
Des. Codes Cryptogr. (2019) 87:987–993
https://doi.org/10.1007/s10623-018-0504-3

Orthogonal one-factorizations of complete multipartite
graphs

Mariusz Meszka1 · Magdalena Tyniec1

Received: 3 November 2017 / Revised: 9 March 2018 / Accepted: 26 May 2018 /
Published online: 4 June 2018
© The Author(s) 2018

Abstract The paper provides a complete solution to the existence problem of two orthogonal
one-factorizations of a complete balancedmultipartite graph Kp×q . In particular, new classes
of Howell designs are constructed.
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1 Introduction

We use standard notation Kp×q for a complete balanced p-partite graph with each part of
cardinality q . Let V (Kp×q) = V1 ∪ V2 ∪ . . . ∪ Vp , where Vi ∩ Vj = ∅ whenever i �= j .
Moreover, we also use the standard symbol Kq,q to denote K2×q , a complete balanced
bipartite graph on 2q vertices.

A one-factor in a graph G is a regular spanning subgraph of degree one. A one-factoriza-
tion of G is a set F = {F1, F2, . . . , Fr } of edge-disjoint one-factors such that E(G) =⋃r

i=1 E(Fi ). Two one-factorizations F = {F1, F2, . . . , Fr } and F ′ = {F ′
1, F

′
2, . . . , F

′
r } are

orthogonal if |Fi ∩ F ′
j | ≤ 1 for all 1 ≤ i, j ≤ r .

Orthogonal one-factorizations of complete graphs are well-studied, mostly in terms of
Rooms squares, cf. [7,12]. Let m be an odd integer and let S be a set of m + 1 elements
(symbols). A Room square R of side m is an m × m array which satisfies the following
properties:
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(1) every cell of R is either empty or contains an unordered pair of symbols from S,
(2) every symbol of S occurs exactly once in each row and exactly once in each column of

R,
(3) every unordered pair of symbols occurs in precisely one cell in R.
Thus each row and each column of R contain m−1

2 empty cells.

The existence of two orthogonal one-factorizations, F and F ′, of a complete graph K2n

is equivalent to the existence of a Room square of side 2n − 1: each row corresponds to a
one-factor in F whilst each column represents a one-factor in F ′.

The existence problem for Room squares is completely settled.

Theorem 1 [14] A Room square of side m exists if and only if m is odd and m �= 3 and
m �= 5.

Two orthogonal one-factorizations of a complete bipartite graph Kn,n are equivalent to
two orthogonal latin squares of side n. A latin square of side n is an n×n array in which each
cell contains a single symbol from an n-element set S, such that each symbol occurs exactly
once in each row and exactly once in each column. Two latin squares, L and L ′, of side n are
orthogonal if the n2 ordered pairs (L(i, j), L ′(i, j)) are all distinct. Bose, Shrikhande and
Parker [3] completely solved the famous Euler’s conjecture.

Theorem 2 [3] A pair of orthogonal latin squares of side n exists whenever n �= 2 and
n �= 6.

The above equivalences can be extended to other classes of regular graphs. Namely, a pair
of orthogonal one-factorizations of an s-regular graph G on 2n vertices corresponds to the
existence of a Howell design of type (s, 2n), for which a graph G is called an underlying
graph, cf. [15]. Let S be a set of 2n symbols. A Howell design H(s, 2n) on the symbol set
S is an s × s array that satisfies the following conditions:
(1) every cell is either empty or contains an unordered pair of symbols from S,
(2) every symbol of S occurs exactly once in each row and exactly once in each column of

H ,
(3) every unordered pair of symbols occurs in at most one cell of H .

Necessary condition for the existence of Howell designs H(s, 2n) is n ≤ s ≤ 2n − 1.
The existence of an H(n, 2n) comes from two orthogonal one-factorizations of a complete
bipartite graph Kn,n if n �= 2, 6 and some 6-regular graph if n = 6 [13]. There in no H(2, 4).
In the other extreme case, an H(2n − 1, 2n) is a Room square of side 2n − 1. The existence
of Howell designs has been completely determined for all remaining values of s.

Theorem 3 [17] If s is odd and n < s < 2n − 1 then there exists an H(s, 2n), except that
H(5, 8) does not exist.

Theorem 4 [2] If s is even and n < s < 2n − 1 then there exists an H(s, 2n).

An important question related to Howell designs concerns properties of graphs which are
underlying graphs of Howell designs. While for s = 2n − 1 and s = 2n − 2 these graphs are
unique (the complete graph K2n and the cocktail party graph K2n \ F , respectively, where F
is a one-factor), determining these graphs in general seems to be hopeless [15,16]. We have
to notice that some known constructions may provide Howell designs for certain classes of
underlying graphs; in particular, in the case of a powerful recursive “PBD-construction” (cf.
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[2,17]), the structure of an underlying graph strongly depends on the choice of parameters,
parallel classes in a PBD as well as Howell subdesigns used in the recursion.

It is known that a necessary and sufficient condition for the existence of a one-factorization
of a complete balanced multipartite graph Kp×q is that pq is even [11]. The goal of this
paper is to show that balanced complete multipartite graphs are underlying graphs of How-
ell designs; the main result provides a complete solution to the existence problem of two
orthogonal one-factorizations of Kp×q .

2 Constructions

We first discuss a general recursive construction which in fact is an application of a standard
“expansion by latin squares” method.

Lemma 5 Let p, q and m be integers such that p ≥ 2, q ≥ 1, m ≥ 3 and m �= 6. Suppose
there exist two orthogonal one-factorizations of the complete multipartite graph Kp×q and
moreover twoorthogonal one-factorizations of the complete bipartite graph Km,m. Then there
exists a pair of orthogonal one-factorizations of the complete multipartite graph Kp×qm.

Proof Let X be the vertex set of Kp×q and let (Y, Y ) be the vertex set of Km,m . Let
F1, F2 be two orthogonal one-factorizations of Kp×q on the set X such that F z =
{Fz

1 , F
z
2 , . . . , F

z
q(p−1)}, z = 1, 2. Moreover, let E1, E2 be a pair of orthogonal one-

factorizations of Km,m on (Y, Y ) and E z = {Ez
1, E

z
2, . . . , E

z
m}, z = 1, 2.

For each z = 1, 2 we construct a one-factorization Dz = {Dz
s,t : s = 1, 2, . . . , q(p −

1), t = 1, 2, . . . ,m} of Kp×qm on vertex set X × Y . We replace each edge of Kp×q with
one-factorization E z as follows: the edge {(i, j), (k, l)} belongs to one-factor Dz

s,t if {i, k} is
an edge of Fz

s and { j, l} is an edge of Ez
t .

To prove orthogonality ofD1 andD2 we suppose to the contrary that there are two distinct
edges, {(i, j), (k, l)} and {(i ′, j ′), (k′, l ′)} of Kp×qm that belong together to the same two
one-factors, D1

s,t and D2
s′,t ′ . We consider two cases:

(1) i = i ′ and k = k′. Then j �= j ′ and l �= l ′. Moreover, { j, l} and { j ′, l ′} are both in the
same two one-factors E1

t and E2
t ′ , a contradiction to the orthogonality of E1 and E2.

(2) i �= i ′ or k �= k′. Then {i, k} and {i ′, k′} are two distinct edges of both F1
s and F2

s′ , a
contradiction to the orthogonality of F1 and F2.

	

When q = 1 we immediately get the following.

Corollary 6 Let p and q be integers such that p is even, p ≥ 8, m ≥ 3 and m �= 6. There
exists a pair of orthogonal one-factorizations of a complete multipartite graph Kp×m. 	


The second construction is based on Room frames. Let {S1, S2, . . . , Sk} be a partition of
the set S. An {S1, S2, . . . , Sk}-Room frame is an |S| × |S| array, F , indexed by S, which
satisfies the following properties:
(1) every cell of F is either empty or contains an unordered pair of symbols from S,
(2) the subarrays Si × Si are empty, for 1 ≤ i ≤ k (these subarrays are called holes),
(3) every symbol x /∈ Si occurs exactly once in each row s and exactly once in each column

t , for any s, t ∈ Si ,
(4) pairs occurring in F are those {s, t}, where (s, t) ∈ (S × S) \ ⋃k

i=1(Si × Si ).
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The type of a Room frame F is a multiset {|Si | : 1 ≤ i ≤ k}. An “exponential” notation
is used to describe types; a Room frame has type tu11 tu22 . . . tull if there are ui subsets of
cardinality ti , 1 ≤ i ≤ l. A Room frame of type tu (one hole size) is called uniform. In
particular, a Room square of side m is equivalent to a Room frame of type 1m .

The existence problem for uniform Room frames is completely solved.

Theorem 7 [5,6,8–10] Suppose t and u are positive integers, u ≥ 4 and (t, u) �= (1, 5)
and (2, 4). Then there exists a uniform Room frame of type tu if and only if t (u − 1) is even.

Room frames are key structures in the “filling in holes” construction for Howell designs,
cf. [4]. In particular, applying this construction for uniform Room frames yields Howell
designs with complete balanced multipartite graphs as underlying graphs.

Lemma 8 Let t and u be integers such that t ≥ 3, t �= 6, u ≥ 4 and t (u − 1) is even. Then
there exists a Howell design H(ut, ut + t) whose underlying graph is K(u+1)×t .

Proof By Theorem 7, there exists a Room frame F of type tu on a set S of cardinality
tu. Let S1, S2, . . . , Su be sets corresponding to holes of F , Si ⊂ S and |Si | = t for each
i = 1, 2, . . . u. Let Su+1 be a set containing t elements, none of them in the set S.

For each pair of sets (Si , Su+1), i = 1, 2, . . . u, by Theorem 2, there exists a pair of
orthogonal latin squares of side t which correspond to two orthogonal one factorizations of
complete bipartite graph Kt,t with bipartition (Si , Su+1), and moreover which are equivalent
to a Howell design Hi of type (t, 2t) on the set Si ∪Su+1. It is easy to see that each hole Si ×Si
of F can be filled with Hi . In this way we obtain a Howell design H on the set S ∪ Su+1.
Notice that none of unordered pairs with both elements in the same Si , i = 1, 2, . . . , u + 1,
occurs in H . Thus K(u+1)×t is an underlying graph of H . 	


The well-known starter-adder construction, as a basic method to obtain Room squares,
can be generalized for Howell designs, cf. [1]. LetG be an abelian group of order s. AHowell
starter in G, where s + 1 ≤ 2n ≤ 2s, is a set Ss,n = {{xi , yi } : 1 ≤ i ≤ s − n} ∪ {{xi } :
s − n + 1 ≤ i ≤ n} that satisfies:
(1) {xi : 1 ≤ i ≤ n} ∪ {yi : 1 ≤ i ≤ s − n} = G,
(2) (xi − yi ) �= ±(x j − y j ) if i �= j .

If Ss,n is a Howell starter, then an ordered set As,n = {{ai } : 1 ≤ i ≤ n} is an adder for
Ss,n if elements in As,n are distinct and {xi+ai : 1 ≤ i ≤ n}∪{yi+ai : 1 ≤ i ≤ s−n} = G.

In what follows, we use notation SAs,n = {{xi , yi }ai : 1 ≤ i ≤ s − n} ∪ {{xi }ai :
s − n + 1 ≤ i ≤ n} for a Howell starter Ss,n together with an adder As,n . Moreover, we take
the cyclic group Zs as G.

Lemma 9 Suppose that there exist a Howell starter Ss,n together with an adder As,n in Zs

such that q = 2n−s is a divisor of s and moreover none of the pairs in Ss,n has the difference
of its elements divisible by p = s/q. Then a Howell design of type (s, 2n), generated by Ss,n
and As,n, has an underlying graph K(p+1)×q .

Proof An H(s, 2n) is constructed on the symbol set V of cardinality 2n. Let (V0, V1, . . . Vp)

be a partition of V such that Vj = { j, j + p, j + 2p, . . . , j + (q − 1)p}, where j =
0, 1, . . . , p − 1, and Vp = {∞1,∞2, . . . ,∞q}.

Let us label rows and columns of H(s, 2n) by elements of Zs . The first row consists of
pairs {xi , yi }, for i = 1, 2, . . . s−n, and pairs {xi ,∞i−s+n}, for i = s−n+1, s−n+2, . . . n,
each of them in column −ai . It is easy to see that all these pairs form a 1-factor of K(p+1)×q
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on V . The remaining cells of the Howell design are filled out by developing the square via
the group Zs ; that is, the pair {xi + k, yi + k} is placed in row k and column −ai + k, and
also the pair {xi + k,∞i−s+n} in a cell in row k and column −ai + k, where all arithmetic
is modulo s. Thus, in particular, the first column consists of pairs {xi + ai , yi + ai }, for
i = 1, 2, . . . s − n, and pairs {xi + ai ,∞i−s+n}, for i = s − n + 1, s − n + 2, . . . n, which
obviously constitute a 1-factor of K(p+1)×q . Due to cyclic rotation of rows and columns we
obtain two orthogonal one factorizations of K(p+1)×q . 	


An elementary verification shows that the following sets SAs,n are Howell starters and
adders for Howell designs of type (s, 2n)whose underlying graphs are K4×q , where q = n/2.
Notice that none of the pairs in starters has the difference of elements divisible by 3.

Construction 1 s ≡ 3(mod 24), s ≥ 27
Let s = 24m + 3 and n = 16m + 2, m ≥ 1.
SAs,n = {{8m − 2i, 8m + 2 + 4i}16m+2−i , {8m − 1 − 2i, 8m + 4 + 4i}4m−i , {16m +
1 − 4 j, 16m + 2 + 2 j}20m+3+ j , {16m − 1 − 4i, 16m + 3 + 2i}8m+2+i , {20m + 3 +
4 j}13m+3− j , {20m + 4 + 4i}7m+2−i , {20m + 5 + 4i}m+1−i , {20m + 6 + 4i}19m+3−i :
i = 0, 1, . . . , 2m − 1, j = 0, 1, . . . , 2m}.
Construction 2 s ≡ 9(mod 24), s ≥ 33
Let s = 24m + 9 and n = 16m + 6, m ≥ 1.
SAs,n = {{8m+2−2 j, 8m+4+4 j}16m+6− j , {8m+1−2i, 8m+6+4i}4m+1−i , {16m+
5 − 4 j, 16m + 6 + 2 j}20m+8+ j , {16m + 3 − 4 j, 16m + 7 + 2 j}8m+4+ j , {20m + 8 +
4 j}7m+4− j , {20m + 9 + 4 j}13m+6− j , {20m + 10 + 4 j}19m+8− j , {20m + 11 + 4i}m+1−i :
i = 0, 1, . . . , 2m − 1, j = 0, 1, . . . , 2m}.
Construction 3 s ≡ 15(mod 24), s ≥ 15
Let s = 24m + 15 and n = 16m + 10, m ≥ 0.
SAs,n = {{8m+4−2 j, 8m+6+4 j}16m+10− j , {8m+3−2 j, 8m+8+4 j}4m+2− j , {16m+
9 − 4k, 16m + 10 + 2k}20m+13+k, {16m + 7 − 4 j, 16m + 11 + 2 j}8m+6+ j , {20m + 13 +
4k}7m+5−k, {20m+14+4 j}m+1− j , {20m+15+4 j}13m+9− j , {20m+16+4 j}19m+11− j :
j = 0, 1, . . . , 2m, k = 0, 1, . . . , 2m + 1}.
Construction 4 s ≡ 21(mod 24), s ≥ 21
Let s = 24m + 21 and n = 16m + 14, m ≥ 0.
SAs,n = {{8m+6−2k, 8m+8+4k}16m+14−k , {8m+5−2 j, 8m+10+4 j}4m+3− j , {16m+
13− 4k, 16m + 14+ 2k}20m+18+k, {16m + 11− 4k, 16m + 15+ 2k}8m+8+k, {20m + 18+
4k}7m+6−k, {20m + 19+ 4k}13m+11−k, {20m + 20+ 4k}19m+16−k, {20m + 21+ 4 j}m− j :
j = 0, 1, . . . , 2m, k = 0, 1, . . . , 2m + 1}.

Some examples of small order have to be constructed separately.

Example 1 Two orthogonal one-factorizations of K3×4.
The starter-adder for a Howell design H(8, 12) is SA8,6 = {{0, 1}1, {2, 5}2, {3}5, {4}7,
{6}0, {7}6}.
Example 2 Two orthogonal one-factorizations of K4×3.
The starter-adder for a Howell design H(9, 12) is SA9,6 = {{2, 4}5, {3, 7}3, {5, 6}7,
{0}2, {1}4, {8}0}.
Example 3 Two orthogonal one-factorizations of K4×4.
The starter-adder for a Howell design H(12, 16) is SA12,8 = {{0, 1}11, {4, 11}2, {5, 9}5,
{6, 8}9, {2}7, {3}4, {7}1, {10}6}.

123



992 M. Meszka, M. Tyniec

3 Main results

Lemma 10 For every even positive integer q there exist two orthogonal one-factorizations
of K3×q .

Proof We consider separately the following cases. If q = 2 then K3×2 is the cocktail-party
graph and the assertion immediately holds by Theorem 4. For q = 4 we use two orthogonal
one-factorizations of K3×4 from Example 1. For q ≥ 6 and q �= 12 we apply the general
recursive construction given in Lemma 5 taking as initial graphs K3×2 and K q

2 ,
q
2
. If q = 12

we apply the same construction but we use orthogonal one-factorizations of K3×4 and K3,3.
	


Lemma 11 For every integer q ≥ 2 there exist two orthogonal one-factorizations of K4×q .

Proof If q = 2 then two orthogonal one-factorizations of the cocktail party graph K4×2

exist by Theorem 4. If q = 3 or q = 4, two orthogonal one-factorizations of K4×3 and
K4×4 are given in Examples 2 and 3, respectively. For odd q ≥ 5 the existence is satisfied
by Constructions 1–4 and Lemma 9. For even q ≥ 6 and q �= 12, the general recursive
construction given in Lemma 5 can be used taking as initial graphs K4×2 and K q

2 ,
q
2
. If

q = 12 we apply the same construction but we use orthogonal one-factorizations of K4×4

and K3,3. 	

Lemma 12 Let p, q be integers such that p is odd and p ≥ 5, q is even and q ≥ 2. Then
there exist two orthogonal one-factorizations of K p×q .

Proof If q = 2 then two orthogonal one-factorizations of Kp×2 exist by Theorem 4. For
q ≥ 4 and q �= 6, the existence of two orthogonal one-factorizations of Kp×q follows directly
from Lemma 8. If q = 6, a construction in Lemma 5 can be applied for initial graphs Kp×2

and K3,3. 	

Lemma 13 Let p, q be integers such that p is even, p ≥ 6 and q ≥ 2. Then there exist two
orthogonal one-factorizations of K p×q .

Proof If q = 2 then Kp×2 is the cocktail-party graph and the assertion holds by Theorem 4.
For q ≥ 3 and q �= 6, the existence of two orthogonal one-factorizations of Kp×q follows
from Lemma 8. If q = 6 then we apply the general recursive construction given in Lemma
5 taking Kp×2 and K3,3 as initial graphs. 	


Combining Lemmas 10–13 together with Theorems 1 and 2 gives the main result.

Theorem 14 For any integers p and q such that pq is even, p ≥ 2 and q ≥ 1, a complete
balanced multipartite graph K p×q admits a pair of orthogonal one-factorizations, except for
(p, q) = (2, 2), (2, 6), (4, 1) or (6, 1). 	

Corollary 15 Let p and q be integers such that pq is even, p ≥ 2, q ≥ 1 and (p, q) is
none of the pairs (2, 2), (2, 6), (4, 1) and (6, 1). Then there exists a Howell design of type
(pq − q, pq) whose underlying graph is K p×q . 	
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