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Abstract
For n, d, w ∈ N, let A(n, d, w) denote the maximum size of a binary code of word length n,
minimum distance d and constant weight w. Schrijver recently showed using semidefinite
programming that A(23, 8, 11) = 1288, and the second author that A(22, 8, 11) = 672
and A(22, 8, 10) = 616. Here we show uniqueness of the codes achieving these bounds.
Let A(n, d) denote the maximum size of a binary code of word length n and minimum
distance d . Gijswijt et al. showed that A(20, 8) = 256. We show that there are several
nonisomorphic codes achieving this bound, and classify all such codes with all distances
divisible by 4.
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1 Introduction

LetF2 := {0, 1} denote the field of two elements and fix n ∈ N. Aword is an element v ∈ F
n
2.

For twowords u, v ∈ F
n
2, their (Hamming) distance dH (u, v) is the number of i with ui �= vi .

A (binary) code is a subset ofF
n
2. For any codeC , theminimum distance dmin(C) (∈ R∪{∞})

ofC is the minimum distance between any pair of distinct code words inC . Theweight wt(v)

of a word v ∈ F
n
2 is the number of nonzero entries of v. A (binary) constant weight code is

a binary code in which all code words have a fixed weight w. Then A(n, d, w) is defined
as the maximum size of a binary constant weight w code of minimum distance at least d .
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1882 A. E. Brouwer, S. C. Polak

Moreover, A(n, d) is the maximum size of a binary code of minimum distance at least d .
A binary constant weight w code C ⊆ F

n
2 with dmin(C) ≥ d is called an (n, d, w)-code. A

binary code C ⊆ F
n
2 and dmin(C) ≥ d is called an (n, d)-code.

Using semidefinite programming, some upper bounds on A(n, d, w) have recently been
obtained that are equal to the best known lower bounds: it has been established that
A(23, 8, 11) = 1288 (see [15]), and that A(22, 8, 11) = 672 and A(22, 8, 10) = 616
(see [14]). We show using the output of the corresponding semidefinite programs that the
codes of maximum size are unique (up to coordinate permutations) for these n, d, w.

For unrestricted (non-constantweight) binary codes, the bound A(n, d) = A(20, 8) ≤ 256
was obtained in [7], implying that the quadruply shortened extended binary Golay code of
size 256 is optimal. The quadruply shortened extended binary Golay code is a linear (n, d) =
(20, 8)-code of size 256 and has all distances divisible by 4.

Up to equivalence there are unique (24 − i, 8)-codes of size 212−i for i = 0, 1, 2, 3,
namely the i times shortened extended binary Golay codes [2]. However, it turns out that the
4 times shortened extended binary Golay code is not the only (20, 8)-code of size 256. We
classify such codes with all distances divisible by 4, and find 15 such codes.

2 The semidefinite programming upper bound

Following [7,14,15], we start by describing semidefinite programming upper bounds
on A(n, d) and A(n, d, w). Fix n, d, w ∈ N and let N be either F

n
2 or the set of words

in F
n
2 of weight w. For k ∈ Z≥0, let Ck be the collection of codes C ⊆ N with |C | ≤ k. We

define

Ck(D) := {C ∈ Ck | C ⊇ D, |D| + 2|C\D| ≤ k}, for D ⊆ N .

Note that then |C ∪ C ′| = |C | + |C ′| − |C ∩ C ′| ≤ 2|D| + |C\D| + |C ′\D| − |D| ≤ k
for all C,C ′ ⊆ Ck(D). Furthermore, for any function x : Ck → R and D ∈ Ck we define
the Ck(D) × Ck(D)-matrix Mk,D(x) by Mk,D(x)C,C ′ := x(C ∪ C ′).

Ak(n, d, w) :=max

{∑
v∈N

x({v}) | x : Ck → R≥0, x(∅) = 1, x(S) = 0 if dmin(S) < d,

Mk,D(x) � 0 for each D in Ck
}
. (1)

(Here X � 0 means: X positive semidefinite.) Then Ak(n, d, w) is an upper bound
on A(n, d, w). Similarly, one obtains an upper bound Ak(n, d) on A(n, d) by setting N := F

n
2

in (1), so that Ck is the collection of unrestricted (not necessarily constant weight) codes of
size at most k. It can be proved that A2(n, d) and A2(n, d, w) are equal to the classical
Delsarte linear programming bound in the Hamming and Johnson schemes respectively [5].

Let G be the set of distance preserving permutations of N . In case of constant weight-
codes, G = Sn , where Sn denotes the symmetric group on n elements, but if n = 2w
the group G is twice as large, since then taking complements is also a distance preserving
permutation of N . In case of non-constant weight codes, G = Sn2 � Sn , where Sn2 denotes the
direct product of n copies of S2. Let �k be the set of G-orbits of non-empty codes in Ck and
let �d

k ⊆ �k be those orbits that correspond to codes with minimum distance at least d . By
averaging an optimum x over all x ◦ g for g ∈ G, one obtains the existence of a G-invariant
optimum solution to (1). Here ◦ denotes (function) composition, so x ◦ g(C) = x(g(C))

for C ∈ Ck .
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Uniqueness of codes using semidefinite programming 1883

The original problem is equivalent to the much smaller problem in which the constraint
is added that x is G-invariant. We will write yω for the common value of a G-invariant func-
tion x on codes C in orbit ω. Hence, the matrices Mk,D(x) become matrices Mk,D(y) and
we have considerably reduced the number of variables in (1). Moreover, a block diagonal-
ization Mk,D(y) �→ UT

k,DMk,D(y)Uk,D can be obtained reducing the sizes of the matrices
involved to make the computations in (1) tractable (see [14,15] for the reductions, where we
note that the reductions used in [14] are obtained by an adaptation of the method of [8]).

It can be seen (cf. [7,14]) that the nonnegativity condition on x , and hence on y, is already
imposed by positive semidefiniteness of all matricesMk,D(x).When solving the semidefinite
program with a computer, we add the constraints yω ≥ 0 seperately, by adding 1 × 1
blocks (yω) which are required to be positive semidefinite. This will allow us to easily
determine which variables yω will be necessarily zero in any optimum solution. This may
yield necessary conditions on all optimal codes, whichmay give uniqueness or a classification
of the optimal codes.

2.1 Information about maximum size codes

Suppose that we have an instance of n, d or n, d, w for which Ak(n, d) = A(n, d)

or Ak(n, d, w) = A(n, d, w), respectively.Wewant to obtain information about codes attain-
ing these bounds from the semidefinite programming output. The semidefinite program (1)
can be written as follows:

Ak(n, d, w) = max

⎧⎪⎨
⎪⎩

∑
ω∈�d

k

bωyω
∣∣ M = F∅ −

∑
ω∈�d

k

Fωyω � 0

⎫⎪⎬
⎪⎭ . (2)

Here bω0 = |N |, where ω0 ∈ �d
k corresponds to the orbit of a code of size 1 in Ck ,

and bω = 0 for all other ω ∈ �d
k . Moreover, M is a (large) block diagonal matrix that

consists of blocks UT
k,DMk,D(y)Uk,D (which are reduced versions of the blocks Mk,D(y)

that are required to be positive semidefinite in (1)) and blocks (yω). The matrix Fω is a
matrix of the same size as M with entries the coefficients of−yω in the corresponding entries
of M . For each orbit ω, the matrix F∅ is a matrix of the same size as M with entries the con-
stant coefficients in the corresponding entries ofM . For two real-valued squarematrices A, B
of the same size, we write 〈A, B〉 := tr(ABT ). The dual program of (2) then reads

min
{
〈F∅, X〉 ∣∣ 〈Fω, X〉 = bω for all ω ∈ �d

k , X � 0
}

. (3)

If (M, y) is any optimum solution for (2) and X is an optimum solution for (3) with the same
value, then 〈M, X〉 = 0. As M � 0 and X � 0, we have in particular yωXω = 0 for the
separate 1 × 1-blocks (yω) in M and (Xω) in X , where (Xω) denotes the 1 × 1-block in X
corresponding to the 1 × 1-block (yω) in M . Thus

Xω > 0 in any optimum solution to (2) �⇒ yω = 0 in all optimum solutions to (3).

If yω = 0 for all solutions to (1) with objective value Ak(n, d, w) = A(n, d, w), then for
any code C of maximum size there is no subcode D ⊂ C with D ∈ ω. (Suppose otherwise,
then one constructs a feasible solution to (1) by putting x(S) = 1 for S ∈ Ck with S ⊆ C
and x(S) = 0 else, and hence by averaging overG there exists a feasibleG-invariant solution
with yω > 0, a contradiction.) So orbit ω does not appear in any code of maximum size.
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1884 A. E. Brouwer, S. C. Polak

Hence we know which orbits ω ∈ �d
k cannot occur in a code of maximum size. We will call

these orbits forbidden orbits.
We used the solver SDPA-GMP [11,16] to conclude which orbits are forbidden. The

semidefinite programming solver does not produce exact solutions, but approximations up
to a certain precision. In our case the approximations are precise enough to verify (with
certainty) that certain orbits are forbidden. See the Appendix for details.

3 Self-orthogonal codes

If u, v ∈ F
n
2, we define (u ∩ v) ∈ F

n
2 to be the word that has 1 at position i if and only

if ui = vi = 1. The following equality is well-known and will be used often throughout the
paper:

dH (u, v) = wt(u) + wt(v) − 2wt(u ∩ v), for all u, v ∈ F
n
2 . (4)

The function (u, v) �→ wt(u ∩ v) (mod 2) is a non-degenerate symmetric F2-bilinear form
on F

n
2. If (u, v) = 0, then u and v are called orthogonal. A code C is self-orthogonal

if (u, v) = 0 for all u, v ∈ C . Given a code C , the dual code C⊥ is the set of all v ∈ F
n
2 that

are orthogonal to all u ∈ C . A code C is called self-dual if C = C⊥. For small n, self-dual
codes are classified by Pless and Sloane [13].

4 Constant weight codes

With semidefinite programming three exact values of A(n, d, w) have been obtained. In [15],
it is found that A3(23, 8, 11) = 1288, matching the known lower bound and thereby proving
that A(23, 8, 11) = 1288. Similarly, in [14], the upper bounds A(22, 8, 10) ≤ 616 and
A(22, 8, 11) ≤ 672 are obtained, which imply A(22, 8, 10) = 616 and A(22, 8, 11) = 672.
The latter two upper bounds are in fact instances of the bound B4(n, d, w), which is a bound
in between A3(n, d, w) and A4(n, d, w).

Definition 4.1 (B4(n, d, w)) The bound B4(n, d, w) is defined by replacing in the definition
of A4(n, d, w) from (1) the matrix M4,∅(x) by (the much smaller matrix) M2,∅(x). See [14]
for details.

In this section we show that the codes attaining these bounds are unique up to coordinate
permutations, using the information about forbidden orbits obtained from the semidefinite
programming output. In order to prove uniqueness of the (23, 8, 11)-code of maximum size,
we start by proving uniqueness of the (24, 8, 12)-code of maximum size. The uniqueness
of this code can already be obtained from the classical linear programming bound. Below,
and also later, we will need the following definition. The distance distribution (ai )ni=0 of a
code C ⊆ F

n
2 is the sequence given by ai := |C |−1 · |{(u, v) ∈ C × C | dH (u, v) = i}|,

for i = 0, . . . , n. The computational results we used to conclude uniqueness of thementioned
codes, are stated seperately (in (5), (6), (7) and (8) below) at the beginning of each proof.
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Uniqueness of codes using semidefinite programming 1885

4.1 A(24, 8, 12)

Proposition 4.1 Up to coordinate permutations there is a unique (24, 8, 12)-code of
size 2576. An example is given by the set of words of weight 12 in the extended binary
Golay code.

Proof Let C be a (24, 8, 12)-code of size 2576. The classical linear programming bound in
the Johnson scheme (which is equal to A2(n, d, w)) gives maximum 2576. Moreover, one
has

ai = 0 for i /∈ {0, 8, 12, 16, 24}. (5)

This information can be obtained immediately from the dual solution: the linear program
contains constraints ai ≥ 0. If the corresponding dual variable is > 0, then ai = 0 in all
optimum solutions to the linear program.1

Consider the F2-linear span F := 〈C〉 of C . Note that C , hence F , is self-orthogonal,
so |F | ≤ 224/2 = 212. Since |F | ≥ |C | > 211 and F is linear, we must have |F | = 212, so F
is self-dual. Let u ∈ F , u �= 0. The sets {u + x | x ∈ C} ⊆ F and C ⊆ F have non-empty
intersection, because both sets have size 2576 > |F |/2. So u+x = y for some x, y ∈ C . But
then wt(u) = dH (x, y) ≥ 8, as C has minimum distance 8. It follows that F has minimum
distance 8, and we conclude that F is the extended binary Golay code. So C is the set of
weight 12 words in the extended binary Golay code. ��

4.2 A(23, 8, 11)

Proposition 4.2 Up to coordinate permutations there is a unique (23, 8, 11)-code of
size 1288. An example is given by the set of words of weight 11 in the binary Golay code.

Proof LetC be a (23, 8, 11)-code of size 1288.With the solution of the semidefinite program
A3(23, 8, 11) (which is 1288) from [15] one obtains, by considering the forbidden orbits from
the semidefinite programming output:2

if x, y ∈ C then dH (x, y) ≤ 16. (6)

Construct a code D of length 24, weight 12 and size 2576 as follows: add a symbol 1 to every
codeword of C , put it in D and put also the complement of the resulting word in D. Then D
has minimum distance 8 by (6). Hence D is the set of weight 12 words of the extended Golay
code F by Proposition 4.1. The automorphism group of the extended binary Golay code acts
transitively on the coordinate positions [9]. Hence, C is the set of weight 11 words in the
binary Golay code. ��

4.3 A(22, 8, 11)

Proposition 4.3 Up to coordinate permutations there is a unique (22, 8, 11)-code of size 672.

1 We used SDPA-GMP to solve this LP. The approximate dual solution allows us, with a computation similar
to the computation in the Appendix in (13)–(17) below, to give a very small ε > 0 such that in any optimum
solution, ai < ε for i /∈ {0, 8, 12, 16, 24}. But if ai > 0 for some (n, d, w) = (24, 8, 12)-code C with |C | =
2576, then for this code ai ≥ 2/2576, by definition of the distance distribution of C . Since ε < 10−90 <

2/2576 for i /∈ {0, 8, 12, 16, 24} it follows that ai = 0 for any (24, 8, 12)-code C of size 2576.
2 Note that the LP does not give this information: the Delsarte bound is 1417, which is not optimal.
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1886 A. E. Brouwer, S. C. Polak

Proof Let C be a (22, 8, 11)-code of size 672. First one concludes that a14 = 0 using
the semidefinite program B4(22, 8, 11) from [14]. This is explained in more detail in the
appendix: if a14 > 0, then a14 ≥ 2/672 and a10 + a14 + a18 + a22 ≥ 318/672 (by Propo-
sition 5.6 below). We add these two constraints to the program B4(22, 8, 11). The resulting
bound is strictly smaller than 672, so a14 = 0 in any (22, 8, 11)-code of size 672.

Subsequently, by considering the forbidden orbits in the solution of the semidefinite
program A3(22, 8, 11) from [15] with the added constraint that a14 = 0 (the solution
of A3(22, 8, 11) with this added constraint is 672) one obtains:

if x, y, z ∈ C then dH (x, y) ∈ {0, 8, 12, 16} and wt(x + y + z) ∈ {7, 11, 15}. (7)

Let D be the collection of 672 + 672 = 1344 codewords of length 24 of the form 10x
with x ∈ C together with their complements, and let F = 〈D〉 be the F2-linear span of D.
All distances in D belong to {8, 12, 16} by (7), so D, and hence also F , is self-orthogonal,
which implies |F | ≤ 224/2 = 212. Since all words in D have weight divisible by 4 and F is
self-orthogonal, all words in F also have weight divisible by 4.

The code F contains words of forms 01x , 10y, 11z and 00u. Each form occurs at least 672
times, so |F | ≥ 4 · 672 > 211, hence |F | = 212 and F is self-dual.

To show that F is the extended binary Golay code, it suffices to prove that all words in F
have weight ≥ 8, i.e., that no word in F has weight 4. Words of F are sums of words 10x
with x ∈ C , possibly together with the all-ones word. So we must prove that sums of
words 10x do not have weight 4 or 20. A sum of words 10x starts with 00 or 10 and is the
sum of an even or odd number of words 10x , respectively.

Words in F starting with 00 form a subcode F00 of F of size 210 = 1024. If u ∈ F00,
then {u + 10y | y ∈ C} ∩ {10x | x ∈ C} �= ∅, as there are 1024 words in F starting with 10
but |C | = 672 > 1024/2. So u = 10x + 10y for some x, y ∈ C , hence F00 = {10x +
10y | x, y ∈ C}. However, distances 4 and 20 do not occur in C , so words in F00 do not have
weight 4 or 20.

The 1024 words in F starting with 10 are formed by the coset 10x + F00 (with x ∈ C
arbitrary but fixed) and hence are a sum of three elements of the form 10x with x ∈ C . But
such a sum has weight 8, 12 or 16 by (7), implying that words in F starting with 10 do not
have weight 4 or 20.

Therefore weights 4 and 20 do not appear in F , so F is indeed the extended binary Golay
code. As the automorphism group of the extended binary Golay code F acts 2-transitively
on the coordinate positions [9], this implies that C is unique. ��

4.4 A(22, 8, 10)

Proposition 4.4 Up to coordinate permutations there is a unique (22, 8, 10)-code of size 616.

Proof Let C be a (22, 8, 10)-code of size 616. First one concludes that a14 = 0 using
the semidefinite program B4(22, 8, 10) from [14]. This is explained in more detail in the
appendix: if a14 > 0, then a14 ≥ 2/616 and a10 + a14 + a18 ≥ 208/616 (by Proposition 5.5
below). We add these two constraints to the program B4(22, 8, 10). The resulting bound is
strictly smaller than 616, so a14 = 0 in any (22, 8, 10)-code of size 616.

Subsequently, by considering the forbidden orbits in the solution of the semidefinite
program A3(22, 8, 10) from [15] with the added constraint that a14 = 0 (the solution
of A3(22, 8, 10) with this added constraint is 616) one obtains:

if x, y, z ∈ C then dH (x, y) ∈ {0, 8, 12, 16} and wt(x + y + z) ∈ {6, 10, 14, 22}. (8)
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Uniqueness of codes using semidefinite programming 1887

Let F = 〈C〉. Since C is self-orthogonal and has words of weights divisible by 2 but not
by 4, F is self-orthogonal and has half of the weights divisible by 4 and half of the weights
divisible by 2 but not by 4. Both halves of F have size ≥ |C | = 616, but F has size ≤ 2048
as it is self-orthogonal. So |F | = 2048 and F is self-dual.

Let E ⊆ F be the subcode of F consisting of all words with weight divisible by 4. For
each u ∈ E , we have C ∩ {u + y | y ∈ C} �= ∅ (as |C | = 616 > 1024/2), so u = x + y
for some x, y ∈ C . Hence E = {x + y | x, y ∈ C}. By (8), no word in E has weight 4. So
weight 4 does not occur in F .

If any word u in F has weight 2 then it is in F\E = x + E (with x ∈ C arbitrary).
So it is the sum of three words in C . But such sums do not have weight 2 by (8), hence
no word in F has weight 2. So F is a self-dual code of minimum distance 6. As the self-
dual (n, d) = (22, 6)-code is unique (cf. [13]), F is unique. Hence also C is unique, as it is
the collection of weight 10 words of F . (Note that two weight 10 words in F have distance 0
(mod 4), so distance at least 8, since dH (u, v) = wt(u) + wt(v) − 2wt(u ∩ v) for any two
words u, v ∈ F .) ��

5 Unrestricted (20, 8)-codes of size 256

Recently, Gijswijt et al. [7] proved that A(20, 8) = 256, with the semidefinite pro-
gram A4(n, d) from (1). An example of a code attaining this bound is the four times shortened
extended binary Golay code, which has distance distribution

a0 = 1, a8 = 130, a12 = 120, a16 = 5, ai = 0 for all other i . (9)

This code is formed by the words starting with 0000 in the extended binary Golay code with
these first four coordinate positions removed.

Twobinary codesC, D ⊆ F
n
2 are equivalent if D can be obtained fromC byfirst permuting

the n coordinates and by subsequently permuting the alphabet {0, 1} in each coordinate
separately.

Up to equivalence there are unique (24 − i, 8)-codes of size 212−i for i = 0, 1, 2, 3,
namely the i times shortened extended binary Golay codes [2]. In this section we show that
there exist several nonisomorphic (20, 8)-codes of size 256. First we show that there exist
such codes with different distance distributions. Subsequently we classify such codes with
all distances divisible by 4.

We start by recovering information about possible distance distributions from the semidef-
inite program A4(20, 8). Write ωt ∈ �k for the orbit of two words at Hamming distance t .
From a code C with distance distribution (ai ), one constructs a feasible solution to (1) by
putting x(S) = 1 for S ∈ Ck with S ⊆ C and x(S) = 0 else, and hence by averaging over G
one obtains a feasible G-invariant solution with variables yω. This solution has

yωt = 1

|G|
∑
g∈G

x ◦ g({x, y}) = t !(20 − t)!
|G| |{(u, v) ∈ C2 : dH (u, v) = t}|

= |{(u, v) ∈ C2 : dH (u, v) = t}|
220

(20
t

) = |C |at
220

(20
t

) ,

where {x, y} is any pair of words with distance t and G = S202 � S20. So we can add linear
constraints on the ai as linear constraints on the variables yωt to our semidefinite program.
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1888 A. E. Brouwer, S. C. Polak

The inner distribution (ai ) is not determined uniquely by the requirement that it is an
optimal solution of the semidefinite program A4(20, 8) from (1).3 We findminimum possible
values for some of the ai for the case where all distances are even as follows. For any codeC ,
the ai (i �= 0) are integer multiples of 2/|C |. So for any (20, 8)-code of size 256, if a16 < 1
then a16 ≤ 254/256. With the constraint a16 ≤ 254/256 the semidefinite program returns
an objective value strictly smaller than 256. So a16 ≥ 1. Similarly, we find a8 ≥ 126
and a12 ≥ 96. If we simultaneously add the constraints a8 ≤ 126, a12 ≤ 96 and a16 ≤ 1,
the semidefinite program returns 256 as objective value, and the values of yω10 and yω14

force a10 = a14 = 16. Therefore, apart from the 4 times shortened extended binary Golay
code, also a code with

a1 = 1, a8 = 126, a10 = 16, a12 = 96, a14 = 16, a16 = 1, ai = 0 for all other i,
(10)

is allowed by the program A4(20, 8). Such a code exists, as the following construction
demonstrates.

Start with the extended binary Golay code F containing the weight 8 word u with all 1s in
the first eight positions. As A(24− 8, 8) = A(16, 8) = 32 (see [3]), there can be at most 32
words in F starting with 8 zeroes. These form a linear subcode E of F . As any word in F
has an even number of 1s at the first eight positions, there are at most 27 = 128 distinct
cosets E+v in F . As 32 ·128 = 212 = |F | it follows that |E | = 32 and there are exactly 128
distinct cosets E + v.

So if we specify a string of 8 symbols with an even number of ones and take all words
in F having these 8 fixed symbols in the first 8 positions, we obtain a subcode D of F of
size 32 and minimum distance at least 8. Choose the following 8 specifications, each giving
a subcode D of size 32 and minimum distance 8.

00000000
11000000
10100000
10010000
10001000
10000100
10000010
10000001

and then replace the first 8 coordinates by

0000
1100
1010
1001
0110
0101
0011
1111

.

This yields a (20, 8)-code of size 8 · 32 = 256 in which distances 10 and 14 occur. Note
that this code indeed has minimum distance at least 8: first observe that each code D has
minimum distance at least 8. Then note that for two different specifications the first part
(the first 8 positions) had distance at most 2 before the replacement, so the second part has
distance at least 6. After the replacement of the first part, the first 4 positions have distance
at least 2, so two words obtained from different specifications have, after the replacement,
in total distance at least 2 + 6 = 8. One verifies by computer that its distance distribution is
given by (10). So, there exist (20, 8)-codes of maximum size with distance distribution (9)
as well as with (10).

3 By contrast, in all constant weight cases considered in this paper, the values of the yωt give the unique
distance distribution of the (unique up to coordinate permutations) (n, d, w)-codes of maximum size.
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Uniqueness of codes using semidefinite programming 1889

5.1 Unrestricted (20, 8)-codes of maximum size with all distances divisible by 4

In this section we give a classification of the (20, 8)-codes of size 256 with all distances
divisible by 4. An example of such a code is the quadruply shortened extended binary Golay
code B, which is linear. There is, up to equivalence, only one such code, since the automor-
phism group of the extended Golay code acts 5-transitively on the coordinate positions [2].
(Moreover, Dodunekov and Encheva [6] have proved that there exists, up to equivalence, only
one linear (20, 8)-code of size 256.) The shortened extended binary Golay code contains 5
words of weight 16, forming a subcode D. Since the minimum distance is 8, each of those
words must have the 0’s at different positions. So we can assume that

D =

00001111111111111111
11110000111111111111
11111111000011111111
11111111111100001111
11111111111111110000

, (11)

with linear span 〈D〉 ⊆ B of dimension 4. So B is a union of 16 cosets u+〈D〉. If we replace
a coset u+〈D〉 by its complement 1+u+〈D〉, we obtain another (20, 8)-code of maximum
size that is not linear, so this is really a different code. Note that all distances remain divisible
by –but not equal to– 4, as dH (x, y) ∈ {8, 12} for any x ∈ u + 〈D〉 and y ∈ B\(u + 〈D〉),
so dH (1+ x, y) ∈ {8, 12}. By replacing any of the 16 cosets u +〈D〉 in B with 1+ u +〈D〉,
we obtain 216 = 65536 codes with all distances divisible by 4.

In this section we will first prove that any maximum-size (20, 8)-code with all distances
divisible by 4 is equivalent to one of the 216 thus obtained codes. Secondly, we will obtain
(by computer) that these 216 codes can be partitioned into 15 equivalence classes.

In order to prove the first result, we start by proving two auxiliary propositions. Let C be
any (20, 8)-code of size 256 with all distances divisible by 4 and containing 0, the zero word.
Define E := 〈C, 1〉 to be the linear span of C together with the all-ones vector.

Proposition 5.1 Up to a permutation of the coordinate positions, the codes E and 〈B, 1〉 are
the same.

Proof After the constraints ai = 0 if 4 � i and a20 ≥ 2/256 are added to the ordi-
nary LP-bound for (n, d) = (20, 8), the linear program returns a solution strictly smaller
than 256. Therefore a20 = 0 in any (20, 8)-code of size 256 with all distances divisible
by 4. As A(20, 8, 8) = 130 (cf. [1]) and A(20, 8, 4) = �20/4� = 5, one has a8 ≤ 130
and a16 ≤ 5. Moreover, the LP-bound contains the inequalities a8 − a12 − 3a16 + 5 ≥ 0
and −a8 − a12 + 31a16 + 95 ≥ 0 (given that a20 = 0). We add those two equations and use
that a16 ≤ 5 to obtain that a12 ≤ 120. As 256 = 1+a8 +a12 +a16, the distance distribution
of any (20, 8)-code of size 256 with all distances divisible by 4 is given by (9). Moreover, the
values in (9) are not mere averages: as A(20, 8, 8) = 130 and A(20, 8, 4) = 5, the number
of words at distance i from any word u ∈ C is specified by (9).

SinceC is self-orthogonal and has all distances divisible by 4, also E is self-orthogonal and
has all distances divisible by 4. Furthermore, E has dimension 9. To see this, note that 1 /∈ C
since a20 = 0, so |E | ≥ 257, so |E | ≥ 512. On the other hand, dim E < 10, as E is
self-orthogonal with all distances divisible by 4, but there does not exist a self-dual code of
length 20 with all distances divisible by 4 (cf. [12]). So dim E = 9 and |E | = 512, implying
that

for every word u ∈ E one has u ∈ C or 1 + u ∈ C . (12)
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For any code we write Ai for the number of words of weight i . Since C has weights A0 = 1,
A8 = 130, A12 = 120, A16 = 5, we conclude that E has weights

A0 = 1, A4 = 5, A8 = 250, A12 = 250, A16 = 5, A20 = 1.

The orthogonal complement E⊥ of E has dimension 11, and is a union E ∪ (a + E) ∪ (b +
E) ∪ (c + E). Here a, b, c have even weight (because 1 ∈ E), so each of 〈a, E〉 and 〈b, E〉
and 〈c, E〉 is self-dual. This means that a, b, c are mutually non-orthogonal.

Look at Pless [12] to find the self-dual codes of length n = 20 and dimension 10. There are
16 such codes, but we can forget about those with A8 < 250. There is a unique self-dual code
of length n = 20 and dimension 10 with A8 ≥ 250, namely M20 with weight enumerator

A0 = 1, A4 = 5, A6 = 80, A8 = 250, A10 = 352, A12 = 250, A14 = 80, A16 = 5, A20 = 1,

and E is the subcode of M20 consisting of the words of weight divisible by 4, hence is unique.
This means that E does not depend on the particular choice of C (up to a permutation of the
coordinates), proving the desired result. ��

Proposition 5.2 Let C be any (20, 8)-code of size 256 with all distances divisible by 4 con-
taining 0. Then C is invariant under translations by weight 16 words from C.

Proof Clearly, if a, b, c ∈ F
20
2 with wt(a) = 16 and a + b + c = 1, then dH (b, c) = 4.

Now let b ∈ C be arbitrary, and a ∈ C a weight 16 vector. Then we have a + b + c �= 1
for all c ∈ C . So 1 + a + b /∈ C while 1 + a + b ∈ 〈C, 1〉. Hence, a + b ∈ C , by (12).
So indeed, C is invariant under translations by weight 16 words from C . (This in particular
implies that C contains the 4-dimensional linear span of the weight 16 vectors.) ��

Fix representatives u1, . . . , u16 for the cosets ui + 〈D〉 of the linear quadruply shortened
binary extended Golay code B (see Table 1 for a possible choice). Using Propositions 5.1
and 5.2, we obtain the first main result of this section.

Proposition 5.3 LetC be any (20, 8)-code of size 256with all distances divisible by 4. ThenC
is equivalent to B with some of the cosets ui + 〈D〉 replaced by 1 + ui + 〈D〉.
Proof By applying a distance preserving permutation to C , which is possible by Proposi-
tion 5.1, we may assume that C contains 0 and that 〈C, 1〉 = 〈B, 1〉. Then C contains 5
weight 16 vectors of the form (11). By Proposition 5.2, the code C is a union of 16
cosets u + 〈D〉, for some vectors u. The code 〈B, 1〉 = 〈C, 1〉 is a union of cosets ui + 〈D〉
together with their complements 1+ ui + 〈D〉. This implies by (12) that each coset of C has
the form ui + 〈D〉 or 1 + ui + 〈D〉 (and C cannot contain both ui and 1 + ui at the same
time as a20 = 0), as required. ��

It remains to classify the 216 = 65536 codes obtained from B by replacing some of the
cosets ui +〈D〉 by 1+ui +〈D〉. For this we use the graph isomorphism program nauty [10].
For any code C of word length n containing m codewords, a graph with 2n + m vertices is
created: one vertex for each codeword u ∈ C and two vertices 0i and 1i for each coordinate
position. Each code word u has neighbor 0i if ui = 0 and 1i if ui = 1 (i = 1, . . . , n).
Moreover, there are edges {0i , 1i } (i = 1, . . . , n).

All code words have degree n and the coordinate positions have (in this case) larger
degree. An automorphism of this graph permutes the codewords and permutes the coordinate
positions. In this way one finds a subgroup of Sn2 � Sn that fixes C and the question of code
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equivalence is transformed into a question of graph isomorphism. With the program nauty
we compute a canonical representative for each of the 216 mentioned codes. In this way we
find that the 216 codes from Proposition 5.3 can be partitioned into 15 equivalence classes.
See Table 1 for the classification.

Proposition 5.4 There are 15 different (20, 8)-codes of size 256 with all distances divisible
by 4 up to equivalence. ��
Acknowledgements The second author wants to thank Lex Schrijver for useful discussions. Furthermore, we
would like to thank the referees for their valuable comments to improve the paper.
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Appendix: Approximate solutions

The semidefinite programming solver does not produce exact solutions, but approximations
up to a certain precision. Here we show that we have enough precision to conclude (6)–(8).

Let (M, y) be feasible for (2) with optimum value at least A(n, d, w) and suppose that X
is an approximation of the dual program. That is, we have X � 04 and for all ω ∈ �d

k :

〈X , Fω〉 = bω + εω, (13)

for small εω. Consider one particular ω ∈ �d
k . There is a 1 × 1-block (yω) in M and hence

also a corresponding 1× 1-block (Xω) in X . Remove these 1× 1 blocks from M and X and
call the resulting matrices M ′ and X ′. Then

0 ≤ 〈M ′, X ′〉 = 〈M, X〉 − yωXω

= 〈F∅, X〉 −
∑

ω∈�d
k

yωbω +
∑

ω∈�d
k

yωεω − Xωyω, (14)

as M ′ and X ′ are positive semidefinite, where we used (13) and the definition of M from (3)
in the second equality. Note that

∑
ω∈�d

k
yωbω is bounded from below by |C |, and each yω

is bounded from above by y0 (this can be done since all 2 × 2 principal submatrices in
the semidefinite program (2) are positive semidefinite), which is bounded from above by 1.
Hence

Xωyω ≤ 〈F∅, X〉 − |C | +
∑

ω∈�d
k

εω. (15)

The numbers εω are easily calculated from the dual solution, just as the dual approximate
objective value 〈F∅, X〉. So we find a constant cω from the semidefinite programming dual
approximation X such that

Xωyω ≤ cω. (16)

4 We used a seperate java program to verify that X � 0 (in fact, X � 0) in the SDP-outputs used in this paper.
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In the case of A(23, 8, 11) one can conclude with the semidefinite program A3(23, 8, 11),
which can be solved with SDPA-GMP [11,16] within minutes, that

yω ≤ 10−90 (17)

for all orbits corresponding to codes not satisfying (6). Let ω be an orbit for which (17)
holds. If there exists a code C of maximum size containing a subcode D ⊂ C with D ∈ ω,
then one constructs a feasible solution to (1) by putting x(S) = 1 for S ∈ Ck with S ⊆ C
and x(S) = 0 else, and hence by averaging overG there exists a feasibleG-invariant solution
with yω ≥ 1/|G| (this lower bound is not best possible, but sufficient). In our case, G = S23,
so yω ≥ 1/23! > 10−23, which gives a contradiction with (17). In this way, one verifies that
all orbits not satisfying (6) are forbidden, thereby establishing (6). We used a seperate java
program to check that X � 0 (in fact, X � 0) and to compute the error terms as in (13)
and (15).

Next, we consider the cases A(22, 8, 10) = 616 and A(22, 8, 11) = 672. First we assume
that a14 = 0 for all maximum-size (22, 8, 10) = 616 and (22, 8, 11)-codes C . We write ωt

for the orbit of two words at Hamming distance t . Adding the constraint yω14 = 0 to the
programs A3(n, d, w) for these two cases of n, d, w gives A3(n, d, w) = A(n, d, w). In this
way one shows, in the same way as in the previous paragraph, that all orbits not satisfying (7)
and (8) are forbidden, provided that a14 = 0. So in order to establish (7) and (8), it remains
to prove that

if C is a maximum-size (22, 8, 10)- or (22, 8, 11)-code, then a14 = 0. (18)

Suppose to the contrary that C is a code as in (18), yet a14 > 0. Then a14 ≥ 2/|C |. We
will show that this is not possible by adding constraints to the (large) program B4(n, d, w).
The semidefinite program will then give �B4(n, d, w)� < A(n, d, w) and we will arrive at a
contradiction, as B4(n, d, w) is an upper bound for A(n, d, w). To find a better lower bound
on some of the ai , we use the following two propositions. We use in both propositions that
for two words u, v in a constant weight w code C ,

dH (u, v) ≡ 2 (mod 4) ⇐⇒ wt(u ∩ v) �≡ w (mod 2), (19)

which follows from (4). In the next two propositions we will call wt(u∩v) the inner product
of u and v.

Proposition 5.5 Let C be a (22, 8, 10)-code of size 616 with a14 ≥ 2/616. Then a10 + a14 +
a18 ≥ 208/616.

Proof Suppose that a10 + a14 + a18 < 208/616 (note that a22 = 0 as two weight 10 words
cannot have distance 22). Then, by (19), there are at most 206/2 = 103 pairs of words in C
with odd inner product. Let {b, b′} ⊆ C be such a pair of words. Starting with b ∈ C , and
greedily picking vectors d ∈ C such that the inner product of d with the already chosen
vectors is even, we end with a self-orthogonal subcode B of C of size ≥ 616 − 103 = 513.
Starting with b′, we repeat the same process to end up with a self-orthogonal subcode B ′
of C (containing b′) of size ≥ 513. Furthermore, D := B ∩ B ′ has |D| ≥ 512. (To see this,
note that b, b′ /∈ D with odd inner product. Every word v ∈ C\(D ∪ {b, b′}) has odd inner
product with some word in C so there are at most 103 − 1 = 102 of such words v, as b, b′
is already a pair with odd inner product.) Write F := 〈D〉. Then F is self-orthogonal, as D
is self-orthogonal.

Since 〈B〉 and 〈B ′〉 are self-orthogonal codes, they have dimension atmost 11. Since 〈B〉 �=
〈B ′〉, as b /∈ 〈B ′〉, we have dim F = dim〈B ∩ B ′〉 ≤ dim(〈B〉 ∩ 〈B ′〉) ≤ 10. On the other
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hand, we have |F | > 512 (as D ⊆ F and the zero word is contained in F). So dim F = 10.
Moreover, F has minimum distance 8. To see this, let u be any nonzero word in F\D.
Then D ∩ (u + D) �= ∅, as both D and u + D have size 512 and are contained in F\{0}, a
set of size 1023. So u is the sum of two words of D, and hence has weight at least 8 (as D
has minimum distance at least 8).

So F is a self-orthogonal code of word length 22, dimension 10 and minimum distance 8.
Such a code is the twice shortened extended binary Golay code (see [2]), which does not
contain words of weight 10. But all words in D ⊆ F have weight 10, a contradiction. ��
Proposition 5.6 Let C be an (22, 8, 11)-code of size 672with a14 ≥ 2/672. Then a10+a14+
a18 + a22 ≥ 318/672.

Proof Suppose that a10+a14+a18+a22 < 318/616. Then, by (19), there are atmost 316/2 =
158 pairs of words in C with even inner product. Let {b, b′} ⊆ C be such a pair of words.
Starting with b ∈ C , and greedily picking vectors d ∈ C such that the inner product of d with
the already chosen vectors is odd, we end with a subcode B of C of size≥ 672−158 = 514.
Now, add an extra symbol 1 to every codeword in B, to obtain a self-orthogonal code D of
length 23. As D is self-orthogonal, dim〈D〉 ≤ �23/2� = 11.

Starting with b′ ∈ C , we repeat the same process to end up with a subcode B ′ of C
(containing b′) of size ≥ 514 such that all pairs of words in B ′ have odd inner product. Add
an extra symbol 1 to every code word in B ′ to obtain a self-orthogonal code D′ of length 23,
so dim〈D′〉 ≤ 11. Note that 〈D〉 �= 〈D′〉, as 1b′ /∈ 〈D〉.

Furthermore, E := D∩D′ has |E | ≥ 513 and all words start with 1. (To see this, note that
b, b′ /∈ B∩B ′ with even inner product. Every word v ∈ C\((B∩B ′)∪{b, b′}) has even inner
product with someword inC so there are at most 157 of suchwords v.) Hence |〈E〉| ≥ 2·513,
so dim〈E〉 ≥ 11. But 〈D〉 and 〈D′〉 are distinct codes of dimension≤ 11, so their intersection
has dimension < 11, hence

dim〈E〉 = dim〈D ∩ D′〉 ≤ dim(〈D〉 ∩ 〈D′〉) < 11,

a contradiction. ��
From a code C with distance distribution (ai ), one constructs a feasible solution to (1) by

putting x(S) = 1 for S ∈ Ck with S ⊆ C and x(S) = 0 else, and hence by averaging over G
there exists a feasible G-invariant solution. This solution has

yωt = 1
|G|

∑
g∈G

x ◦ g({x, y}) = ( t
2 )!(w − t

2 )!( t
2 )!(22 − w − t

2 )!
|G| |{(u, v) ∈ C2 : dH (u, v) = t}|

= |{(u, v) ∈ C2 : dH (u, v) = t}|(22
w

) · (22−w
t/2

)(
w
t/2

) = |C |at(22
w

)(22−w
t/2

)(
w
t/2

) = yω0at(22−w
t/2

)(
w
t/2

) ,

where {x, y} is any pair of constant-weight w words with distance t and G = S22, the
symmetric group on 22 elements.

So we can add linear constraints on the ai as linear constraints on the variables yωt to
our semidefinite program. To the program B4(22, 8, 10) we add the constraints a14 ≥ 2/616
and a10 + a14 + a18 ≥ 208/616. To B4(22, 8, 11) we add the constraints a14 ≥ 2/672
and a10 + a14 + a18 + a22 ≥ 318/672. Write B∗

4 (n, d, w) for the resulting bound after
adding these constraints. We find B∗

4 (n, d, w) < A(n, d, w) in both cases (which we verified
using the dual solution), which is not possible.5 This establishes (18) and hence completes
the verification of (7) and (8).

5 The SDP-solutions show B∗
4 (22, 8, 11) < 671.885 < 672 and B∗

4 (22, 8, 10) < 615.935 < 616.
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The timeneeded to solve the semidefinite programs B∗
4 (22, 8, 11) and B∗

4 (22, 8, 10)varied
from one to three weeks with sufficient precision to conclude that B∗

4 (n, d, w) < A(n, d, w)

in these two cases (with SDPA-DD). By contrast, the semidefinite programs for A3(22, 8, 10)
and A3(22, 8, 11) can be solved withvery high precision within minutes (with SDPA-GMP).

The computer programs we used to generate input for the SDP-solver can be found in [4].
Also, the input and output files for the SDP solver can be found in this folder, and a java
program to inspect the outputs.
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