
Designs, Codes and Cryptography (2019) 87:1161–1182
https://doi.org/10.1007/s10623-018-0510-5

Using Bernstein–Vazirani algorithm to attack block ciphers

Huiqin Xie1,2,3 · Li Yang1,2,3

Received: 11 November 2017 / Revised: 16 June 2018 / Accepted: 18 June 2018 / Published online: 27 June 2018
© The Author(s) 2018

Abstract
In this paper, we study applications of Bernstein–Vazirani algorithm and present several new
methods to attack block ciphers. Specifically, we first present a quantum algorithm for finding
the linear structures of a function. Based on it, we propose new quantum distinguishers for
the 3-round Feistel scheme and a new quantum algorithm to recover partial key of the Even–
Mansour construction. Afterwards, by observing that the linear structures of a encryption
function are actually high probability differentials of it, we apply our algorithm to differential
analysis and impossible differential cryptanalysis respectively.We also propose a new kind of
differential cryptanalysis, called quantum small probability differential cryptanalysis, based
on the fact that the linear structures found by our algorithm are also the linear structure of
each component function. To our knowledge, no similar method was proposed before. The
efficiency and success probability of all attacks are analyzed rigorously. Since our algorithm
treats the encryption function as a whole, it avoid the disadvantage of traditional differential
cryptanalysis that it is difficult to extending the differential path.

Keywords Post-quantum cryptography · Quantum cryptanalysis · Differential
cryptanalysis · Block cipher

Mathematics Subject Classification 94A60 · 81P94

Communicated by V. Rijmen.

B Li Yang
yangli@iie.ac.cn

Huiqin Xie
xiehuiqin@iie.ac.cn

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China

2 Data Assurance and Communication Security Research Center, Chinese Academy of Sciences,
Beijing, China

3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-018-0510-5&domain=pdf
http://orcid.org/0000-0003-2091-0506

1162 H. Xie, L. Yang

1 Introduction

Over the last few years, there has been an increasing interest in quantum cryptography. On
one hand, many cryptographic schemes based on quantum information have been proposed,
among which the most well-known result is quantum key distribution (OKD) [1]. These
schemes take full advantage of the novel properties of quantum information and aims to
realize functionalities that do not exist using classical information alone. On the other hand,
the development of quantum computing threatens many classical cryptosystems. The most
representative example is Shor’s algorithm [22]. By using Shor’s algorithm, an adversarywho
owns a quantum computer can break the security of any schemes based on factorization or
discrete logarithm, such asRSA. This has greatlymotivated the development of post-quantum
cryptography, i.e., classical cryptosystems that remain secure even when the adversary owns
a quantum computer.

While currently used public-key cryptography suffers from a severe threat due to Shor’s
algorithm, the impact of quantum computers on symmetric-key cryptography is still less
understood. Since Grover’s algorithm provides a quadratic speed-up for general search
problems, the key lengths of symmetric-key cryptosystems need to be doubled to main-
tain the security. In addition, Simon’s algorithm [23] has also been applied to cryptanalysis.
Kuwakado and Morii use it to construct a quantum distinguisher for 3-round Feistel scheme
[14] and recover partial keyofEven–Mansour construction [15]. Santoli andSchaffiner extend
their result and present a quantum forgery attack on CBC-MAC scheme [21]. In [12], Kaplan
et al. use Simon’s algorithm to attack various symmetric cryptosystems, such as CBC-MAC,
PMAC, CLOC and so on. They also study how differential and linear cryptanalysis behave
in the post-quantum world [11]. In addition to Simon’s algorithm, Bernstein–Vazirani (BV)
algorithm [2] has also been used for cryptanalysis. Li and Yang proposed two methods to
execute quantum differential cryptanalysis based on BV algorithm in [16], but in their attack,
it is implicitly assumed that the attacker can query the function which maps the plaintext to
the input of the last round of the encryption algorithm.

In this paper, we study applications of BV algorithm and use it to attack block ciphers. It
has been found that running BV algorithm on a Boolean function f without performing the
final measurement will gives a superposition of all states |ω〉 (ω ∈ {0, 1}n), and the amplitude
corresponding to each |ω〉 is its Walsh spectrum S f (ω) [8,10]. In addition, there is a link
between the linear structure of a Boolean function and itsWalsh spectrum [6]. Based on these
two facts, Li and Yang present a quantum algorithm to find the linear structures of a Boolean
function in [17]. We modify their algorithm so that it can find the linear structures of a vector
function. Our attack strategies are all built on this modified algorithm.

Attack model In this paper, we only consider quantum chosen message attack that has
been studied in [3,5,9]. In this attack model, the adversary is granted the access to a quantum
oraclewhich computes the encryption function in superposition. Specifically, if the encryption
algorithm is described by a classical function Ek : {0, 1}n → {0, 1}n , then the adversary can
make quantum queries

∑
x,y |x〉|y〉 → ∑

x,y |x〉|y ⊕ Ek(x)〉.
Our contributions In this article, we present several methods to attack block ciphers.

We first propose a quantum algorithm for finding the linear structures of a vector function,
which takes BV algorithm as a subroutine and is developed from the algorithm in [17]. Then
we modify this original algorithm to get different versions and apply them in different attack
strategies. In more detail, our main contributions are as follows:

• We construct new quantum distinguishers for the 3-round Feistel scheme and propose
a new quantum algorithm to recover partial key of Even–Mansour construction. Our

123

Using Bernstein–Vazirani algorithm to attack block ciphers 1163

methods are similar with the ones proposed by Kuwakado and Morii [14,15], but we
use BV algorithm instead of Simon’s algorithm. Although this modification cause a
slight increase in complexity, it makes our methods has more general applications. For
example, by constructing functions that have different linear structures, we can obtain
various distinguishers for the 3-round Feistel scheme. The essential reason is that using
BV algorithm can find not only the periods of a function but also its other linear structures.

• Observing that linear structures of a encryption function are actually high probability
differentials of it, we propose three ways to execute differential cryptanalysis, which we
call quantum differential analysis, quantum small probability differential cryptanalysis
and quantum impossible differential cryptanalysis respectively. Afterwards, we analyze
the efficiency and success probability of all attacks. The quantum algorithms used for
these three kinds of differential cryptanalysis all have polynomial running time. As we
know, one of the main shortcomings of traditional differential cryptanalysis is the diffi-
culties in extending the differential paths, which limits the number of rounds that can be
attacked. Our approach avoids this problem since it treats the encryption function as a
whole.

2 Preliminaries

In this section, we briefly recall a few notations and results about the linear structure. Let n
be a positive integer and F2 = {0, 1} be a finite field of characteristic 2. F

n
2 = {0, 1}n is a

vector space over F2. The set of all functions from F
n
2 to F2 is denoted as Bn .

Definition 1 A vector a ∈ F
n
2 is called a linear structure of a Boolean function f ∈ Bn , if

f (x ⊕ a) + f (x) = f (a) + f (0), ∀x ∈ F
n
2,

where ⊕ denotes the bitwise exclusive-or.

For any f ∈ Bn , let U f be the set of all linear structures of f , and

Ui
f = {

a ∈ F
n
2 | f (x ⊕ a) + f (x) = i,∀x ∈ F2n} , i = 0, 1.

Obviously, U f = U 0
f ∪ U 1

f . For any a ∈ F
n
2 and i = 0, 1, let

V i
f ,a = {x ∈ F

n
2 | f (x ⊕ a) + f (x) = i}.

Clearly, 0 ≤ |V i
f ,a |/2n ≤ 1, and a ∈ Ui

f if and only if |V i
f ,a |/2n = 1. For any a ∈ F

n
2,

1 − |V i
f ,a |/2n quantifies how close a is to be a linear structure of f . Naturally, we give the

following definition:

Definition 2 A vector a ∈ F
n
2 is called a σ -close linear structure of a function f ∈ Bn , if

there exists i ∈ {0, 1} such that

1 −
∣
∣
{

x ∈ F
n
2 | f (x ⊕ a) + f (x) = i

}∣
∣

2n
< σ.

If a is a σ(n)-close linear structure of f for some negligible function σ(n), we call it a
quasi linear structure of f .

Relative differential uniformity of a Boolean function quantifies how close the function
is from having a nontrivial linear structure, which is defined in [20]:

123

1164 H. Xie, L. Yang

Definition 3 The relative differential uniformity of f ∈ Bn is defined as

δ f = 1

2n
max

0 	=a∈Fn
2

max
i∈F2

∣
∣
{

x ∈ F
n
2 | f (x ⊕ a) + f (x) = i

}∣
∣ .

For any f ∈ Bn , it is obviously that 1
2 ≤ δ f ≤ 1, and U f 	= {0} if and only if δ f = 1.

The linear structures of a Boolean function is closely related to its Walsh spectrum, which is
defined as follows:

Definition 4 The Walsh spectrum of a Boolean function f ∈ Bn is defined as

S f (ω) = 1

2n

∑

x∈Fn
2

(−1) f (x)+ω·x .

The relation between the linear structure and Walsh spectral is captured by following two
lemmas, which have been proved in [19].

Lemma 1 Let f ∈ Bn, then ∀a ∈ F
n
2 , ∀i ∈ F2,

∑

ω·a=i

S2
f (ω) = |V i

f ,a |
2n

=
∣
∣
{

x ∈ F
n
2 | f (x ⊕ a) + f (x) = i

}∣
∣

2n
.

Lemma 2 For f ∈ Bn, let N f = {ω ∈ F
n
2 |S f (ω) 	= 0}. Then ∀i ∈ {0, 1}, it holds that

Ui
f = {a ∈ F

n
2 |ω · a = i,∀ ω ∈ N f }.

Lemma 2 provides a method to find the linear structures. If we have a sufficiently large
subset H of N f , we can get Ui

f by solving the system of linear equations {a ·ω = i |ω ∈ H}.
(Here, solving the system of linear equations {a · ω = i |ω ∈ H} means finding vector a that
satisfies a · ω = i for all ω ∈ H .)

Next we consider the vector functions. Suppose m, n are positive integers. Cm,n denotes
the set of all functions from F

m
2 to F

n
2. The linear structure of a vector function in Cm,n can

be defined similarly:

Definition 5 A vector a ∈ F
m
2 is called a linear structure of a vector function F ∈ Cm,n , if

there exists a vector α ∈ {0, 1}n such that

F(x ⊕ a) ⊕ F(x) = α, ∀x ∈ {0, 1}m .

Suppose F = (F1, F2, . . . , Fn). A straightforward way to find the linear structures of F
is to first search for the linear structures of each component function Fj respectively and
then take the intersection. Let UF be the set of all linear structures of F , and Uα

F = {a ∈
F

n
2 |F(x ⊕ a) ⊕ F(x) = α, ∀x}. It is obviously that UF = ∪αUα

F . The relative differential
uniformity of F is defined as

δF = 1

2m
max

0 	=a∈Fm
2

max
α∈Fn

2

|{x ∈ F
m
2 |F(x ⊕ a) ⊕ F(x) = α}|,

which quantifies how close F is from having a nontrivial linear structure.

123

Using Bernstein–Vazirani algorithm to attack block ciphers 1165

3 Finding linear structures via Bernstein–Vazirani algorithm

In this section we briefly recall the BV algorithm [2] and introduce how to use it to find the
linear structures of a Boolean function. The goal of BV algorithm is to determine a secret
string a ∈ {0, 1}n . Specifically, suppose

f (x) = a · x =
n∑

i=1

ai xi .

The algorithm aims to determine a, given the access to an quantum oracle which computes
the function f . It works as follows:

1. Prepare the initial state |ψ0〉 = |0〉⊗n |1〉, then perform the Hadamard transform H (n+1)

on it to obtain the quantum superposition

|ψ1〉 =
∑

x∈Fn
2

|x〉√
2n

· |0〉 − |1〉√
2

.

2. A quantum query to the oracle which computes f maps it to the state

|ψ2〉 =
∑

x∈Fn
2

(−1) f (x)|x〉√
2n

· |0〉 − |1〉√
2

.

3. Apply the Hadamard gates H (n) to the first n qubits again yielding

|ψ3〉 =
∑

y∈Fn
2

1

2n

∑

x∈Fn
2

(−1) f (x)+y·x |y〉,

where we omit the last qubit for the simplicity. If f (x) = a · x , we have

|ψ3〉 =
∑

y∈Fn
2

⎛

⎝ 1

2n

∑

x∈Fn
2

(−1)(a⊕y)·x
⎞

⎠ |y〉

=
∑

y∈Fn
2

δa(y)|y〉

= |a〉,
where δa(y) = 1 if y = a, otherwise δa(y) = 0. Then by measuring |ψ3〉 in the
computational basis, we will get a with probability 1.

If we run the BV algorithm on a general function f ∈ Bn , the output before the measure-
ment can be expressed as

|ψ3〉 =
∑

y∈Fn
2

S f (y)|y〉,

where S f (·) is the Walsh spectrum of f . When we measure the above state in the compu-
tational basis, we will obtain y with probability S f (y)2. In other words, we will always get
y ∈ N f when we run the BV algorithm on f . This fact combined with Lemma 2 implies a
way to find the linear structures.

Now we state the quantum algorithm proposed in [17] for finding the linear structures
of a Boolean function. Roughly speaking, the BV algorithm is treated as a subroutine. By

123

1166 H. Xie, L. Yang

repeating the subroutine until one gets a subset H of N f , and then solving the system of
linear equations {x · ω = i |ω ∈ H} for both i = 0 and 1, one will get candidate linear
structures of f .

Algorithm 1
Let p(n) be an arbitrary polynomial function of n. Φ denotes the null set. Initialize the
set H := Φ.
1 For p = 1, 2, . . . , p(n), do
2 Run the BV algorithm with queries on the quantum oracle of f to get an n-bit

output ω ∈ N f .
3 Let H = H ∪ {ω}.
4 end
5 Solve the system of linear equations {x ·ω = i |ω ∈ H} to get solution Ai for i = 0, 1
respectively.

6 If A0 ∪ A1 ⊆ {(0, . . . , 0)}, then output “No” and halt.
7 Else, output A0 and A1.

To justify the validity of the above algorithm, we present following two theorems, where
the Theorem 1 is proved in [17] and the Theorem 2 hasn’t been proved before.

Theorem 1 If running Algorithm 1 on a function f ∈ Bn gives sets A0 and A1, then for all
a ∈ Ai (i = 0, 1), all ε satisfying 0 < ε < 1, we have

Pr

[

1 − |{x ∈ F
n
2 | f (x ⊕ a) + f (x) = i}|

2n
< ε

]

> 1 − exp(−2p(n)ε2). (1)

This theorem is proved in [17], and we present the proof in Appendix A for the paper to
be self-contained.

For arbitrary function f ∈ Bn , we let

δ′
f = 1

2n
max
a∈Fn

2
a /∈U f

max
i∈F2

|{x ∈ F
n
2 | f (x ⊕ a) + f (x) = i}|.

It is obviously that δ′
f < 1. And if δ f < 1, it holds that δ′

f = δ f . By the definition of δ′
f ,

we can see that the smaller δ′
f is, the better for ruling out the vectors which are not linear

structures of f during executing Algorithm 1.

Theorem 2 Suppose δ′
f ≤ p0 < 1 and Algorithm 1 makes quantum queries for p(n) = cn

times. Then it holds that

1. If δ f < 1, that is, f has no nonzero linear structure, then Algorithm 1 returns “No” with
probability greater than 1 − pcn

0 ;
2. If Algorithm 1 returns A0 and A1, then for any a /∈ Ui

f (i = 0, 1),

Pr [a ∈ Ai] ≤ pcn
0 .

123

Using Bernstein–Vazirani algorithm to attack block ciphers 1167

Proof We first prove the second conclusion. Without loss of generality, we suppose i = 0.
The case where i = 1 can be proved by similar way. If a /∈ U 0

f , then according to Lemma 2
there exists a vector ω ∈ N f such that ω · a = 1. Let K = {ω ∈ N f |ω · a = 1}. If the cn
times of running BV algorithm ever gives a vector ω ∈ K , then a /∈ A0. Let W denote the
random variable obtained by running BV algorithm, then

Pr [W ∈ K] =
∑

a·ω=1

S f (ω)2

= 1 − |V 0
f ,a |
2n

≥ 1 − p0.

The second formula holds due to Lemma 1. Therefore,

P[a ∈ A0] = [1 − P(W ∈ K)]cn

≤ pcn
0 ,

which completes the proof of the second conclusion. By observing that δ f < 1 means there
is no nonzero vector inU f , the first conclusion can be naturally derived from the second one.

��
Suppose l(n) is an arbitrary polynomial of n. Theorem 1 implies that after p(n) =

O(l(n)2n) queries, all vectors in A0 and A1 will be 1
l(n)

-close linear structures of f except
a negligible probability. In other words, Algorithm 1 is very likely to output the high proba-
bility differentials of f . Theorem 2 shows that if f has no linear structure, Algorithm 1 with
O(n) queries will output “No” except a negligible probability. In addition, if Algorithm 1
returns sets A0 and A1, then each vector in Ai will be linear structure of f with overwhelming
probability. (The probability of a event happening is said to be overwhelming if it happens
except a negligible probability.)

4 Linear structure attack

In this section, we first improve the Algorithm 1 so that it can find the linear structures of
a vector function. Afterwards, we use the new algorithm to construct quantum distinguish-
ers for the 3-round Feistel scheme and recover partial key of Even–Mansour construction
respectively. Since our attack strategy is based on the linear structures of some constructed
functions, we call it linear structure attack.

4.1 Attack algorithm

Suppose F = (F1, F2, . . . , Fn) ∈ Cm,n . A straightforward way to find the linear structures
of F is to apply Algorithm 1 to each component function Fj respectively and then choose a
public linear structure. Specifically, we have following algorithm:

123

1168 H. Xie, L. Yang

Algorithm 2
The access to the quantum oracle of F = (F1, . . . , Fn) is given. p(n) is an arbitrary
polynomial function of n.
1 For j = 1, 2, . . . , n, do
2 Run Algorithm 1 with p(n) queries on Fj to get A0

j and A1
j .

3 If Algorithm 1 outputs “No”, then output “No” and halt.
4 Else let A j = A0

j ∪ A1
j .

4 end
5 If A1 ∩ · · · ∩ An ⊆ {(0, . . . , 0)}, Then output “No” and halt.
6 Else choose an arbitrary nonzero vector a ∈ A1 ∩ · · · ∩ An and output (a, i1, . . . , in),
where i1, . . . , in is the superscript such that a ∈ Ai1

1 ∩ Ai2
2 ∩ · · · ∩ Ain

n .

For any function F = (F1, . . . , Fn), let δ′
F = max1≤ j≤n δ′

Fj
. The following theorem

justifies the validity of the Algorithm 2.

Theorem 3 Suppose F ∈ Cm,n. Running Algorithm 2 with cn2 queries (p(n) = cn) on F
gives “No” or some vector. It holds that

1. If δ′
F ≤ p0 < 1 and F has no linear structure, then Algorithm 2 returns “No” with

probability greater than 1 − pcn
0 .

2. If δ′
F ≤ p0 < 1, then for any a /∈ U (i1,...,in)

F , we have

Pr [Algorithm 2 returns (a, i1, . . . , in)] ≤ pcn
0 .

3. If (a, i1, . . . , in) is obtained by running Algorithm 2, then for any 0 < ε < 1,

Pr

[∣
∣
{

x ∈ F
m
2 |F(x ⊕ a) ⊕ F(x) = i1 . . . in

}∣
∣

2m > 1 − nε

]

>
(
1 − exp(−2p(n)ε2)

)n
. (2)

Proof By observing the fact that a ∈ U (i1,...,in)
F if and only if for all j = 1, . . . , n, a ∈ U

i j
Fj
,

the first two conclusion can be naturally derived from the Theorem 2. According to Theorem
1, we have

∣
∣
{

x ∈ F
m
2 |Fj (x ⊕ a) ⊕ Fj (x) = i j

}∣
∣

2m
> 1 − ε, ∀ j = 1, . . . , n (3)

holds with a probability greater than (1−exp(−2p(n)ε2))n . If Eq. (3) holds, then the number
of x satisfying

Fj (x ⊕ a) + Fj (x) = i j (4)

for both j = 1 and j = 2 is at least 2m[2(1 − ε) − 1] = 2m(1 − 2ε). Similarly, the number
of x satisfying Eq. (4) for all j = 1, 2, 3 is at least 2m[(1−2ε)+ (1− ε)−1] = 2m(1−3ε).
By induction, the number of x satisfying (4) for all j = 1, . . . , n is at least 2m(1− nε). Thus
the probability that

∣
∣
{

x ∈ F
m
2 |F(x ⊕ a) ⊕ F(x) = i1 . . . in

}∣
∣

2m
> 1 − nε

holds is greater than (1 − exp(−2p(n)ε2))n . Thus the third conclusion holds. ��

123

Using Bernstein–Vazirani algorithm to attack block ciphers 1169

Fig. 1 Three-round Feistel scheme

Note that Algorithm 2 actually requires that the adversary has the oracle access to each
component function of F . About the efficiency, since Algorithm 2 needs to find the inter-
section of the sets A j ’s, its complexity depends on the size of these sets, which relies on
the properties of the specific function F . However, we can prove that only polynomial time
of computation is needed when Algorithm 2 is applied to 3-round Feistel scheme or Even–
Mansour construction. In [12,14,15,21], the authors use Simon’s algorithm to find the period
of some constructed functions and then break the security of 3-round Feistel scheme or Even–
Mansour construction. Compared with Simon’s algorithm, the complexity of Algorithm 2 is
a little larger because it needs to search linear structures of each component function respec-
tively. However, Algorithm 2 has more general applications. It can find not only the periods
of a function but also its other linear structures, which allows us to construct multiple distin-
guishers for 3-round Feistel scheme. And in Sect. 5 wewill see that such way of finding linear
structures by considering each component function respectively may bring some unexpected
advantages for differential cryptanalysis.

4.2 Application to a three-round Feistel scheme

A Feistel scheme is a classical construction to build block ciphers. A 3-round Feistel scheme
with input (xL , xR) and output (yL , yR) is built from three random functions P1, P2, P3 as
shown in Fig. 1, where xL , xR, yL , yR ∈ {0, 1}n . It’s proved that a 3-round Feistel scheme
is a secure pseudorandom permutation as long as the internal functions are pseudorandom
as well [18]. Our goal is to construct a quantum distinguisher which distinguishes a 3-round
Feistel scheme from a random permutation on {0, 1}2n .

Suppose s0, s1 ∈ F
n
2 are two arbitrary constants such that s0 	= s1.We define the following

function:

F : F2 × F
n
2 → F

n
2

(b , x) → P2(x ⊕ P1(sb)). (5)

123

1170 H. Xie, L. Yang

Given the oracle access of the 3-round Feistel function E , it is easy to construct the oracle
OF which computes F on superpositions. Observing that the right part of the output E(sb, x)

is F(b, x) ⊕ sb, we can construct the oracle OF by first querying the oracle which computes
the right part of E , then applying the unitary operator: U s0,s1 : |b〉|c〉 → |b〉|c ⊕ sb〉. For
every (b‖x) ∈ F

n+1
2 , it is easy to check that

F(b, x) = F(b ⊕ 1, x ⊕ P1(s0) ⊕ P1(s1)).

Thus (1‖s) � (1‖P1(s0) ⊕ P1(s1)) is a nonzero linear structure of F , or more accurately,
(1‖s) ∈ U (0,...,0)

F . Therefore, by running Algorithm 2 on F one can get (1‖s). On the other
hand, the probability of a random function having a linear structure is negligible. Given the
access to a quantum oracle which computes the 3-rounds Feistel function E or a random
permutation over {0, 1}2n , we can construct the distinguishing algorithm as below:

Algorithm 3
Let p(n) = n + 1 and initialize the set H := Φ.
1 Choose s0, s1 ∈ F

n
2, s.t. s0 	= s1. Then define function F = (F1, . . . , Fn) as equation

(5).
2 For j = 1, . . . , n do
3 For p = 1, . . . , p(n), do
4 Run BV algorithm on Fj to get an output ω ∈ NFj .
5 Let H = H ∪ {ω}
6 End
7 Solve the system of linear equations {x · ω = 0|ω ∈ H} to get the solution A0

j .

8 If A0
j ⊆ {(0, . . . , 0)}, then output “No” and halt.

9 Else Let H = Φ.
10 End
11 If A0

1 ∩ · · · ∩ A0
n+1 ⊆ {(0, . . . , 0)}, then output “No” and halt.

12Else choose an arbitrary nonzero vector a ∈ A0
1∩· · ·∩ A0

n+1. And choose an (n +1)-
bit string u uniformly at random. Let u′ = u ⊕ a. Make classical queries for u and
u′.

13 If F(u) = F(u′), Then output “Yes”.
14 Else, output “No”.

Before analyzing the validity and efficiency ofAlgorithm3,we first give following lemma:

Lemma 3 Suppose F = (F1, . . . , Fn) is defined as Eq. (5). Then for all j = 1, 2, . . . , n,

δFj (1‖s) � 1

2n+1 max
(τ,t)∈Fn+1

2
(τ,t)/∈{(0,...,0),(1‖s)}

∣
∣
∣
{
(b, x) ∈ F

n+1
2 |Fj (b, x) = Fj (b ⊕ τ, x ⊕ t)

}∣
∣
∣ ≤ 2

3

holds except a negligible probability. Here, δFj (1‖s) is still a random variable since Fj is
determined by random functions P1, P2.

Proof If δFj (1‖s) > 2
3 , then there exists (τ, t) /∈ {0, (1‖s)} such that |{(b, x) ∈

F
n+1
2 |Fj (b, x) = Fj (b ⊕ τ, x ⊕ t)}| > 2

3 · 2n+1. If τ = 0, this implies

∣
∣
{

x ∈ F
n
2 |Fj (0, x) = Fj (0, x ⊕ t)

}∣
∣ >

2

3
· 2n or

∣
∣
{

x ∈ F
n
2 |Fj (1, x) = Fj (1, x ⊕ t)

}∣
∣ >

2

3
· 2n .

123

Using Bernstein–Vazirani algorithm to attack block ciphers 1171

Thus there exists some b such that

∣
∣
{

x ∈ F
n
2 |P2 j (x ⊕ P1(sb)) = P2 j (x ⊕ t ⊕ P1(sb))

}∣
∣ >

2

3
· 2n,

where P2 j is the j th component function of P2. That is,

∣
∣
{

x ∈ F
n
2 |P2 j (x) = P2 j (x ⊕ t)

}∣
∣ >

2

3
· 2n .

Similarly, if τ = 1, we have

∣
∣
{

x ∈ F
n
2 |P2 j (x) = P2 j (x ⊕ t ⊕ P1(s0) ⊕ P1(s1))

}∣
∣ >

2

3
· 2n .

Anyway, there exists a u 	= (0, . . . , 0) such that

∣
∣
{

x ∈ F
n
2 |P2 j (x) = P2 j (x ⊕ u)

}∣
∣ >

2

3
· 2n . (6)

Since P2 is a random function, P2 j is actually a random Boolean function. Thus, |{x ∈
F

n
2 |P2 j (x) = P2 j (x ⊕ u)}| is still a random variable. We next prove that equation (6) holds

only with a negligible probability. This will imply that the probability of δFj (1‖s) > 2
3 is

negligible, and thus completes the proof.
The rest is to prove the probability

Pr

[∣
∣
{

x ∈ F
n
2 |P2 j (x) = P2 j (x ⊕ u)

}∣
∣

2n
>

2

3

]

is negligible, where P2 j is uniformly chosen from the set of all Boolean functions from F
n
2

to F2. We call an unordered set of two vectors in F
n
2 a pair. For example, vectors x, y form

a pair {x, y}, and {x, y} = {y, x}. The difference of a pair {x, y} is defined as x ⊕ y. For the
nonzero difference u, there are 2n−1 pairs with this difference. Thus,

∣
∣
{

x ∈ F
n
2 |P2 j (x) = P2 j (x ⊕ u)

}∣
∣

= ∣
∣
{
(x, y) ∈ F

n
2 × F

n
2 |P2 j (x) = P2 j (y), x ⊕ y = u

}∣
∣

= 2
∣
∣
{{x, y}|P2 j (x) = P2 j (y), x ⊕ y = u

}∣
∣. (7)

For convenience, we denote the 2n−1 pairs with difference u as {x1, x1 ⊕ u}, {x2, x2 ⊕
u}, . . . , {x2n−1 , x2n−1 ⊕u}. Let Zl = P2 j (xl)⊕ P2 j (xl ⊕u)⊕1 for l = 1, 2, . . . , 2n−1. Since
P2 j is randomBoolean function and for l 	= k, {xl , xl ⊕u}⋂{xk, xk ⊕u} = Φ, Z1, . . . , Z2n−1

are independent and identically distributed random variables. They all follow the uniform
distribution over {0, 1}. That is, Pr [Zl = 0] = Pr [Zl = 1] = 1

2 , l = 1, 2, . . . , 2n−1.
According to Hoeffding’s inequality,

Pr

⎡

⎣ 1

2n−1

2n−1
∑

l=1

Zl − 1

2
≥ 1

6

⎤

⎦ ≤ 2 exp

(

− 1

18
2n−1

)

.

That is,

Pr

⎡

⎣
2n−1
∑

l=1

Zl ≥ 2

3
· 2n−1

⎤

⎦ ≤ 2 exp

(

− 1

18
2n−1

)

.

123

1172 H. Xie, L. Yang

Since

2n−1
∑

l=1

Zl =∣∣{Zl |Zl = 1
}∣
∣

=∣∣{ {xl , xl ⊕ u} |P2 j (xl) ⊕ P2 j (xl ⊕ u) ⊕ 1 = 1
}∣
∣

=∣∣{ {x, y} |P2 j (x) = P2 j (y), x ⊕ y = u
}∣
∣,

we have

Pr
[∣
∣
{ {x, y} |P2 j (x) = P2 j (xy), x ⊕ y = u

}∣
∣ ≥ 2

3
· 2n−1

]
≤ 2 exp

(

− 1

18
2n−1

)

.

According to Eq. (7), we have

Pr

[|{x ∈ F
n
2 |P2 j (x) = P2 j (x ⊕ u)}|

2n
>

2

3

]

≤ 2 exp

(

− 1

18
2n−1

)

.

Therefore, Eq. (6) holds with a negligible probability. ��
About the validity of Algorithm 3, we have following theorem:

Theorem 4 Algorithm 3 successfully distinguishes the 3-round Feistel function from a ran-
dom permutation except a negligible probability.

Proof If the given oracle computes a random permutation, the string a obtained during
executing Algorithm 3 is random if exists. Hence the probability of F(u) being equal to
F(u′) is approximate to 1

2n . On the other hand, if the given oracle computes the 3-round
Feistel function, then

δFj (1‖s) � 1

2n+1 max
(τ,t)∈Fn+1

2
(τ,t)/∈{(0,...,0),(1‖s)}

|{(b, x) ∈ F
n+1
2 |Fj (b, x) = Fj (b ⊕ τ, x ⊕ t)}| ≤ 2

3

holds with a overwhelming probability according to Lemma 3. Due to Theorem 2, above
equation indicates

Pr [a 	= (1‖s)] ≤
(
2

3

)n+1

.

Thus the probability that F(u) 	= F(u′) is no more than (23)
n+1, which completes the

proof. ��
Note that Algorithm 3 actually requires that the attacker can query each component func-

tion of the right part of E . Then we consider the efficiency of Algorithm 3. If the given
oracle computes the 3-round Feistel function, according to Lemma 3 and Theorem 2, for
any a /∈ {(0, . . . , 0), (1‖s)}, we have Pr [a ∈ A0

j] ≤ (23)
n+1. Thus with a overwhelming

probability, A0
j contains only 0 and (1‖s). Therefore, finding the intersection of A0

j
′s almost

needs no calculation. It is also true when given oracle computes a random permutation. In
addition, Algorithm 3 queries quantum oracle for n(n + 1) times and classical oracle for 2
times. Thus the complexity of Algorithm 3 is O(n2). The distinguishing algorithm used in
[12,14,21] is based on Simon’s algorithm and its complexity is only O(n), which is better then
ours. But our algorithm provides a new and inspirational approach to attack block ciphers.
And by using our attack strategy, one can find more than one distinguisher. For example,
we can also define F(b, x) = P2(x ⊕ P1(sb)) ⊕ (b, . . . , b). Then F has the linear structure
(1‖P1(s0)⊕ P1(s1)) ∈ U (1,...,1)

F , and we can use it to construct another quantum distinguisher
by similar way.

123

Using Bernstein–Vazirani algorithm to attack block ciphers 1173

4.3 Application to the Even–Mansour construction

The Even–Mansour construction is a simple scheme which builds a block cipher from a
public permutation [7]. Suppose P : {0, 1}n → {0, 1}n is a permutation, the encryption
function is defined as

Ek1,k2 = P(x ⊕ k1) ⊕ k2,

where k1, k2 are the keys. Even and Mansour have proved that this construction is secure in
the random permutation model up to 2n/2 queries. However, Kuwakado and Morii proposed
a quantum attack which could recover the key k1 based on Simon’s algorithm. Our attack
strategy is similar with theirs, we use BV algorithm instead of the Simon’s algorithm.

In order to recover the key k1, we first define the following function:

F : {0, 1}n → {0, 1}n

x → Ek1,k2(x) ⊕ P(x).

Given the oracle access of Ek1k2(·), it is easy to construct the oracle OF which computes
F on superpositions. Since F(x) ⊕ F(x ⊕ k1) = 0 for all x ∈ F

n
2, k1 is a linear structure

of F , or more accurately, k1 ∈ U (00···0)
F . Therefore, by running Algorithm 2 on F with

minor modification we can obtain k1. Specifically, following algorithm can recover k1 with
a overwhelming probability.

Algorithm 4
The oracle access of F = (F1, . . . , Fn) is given. Let p(n) be an arbitrary polynomial
function of n, and initialize the set H := Φ.
1 For j = 1, 2, . . . , n, do
2 For p = 1, . . . , p(n), do
3 Run the BV algorithm on Fj to get a n-bit output ω ∈ NFj .
4 Let H = H ∪ {ω}.
5 End
6 Solve the system of linear equations {x · ω = 0|ω ∈ H} to get A0

j .

7 If A0
j ⊆ {(0, . . . , 0)},then output “No” and halt.

8 Else, Let H = Φ.
9 End.
10 If A0

1 ∩ · · · ∩ A0
n ⊆ {(0, . . . , 0)}, then output “No” and halt.

11 Else choose an arbitrary nonzero a ∈ A0
1 ∩ · · · ∩ A0

n and output a.

Theorem 5 Running Algorithm 4 with n2 (p(n) = n) queries on F gives the key k1 except a
negligible probability.

Proof By the similar proof of Lemma 3, we can obtain that for j = 1, . . . , n

δFj (k1) � 1

2n
max
α∈Fn

2
α/∈{(o,...,0),k1}

|{x ∈ F
n
2 |Fj (x) = Fj (x ⊕ α)}| ≤ 2

3
(8)

holds except a negligible probability. Here, δFj (k1) is still a random variable since Fj is
determined by random functions P1, P2. Equation (8) indicates that

δ′
F = max

j
δ′

Fj
≤ 2

3

123

1174 H. Xie, L. Yang

holds except a negligible probability. Then according to Theorem 3, the probability that
Algorithm 4 outputs k1 is greater than 1 − (23)

n , which completes the proof. ��
About the complexity of Algorithm 4, according to Eq. (8) and Theorem 2, the probability

of A0
j containing the vectors apart from k1 and 0 is negligible. Thus finding the intersection

of A0
j ’s almost needs no calculation. In addition, Algorithm 4 needs to query quantum oracle

for n2 times. Thus its complexity is O(n2).

5 Differential cryptanalysis

In this section, we look at the linear structures from another view: the differentials of a
encryption function. Based on this, we give three ways to execute differential cryptanaly-
sis, which we call quantum differential cryptanalysis, quantum small probability differential
cryptanalysis and quantum impossible differential cryptanalysis respectively. Unlike the clas-
sical differential cryptanalysis, the success probability of the first two methods is related to
the key used for encryption algorithm. Specifically, suppose q(n) is an arbitrary polynomial.
For the first two methods, we can execute the corresponding attack algorithms properly so
that they work for at least (1 − 1

q(n)
) of the keys in the key space. While the third method

works for all keys in the key space.

5.1 Quantum differential cryptanalysis

Differential cryptanalysis is a chosen-plaintext attack. Suppose E : {0, 1}n → {0, 1}n is
the encryption function of a r-round block cipher. Let Fk be the function which maps the
plaintext x to the input y of the last round, where k denotes the key of the first r − 1 rounds.
Let Fk(x) = y, Fk(x ′) = y′, then Δx = x ⊕ x ′ and Δy = y ⊕ y′ are called the input
difference and output difference respectively. The pair (Δx,Δy) is called a differential.
Differential cryptanalysis is composed by two phases. In the first phase, the attacker tries to
find a high probability differential of Fk . In the second phase, according to the high probability
differential that has been found, the attacker tests all possible candidate subkeys and then
recover the key of the last round. Our algorithm is applied in the first phase, while a quantum
algorithm is applied in the second phase in [24].

Intuitively,we canuseAlgorithm2 tofind the highprobability differentials of Fk .However,
there exists a problem that the oracle access of Fk is not available. The attacker can only query
the whole encryption function E . In classical differential cryptanalysis, the attacker analyzes
the properties of the encryption algorithm and searches for the high probability differentials
that is independent of the key, i.e. the differentials that always have high probability no
matter what the key is. We try to apply the same idea to our attack. But unfortunately, we
still haven’t found a way to obtain the key-independent high probability differentials of Fk

using BV algorithm. However, we can modify Algorithm 2 to find the differentials that have
high probability for the most of keys. To do this, we treat the key as a part of the input of the
encryption function and run Algorithm 2 on this new function. Specifically, suppose m be
the length of the key in the first r − 1 rounds and K = {0, 1}m be corresponding key space.
Define the following function

G : {0, 1}n × {0, 1}m → {0, 1}n

(x, k) → Fk(x).

123

Using Bernstein–Vazirani algorithm to attack block ciphers 1175

G is deterministic and known to the attacker. Thus the oracle access of G is available.
(Actually, the oracle access of each G j is available.) By executing Algorithm 2 on G, one
is expected to obtain a high probability differential of G with overwhelming probability.
But in order to make it also the differential of Fk , the last m bits of the input difference,
which corresponds to the difference of the key, needs to be zero. To do this, we modify the
Algorithm 2 slightly as below:

Algorithm 5
The oracle access of G = (G1, . . . , Gn) is given. Let p(n) be an arbitrary polynomial
function of n, and initialize the set H := Φ.
1 For j = 1, 2, . . . , n, do
2 For p = 1, . . . , p(n), do
3 Run the BV algorithm on G j to get a (n + m)-bit output ω =

(ω1, . . . , ωn, ωn+1, . . . , ωn+m) ∈ NG j .
4 Let H = H ∪ {(ω1, . . . , ωn)}.
5 End
6 Solve the system of linear equations {x · ω = i j |ω ∈ H} to get the set A

i j
j for

i j = 0, 1, respectively.
7 If A j � A0

j ∪ A1
j ⊆ {(0, . . . , 0)}, then output “No” and halt.

8 Else, Let H = Φ.
9 End.
10 If A1 ∩ · · · ∩ An ⊆ {(0, . . . , 0)}, then output “No” and halt.
11Else choose an arbitrary nonzero vector a ∈ A1∩· · ·∩ An and output (a, i1, . . . , in),

where i1, . . . , in is the superscript such that a ∈ Ai1
1 ∩ Ai2

2 ∩ · · · ∩ Ain
n .

By running Algorithm 5, one can find a differential of Fk that has high probability for the
most of keys. Specifically, we have following theorem:

Theorem 6 Suppose q(n) is an arbitrary polynomial of n. If running Algorithm 5 with np(n)

quantum queries on G gives a vector (a, i1, . . . , in), then there exist a subset K′ ⊆ K such
that |K′|/|K| ≥ 1 − 1

q(n)
and for all k ∈ K′, it holds that

Pr

[|{x ∈ F
n
2 |Fk(x ⊕ a) ⊕ Fk(x) = i1, . . . , in}|

2n
> 1 − ε

]

>

(

1− exp

(

− 2p(n)ε2

q(n)2n2

))n

.

Proof Since a · (ω1, . . . , ωn) = 0 indicates (a‖0, . . . , 0) · (ω1, . . . , ωn+m) = 0, the vector
(a‖0 . . . , 0) can be seen as an output when we execute Algorithm 2 on G. According to
Theorem 3,

∣
∣
{
z ∈ F

n+m
2 |G(z ⊕ (a‖0, . . . , 0) ⊕ G(z) = i1, . . . , in

}∣
∣

2n+m
> 1 − nε0 (9)

holds with a probability greater than (1 − exp(−2p(n)ε20))
n . Let

V (k) =
∣
∣
{

x ∈ F
n
2 |Fk(x ⊕ a) ⊕ Fk(x) = i1, . . . , in

}∣
∣

2n
.

Equation (9) indicates Ek(V (k)) > 1 − nε0, where Ek(·) means the expectation when the
key k is chosen uniformly at random fromK. Therefore, if Eq. (9) holds, for any polynomial
q(n), we have

123

1176 H. Xie, L. Yang

Prk[V (k) > 1 − q(n)nε0] > 1 − 1

q(n)
.

That is, for at least (1 − 1
q(n)

) of keys in K, it holds that V (k) > 1 − q(n)nε0. Let K′ be the
set of these keys, then |K′|/|K| ≥ 1 − 1

q(n)
, and for all k ∈ K′, it holds that

Pr
[
V (k) > 1 − q(n)nε0

]
>
(
1 − exp(−2p(n)ε20)

)n
.

The conclusion is obtained by letting ε = q(n)nε0. ��
According to Theorem 6, if p(n) = O(n3q(n)2), then for any k ∈ K1 and any constant

c, V (k) > 1 − 1
c holds except a negligible probability. For any constant c1, c2, if p(n) =

1
2c21n2q(n)2 ln (c2n), then for any k ∈ K1, we have

Pr

[|{x ∈ F
n
2 |Fk (x ⊕ a) ⊕ Fk (x) = i1, . . . , in}|

2n > 1 − 1

c1

]

> 1 − 1

c2
.

When the attacker performs differential cryptanalysis, he or she first chooses constants c1, c2,
then executesAlgorithm5with p(n) = 1

2c21n2q(n)2 ln (c2n) to obtain a differential of Fk . The
obtained differential has high probability for at least (1− 1

q(n)
) of keys inK. Afterwards, the

attacker determines the subkey in the last round according to this high probability differential,
which can be done as in classical differential cryptanalysis. To analyze the complexity of
Algorithm 5, we divide it into two parts: running BV algorithm to obtain the sets A j

′s; and
finding the intersection of A j

′s. In the first part, Algorithm 5 needs to run BV algorithm for
np(n) = O(n2q(n)2 ln n) times. Thus O(n2q(n)2 ln n) quantum queries are needed. As for
the second part, the corresponding complexity depends on the size of the sets A j

′s. Suppose
t = max j |A j |, then the complexity of finding the intersection by sort method is O(nt log t).
The value of t depends on the property of the encryption algorithm. Generally speaking, t
will not be large since a well constructed encryption algorithm usually does not have many
linear structures. In addition, one can also choose a greater p(n) to decrease the value of t .
Therefore, the complexity of Algorithm 5 is O(n2q(n)2 ln n).

One of the advantages of our algorithm is that it can find the high probability differential
directly. While in classical case, the attacker needs to analyze the partial structures of the
encryption algorithm respectively and then seek the high probability differential character-
istics, which may be much more complicated with the increase of the number of rounds.

5.2 Quantum small probability differential cryptanalysis

In this subsection we present a new way to execute differential cryptanalysis, which is called
quantum small probability differential cryptanalysis. As shown in the previous sections,
the way we find differentials of a vector function is to first search for the differentials of
each component functions respectively, and then choose a public input difference and output
the corresponding differential. Although this method will slightly increase the complex-
ity of the attack algorithm, it may bring advantages in some applications. Quantum small
probability differential cryptanalysis is such an example. Differential cryptanalysis using
small-probability differentials was considered in [4,13]. In differential analysis, the attacker
needs to use the differentials with notable statistical properties to distinguish the block cipher
from a random permutation, such as differential cryptanalysis and impossible differential
cryptanalysis. As for the small probability differentials, since any differential of a random

123

Using Bernstein–Vazirani algorithm to attack block ciphers 1177

permutation only has a very small probability, the “small-probability” property of the entire
differential cannot be directly used to distinguish the block cipher froma randompermutation.
However, if we consider each component function of the encryption function respectively,
it will be possible to execute cryptanalysis based on small-probability differentials. Specif-
ically, let Fk : {0, 1}n → {0, 1}n be the function which maps the plaintext x to the input
y of the last round of the encryption algorithm, and (Δx,Δy) is a differential of Fk with
small probability. For a random permutation P = (P1, . . . , Pn), the differential (Δx,Δy)

appears with probability about 1
2n . But for the component function Pj , the probability of the

differential (Δx,Δy j) appearing is 1
2 , which is not small at all. Our attack strategy is based

on this fact. The detailed procedure is as follows:
I. Finding small probability differential Let G(x, k) = Fk(x) as defined previously and

K denote the key space of the first r − 1 rounds. The oracle access of G is available. The
attacker first chooses two polynomials q(n), l(n) of n, then run Algorithm 5 with np(n) =
n4l(n)2q(n)2 (p(n) = n3l(n)2q(n)2) queries on G to get an output (a, i1, . . . , in). Let
b = (ī1, . . . , īn), where ī j = i j ⊕ 1. Then (a, b) is a small probability differential of Fk for
at least (1 − 1

q(n)
) of keys in K.

II. Key recovering Suppose S is the set of all possible subkey of the last round. For
each s ∈ S, we set the corresponding counter Cs to be zero and do as follows: fix the input
difference a, and make 2l(n)2 classical queries on whole encryption function to get 2l(n)2

ciphers. Then decrypt the last round to obtain l(n)2 output differences Δy(1), . . . , Δy(l(n)2)

of Fk . Let Δy(i) = (Δy(i)
1 ,Δy(i)

2 , . . . , Δy(i)
n). For i = 1, . . . , l(n)2 and j = 1, . . . , n, if

Δy(i)
j = b j , let the counter Cs = Cs + 1. Afterwards, calculate the ratio λs = Cs/nl(n)2.

The attacker chooses the key s ∈ S which has the smallest ratio λs to be the subkey of the
last round.

To justify that above attack procedure work for at least (1 − 1
q(n)

) of keys in K, we give
following theorem:

Theorem 7 There exists a subset K1 ⊆ K such that:

(1) |K1|/|K| ≥ 1 − 1
q(n)

;
(2) If the key used for the first r − 1 rounds of the encryption algorithm is in K1 and s is the

right subkey of the last round, then the ratio λs obtained by the above procedure satisfies

Pr

[

λs ≥ 1

l(n)

]

≤ 3 exp(−n/2).

Proof According to Theorem 1 and the definition of G, for any j = 1, . . . , n,
∣
∣
{
z ∈ F

m+n
2 |G j (z) + G j (z ⊕ (a‖0)) = b j

}∣
∣

2m+n
≤ ε (10)

holds with a probability greater than 1 − exp(−2p(n)ε2). Similar to the proof of Theorem
6, we let

Vj (k) =
∣
∣
{

x ∈ F
n
2 |Fkj (x ⊕ a) + Fkj (x) = b j

}∣
∣

2n
.

Equation (10) indicates Ek(Vj (k)) ≤ ε, where Ek(·) means the expectation when the key k
is chosen uniformly at random from K. Therefore, if Eq. (10) holds, we have Prk[Vj (k) ≤
nq(n)ε] ≥ 1 − 1

nq(n)
. In other words, for each j ∈ {1, . . . , n}, Vj (k) ≤ nq(n)ε holds for

at least (1 − 1
nq(n)

) of keys in K. Then by similar analysis in the proof of Theorem 3, for at

least (1 − 1
q(n)

) of keys in K, it holds that

123

1178 H. Xie, L. Yang

Vj (k) ≤ nq(n)ε, ∀ j ∈ {1, . . . , n}.
Let K′ be the set of these keys, then |K′|/|K| ≥ 1 − 1

q(n)
, and for all k ∈ K′, it holds that

Pr

[|{x ∈ F
n
2 |Fkj (x ⊕ a) + Fkj (x) = b j }|

2n
≤ nq(n)ε

]

> 1 − exp(−2p(n)ε2)

Let ε = 1
2nl(n)q(n)

. Noticing p(n) = n3l(n)2q(n)2, we have

Pr

[|{x ∈ F
n
2 |Fkj (x ⊕ a) + Fkj (x) = b j }|

2n
≤ 1

2l(n)

]

> 1 − exp(−n/2). (11)

That is, for all j = 1, . . . , n,

Prx

[
Fkj (x) + Fkj (x ⊕ a) = b j

]
≤ 1

2l(n)
(12)

holds except a negligible probability. For i = 1, 2, . . . , l(n)2, j = 1, . . . , n, we define the
random variable

Y (i, j) =

⎧
⎪⎨

⎪⎩

1 Δy(i)
j = b j ;

0 Δy(i)
j 	= b j .

For every i, j , Eq. (12) indicatesEx (Y (i, j)) ≤ 1
2l(n)

except a negligible probability. (HereEx

means the expectation when output difference is obtained by choosing plaintext x uniformly
at random. Ex (Y (i, j)) is still a random variable since it is a function of the vector a, which
is a random variable output by Algorithm 5.) According to Hoeffding’s inequality and the
fact that Eq. (12) holds except a probability exp(−n/2), it holds that

Pr

[∑
i, j Y (i, j)

nl(n)2
≥ 1

2l(n)
+ δ

]

≤ 2 exp(−2nl(n)2δ2) + exp(−n/2).

Let δ = 1
2l(n)

. Noticing
∑

i, j Y (i, j)/nl(n)2 = λs , we have

Pr [λs ≥ 1

l(n)
] ≤ 3 exp(−n/2),

which completes the proof. ��
In key recovering phase, the attacker computes l(n)2 output difference to get the ratio λs

for every s ∈ S. If s is not the right key of the last round, the l(n)2 differentials (a,Δy(i))

can be seen as differentials of a random permutation. Then the probability of Y (i, j) = 1
is approximate to 1

2 for every i, j . Therefore, the expectation of λs is approximate to 1
2 . On

the other hand, if s is the right key, the probability of λs ≥ 1
l(n)

is negligible according to

Theorem 7. This notable difference makes our attack strategy feasible for at least (1− 1
q(n)

)

of keys in K. About the complexity of the attack procedure, there are n4l(n)2q(n)2 quantum
queries and 2l(n)2 classical queries needed in total.

The basic idea of quantum small probability differential cryptanalysis is similar to the
idea of quantum differential cryptanalysis, that is, using some notable statistical difference
to distinguish a encryption function from a random permutation. The main difference of
these two methods is in key recovering phase. In quantum differential cryptanalysis, the
attacker treats the differential as a whole and records the number of times it appears, while in

123

Using Bernstein–Vazirani algorithm to attack block ciphers 1179

quantum small probability differential cryptanalysis, the attacker considers every bit of the
output differences respectively and records the number of times they appear.

5.3 Quantum impossible differential cryptanalysis

Impossible differential cryptanalysis is also a chosen-plaintext attack. Suppose Fk :
{0, 1}n → {0, 1}n and the key space K are defined as before. A differential (Δx,Δy) is
called a impossible differential of Fk if it satisfies that

Fk(x ⊕ Δx) + Fk(x) 	= Δy, ∀x ∈ F
n
2 .

Impossible differential cryptanalysis is composed by two phases. In the first phase, the
attacker tries to find an impossible differential (Δx,Δy) of Fk . And in the second phase, the
attacker uses the found impossible differential to sieve the subkey of the last round. Specif-
ically, the attacker fixes the input difference Δx , and make classical queries on the whole
encryption function to get a certain number of ciphers. Then for any possible key s of the
last round, the attacker uses it to decrypt these ciphers and obtains corresponding output
differences of Fk . If Δy appears among these output differences, then the attacker rules out
s. Our algorithm is applied in the first phase.

Let G(x, k) = Fk(x) as defined previously. The oracle access of G is available. A algo-
rithm to find the impossible differentials of Fk is as follows:

Algorithm 6
The oracle access of G = (G1, . . . , Gn) is given. Let p(n) be an arbitrary polynomial
function of n, and initialize the set H := Φ.
1 For j = 1, 2, . . . , n, do
2 For p = 1, . . . , p(n), do
3 Run the BV algorithm on G j to get a (n + m)-bit output ω =

(ω1, . . . , ωn, ωn+1, . . . , ωn+m) ∈ NG j .
4 Let H = H ∪ {(ω1, . . . , ωn)}.
5 End
6 Solve the system of linear equations {x · ω = 0|ω ∈ H} to get the set B1 and

{x · ω = 1|ω ∈ H} to get the set B0. Let B j = B0
j ∪ B1

j .
7 If B j � {(0, . . . , 0)}, then choose an arbitrary nonzero a ∈ B j and output (j, a, i j),

where i j is the superscript such that a ∈ B
i j
j , and halt.

8 Else, Let H = Φ.
9 End.
10 Output “No”.

Suppose the attacker gets (j, a, i j) by running Algorithm 6 with p(n) = O(n). Let
δ′

G = max1≤ j≤n δ′
G j

. If δ′
G ≤ p0 < 1 for some constant p0, then according to Theorem

2, (a,×, . . . ,×, i j ,×, . . . ,×) will be an impossible differential of Fk except a negligible
probability. Here “×” means the corresponding bit can be either 0 or 1. Specifically, we have
following theorem:

Theorem 8 If δ′
G ≤ p0 < 1 and running Algorithm 6 with np(n) = n2 (p(n) = n) queries on

G gives a vector (j, a, i j), then for any key k ∈ K and any i1, . . . , i j−1, i j+1, . . . , in ∈ {0, 1},
it holds that

Fk(x) ⊕ Fk(x ⊕ a) 	= (i1, . . . , i j−1, i j , i j+1, . . . , in), ∀x ∈ F
n
2 (13)

123

1180 H. Xie, L. Yang

except a negligible probability. That is, (a, i1, . . . , in) is a impossible differential of Fk except
a negligible probability.

Proof According to Theorem 2, we have Pr [a ∈ U
¯i j

G j
] > 1− pn

0 . Thus Pr [G j (z)⊕ G j (z ⊕
(a‖0)) 	= i j ,∀z ∈ F

m+n
2] > 1 − pn

0 . This indicates for all k ∈ K,

Pr [Fkj (x) ⊕ Fkj (x ⊕ a) 	= i j ,∀x ∈ F
n
2] > 1 − pn

0 .

Since the probability that Eq. (13) holds is no less than the above probability, the conclusion
holds. ��

From Theorem 8, we can see that by running Algorithm 6 with O(n2) queries the attacker
may find impossible differentials of Fk . Unlike the other two kinds of differential cryptanal-
ysis proposed in previous two subsections, the “impossibility” of the found differential holds
for all keys in K. But Algorithm 6 can only find the impossible differentials whose “impos-
sibility” concentrates on a certain bit. In other words, only when there exists some j such
that Fkj has impossible differentials, can Algorithm 6 find impossible differentials of Fk .
Although our algorithm can only find such special impossible differentials, it still provide a
new and inspirational approach for impossible differential cryptanalysis. In addition, one of
the main shortcomings of traditional impossible differential cryptanalysis is the difficulties
in extending the differential path, which limits the number of rounds that can be attacked.
Our approach does not have this problem since it treats the first r − 1 rounds as a whole.

6 Discussion and conclusion

In this paper, we construct new quantum distinguishers for the 3-round Feistel scheme and
propose a new quantum algorithm to recover partial key of Even–Mansour construction.
Afterwards, by observing that the linear structures of a encryption function are actually high
probability differentials of it, we propose three ways to execute differential cryptanalysis.
The quantum algorithms used for these three kinds of differential cryptanalysis all have
polynomial running time. We believe our work provides some helpful and inspirational
methods for quantum cryptanalysis.

There aremanydirections for futurework. First, is it possible tomodify the algorithmsused
for quantum differential analysis and quantum small probability differential cryptanalysis so
that they can work for all keys in the key space. Also, under the premise of not affecting the
success probability, how to reduce the complexity of our attacks is worthy of further study.
In addition, all algorithms proposed in this article find differentials of a vector function by
first searching for the differentials of its component functions respectively. There may exist
other ways that find differentials of a vector function directly.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No.
61672517), National Cryptography Development Fund (Grant No. MMJJ201 70108) and the Fundamental
theory and cutting edge technology Research Program of Institute of Information Engineering, CAS (Grant
No. Y7Z0301103).

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

Using Bernstein–Vazirani algorithm to attack block ciphers 1181

A Proof of Theorem 1

In this section we present the proof of Theorem 1, which can be found in [17]. Theorem 1 is
stated as following:

Theorem 1 If running Algorithm 1 on a function f ∈ Bn gives sets A0 and A1, then for all
a ∈ Ai (i = 0, 1), all ε satisfying 0 < ε < 1, we have

Pr(1 − |{x ∈ F
n
2 | f (x ⊕ a) + f (x) = i}|

2n
< ε) > 1 − exp(−2p(n)ε2).

Proof For all a ∈ Ai (i = 0, 1),

Prx [f (x ⊕ a) + f (x) = i] = |{x ∈ F
n
2 | f (x ⊕ a) + f (x) = i}|

2n
= |V i

f ,a |
2n

.

Let p = |V i
f ,a |/2n and q = 1 − p, then p, q ∈ [0, 1]. We define a random variable Y as

following:

Y (ω) =
{
0, ω · a = i;
1, ω · a 	= i .

According to Lemma 1, the expectation of Y isE(Y) = 1 ·q = 1− p. The p(n) times of run-
ning the BV algorithm produce p(n) independent identical random variables Y1, . . . , Yp(n).
By Hoeffding’s inequality,

Pr

⎡

⎣ q − 1

p(n)

p(n)∑

j=1

Y j ≥ ε

⎤

⎦ ≤ exp(−2p(n)ε2).

Note that a ∈ Ai , we have
∑

j Y j must be 0 (otherwise there exists some Y j = 1, then

a /∈ Ai). Thus Pr [q ≥ ε] ≤ exp(−2p(n)ε2). This indicates

Pr [1 − p < ε] = Pr [q < ε] > 1 − exp(−2p(n)ε2),

which completes the proof. ��

References

1. Bennett C.H., Brassard G.: Quantum cryptography: public key distribution and coin tossing. In: Interna-
tional Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984).

2. Bernstein E., Vazirani U.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1473 (1997).
3. Boneh D., Zhandry M.: Secure signatures and chosen ciphertext security in a quantum computing world.

In: CRYPTO 2013, Part II, pp. 361–379 (2013).
4. Borst J., Knudsen L.R., Rijmen V.: Two attacks on reduced IDEA. In: EUROCRYPT, pp. 1–13 (1997).
5. Damgård I., Funder J., Nielsen J.B., et al.: Superposition attacks on cryptographic protocols. In: Interna-

tional Conference on Information Theoretic Security, 8317, pp. 142–161 (2013).
6. Dubuc S.: Characterization of linear structures. Des. Codes Cryptogr. 22(1), 33–45 (2001).
7. Even S., Mansour Y.: A construction of a cipher from a single pseudorandom permutation. J. Cryptol.

10(3), 151–162 (1997).
8. Floess D., Andersson E., Hillery M.: Quantum algorithms for testing and learning Boolean functions.

Math. Struct. Comput. Sci. 23, 386–398 (2013).
9. Gagliardoni T., Hlsing A., Schaffner C.: Semantic security and indistinguishability in the quantum world.

In: CRYPTO 2016, Part III, pp. 60–89 (2016).
10. HilleryM., Anderson E.: Quantum tests for the linearity and permutation invariance of Boolean functions.

Phys. Rev. A 84, 062329 (2011).

123

1182 H. Xie, L. Yang

11. Kaplan M,. Leurent G,. Leverrier A., et al.: Quantum differential and linear cryptanalysis (2015).
arXiv:1510.05836.

12. Kaplan M., Leurent G., Leverrier A., et al.: Breaking symmetric cryptosystems using quantum period
finding. In: CRYPTO 2016, Part II, pp. 207–237 (2016).

13. Knudsen L.R., Rijmen V.: On the decorrelated fast cipher (DFC) and its theory. FSE 1999, 81–94 (1999).
14. Kuwakado H., Morii M.: Quantum distinguisher between the 3-round Feistel cipher and the random

permutation. In: ISIT, pp. 2682–2685 (2010).
15. Kuwakado H., Morii M.: Security on the quantum-type Even–Mansour cipher. In: ISITA 2012, pp. 312–

316 (2012).
16. Li H., Yang L.: Quantum differential cryptanalysis to the block ciphers. In: International Conference on

Applications and Techniques in Information Security, pp. 44–51 (2015).
17. Li H., Yang L.: A quantum algorithm to approximate the linear structures of Boolean functions. Math.

Struct. Comput. Sci. 28, 1–13 (2018).
18. LubM., Rackoff C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM

J. Comput. 17(2), 373–386 (1988).
19. Nyberg K.: Constructions of bent functions and difference sets. In: EUROCRYPT, pp. 151–160 (1990).
20. Nyberg K.: Differentially uniform mappings for cryptography. In: EUROCRYPT, pp. 55–64 (1993).
21. Santoli T., Schaffner C.: Using simons algorithm to attack symmetric-key cryptographic primitives. Quan-

tum Inf. Comput. 17, 65–78 (2017).
22. Shor P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: FOCS 1994, pp.

124–134. IEEE, Los Alamitos (1994).
23. Simon D.R.: On the power of quantum computation. SIAM J. Comput. 26, 1474–1483 (1997).
24. Zhou Q., Lu S.F., Zhang Z.G., et al.: Quantum differential cryptanalysis. Quantum Inf. Process. 14(6),

2101–2109 (2015).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1510.05836

	Using Bernstein–Vazirani algorithm to attack block ciphers
	Abstract
	1 Introduction
	2 Preliminaries
	3 Finding linear structures via Bernstein–Vazirani algorithm
	4 Linear structure attack
	4.1 Attack algorithm
	4.2 Application to a three-round Feistel scheme
	4.3 Application to the Even–Mansour construction

	5 Differential cryptanalysis
	5.1 Quantum differential cryptanalysis
	5.2 Quantum small probability differential cryptanalysis
	5.3 Quantum impossible differential cryptanalysis

	6 Discussion and conclusion
	Acknowledgements
	A Proof of Theorem 1
	References

