←G1, and sets ska = g α
1 . It sets the public key pka

as (g v
1 , e(g1, ska)) and the authority secret key aska as (v, ska). It sends pka to the adversary

and adds a to the set I .

Key queries Upon receiving a key query (a, y ∈ Yκ(a),gid) for an uncorrupted author-
ity a ∈ I , B answers the query by first running EncKeya (N , y) to obtain m1, m2, and

polynomials (k1, . . . , km3). Next, it sets uska,1,0 = T ugid and picks ri
R←ZN for i ∈ [m1+m2]

to set uska,1,i = g ri
1 for i ∈ [m1]. Additionally, it sets

uska,2,� = skφ�
a ·

∏

z∈[m2]

(
uska,1,m1+z

)φ�,z ·
∏

i∈[m1]+, j∈[n]

(
usk

v j
a,1,i

)φ�,i, j

for � ∈ [m3]. Finally, it returns the secret key for y ∈ Yκ(a) as

usky,gid = (uska,1,0, . . . , uska,1,m1 , uska,2,1, . . . , uska,2,m3).
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Challenge ciphertext Whenever A requests the ciphertext challenge by sending

(m0,m1, {x∗
a }a∈A∗) alongwith the public keys {pka}a∈A∗∩ Ĩ , the challengerB picks b

R←{0, 1}
and encrypts message mb as a normal challenge ciphertext using

Encrypt(pp, {pka}a∈A∗ , {x∗
a }a∈A∗ ,mb).

Now, observe that A is playing Gameoriginal if T ∈R G, while it is playing Game0
if T ∈R G1. Therefore, if A has a non-negligible advantage in deciding which game it is
playing, B has a non-negligible advantage in breaking Assumption 1. ��
Lemma 2 (Game0 ≈c Game1) Any adversary A having at most a negligible advantage in
breaking Assumption 1, has at most a negligible advantage in distinguishing Game0 from
Game1.

Proof The challenger B receives {(gp, g1), T } as input, where either T ∈R G or T ∈R G1.
Now, B plays the game with A as follows.

Hash oracle Upon receiving oracle query gid for the hash function H , the challenger B
checks if it received the query before, and if so, answers with the same reply as before.

If A has not queried for the hash value of gid before, B picks a value ugid
R←ZN and replies

with g
ugid
1 .

Setup The challenger B sets pp = (gp, g1) and sends pp to the adversary A.

Authority queries Request for a new authority a using para are answered by the chal-
lenger by runningAuthoritySetup(pp,para ). The challenger first usesAuthorityParam(para )

to obtain n, picks v
R←Z

n
N and α

R←G1, and sets ska = g α
1 . It sets the public key pka

as (g v
1 , e(g1, ska)) and the authority secret key aska as (v, ska). It sends pka to the adversary

and adds a to the set I .

Key queries Upon receiving a key query (a, y ∈ Yκ(a),gid) for an uncorrupted
authority a ∈ I , B answers the query using a pseudo normal key using ugid as r0,
KeyGen(pp, aska , y; g1, ugid).
Challenge ciphertext Whenever A requests the ciphertext challenge by sending

(m0,m1, {x∗
a }a∈A∗), the challengerB picks b

R←{0, 1} and encryptsmessagemb as a challenge
ciphertext using T .

Choose an a ′ ∈ A∗, pick ωa
R←ZN for each authority a ∈ A∗ \ a ′, and set ωa ′ =

−∑
a∈A∗\a ′ ωa . Additionally, pick δa

R←ZN , set e(g1, g1)δa for all a ∈ A∗, and define

e(g1, g1)� = ∏
a∈A∗ e(g1, g1)δa . Blind the message mb ∈ GT using e(g1, g1)� to obtain

ct0 = mb · e(g1, g1)�.
Now, for each authority a ∈ A∗ continue as follows (we frequently drop the index a—

when there is no ambiguity—to simplify notation). Run EncCta (N , x ) to obtain w1, w2, and
polynomials (c1, . . . , cw3).

If a ∈ I , pick s̃a,k ∈ ZN for k ∈ [w1 + w2]+, and set cta,1,i = T s̃a,i for i ∈ [w1]+ and,
for � ∈ [w3], set

cta,2,� = (T ωa )η� ·
∏

z∈[w2]
T η�,z s̃a,w1+z ·

∏

i∈[w1]+, j∈[n]
T η�,i, j s̃a,iv j .

Blind the value e(g1, g1)δa by setting cta,0 = e(g1, g1)δa · e(T s̃a,0 , g αa
1 ).
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If a ∈ Ĩ , pick sa,k ∈ ZN for k ∈ [w1 + w2]+, and set cta,1,i = g
sa,i
1 for i ∈ [w1]+ and,

for � ∈ [w3], set
cta,2,� = (T ωa )η� ·

∏

z∈[w2]
g

η�,z sa,w1+z

1 ·
∏

i∈[w1]+, j∈[n]

(
g

v j
1

)η�,i, j sa,i
.

Blind the value e(g1, g1)δa by setting cta,0 = e(g1, g1)δa · e(g1, ska)sa,0 .
The complete challenge ciphertext is

ct = (
ct0, {cta,0, cta,1,0, . . . , cta,1,w1 , cta,2,1, . . . , cta,2,w3}a∈A∗

)
.

Note that T = g t (mod p1)
1 g t (mod p2)

2 g t (mod p3)
3 for unknown t , and so we have implicitly

used sa,i = t s̃a,i in cta,2,i , making the ciphertext identically distributed to a normal ciphertext
if T ∈ G1. Moreover, we have ω′

a,1 = tωa (mod p1), ω′
a,2 = tωa (mod p2), and ω′

a,3 =
tωa (mod p3). Thus, if T ∈R G1 the resulting ciphertext is normal, while if T ∈R G, the
resulting ciphertext is pseudo normal, with

∑
a∈A∗ ω′

a,1 = ∑
a∈A∗ ω′

a,2 = ∑
a∈A∗ ω′

a,3 = 0.
Moreover, depending on the value of T , B either plays Game0 or Game1. ��

Observe that, by definition, Game1 ≡ Game2,0,2.

Lemma 3 (Game2, j−1,2 ≈c Game2, j,1) Any adversary A having at most a negligible
advantage in breaking Assumption 2, has at most a negligible advantage in distinguishing
Game2, j−1,2 from Game2, j,1.

Proof The challenger B receives {(gp, g1, h1h2, g3), T } as input, where either T ∈R G1 or
T ∈R G12. Now, B plays the game with A as follows.

Hash oracle Upon receiving oracle query gid for the hash function H , the challenger B
checks if it received the query before, and if so, answers with the same reply as before.

If A has not queried for the hash value of gid before, B picks a value ugid
R←ZN . Then, the

first j − 1 queries for some gid are answered with (g1g3)ugid , the j th query is answered
with T ugid , while other queries are answered with g

ugid
1 .

Setup The challenger B sets pp = (gp, g1) and sends pp to the adversary A.

Authority queries Request for a new authority a using para are answered by the chal-
lenger by runningAuthoritySetup(pp,para ). The challenger first usesAuthorityParam(para )

to obtain n, picks v
R←Z

n
N and α

R←G1, and sets ska = g α
1 . It sets the public key pka

as (g v
1 , e(g1, ska)) and the authority secret key aska as (v, ska). It sends pka to the adversary

and adds a to the set I .

Key queriesUpon receiving a key query (a, y ∈ Yκ(a),gid) for an uncorrupted authority a ∈
I , B answers the query depending on the number distinct gid that have been queried before.
If gid is one of the ( j−1)th first gids being queried, B answers with a semi-functional key of
type II by sending KeyGen(pp, aska , y; g1g3, ugid). If the query is for the j th gid, B answers
by sending KeyGen(pp, aska , y; T , ugid). Otherwise, B answers with a pseudo normal key
by sending KeyGen(pp, aska , y; g1, ugid).

Note that all in cases the key queries are answered with elements from the hash oracle’s
range, creating properly distributed (semi-functional) keys. Also, observe that if T ∈R G1,
a query for the j th gid is answered with a pseudo normal key. Otherwise, if T ∈R G12, the
query is answered with a semi-functional key of type I.
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Challenge ciphertext Whenever A requests the ciphertext challenge by sending

(m0,m1, {x∗
a }a∈A∗), the challengerB picks b

R←{0, 1} and encryptsmessagemb as a challenge
ciphertext using h1h2 and g3.

Choose an a ′ ∈ A∗, pick ω′
a,12

R←ZN for each authority a ∈ A∗ \ a ′, and set ω′
a ′,12 =

−∑
a∈A∗\a ′ ω′

a,12. Additionally, pick ω′
a,3, δa

R←ZN , and set e(g1, g1)δa for all a ∈ A∗, and
define e(g1, g1)� = ∏

a∈A∗ e(g1, g1)δa . Blind the message mb ∈ GT using e(g1, g1)� to
obtain ct0 = mb · e(g1, g1)�.

Now, for each authority a ∈ A∗ continue as follows (we frequently drop the index a—
when there is no ambiguity—to simplify notation). Run EncCta (N , x ) to obtain w1, w2, and
polynomials (c1, . . . , cw3).

If a ∈ I , pick s̃a,k ∈ ZN for k ∈ [w1 + w2]+, and set cta,1,i = (h1h2g3)s̃a,i for i ∈ [w1]+
and, for � ∈ [w3], set

cta,2,� =
(
(h1h2)

ω′
a,12(g3)

ω′
a,3

)η�

·
∏

z∈[w2]
(h1h2g3)

η�,z s̃a,w1+z ·
∏

i∈[w1]+, j∈[n]
(h1h2g3)

η�,i, j s̃a,iv j .

Blind the value e(g1, g1)δa by setting cta,0 = e(g1, g1)δa · e((h1h2)s̃a,0 , g αa
1

)
.

If a ∈ Ĩ , pick sa,k ∈ ZN for k ∈ [w1 + w2]+, and set cta,1,i = g
sa,i
1 for i ∈ [w1]+ and,

for � ∈ [w3], set
cta,2,� =

(
(h1h2)

ω′
a,12(g3)

ω′
a,3

)η�

·
∏

z∈[w2]
g

η�,z sa,w1+z

1 ·
∏

i∈[w1]+, j∈[n]

(
g

v j
1

)η�,i, j sa,i
.

Blind the value e(g1, g1)δa by setting cta,0 = e(g1, g1)δa · e(g1, ska)sa,0 .
The complete challenge ciphertext is

ct = (
ct0, {cta,0, cta,1,0, . . . , cta,1,w1 , cta,2,1, . . . , cta,2,w3}a∈A∗

)
.

To see that this is properly distributed as a nominally semi-functional ciphertext, observe
that ω′

a,12 (mod p1) is independent of ω′
a,12 (mod p2). Moreover, note that (for all i) the

values sa,i (mod p1), sa,i (mod p2), and sa,i (mod p3) are mutually independent. So, the
given ciphertext is distributed as a nominally semi-functional one, and thus, we are left to
prove that adversary A cannot distinguish a pseudo normal ciphertext (with C = {1, 2, 3})
from a nominally semi-functional ciphertext (with C = {1, 2}).

Let a ′ ∈ A∗ ∩ I be an authority for which A cannot decrypt the ciphertext compo-
nent cta ′,0 because Pa ′(x∗

a ′ , ya ′) = false. Such an authority exists as otherwise A would
be able to trivially decrypt the challenge ciphertext. Now, observe that all values ω′

a,3 look
random for a ∈ A∗ \ a ′, while ω′

a ′,3 ∈R ZN for nominally semi-functional ciphertext and
ω′
a ′,3 = −∑

a∈A∗\a ′ ω′
a,3 for pseudo normal ciphertext. Hence,A’s view can at most contain

information about ω′
a,3 on the values {sa ′ , ca ′(0, sa ′ , ŝa ′ , ba ′), ra ′ , ka ′(0, ra ′ , r̂a ′ , ba ′)} in the

subgroupG3 (remember, Pa ′(x∗
a ′ , ya ′) = false for the ya ′ of the j th gid). No other informa-

tion about the values in these subgroups is given by any of the key query responses (note ba ′
is independent of ba ). By the statistical security property (see Definition 6), we know that this
view is now indistinguishable from {sa ′ , ca ′(ωa ′ , sa ′ , ŝa ′ , ba ′), ra ′ , ka ′(0, ra ′ , r̂a ′ , ba ′)}, the
view of a nominally semi-functional ciphertext. Hence, the ciphertext is distributed correctly
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according to the adversary’s view. Moreover, depending on the value of T , B either plays
Game2, j−1,2 or Game2, j,1. ��

Lemma 4 (Game2, j,1 ≈c Game2, j,2)Any adversaryA having atmost a negligible advantage
in breaking Assumption 3, has at most a negligible advantage in distinguishing Game2, j,1
from Game2, j,2.

Proof The challenger B receives {(gp, g1, h1h3, h′
2h

′
3), T } as input, where either T ∈R G12

or T ∈R G13. Now, B plays the game with A as follows.

Hash oracle Upon receiving oracle query gid for the hash function H , the challenger B
checks if it received the query before, and if so, answers with the same reply as before.

If A has not queried for the hash value of gid before, B picks a value ugid
R←ZN . Then, the

first j − 1 queries for some gid are answered with (h1h3)ugid , the j th query is answered
with T ugid , while other queries are answered with g

ugid
1 .

Setup The challenger B sets pp = (gp, g1) and sends pp to the adversary A.

Authority queries Request for a new authority a using para are answered by the chal-
lenger by runningAuthoritySetup(pp,para ). The challenger first usesAuthorityParam(para )

to obtain n, picks v
R←Z

n
N and α

R←G1, and sets ska = g α
1 . It sets the public key pka

as (g v
1 , e(g1, ska)) and the authority secret key aska as (v, ska). It sends pka to the adversary

and adds a to the set I .

Key queriesUpon receiving a key query (a, y ∈ Yκ(a),gid) for an uncorrupted authority a ∈
I , B answers the query depending on the number distinct gid that have been queried before.
If gid is one of the ( j−1)th first gids being queried, B answers with a semi-functional key of
type II by sending KeyGen(pp, aska , y; h1h3, ugid). If the query is for the j th gid, B answers
by sending KeyGen(pp, aska , y; T , ugid). Otherwise, B answers with a pseudo normal key
by sending KeyGen(pp, aska , y; g1, ugid).

Note that all cases the key queries are answered with elements from the hash oracle’s
range, creating properly distributed semi-functional keys. Also, observe that if T ∈R G12,
a query for the j th gid is answered with a semi-functional key of type I, and otherwise,
if T ∈R G13, the query is answered with a semi-functional key of type II.

Challenge ciphertext Whenever A requests the ciphertext challenge by sending

(m0,m1, {x∗
a }a∈A∗), the challengerB picks b

R←{0, 1} and encryptsmessagemb as a challenge
ciphertext using g1 and h′

2h
′
3.

Choose an a ′ ∈ A∗, pick ω′
a,1

R←ZN for each authority a ∈ A∗ \ a ′, and set ω′
a ′,1 =

−∑
a∈A∗\a ′ ω′

a,1. Additionally, pick ω′
a,23, δa

R←ZN , and set e(g1, g1)δa for all a ∈ A∗, and
define e(g1, g1)� = ∏

a∈A∗ e(g1, g1)δa . Blind the message mb ∈ GT using e(g1, g1)� to
obtain ct0 = mb · e(g1, g1)�.

Now, for each authority a ∈ A∗ continue as follows (we frequently drop the index a—
when there is no ambiguity—to simplify notation). Run EncCta (N , x ) to obtain w1, w2, and
polynomials (c1, . . . , cw3).

If a ∈ I , pick sa,k ∈ ZN for k ∈ [w1 + w2]+, and set cta,1,i = (g1h′
2h

′
3)

sa,i for i ∈ [w1]+
and, for � ∈ [w3], set
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cta,2,� =
(
(g1)

ω′
a,1(h′

2h
′
3)

ω′
a,23

)η�

·
∏

z∈[w2]
(g1h

′
2h

′
3)

η�,z sa,w1+z ·
∏

i∈[w1]+, j∈[n]
(g1h

′
2h

′
3)

η�,i, j sa,iv j .

Blind the value e(g1, g1)δa by setting cta,0 = e(g1, g1)δa · e(g sa,0
1 , g αa

1 ).
If a ∈ Ĩ , pick sa,k ∈ ZN for k ∈ [w1 + w2]+, and set cta,1,i = g

sa,i
1 for i ∈ [w1]+ and,

for � ∈ [w3], set
cta,2,� =

(
(g1)

ω′
a,1(h′

2h
′
3)

ω′
a,23

)η�

·
∏

z∈[w2]
g

η�,z sa,w1+z

1 ·
∏

i∈[w1]+, j∈[n]

(
g

v j
1

)η�,i, j sa,i
.

Blind the value e(g1, g1)δa by setting cta,0 = e(g1, g1)δa · e(g1, ska)sa,0 .
The complete challenge ciphertext is

ct = (
ct0, {cta,0, cta,1,0, . . . , cta,1,w1 , cta,2,1, . . . , cta,2,w3}a∈A∗

)
.

To see that this is properly distributed as a semi-functional ciphertext, first observe that
ω′
a,23 (mod p2) is independent of ω′

a,23 (mod p3). Moreover, note that (for all i) the val-
ues sa,i (mod p1), sa,i (mod p2), and sa,i (mod p3) are mutually independent. So, the
given ciphertext is distributed as a semi-functional one, and thus, we are left to prove that
adversary A cannot distinguish a nominally semi-functional ciphertext (with C = {1, 2})
from a semi-functional ciphertext (with C = {1}).

Let a ′ ∈ A∗ ∩ I be an authority for which A cannot decrypt the ciphertext compo-
nent cta ′,0 because Pa ′(x∗

a ′ , ya ′) = false. Such an authority exists, as otherwise B would
have aborted the game or A would have been able to trivially decrypt the challenge cipher-
text. Now, observe that all values ω′

a,23 (mod p2) look random for a ∈ A∗ \ a ′, while
ω′
a ′,23 ∈R ZN (mod p2) for semi-functional ciphertext and ω′

a ′,23 = −∑
a∈A∗\a ′ ω′

a,23
(mod p2) for nominally semi-functional ciphertext. (In both nominally semi-functional
and semi-functional ciphertext, all values ω′

a,23 (mod p3) for a ∈ A∗, are already ran-
dom.) Hence, A’s view can at most contain information about ω′

a,23 (mod p2) on the
values {sa ′ , ca ′(0, sa ′ , ŝa ′ , ba ′), ra ′ , ka ′(0, ra ′ , r̂a ′ , ba ′)} in the subgroup G2 (remember,
Pa ′(x∗

a ′ , ya ′) = false for the ya ′ of the j th gid). No other information about the values
in these subgroups is given by any of the key query responses (note ba ′ is independent of ba ).
By the statistical security property (see Definition 6), we know that this view is now indistin-
guishable from {sa ′ , ca ′(ωa ′ , sa ′ , ŝa ′ , ba ′), ra ′ , ka ′(0, ra ′ , r̂a ′ , ba ′)}, the view corresponding
to a semi-functional ciphertext. Hence, the ciphertext is distributed correctly according to
the adversary’s view. Moreover, depending on the value of T , B either plays Game2, j,1 or
Game2, j,2. ��
Lemma 5 (Game2,q,2 ≈c Game3) Any p.p.t. adversary A, making at most q key queries for
distinct gids and having at most a negligible advantage in breaking Assumption 4, has at
most a negligible advantage in distinguishing Game2,q,2 from Game3.

Proof Note that in Game2,q,2, the challenge ciphertext is semi-functional and all key queries
are answered with a semi-functional key of type II. We have to prove that the adversary A
cannot distinguish whether, for some a ∈ A , cta,0 is replaced by a random element in ZN or
not.

The challengerB receives {(gp, g1, g2, g3, g a
1 , (g1g3)b, g c

1 , g ac
1 g d

3 ), T },where eitherT =
e(g1, g1)abc or T ∈R GT . Now, B plays the game with A as follows.
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Hash oracle Upon receiving oracle query gid for the hash function H , the challenger B
checks if it received the query before, and if so, answers with the same reply as before. If A
has not queried for the hash value of gid before, B picks a value ugid

R←ZN . It answers the
query with B−1(g1g3)ugid = (g1g3)−b+ugid .

Setup The challenger B sets pp = (gp, g1) and sends pp to the adversary A.

Authority queries Request for a new authority a using para are answered by the
challenger by running AuthoritySetup(pp,para ). The challenger first uses Authority-

Param(para ) to obtain n, picks v
R←Z

n
N and α̃

R←ZN , and sets the public key pka as

(g a+ṽ1
1 , g v2

1 , . . . , g vn
1 , e(g a

1 , (g1g3)b)e(g1, g1)α̃) and (thereby indirectly) setting the author-

ity secret key aska = (v1 = a + ṽ1, v2, . . . , vn, g
ab+α̃
1 ). It sends pka to the adversary and

adds a to the set I .

Key queries Upon receiving a key query (a, y ∈ Yκ(a),gid) for an uncorrupted author-
ity a ∈ I , B answers the query with a semi-functional key of type II. The challenger B
computes KeyGen(pp, ska , y; g1g3, ugid) as follows. First, it sets uska,1,0 = (g1g3)−b+ugid

and uska,1,i = (g1g3)ri . Next, to construct the values uska,2,�, consider two cases. Either k�

contains both the symbol α and b1r0, or it does not contain this combination (i.e., φ� = φ�,0,1,
see Sect. 4.1; symbols b1 and r0 may occur separately, but not in the combination b1r0). In
the case that α and b1r0 do not occur in k�, B can create uska,2,� using the values uska,1,0
and r1, . . . , rm2 ; and g a+ṽ1

1 g ṽ1
3 and v2, . . . , vn (and, of course, the values φ�, φ�,z , and

φ�,i, j ). In the case that both α and b1r0 occur in k�, observe that B needs to compute

(g1g3)
φ�α+∑

z∈[m2] φ�,z r̂z+∑
i∈[m1]+, j∈[n] φ�,i, j ri b j , where we have that

g
φ�α+φ�,0,1r0b1
1 = g

φ�(ab+α̃)+φ�,0,1(−b+ugid)(a+ṽ1)

1

= g
φ�

(
(ab+α̃)+(−b+ugid)(a+ṽ1)

)

1 (since, φ� = φ�,0,1)

= g
φ�(α̃−bṽ1+augid+ṽ1ugid)
1 .

And so it sets (we slightly abuse notation and write (g1g3)v1 for (g a
1 )ṽ1(g3)ṽ1 )

uska,2,� =
(
g α̃
1

(
(g1g3)

b
)−ṽ1

(g a
1 )ugid(g1g3)

ṽ1ugid

)φ�

·
∏

z∈[m2]
(g1g3)

φ�,zrm1+z ·
∏

i∈[m1]+, j∈[n],
(i, j)�=(0,1)

(g1g3)
φ�,i, j riv j .

Note that the key queries are answered with elements from the hash oracle’s range and
create properly distributed semi-functional keys of type II.

Challenge ciphertext Whenever A requests the ciphertext challenge by sending

(m0,m1, {x∗
a }a∈A∗), the challenger B picks b

R←{0, 1} and encrypts message mb as a semi-
functional challenge ciphertext.

Choose an uncorrupted authority a ′ ∈ A∗ ∩ I . For each authority a ∈ A∗ \ a ′, pick
ω′
a,1, δa

R←ZN , and set ω′
a ′,1 = −∑

a∈A∗\a ′ ω′
a,1 and indirectly set δa ′ = abc−∑

a∈A∗\a ′ δa .

Additionally, pick ω′
a,23

R←ZN for all a ∈ A∗. Blind the message mb ∈ GT using T to

obtain ct0 = mb · T . Note that if T = e(g1, g1)abc, the challenger simulates Game2,q,2

using � = abc and otherwise, if T ∈R GT , the challenger simulates Game3.
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Now, for each authority a ∈ A∗ continue as follows (we frequently drop the index a—
when there is no ambiguity—to simplify notation). Run EncCta (N , x ) to obtain w1, w2, and
polynomials (c1, . . . , cw3).

If a = a ′, pick s̃a ′,0
R←ZN and sa ′,k

R←ZN for k ∈ [w1 + w2]. Set cta ′,1,0 =
(g c

1 )−1(g1g2g3)
s̃a′,0 and cta ′,1,i = (g1g2g3)

sa′,i for i ∈ [w1]. Next, B constructs the val-
ues cta ′,2,�. The challenger B needs to compute (among others)

g
η�ω+∑

z∈[w2] η�,z ŝa′,z+
∑

i∈[w1]+, j∈[n] η�,i, j si b j

1 ,

where the occurance of s0b1 in c� can be computed by

g
η�,0,1s0b1
1 = g

η�,0,1(−c+s̃a′,0)(a+ṽ1)

1

=
(
(g ac

1 )−1(g c
1 )−ṽ1(g a

1 )s̃a′,0(g1)
s̃a′,0 ṽ1

)η�,0,1
.

So, B sets (we slightly abuse notation and write (g1g2g3)v1 for (g a
1 )ṽ1(g2g3)ṽ1 and

(g1g2g3)
sa′,0 for (g c

1 )−1(g1g2g3)
s̃a′,0 )

cta ′,2,� =
(
(g1)

ω′
a,1(g2g3)

ω′
a,23

)η� ·
∏

z∈[w2]
(g1g2g3)

η�,z sa,w1+z

·
(
(g ac

1 gd3 )−1(g c
1 )−ṽ1(g a

1 )s̃a′,0(g1g2g3)
s̃a′,0 ṽ1

)η�,0,1

·
∏

i∈[w1]+, j∈[n],
(i, j)�=(0,1)

(g1g2g3)
η�,i, j sa′,iv j .

Note that by using this, B indirectly uses (ω′
a ′,23 − d · η�,0,1/η�) in subgroup G3 instead of

ω′
a ′,23. However, since ω′

a ′,23 ∈R ZN and no constraint is imposed on the sum
∑

a∈A∗ ω′
a ′,23,

the distribution of the ciphertext component is identical to a semi-functional ciphertext.
Blind the value e(g1, g1)δa′ by setting

cta ′,0 = e(g1, g1)
δa′ · e(g1, g1)αa′ sa′,0

= e(g1, g1)
(
abc−∑

a∈A∗\a′ δa
)
+(ab+α̃a′ )(−c+s̃a′,0)

= e(g1, g1)
(
−∑

a∈A∗\a′ δa
)
+abs̃a′,0−cα̃a′+α̃a′ s̃a′,0

= e(g1, g1)
(
−∑

a∈A∗\a′ δa
)
+α̃a′ s̃a′,0e

(
g a
1 , (g1g3)

b)s̃a′,0e(g c
1 , g1)

−α̃a′ .

If a �= a ′, but a ∈ I , pick sa,k ∈ ZN for k ∈ [w1 + w2]+, and set cta,1,i = (g1g2g3)sa,i

for i ∈ [w1]+ and, for � ∈ [w3], set (we slightly abuse notation and write (g1g2g3)v1 for
(g a

1 )ṽ1(g2g3)ṽ1 )

cta,2,� =
(
(g1)

ω′
a,1(g2g3)

ω′
a,23

)η�

·
∏

z∈[w2]
(g1g2g3)

η�,z sa,w1+z ·
∏

i∈[w1]+, j∈[n]

(
(g1g2g3)

v j
)η�,i, j sa,i .

Blind the value e(g1, g1)δa by setting

cta,0 = e(g1, g1)
δa · e(g1, g1)αa sa,0 = e(g1, g1)

δa ·
(
e
(
g a
1 , (g1g3)

b)e(g1, g1)α̃a
)sa,0

.
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If a ∈ Ĩ , pick sa,k ∈ ZN for k ∈ [w1 + w2]+, and set cta,1,i = g
sa,i
1 for i ∈ [w1]+ and,

for � ∈ [w3], set
cta,2,� =

(
(g1)

ω′
a,1(g2g3)

ω′
a,23

)η�

·
∏

z∈[w2]
g

η�,z sa,w1+z

1 ·
∏

i∈[w1]+, j∈[n]

(
g

v j
1

)η�,i, j sa,i
.

Blind the value e(g1, g1)δa by setting cta,0 = e(g1, g1)δa · e(g1, ska)sa,0 .
The complete challenge ciphertext is

ct = (
ct0, {cts,0, cts,1,0, . . . , cts,1,w1 , cts,2,1, . . . , cts,2,w3}s∈S

)
.

This semi-functional ciphertext is properly distributed,with
∏

a∈A∗ e(g1, g1)δa = e(g1, g1)abc.
So, if T = e(g1, g1)abc, the adversary A is playing Game2,q,2 and otherwise, if T ∈R GT ,
A is playing Game3. ��

Finally, note that in Game3, the challenger gives the adversary an encryption of a random
message. Hence, A has no advantage in winning the game.

7 Multi-authority pair encoding examples

We give several examples of multi-authority admissible pair encoding schemes (MAPESs)
for various predicate families.

7.1 Multi-authority identity-based encoding

We can see the MA-ABE construction by Lewko and Waters [21] as a special case of our
general MA-PE scheme. Their construction combines the same IBE scheme multiple times
with a “multi-authority layer” on top. Based on their scheme, we extract the underlying
MA-PES for an identity-based predicate. However, note that if we apply our conversion
algorithm on the resulting encoding, we obtain a multi-authority IBE scheme, not an MA-
ABE scheme, since our conversion uses additive secret sharing instead of Shamir secret
sharing. Furthermore, the resulting MA-PES can be seen as an encoding for an IBE scheme
which only allows for a single identity.

Example 1 (MA-PES based on [21]) We derive an MA-PES for multi-authority identity-
based encryption from the MA-ABE scheme by Lewko and Waters [21]. The pair encoding
for an authority a is the following:

b = (b1); s = (s0); c = (ω + b1s0); r = (r0); k = (α + b1r0).

For Pair we have

E = 1, Ê = −1.

Correctness follows by simple substitutions,

s0(E)[α + b1r0] + [b1s0 + ω](Ê)r0

= s0(1)[α + b1r0] + [b1s0 + ω](−1)r0
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= s0α + s0b1r0 − (s0b1r0 + ωr0)

= αs0 − ωr0.

We can extend the construction to obtain a small universe construction for t identities, by
setting

b = (b1, . . . , bt ); s = (s0); c = (ω + bρ(x)s0); r = (r0); k = (α + bρ(y)r0),

where ρ is an injective function that maps an identity to an identity index in [t].
Remark 3 (One-use requirement) Similar to the one-use requirement for attributes, as found
in several ABE schemes [5,21,23], the MA-PES of Example 1 has this one-use requirement
as well, i.e., a ciphertext ct from a corresponding MA-PE scheme may only contain the
identity x , encoded by bρ(x), once.

Theorem 2 (MA-PES based on [21]) The (extended) MA-PES described in Example 1 is
statistically secure (see Definition 6).

Proof If Pκ (x, y) = false, we have to show that the distributions
{
s0, bρ(x)s0, r0, bρ(y)r0

}
and

{
s0, ω + bρ(x)s0, r0, bρ(y)r0

}

are statically indistinguishable, where bρ(x), bρ(y), ω, s0, r0
R←Zp for any prime p,

log2 p = �(λ). Since Pκ (x, y) = false, we know that x �= y and thus ρ(x) �= ρ(y).
We distinguish two cases:

– s0 ∈ Z
∗
p , i.e., s0 is a generator of the multiplicative group Z∗

p .
Then, bρ(x)s0 is uniformly distributed in Zp . On the other hand, ω + bρ(x)s0 is also
uniformly distributed in Zp . Hence, the distributions are identical.

– s0 = 0, i.e., s0 is not a generator for the multiplicative group Z∗
p .

Then, bρ(x)s0 = 0, while ω + bρ(x)s0 ∈R Zp . However, this case only occurs with a
probability negligible in λ.

Combining the two cases, we have proven that the two distributions are statistically indistin-
guishable. ��

7.2 Multi-authority attribute-based encoding

We adapt the PES for CP-ABE from the full version of Attrapadung [5, Scheme 11] to MA-
PES. The PES is, in its turn, based on a small universe CP-ABE scheme by Lewko et al.
[23].

Example 2 (MA-PES based on [5,23]) The PES by Attrapadung [5] can be turned into an
MA-PES. Let t denote the number of attributes in the universe. For a linear secret sharing
scheme (LSSS) using (Aw3×w2 , π), where we denote the i th row of A by ai and π is an
injective function that maps a row in A to an attribute index in [t], the pair encoding for an
authority a is the following:

b = (b′, b1, . . . , bt );
s = (s0, s1); ci = (

ai (ω + s0b
′, ŝ2, . . . , ŝw2)

T + s1bπ(i)
)
for all i ∈ [w3];

r = (r0); k = (α + r0b
′, {r0by}y).
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The matrices returned by the Pair algorithm are indirectly defined by the combination of keys
required to satisfy the access policy as described in the ciphertext.

Correctness follows by first computing

ci · r0 − ky · s1
= [ai (ω + s0b

′, ŝ2, . . . , ŝw2)
T + s1bπ(i)]r0 − r0by · s1

= ai (ω + s0b
′, ŝ2, . . . , ŝw2)

T · r0 (if π(i) = y)

for the attributes π(i) the user has the key components y = π(i) for. Then, if the user
obtained enough shares ai (ω + s0b′, ŝ2, . . . , ŝw2)

T · r0, he can combine the shares to recover
the secret [ω + s0b′] · r0 and then use this to symbolically obtain

k1 · s0 − [ω + s0b
′] · r0 = [α + r0b

′] · s0 − [ω + s0b
′] · r0

= αs0 − ωr0.

Theorem 3 (MA-PES based on [5]) The MA-PES described in Example 2 is statistically
secure (see Definition 6).

Proof The proof is very similar to the proof presented in the full version of [5].
When P(x, y) = false, we have that (A, π) does not accept y. We need to prove that ω

is hidden. We may assume s1 �= 0 since the probability of s1 = 0 is negligible in λ. For
j = 1, . . . , w3, we consider two cases. If π( j) /∈ y, then bπ( j) does not appear anywhere
except for in ci and hence the information on ω + s0b′ will not be leaked from ci . Now
consider π( j) ∈ y. In this case, both s1 and bπ( j) are available (since r0 and r0bπ( j) are),
hence ai (ω + s0b′, ŝ2, . . . , ŝw2)

T is known. Now from the lemma of LSSS (similar to [5,
Proposition 40]), there exists a vector u ∈ Z

w3
N with u1 �= 0, such that u is orthogonal to all

a j , where π( j) ∈ y. Hence, a j (ω+s0b′, ŝ2, . . . , ŝw2)
T = a j

(
(ω+s0b′, ŝ2, . . . , ŝw2)

T+zuT
)

for any unknown random z ∈ ZN . Therefore, a j (ω + s0b′, ŝ2, . . . , ŝw2)
T does not leak

information on ω+ s0b′ as u1 �= 0. In either case ω+ s0b′ is hidden in the encoding. Since ω

only occurs in this expression ω + s0b′, no information on ω is revealed. ��

7.3 Multi-authority inner-product encoding

To create a multi-authority admissible pair encoding scheme (MA-PES) for an inner-product
predicate, we extend the “short secret key encoding” presented by Wee [31, Section 5.1]

Example 3 (MA-PES based on [9,31]) Based on the predicate encoding of Wee [31] for an
IPPE scheme, which, in its turn, is based on the scheme of Boneh and Boyen [9], we create
an MA-PES for the inner-product predicate. Such a predicate evaluates to true if and only
if the inner product of the, with the ciphertext associated, vector x and the, with the key
associated, vector y equals 0, i.e., if 〈x, y〉 = 0. Let t be the length of the vectors x and y.
The pair encoding for an authority a is the following:

b = (b′, b′′, b+), where b+ = (b1, . . . , bt );
s = (s0); c = (−ω + s0b

′, s0(b′′x + b+)
) ;

r = (r0); k = (
α − r0(b

′ + 〈b+, y〉)) .
Similar to Example 2, Pair(N , x, y) relies on the value y, which is in this case is the vector y.
Algorithm Pair outputs matrices to compute s0 · k1 + 〈c, (1, y)〉 · r0.
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Correctness follows by simple substitutions and simplifying the expression,

s0 · k1 + 〈c, (1, y)〉 · r0
= s0

[
α − r0(b

′ + 〈b+, y〉)] + 〈
(−ω + s0b

′, s0(b′′x + b+), (1, y)
〉
r0

= s0
[
α − r0(b

′ + 〈b+, y〉)] + [
(−ω + s0b

′) + s0〈b′′x + b+, y〉] r0
= s0α − s0r0〈b+, y〉 − ωr0 + s0

[
b′′〈x, y〉 + 〈b+, y〉] r0

= αs0 − ωr0 (if 〈x, y〉 = 0).

Theorem 4 (MA-PES based on [9,31]) The MA-PES described in Example 3 is statistically
secure (see Definition 6).

Proof When P(x, y) = false, we have that 〈x, y〉 �= 0. We need to prove that ω is hidden.
We may assume s0 �= 0 since the probability of s0 = 0 is negligible in λ. Since ω only
appears in c0, we need to show that b′s0 is uniformly distributed in Zp and therefore no
information on ω is revealed. The value b′ only appears in the adversary’s view elsewhere
as r0(b′ + 〈b+, y〉) in k1. Thus, we now need to show that r0〈b+, y〉 is statistically hidden.
The value b+ only appears as s0(b′′x+b+) in the adversary’s view. However, no information
on the value of b′′ is revealed and so, if 〈x, y〉 �= 0, the value 〈b+, y〉 is hidden. We may
conclude that b′ is hidden and so is ω. ��

8 Conclusion

We show that the concept of a multi-authority attribute-based encryption scheme can be gen-
eralized to a multi-authority predicate encryption (MA-PE) scheme for a variety of predicate
families.Our generic approach allowsus to combine the best features of several predicates into
a single MA-PE scheme specific to an application’s needs. We achieve our result by defining
a multi-authority admissible pair encoding scheme (MA-PES) and proposing a conversion
technique from such an encoding to an MA-PE scheme. The obtained MA-PE schemes are
decentralized, meaning that new authorities can be created without requiring any form of
interaction, while no party needs to have access to a master secret. If started from statistically
secure MA-PESs, the resulting MA-PE schemes are proven to be fully secure—allowing for
the static corruption of authorities—in the random oracle model.
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