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Abstract
For any λ ∈ GF(q)∗ a λ-constacyclic code Cn,q,λ :� 〈g(x)〉, of length n is a set of polyno-
mials in the ring GF(q)[x]/xn − λ, which is generated by some polynomial divisor g(x) of
xn−λ. In this paper a general expression is presented for the uniquely determined idempotent
generator of such a code. In particular, if g(x) :� (xn − λ)/Pn,q,λ

t (x), where Pn,q,λ
t (x) is

an irreducible factor polynomial of xn − λ, one obtains a so-called minimal or irreducible
constacyclic code. The idempotent generator of a minimal code is called a primitive idempo-
tent generating polynomial or, shortly, a primitive idempotent. It is proven that for any triple
(n, q, λ) with (n, q) � 1 the set of primitive idempotents gives rise to an orthogonal matrix.
This matrix is closely related to a table which shows some resemblance with irreducible
character tables of finite groups. The cases λ � 1 (cyclic codes) and λ � −1 (negacyclic
codes), which show this resemblance most clearly, are studied in more detail. All results in
this paper are extensions and generalizations of those in van Zanten (Des Codes Cryptogr
75:315–334, 2015).

Keywords Constacyclic codes · Cyclic codes · Negacyclic codes · Idempotent generating
polynomials · Semisimple rings · Irreducible character tables
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1 Introduction

A λ-constacyclic (shortly constacyclic) code Cn,q,λ :� 〈g(x)〉 mod xn − λ of length n is
generated by some polynomial divisor g(x) over GF(q) of xn − λ, with λ ∈ GF(q)∗. So,
Cn,q,λ is a set of polynomials in the ring Rn,q,λ :� GF(q)[x]/xn −λ. For λ � 1 one obtains
the family of cyclic codes which are well known [18, 19, 24]. For λ � −1 one obtains the
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so-called negacyclic codes [2, 8, 26]. For general values of λ (�� 0), constacyclic codes have
first been introduced in [2]. For more general information about these codes, we refer to [1,
3–5, 20, 21] and to the lists of references in these publications.

Let the decomposition of xn −λ into monic irreducible polynomials over GF(q) be given
by

xn − λ �
∏

t∈T n,q,λ

Pn,q,λ
t (x), (1)

where T n,q,λ is an index set containing the indices of all these irreducible polynomials. If
ft (x) :� (xn − λ)/Pn,q,λ

t (x) for some fixed t ∈ T n,q,λ, then the code 〈 ft (x)〉 is called a
minimal or irreducible constacyclic code. In algebraic terms, such a code is aminimal ideal in
the ring Rn,q,λ. The code 〈Pn,q,λ

t (x)〉 is called a maximal constacyclic code. An idempotent
polynomial in Rn,q,λ is a polynomial en,q,λ(x) ∈ Rn,q,λ with the property that

en,q,λ(x)2 � en,q,λ(x). (2)

It will be clear that if (2) holds, then all positive powers of en,q,λ(x) are identical. If en,q,λ(x)
generates the code C , then it is called an idempotent generating polynomial of C , or shortly
an idempotent generator. One can easily prove that each constacyclic code has a uniquely
determined idempotent generator (cf. [18, 19, 24]). The idempotent generators of minimal
constacyclic codes are denoted by θt (x) and those of the maximal constacyclic codes by
ϑt (x), t ∈ T n,q,λ [16, 22, 25]. The polynomials θt (x) are often called primitive idempotent
polynomials, since any idempotent generator can be written as a linear combination of these
polynomials for fixed values of n, q and λ. Constacyclic codes with special parameter values
or constacyclic codes constructed by special methods are discussed in [9, 11, 12, 14, 15].

In the next section we shall formulate a few simple properties of (primitive) idempotent
generating polynomials which are well known for cyclic codes, and which also hold for
constacyclic codes. The proofs are completely similar to those for cyclic codes, and will
therefore be omitted in most of the cases. Actually, all relations mentioned in Sect. 2 can be
seen as special cases of properties of idempotents in the context of semi-simple algebras (cf.
[6, 23, 24]).

The notation Cn,q,λ stands for a λ-constacyclic code of length n over GF(q), where the
positive integer n, the prime power q and the parameter λ satisfy the conditions

(n, q) � 1, λ ∈ GF(q)∗. (3)

Under these assumptions xn−λ has nomultiple zeros, and hence the irreducible polynomials
have no common zeros. Throughout the paper we shall assume that (3) holds, without stating
so every time. In Sect. 2 we also present a general formula which enables us to determine the
idempotent generator for any constacyclic code Cn,q,λ, where the three parameters n, q and
λ satisfy the conditions in (3). In Sect. 3 we discuss codes Cn,q,λ for fixed values of n and
q and for various values of λ as subcodes of the cyclic code Ckn,q,1, where k is the multi-
plicative order of λ in GF(q). In Sect. 4.1 the notion of constacyclotomic coset is introduced
as a generalization of cyclotomic coset, and in Sect. 4.2 the notion of constacyclonomial,
generalizing cyclonomials. The vector space spanned by these constacyclonomials for fixed
n, q and λ is called An,q,λ. Furthermore, this vector space is equipped with a bilinear form.
In Sect. 5 it is shown that with respect to this bilinear form, both the constacyclonomials and
the primitive generator polynomials constitute an orthogonal basis of An,q,λ. The orthogonal
transformation matrix between these two bases can be interpreted as an orthogonal table of
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Primitive idempotent tables 1201

primitive idempotent generators. It turns out that such tables resemble, in a way, the well-
known irreducible character tables of finite groups, thus generalizing similar results in [25].
Therefore, we shall speak of primitive idempotent tables. The most striking examples of this
resemblance are obtained by taking λ � 1 (cyclic codes) or λ � −1 (negacyclic codes).
Respectively in Sects. 6 and 7 these cases are discussed in more detail. Among other things,
we define the notions of r -conjugateness for primitive idempotent generators and blocks of
r -conjugated idempotents. As for our notation in the remaining sections, if this will not give
rise to confusion we shall drop the indices n and q from the names of variables for reasons
of convenience. So, we shall write eλ(x) instead of en,q,λ(x), Pλ

t (x) for P
n,q,λ
t (x), etc. Only

in places where the variable n takes on various values such as in Sect. 4.2, we shall use the
more extended notation. In order to keep the reader aware of the dependence on n and q , we
always maintain the full notation in the names of the sets these variables are taken from, like
Rn,q,λ, An,q,λ, Sn,q,λ, T n,q,λ, Cn,q,λ and Cn,q,λ

t .

2 Idempotent generators

In order to formulate the announced properties, we introduce a couple of notions and cor-
responding notation. Firstly, we write the n zeros of xn − λ as αζ i , i ∈ {0, 1, . . . , n − 1},
where ζ is a primitive nth root of unity in some extension field of GF(q) and α a fixed
element of the same extension field, say in F :� GF(q)(α, ζ ), which satisfies αn � λ (cf.
also Theorem 4). From standard theory on polynomials in GF(q)[x], we know that αζ i and
αζ j :� (αζ i )q are zeros of the same irreducible polynomial, for any i ∈ {0, 1, . . . , n − 1}.
As a consequence, when having chosen a fixed element α ∈ F , one can take for the index set
T n,q,λ in (1) an appropriate subset of { 0, 1, . . . , n − 1}. Usually, we shall take the minimal
i-value for which αζ i is a zero of the irreducible polynomial to be indexed. In case that λ � 1
we can take α � 1, and we obtain the usual set of indices representing the cyclotomic cosets
modulo n with respect to q , called the q-cyclotomic cosets modulo n.

Theorem 1 Let C :� 〈g(x)〉 be a λ -constacyclic code in Rn,q,λ and let h(x) , defined by
g(x)h(x) � xn − λ , be its check polynomial.

(i) If eλ(x) is the uniquely determined idempotent generator of C , then there exist poly-
nomials p(x) and q(x) such that eλ(x) � p(x)g(x) and g(x) � q(x)eλ(x) in Rn,q,λ.

(ii) eλ(αζ i ) � 0 if g(αζ i ) � 0 and eλ(αζ i ) � 1 if h(αζ i ) � 0 for i ∈ {0, 1, . . . , n − 1}.
(iii) If eλ(x)∗ is the idempotent generator of the codeC∗ :� 〈h(x)〉 , then eλ(x)+eλ(x)∗ � 1.
(iv) c(x) ∈ C if and only if eλ(x)c(x) � c(x).
(v) If C1 and C2 are λ -constacyclic codes with idempotent generators eλ

1 (x) and eλ
2 (x) ,

then C1 ∩ C2 and C1 + C2 are also λ -constacyclic codes with idempotent generators
eλ
1 (x)e

λ
2 (x) and eλ

1 (x) + eλ
2 (x) − eλ

1 (x)e
λ
2 (x), respectively.

The proofs are completely similar to the proofs for cyclic codes which can be found e.g.
in [18, 19, 24]. The same holds for the properties listed in the next theorem.

Theorem 2 Let {θt (x) t ∈ T n,q,λ} be the set of primitive idempotent generators of the λ

-constacyclic codes generated by divisors of xn − λ . Then one has for all t, u ∈ T n,q,λ the
following properties:

(i) θt (x)θu(x) � 0 if t �� u and θt (x)2 � θt (x);
(ii) θt (αζ i ) � 1 if αζ i is a zero of Pλ

t (x) , while θt (αζ i ) � 0 if αζ i is a zero of Pλ
u (x),

u �� t ;
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1202 A. J. van Zanten

(iii) θi1 (x) + θi2 (x) + · · · + θir (x) is the idempotent generator of the constacyclic code〈
fi1 (x) fi2 (x) . . . fir (x)

〉
;

(iv) ϑt (x) � 1 − θt (x) and
∑

t∈T n,q,λ θt (x) � 1;
(v) If eλ(x) is the idempotent generator of some λ -constacyclic code in Rn,q,λ , then there

exist elements ξ1, ξ2 ,…., ξr ∈ GF(q) such that eλ(x) � ∑r
i�1 ξiθi (x).

(vi) Let Pλ
t (x), t ∈ T n,q,λ , be a monic irreducible polynomial of degree mλ

t , then its

reciprocal Pλ∗
t (x) :� Pλ

t (0)
−1xm

λ
t Pλ

t (1/x) is amonic irreducible polynomial P
λ−1

t∗ (x),

t∗ ∈ T n,q,λ−1
, such that the zeros of Pλ−1

t∗ (x) are the inverses of the zeros of Pλ
t (x) .

The corresponding primitive idempotent generator satisfies θt∗ (x) :� λxnθt (1/x).

Proof The proofs for (i)–(v) are straightforward and similar to the proofs for cyclic codes,
i.e. for λ � 1.

(vi) That Pλ
t∗ (x) is a monic irreducible polynomial in Rn,q,λ follows immediately from

its definition (cf. also [17]). We know that xn − λ � q(x)Pλ
t (x) for some polynomial q(x) ∈

Rn,q,λ. From this equality we derive 1 − λxn � xn−mλ
t q(1/x)xm

λ
t Pλ

t (1/x) � q0(x)Pλ∗
t (x),

with qo(x) ∈ Rn,q,λ. Hence, xn − λ−1 � −λ−1qo(x)Pλ∗
t (x) and Pλ−1

t∗ (x) :�Pλ∗
t (x) is a

divisor of xn − λ−1. Finally, xnθt (1/x)has value λ−1 · 1 � λ−1 when we substitute for x
a zero of Pλ−1

t∗ (x), and it has value λ · 0 � 0 when substituting one of the other zeros of
xn − λ−1. So, λxnθt (1/x) must be identical to θt∗ (x). �

We shall present a slightly different proof for part (iv), right after the next theorem which
provides us with a simple expression for the uniquely determined idempotent generator of a
constacyclic code.

Theorem 3 (i) If g(x) is a divisor of xn − λ in Rn,q,λ , with (n, q) � 1 , then the
idempotent generator of the λ -constacyclic code 〈g(x)〉 is given by the polynomial
eλ(x) � (nλ)−1xh′(x)g(x) in Rn,q,λ , where h′(x) is the formal derivative of the check-
polynomial h(x) :� (xn − λ)/g(x).

(ii) The idempotent generator of the dual code 〈g(x)〉∗ is given by eλ(x)∗ �
(nλ)−1xg′(x)h(x).

Proof Because of the assumption (n, q) � 1 the polynomials g(x) and h(x) have no common
zeros, and since both aremonicwehave (g(x), h(x)) � 1.Hence, there exist polynomialsa(x)
and b(x) such that a(x)g(x) + b(x)h(x) � 1. Multiplying by a(x)g(x) yields (a(x)g(x))2 +
a(x)b(x)g(x)h(x) � a(x)g(x), and therefore (a(x)g(x))2 � a(x)g(x) mod xn−λ. So, we can
write eλ(x) � a(x)g(x). To determine a(x), we take derivatives of both sides of the relation
g(x)h(x) � xn − λ, yielding h′(x)g(x) + h(x)g′(x) � nxn−1. In Rn,q,λ this is equivalent
to (nλ)−1x(h′(x)g(x) + h(x)g′(x)) � 1. Hence, a(x) � (nλ)−1xh′(x) and the relation in (i)
now follows, as well as the relation in (ii) by interchanging g(x) and h(x). �

We remark that the expression for eλ(x) in Theorem 3 generalizes the expression for the
idempotent generator of a cyclic code in [25] which on its turn was a generalization of the
special case of binary cyclic codes (cf. [18, 19, 24]). As an application of Theorem 3 (i), we
now present an alternative proof for Theorem 2 (iv).

Example 4 Consider the primitive idempotent polynomials θt (x), t ∈ T n,q,λ, belonging
to the polynomial in (1). So, g(x) � ∏

i ��t
Pλ
i (x), h(x) � Pλ

t (x), and hence θt (x) �
(nλ)−1x Pλ

t (x)
′ ∏
i ��t

Pλ
i (x), according to Theorem 3 (i). Applying the rule for determining
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the derivative of a product of functions yields
∑

t∈T n,q,λ θt (x) � (nλ)−1

(
∏

t∈T n,q,λ

Pλ
t (x)

)′
�

(nλ)−1x(xn − λ)′ � (nλ)−1xnxn−1 � 1 mod xn − λ. �

3 Constacyclic codes Cn,q,� for various values of �

In this section we study the relationship between the λ-constacyclic codes for different values
of λ. To this end we shall need the notion of the order of a polynomial p(x) ∈ GF(q)[x],
i.e. the least positive integer e such that p(x) is a divisor of xe − 1. A well known property
is that the order of a product of polynomials which are pairwise relatively prime, is equal to
the least common multiple (lcm) of the orders of its zeros (cf. [17, Theorem 3.9]). Another
well known property is that the order of an irreducible polynomial f (x) ∈ GF(q)[x], with
f (0) �� 0, of degree m is equal to the order of any of its zeros in the splitting field GF(qm)
of f (x) over GF(q) (cf. [17, Theorem 3.3]).

Theorem 5 Let n be a positive integer and q a prime power with (n, q) � 1 . Let F be the
smallest extension field of GF(q) such that it contains all zeros of xn−λ , while λ ∈ GF(q)∗
has order k . Let furthermore e be the order of xn − λ in GF(q)[x].

(i) If the n0
(
:� ∣∣T n,q,λ

∣∣) irreducible factor polynomials Pλ
t (x) of x

n−λ in GF(q)[x] have
order et , 1 ≤ t ≤ n0 , then e is equal to the least common multiple

〈
e1, e2, . . . , en0

〉
.

(ii) The order e of xn − λ is equal to kn, and if α is a zero of xn − λ of order e, then
all its zeros can be written as αζ i , 0 ≤ i < n, where ζ :� αk . Furthermore, one has

xe − 1 �
k−1∏
j�0

(xn − λ j ).

(iii) If α is some zero of xn − λ and if there is no integer i , 0 < i < n, with αi ∈ GF(q),
then α has order kn in F. Conversely, if αi � μ ∈ GF(q), 0 < i < n, there is a
minimal divisor d of n, d < n, such that the order of α is hd where h is the order of
μ in GF(q).

(iv) The order of α is equal to kn if and only if n is a divisor of hd. If n is not a divisor of
hd, then α is a zero of xd − μ, which is a factor of xn − λ.

Proof

(i) The irreducible polynomial factors of xn − λ are pairwise prime to each other, since
(n, q) � 1, and hence xn − λ has no multiple zeros. So, the statement is an immediate
consequence of [17, Theorem 3.9].

(ii) Let G be the multiplicative group consisting of the e zeros of xe − 1 in some extension
field of F and let β be a generator of this group. Since xn −λ is a divisor of xe − 1, the
group G contains n different elements βb satisfying βbn � λ. It follows that there are
n different elements βb−b0 all satisfying β(b−b0)n � 1, for some fixed integer b0, and
so these elements form a subgroup of order n. Hence, n is a divisor of e. Furthermore,

λe/n � (
βbn

)e/n � βbe � 1, and hence e � akn for some positive integer a. However,
since αkn � λk � 1 for any zero α of xn − λ, we have that e ≤ kn. So, a � 1 and
e � kn. If we define ζ :� βk , it follows that ζ n � (βe/n)n � 1 , and so ζ is a primitive
nth root of unity, since n is minimal positive with respect to this property. Hence, all
zeros of xn −λ can be written as β1+ik , 0 ≤ i ≤ n− 1. Defining α :� β yields the first
equality in (ii). The second equality now follows easily by applying that αn � λ implies
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(α j )n � λ j and from the fact that all zeros of the polynomials xn −λ j , 0 ≤ j ≤ k − 1,
are different.

(iii) Let the order of α in F be equal to f . Then we have f ≤ kn. We also have f ≥ n,
because of the condition on α. Hence, we can write f � sn + t , with s ≥ 1, 0 ≤ t < n.
It follows that αsn+t � λsαt � 1, and so αt � λ−s ∈ GF(q). Because of the condition
on α, this can only be true for t � 0, and λs � 1. Therefore, s ≥ k and f ≥ kn. We
conclude that f � kn. Conversely, assume αi ∈ GF(q) for some i with 0 < i < n.
Then we have for all integer values a and b that αan+bi ∈ GF(q), in particular for those
values a and b for which an +bi � (n, j). So, for all i satisfying the above assumption,
we have α(n,i) ∈ GF(q). Let d be the greatest common divisor of these i-values, then
αd � μ and d is minimal with respect to this property. Similarly to the proof of the
first part it now follows, replacing n by d and k by h, that the order of α is equal to hd .
(iv) Since αd generates a subgroup of order h in G and αn a subgroup of order k, we
have k(h, n/d) � h. So, kn � hd if and only if (h, n/d) � n/d , or equivalently, if n/d
is a divisor of h. The other results follow easily from (iii). �

We remark that the proof of Theorem 5 (iii) is based on the proof of Lemma 3.17 in [17]
which dealswith a similar property for the order of an arbitrary polynomial f (x) ∈ GF(q)[x],
f (0) �� 0, of positive degree. We also notice that (e, q) � (kn, q) � 1, due to (3) and the fact
that k is a divisor of q − 1, and so xe − 1 has no multiple zeros. The following corollary is
based on the fact that if α is a zero of xn − λ, then α j is a zero of xn − λ j for 0 ≤ j ≤ k − 1.
Together with Theorem 5 (ii) this yields the following result.

Corollary 6 Let j be some integer with 0 ≤ j ≤ k − 1. If H :� 〈ζ 〉, ζ :� αk , with α a zero
of xn − λ of order kn, is the uniquely determined subgroup of G :� 〈α〉 of order n, then the
cosets of H in G are Hj � α j H and Hj consists of all n zeros α jζ i , 0 ≤ i ≤ n − 1, of the
polynomial xn − λ j .

Theorem 7 Let g(x) be a polynomial dividing the polynomial xn − λ of order e(� kn). If
eλ(x) is the idempotent generator of the λ-constacyclic code 〈g(x)〉λ in Rn,q,λ and e(x) the
idempotent generator of the cyclic code 〈g(x)〉 in Re,q (:� Re,q,1), then eλ(x) � e(x) mod
xn − λ.

Proof If hλ(x) and h(x) denote the check polynomials of g(x) in Rn,q,λ and in Re,q

respectively, we can write (xn − λ)h(x) � (xe − 1)hλ(x). Taking derivatives on both
sides of this equality, applying Theorem 3 (i) and dividing by xn − λ, yields the rela-
tion kne(x) + nxnt(x) � nλt(x)eλ(x) + knxe mod xe − 1, with the polynomial t(x) :�
xe − 1/xn − λ � λ−1∑k−1

i�0

(
xn
λ

)i
. Since xn − λ divides xe − 1, the above equality also

holds modulo xn − λ. Substituting xn � λ and xe � 1 then gives modulo xn − λ that
t(x) � k/λ and next eλ(x) � e(x). �

4 Generalization of cyclotomic cosets and cyclonomials

From standard results on cyclotomic cosets (cf. [17]) it is well known that the zeros of any
irreducible factor of xn − 1 can be written as ζ t , ζ tq , . . . , ζ tqmt−1

for some integer t , where
ζ is a primitive nth root of unity in some extension field of GF(q), while mt is the degree of
that polynomial. So, by taking these integers t as elements of the index set T n,q (:� T n,q,1),
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we establish a one-one correspondence between the irreducible polynomials P1
t (x) and the

q-cyclotomic cosets mod n

Cn,q
t � (t, tq, . . . , tqmt−1), (4)

where mt is the smallest positive integer which satisfies t(qmt − 1) � 0 mod n (cf. also
[25]). In the next subsection we shall generalize this correspondence for those irreducible
polynomials which play a role in constacyclotomic cases, i.e. when they are divisors of xn−λ,
λ �� 1.

4.1 Constacyclotomic cosets Cn,q,�t

We introduce the integer l :� (q − 1)/k, and we define ordered subsets of {0, 1, . . . , n − 1}
as follows.

Definition 7 For any triple of parameters n, q and λ satisfying condition (3), the set

Cn,q,λ
t :�

(
c0(� t), c1, . . . , cmλ

t −1

)
, (5)

ci+1 � ciq + l mod n, 0 ≤ i < mλ
t − 1, (6)

where mλ
t is the smallest positive integer satisfying cmλ

t −1q + l � c0, is called a (q-) consta-
cyclotomic coset modulo n.

Next, we shall derive a number of properties of constacyclotomic cosets which we shall
need in the remaining sections. In the formulation of these properties we shall use the notation

aCn,q,λ
t +b :� aCn,q,λ

t +(b, b, . . . , b), which stands for
(
ac0 + b, ac1 + b, . . . , acmλ

t −1 + b
)
,

where all integers aci + b must be computed mod n.

Theorem 8 Let q be a prime power, n an integer with (n, q) � 1 and let λ ∈ GF(q)∗ have
order k. Let furthermore α be a zero of xn − λ ∈ GF(q)[x] of order kn and let ζ :� αk .

(i) The zeros of some irreducible polynomial Pλ
t (x) over GF(q) contained in xn − λ can

be written as αζ c where c runs through the set Cn,q,λ
t , while mλ

t is equal to the degree
of that polynomial.

(ii) The integers ci in (5) satisfy ci � tqi + (qi − 1)/k mod n, 0 ≤ i ≤ mλ
t − 1.

(iii) The sizemλ
t of C

n,q,λ
t is equal to the smallest positive integer which satisfies the relation

(kt + 1)(qm
λ
t − 1) � 0 mod kn.

(iv) For any integer b ≥ 0 and for all i , 0 ≤ i ≤ n − 1, one has kci+b + 1 � qb(kci + 1)
mod kn.

(v) Modulo n one has Cn,q,λ
0 � k−1(0, q − 1, q2 − 1, . . .), Cn,q,λ

0 + t(1, q, q2, . . .) �
mλ

0/m
λ
t ×Cn,q,λ

t and kCn,q,λ
t + 1 � mλ

t /mkt+1 ×Cn,q
kt+1, where the notation a ×Cn,q,λ

or a×Cn,q means that each integer of the relevant coset occurs a times in the multiset
at the left hand side of the equality.

Proof

(i) Let α be a zero of the irreducible factor Pλ(x) of xn − λ of degree m0. Then we can

write Pλ(x) � (x − α)(x − αq ) . . .
(
x − αqm0−1

)
. From Theorem 5 we know that

for all relevant i , we can write αqi � αζ ci for some integer ci ∈ {0, 1, . . . , n − 1}.
Hence, αqi+1 � αqζ qci � ααq−1ζ qci � αζ l+qci by using q − 1 � kl, and we obtain
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1206 A. J. van Zanten

ci+1 � l + qci for 0 ≤ i ≤ m0 − 2. Furthermore, since αqm0 � α, we also have
l + qcm0−1 � c0. So, the relations (4) and (5) with t � t0 � 0 define Pλ

t0 (x) :� Pλ(x).

Next, let t1 be the least integer in {0, 1, . . . , n − 1}\Cn,q,λ
0 and define Pλ

t1 (x) of degree
mt1 as the irreducible factor of xn − λ which has αζ t1 as zero. Similarly as before
it appears that this polynomial is defined by (4) and (5) with t � t1. Proceeding in
this way until all integers of {0, 1, . . . , n − 1} have been dealt with, we end up with
an index set T n,q,λ � {t0(� 0), t1, . . .} ⊂ {0, 1, . . . , n − 1}, such that any irreducible
polynomial contained in xn − λ can be indexed by some integer in T n,q,λ and vice
versa.

(ii) This relation can easily be proved by incomplete induction on i , 0 ≤ i ≤ mλ
t − 1.

(iii) From (ii) we have that cmλ
t

� l + tqm
λ
t + l

(
qm

λ
t −1 + · · · + q

)
� tqm

λ
t +

(
qm

λ
t − 1

)
/k.

By requiring cmλ
t

� t , we obtain the relation in (iii).

(iv) By iteration we get ci+b � l + lq + · · · + lqb−1 + qbci � (qb − 1)/k + qbci mod n.
Hence, kci+b + 1 �qb + kqbci mod kn.

(v) These relations follow immediately from (ii). �

Remark 9 We remark that putting λ � 1, and hence k � 1, l � q − 1 in (5) and (6), does
not provide us with the cyclotomic cosets (4). In terms of the integers of Cn,q,1

t � (c0(�
t), c1, . . . , cmt−1), the zeros of the corresponding irreducible polynomial can be written
as αζ c0 , αζ ci , …, αζ cmt−1 , with α � ζ as primitive nth root of unity. We call this the
α, ζ -representation. On the other hand, the integers of (3) give these zeros in the form ζ t ,
ζ tq , . . . ζ tqmt−1

, the ζ -representation. Application of Theorem 8 (v) with λ � 1 and k � 1,
shows that the two types of cosets are related by

Cn,q,1
t−1 + 1 � Cn,q

t . (7)

This relation implies that m1
t−1 � mt for all t ∈ T n,q . In the next we keep calling Cn,q,1

t ,
t ∈ T n,q,1, a constacyclotomic coset andCn,q

t , t ∈ T n,q , a cyclotomic coset. Furthermore, as
was already remarked in Theorem 8 (v), the set kCn,q,λ

t + 1 is, strictly speaking, an ordered
multiset such that any integer it contains occurs the same number of times. This is due to
the fact that all operations on the integers have to be carried out modulo n. Finally, we
emphasize that the third relation in Theorem 8 (v) does not always define a one-one mapping
from the set of constacyclotomic cosets to the set of cyclotomic cosets for λ �� 1. E.g.
4C14,5,2

0 + 1 � (1, 5, 11, 13, 9, 3) and 4C14,5,2
4 + 1 � (3, 1, 5, 11, 13, 9).

Next, we present a theoremwhich shows how to determine constacyclotomic cosetsCn,q,μ
t

for various μ ∈ GF(q)∗ in a way, other than by the recurrence relation (6) or by the rules
of Theorem 8 (ii). To this end we shall need the irreducible polynomial which has as zeros
the s-powers of the zeros of Pλ

t (x) (cf. Theorem 8), for t ∈ T n,q,λ and for s ≥ 0. This
polynomial is an irreducible factor of xn − λs , denoted by Pλs

ts (x).

Theorem 10 Under the conditions of Theorem 8, the following relations hold.

(i) In GF(q)[x] one has the factorization xkn − 1 �
k∏

s�1
(xn − λs).

(ii) The zeros of xn − λs , 1 ≤ s ≤ k, can be written as αki+s or, equivalently, as αsζ i ,
0 ≤ i ≤ n − 1.

(iii) The integers of the constacyclotomic coset Cn,q,λs

t � (c0(� t), c1, . . . , c
m−1
t ), m :�

mλs

t , satisfy the recurrence relation kci+1 + s � (kci + s)q mod kn, 0 ≤ i ≤ m − 1.
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(iv) For any s, 1 ≤ s ≤ k, the mapping of {0, 1, . . . , n − 1} into {0, 1, . . . , kn} defined
by i → ki + s yields a one-one correspondence between the constacyclotomic cosets

Cn,q,λs

t , t ∈ T n,q,λs , and the cyclotomic cosets Ckn,q
kt+s , kt + s ∈ T kn,q . For s � 0

the mapping yields a one-one correspondence between the cyclotomic cosets Cn,q
t ,

t ∈ T n,q , and the cyclotomic cosets Ckn,q
kt , kt ∈ T kn,q .

(v) For any s ≥ 0 the s-powers of the zeros αζ i , i ∈ Cn,q,λ
t , of the irreducible polynomial

Pλ
t (x), t ∈ T n,q,λ, are zeros of the irreducible polynomial Pλs

ts (x), where ts � (k, s)t
is an index in the α′, ζ ′ -representation with α′ � αs and ζ ′ � ζ s/(k,s). Each zero of
Pλs

ts (x) corresponds to mλ
t /m

λs

ts zeros of Pλ
t (x).

Proof

(i) The definition of the order of a polynomial implies that xn − λ |xkn − 1. So all zeros
of xn − λ lie in an extension field F of GF(q). For any s, 1 ≤ s ≤ k, we have that the
order of λs is a divisor of k, and so the order of xn − λs divides kn as well. Hence, all
kn zeros of these polynomials are in F. Now, (n, q) � 1, and since k |q − 1 we also
have (kn, q) � 1, which implies that the polynomials have no zeros in common. This
proves the factorization.

(ii) This follows immediately from Theorem 8 (i) and from the relation (αs)n � λs .
(iii) Let αsζ c0 , αsζ c1 , … , αsζ cm−1 be the zeros of the irreducible polynomial Pλs

t (x) of

degree m. Then we can write (αsζ c0 )q
i � αsζ ci , 0 ≤ i ≤ m − 1. So, (αsζ c0 )q

i+1 �
(αs)qζ qci �αsqαkqci �α(kci+s)q . On the other hand, (αsζ c0 )q

i+1 � αsζ ci+1 � αkci+1+s ,
and so kci+1 + s � (kci + s)q mod kn.

(iv) Let Ckn,q
a be some cyclotomic coset. Since 0 ≤ a ≤ kn − 1, there is precisely one way

to write a � kt + s, for any s with 1 ≤ s ≤ k. It follows that 0 ≤ t ≤ n − 1, and
so there is precisely one constacyclotomic coset Cn,q,λs

t which is mapped to Ckn,q
a . If

s � 0 the zeros of xkn − 1 are written as αkt , and hence the zeros of xn − λ0 � xn − 1
as αt , 0 ≤ t ≤ n − 1. This proves the second statement in (iv) (cf. also Remark 9).

(v) If αζ i is a zero of xn − λ, then αsζ is is a zero of xn − λs . Let αζ i be a zero of Pλ
t (x),

then αsζ is is a zero of some irreducible polynomial Pλs

ts (x), and this polynomial is the

same for all i ∈ Cn,q,λ
t . We put α′ :� αs and ζ ′ :� α′k/(k,s), where k/(k, s) is the order

of λs in GF(q), and so ζ ′ � αsk/(k,s) � ζ s/(k,s). It follows that the zeros of Pλs

ts (x) can

be written as α′ζ ′ j , j ∈ Cn,q,λs

ts , with ts � (k, s)t . Each integer in Cn,q,λs

ts corresponds

mλ
t /m

λs

ts times to some integer in Cn,q,λ
t . �

Example 11 Take n � 8, q � 5 and λ � 2. It follows that k :� ord5(2) � 4. Since x8 − 2
does not divide x16 − 1, its order is kn � 32. We have the following factorization

x32 − 1 �
k−1∏

s�0

(x8 − λs) � (x8 − 2)(x8 − 4)(x8 − 3)(x8 − 1).

The 5-cyclotomic cosets modulo 32 areC32,5
0 � (0),C32,5

1 � (1, 5, 25, 29, 17, 21, 9, 13),

C32,5
2 � (2, 10, 18, 26), C32,5

3 � (3, 15, 11, 23, 19, 31, 27, 7), C32,5
4 � (4, 20), C32,5

8 � (8),

C32,5
16 � (16), C32,5

12 � (12, 28) and C32,5
24 � (24).

The factorization of the polynomials x8−λs , s � 0 and s � 2, into irreducible polynomials
over GF(5) is respectively x8 − 1 � (x + 1)(x − 1)(x + 2)(x − 2)(x2 + 2)(x2 − 2) and
x8 − 4 �(x4 + 2)(x4 − 2), while x8 − 2 and x8 − 3 are irreducible themselves. Only C32,5

1
contains integers equal to 1(� s)modulo 4(� k). So, there is only one constacyclotomic coset
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1208 A. J. van Zanten

in the case s � 1. Subtracting 1 from the integers in C32,5
1 and next dividing the results by 4,

provides us with C8,5,2
0 � (0, 1, 6, 7, 4, 5, 2, 3) (cf. Theorem 10 (iv)). Similarly, for s � 2,

we obtainC8,5,4
0 � (0, 2, 4, 6) andC8,5,4

1 � (1, 7, 5, 3) fromC32,5
2 andC32,5

6 , respectively. In

the case s � 3, the cyclotomic coset C32,5
3 delivers C8,5,3

0 � (0, 3, 2, 5, 4, 7, 6, 1). For s � 4

we obtain from the cyclotomic cosets C32,5
i , i ∈ {0, 4, 8, 12, 16, 24}, the constacyclotomic

cosets C8,5,1
7 � (7), C8,5,1

0 � (0, 4), C8,5,1
1 � (1), C8,5,1

2 � (2, 6), C8,5,1
3 � (3) and

C8,5,1
5 � (5). Finally, for s � 0 we find the cyclotomic cosets C8,5

0 � (0), C8,5
1 � (1, 5),

C8,5
2 � (2), C8,5

3 � (3, 7), C8,5
4 � (4) and C8,5

6 � (6) from C32,5
0 , C32,5

4 , C32,5
8 , C32,5

12 ,

C32,5
16 and C32,5

24 . The cosets in the cases s � 4 and s � 0 are related by (7). To illustrate

Theorem 10 (v), we take the irreducible polynomial P8,5,2
0 (x) � x8 − 2. Let α be one of

its zeros of order 32. Then the complete set of zeros can be written as αζ i , i ∈ C8,5,2
0 , with

ζ � αk � α4. The 2-powers of these zeros are α2, α2ζ 2, α2ζ 4 and α2ζ 6, and each of them
occurs twice. These 2-powers are zeros of P22

(4,2).0(x) � P4
0 (x) � x4 − 2, since the zeros of

that polynomial are determined by C8,5,4
0 � (0, 2, 4, 6). To see this one has to apply relation

(6) with l ′ � (q − 1)/k′ � 4/2 � 2. �

Theorem 12 (i) Let r be a fixed integer with (r , n) � 1. Let a satisfy 0 ≤ a < n and
ka − r + 1 � 0 mod n/(l, n). Then Cn,q,λ

r t+a � rCn,q,λ
t + (a, a, . . .) with mrt+a � mt ,

and the mapping t → r t + a mod n of [0, n − 1] onto itself induces a permutation of

order at most (l, n) on the set
{
Cn,q,λ
t

∣∣∣t ∈ T n,q,λ
}
.

(ii) If a � n/(l, n), then Cn,q,λ
t+a � Cn,q,λ

t + (a, a, . . .), and the mapping t → t + a mod n

defines a permutation on {Cn,q,λ
t |t ∈ T n,q,λ} of order at most(l, n).

(iii) If a satisfies ka + 2 � 0 mod n/(l, n), then Cn,q,λ
−t+a � −Cn,q,λ

t + (a, a, . . .), and the

mapping t → −t + a mod n defines a permutation on the set
{
Cn,q,λ
t

∣∣∣t ∈ T n,q,λ
}
of

order at most 2.

Proof (i) We know from (6) that the elements of Cn,q,λ
t satisfy ci+1 � qci + l mod n for

0 ≤ i ≤ mλ
t −1. Now, we define di :� rci +amod n. If we require that the elements ofCn,q,λ

t
keep their mutual order under the mapping on Cλ

r t+a , we must have that di+1 � rci+1 + a
mod n. Consequently, di+1 − qdi − l �rci+1 + a − rqci − aq − l � (r − 1)l − a(q − 1) � 0
mod n, and the condition on a follows by applying q −1 � kl. Since (r , n) � 1, multiplying
the integers ci of C

n,q,λ
t by r does not alter the size of the coset, and neither does adding the

same integer a to all rci mod n.
(ii) and (iii) follow immediately from (i) by substituting respectively r � 1 and r � −1. �

We emphasize that the conditions on r are sufficient but not necessary for the properties
mentioned in Theorem 12. As the proof in (i) shows, they are necessary as well if one requires
that themutual order of the integers inCn,q,λ

t is not to be changed by themapping.An example
is provided by the constacyclotomic cosets C12,7,2

0 � (0, 2, 4, 6, 8, 10), C12,7,2
1 � (1, 9, 5)

and C12,7,2
3 � (3, 11, 7), with k � 3 and l � 2. The equation 3a + 2 � 0 mod 6 has no

solutions, but the mapping t → −t +2 defines a permutation of order 2 on the set of the three
constacyclotomic cosets, while it reverses the order of the integers. As preparation for Sect. 6
and 7, we notice that for λ � 1 and for λ � −1 an integer a as mentioned in Theorem 12
(iii) exists. In the cyclic case of λ � 1, we have k � 1 and hence a � −2 is a solution of the
equation in (iii). So, themapping t → −t−2mod n yields a permutation of order 1 or 2 on the
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set
{
Cn,q,1
t

∣∣∣t ∈ T n,q,1
}
. By applying (7), one can see that this is equivalent to a permutation

on the set
{
Cn,q
t

∣∣t ∈ T n,q
}
induced by t → n− t . In the negacyclic case of λ � −1, we have

k � 2 which provides us with a � −1 and the mapping t → n− t−1 which acts similarly on{
Cn,q,−1
t

∣∣∣t ∈ T n,q,−1
}
. We define Cn,q,1

t∗ :� Cn,q,1
n−t−2 as the conjugated constacyclotomic

coset of Cn,q,1
t , and equivalently Cn,q

t∗ :� Cn,q
n−t as the conjugated cyclotomic coset of Cn,q

t .

Similarly, Cn,q,−1
t∗ :� Cn,q,−1

n−t−1 is the conjugated constacyclotomic coset of Cn,q,−1
t .

4.2 Constacyclonomials cn,q,�s (x)

A second notion in the theory of cyclic codes that we shall generalize is that of cyclonomic
polynomial or cyclonomial (cf. e.g. [25]). To each cyclotomic coset Cn,q

s of size ms there
corresponds a cyclonomial

cn,q
s (x) :� xs + xsq + · · · + xsq

ms−1
mod xn − 1. (8)

Clearly, such a polynomial, shortly written as cs(x), (cf. Sect. 1) has the property

cs(x)
q � cs(x) mod xn − 1. (9)

In the following definition is s an integer of {0, 1, . . . , n − 1}, and λ an arbitrary element of
GF(q)∗.

Definition 13 The polynomial cλ
s (x) :� xs + xsq + · · · + xsq

mλ
s −1

mod xn − λ in Rn,q,λ is
called a monic constacyclonomial of size mλ

s , if it is not the zero polynomial and if mλ
s is the

smallest positive integer such that

(
xsq

mλ
s −1
)q

� xs mod xn − λ.

Since βq � β, for any β ∈ GF(q)∗, we could call any polynomial βcλ
s (x) with cλ

s (x)
satisfying the equality in Definition 13, a constacyclonomial. However, we shall reserve this
term for monic polynomials. For λ � 1 we obtain the usual cyclonomials. We identify these
two types of cyclonomials by writing c1s (x) ≡ cs(x). It will be obvious that if cλ

s (x) contains a
termβxt ,β ∈ GF(q)∗, then cλ

t (x) � β−1cλ
s (x), and so c

λ
t (x) and c

λ
s (x) are linearly dependent

polynomials. For fixed values of n and q , we shall use the notation Sn,q,λ for a maximal set
of indices of independent constacyclonomials. Usually, we take the lowest exponent of the x-
powers as index of a constacyclonomial, similarly as in the case of constacyclotomic cosets,
but actually one can take any of its exponents because of the above mentioned dependency.
Let s ∈ Sn,q,λ and assume that cλ

s (x) does not contain a term βxn−s . Then it follows easily
from Definition 13 that cλ

n−s(x) is a different constacyclonomial of the same size. The monic
constacyclonomials cλ

s (x) and cλ
n−s(x) are called a pair of conjugated constacyclonomials.

If cλ
s (x) does contain such a term βxn−s , it is called a self conjugated constacyclonomial. If

cλ
s (x), s ∈ Sn,q,λ, is not self conjugated, we assume that n − s is also in Sn,q,λ, even if it is
not the lowest exponent in the relevant polynomial.

Definition 14 The conjugate cλ∗
s (x) of the constacyclonomial cλ

s (x), s ∈ Sn,q,λ, is defined as
cλ∗
s (x) � cλ

n−s(x) if c
λ
s (x) is not self conjugated, while c

λ∗
s (x) � cλ

s (x) otherwise.
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1210 A. J. van Zanten

From the condition prior to its definition, it follows that cλ∗
s (x) is a (monic) constacy-

clonomial for all s ∈ Sn,q,λ. Next, we define the following subset of Rn,q,λ spanned by the
constacyclonomials with fixed values for n, q and λ

An,q,λ :�
⎧
⎨

⎩
∑

s∈Sn,q,λ

αsc
λ
s (x)|αs ∈ GF(q)

⎫
⎬

⎭. (10)

This set An,q,λ and its elements have the following simple properties.

Theorem 15 (i) The polynomial cλ
s (x)is a constacyclonomial of size m

λ
s if and only if it is

not the zero polynomial and if mλ
s is the smallest positive integer satisfying s(q

mλ
s −1) �

0 mod kn.
(ii) Any polynomial p(x) of An,q,λ satisfies p(x)q � p(x).
(iii) Let m be the smallest positive integer such that xsq

m � βxs mod xn − λ for some
β ∈ GF(q)∗. Then the polynomial p(x) �xs + xsq + · · ·+ xsq

lm−1
, l :� ordq (β), is the

constacyclonomial cλ
s (x) of size ms � m for β � 1, whereas p(x)is the zeropolynomial

for β �� 1.
(iv) A constacyclonomial has no proper subpolynomial which is also a constacyclonomial.
(v) If all nonzero coefficients of cλ

s (x) are changed into 1, one obtains the cyclonomial
cs(x).

(vi) By reduction modulo xn − λ of the cyclonomial ce,qs (x), e � kn, one obtains either a
constacyclonomial cλ

s′ (x), s
′ � s mod n, with mλ

s′ � ms, or one obtains the zeropoly-
nomial.

(vii) If a constacyclonomial cλ
s (x) is self conjugated, then either ms � 1 and s ∈ {0, n/2},

or ms is even and s(qms/2 + 1) � 0 mod n.

Proof (i) If the condition in Definition 13 holds we have that xs(q
mλ
s −1) � 1 mod xn − λ.

When writing s(qm
λ
s − 1) � an + b, with a ≥ 0, 0 ≤ b < n, it follows that xan+b �

λaxb � 1.Hence, k |a andb � 0.So, kn |s(qmλ
s −1) � 0.Conversely, if s(qm

λ
s −1) � 0

mod kn, then xs(q
mλ
s −1) � xckn � λck � 1.

(ii) This statement follows immediately from Definition 13.
(iii) From the given condition it follows that xsq

jm � β j xs , for 0 ≤ j ≤ l − 1. If β � 1, it
follows from Definition 13 that p(x) � cλ

s (x) and that ms � m. If β �� 1 the resulting
coefficient of xs is equal to 1 + β + β2 + · · · + βl−1 � 1− βl/1− β � 0. Thus p(x) is
the zeropolynomial.

(iv) If we define a subpolynomial of a polynomial p(x) as a polynomial not equal to the
zero polynomial or to p(x) itself and such that all its terms are also terms of p(x), then
the statement is an immediate consequence of Definition 13.

(v) The first term of both polynomials cλ
s (x) and cs(x) is xs . Each term of cn,q,λ

s (x) is
obtained from the previous one ai xci by changing it into aiλdi xci+1 where di � [qci/n],
while xci+1 is the next term in cn,q

s (x). The statement now follows immediately.
(vi) It is clear that xs mod xn −λ is equal to αxs

′
, with s′ � s mod n, for some α ∈ GF(q).

Furthermore, it follows from the definition of ce,qs (x) that every term in ce,qs (x) mod
xn − λ is equal to the qth power of its predecessor and that αxs

′ � xsq
ms mod xn − λ,

though ms need not be the smallest integer with this property. The result now follows
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from Definition 13 and part (iii). (vii) If cλ
s (x) � cλ

n−s(x), then also cs(x) � cn−s(x) by
(v), and so the cyclotomic cosets Cn,q

s and Cn,q
n−s are identical. Hence, sq

i and (n− s)qi

are both in Cn,q
s for all relevant values of i . So, the elements of Cn,q

s occur in pairs
unless s � n − s mod n. It follows that either s � 0 or s � n/2 and so ms � 1, or
sq j � n − s mod n for some minimal integer j > 0. Hence, s(q j + 1) � 0 mod n, and
ms � 2 j . The only-if-part of the statement is obvious. �

We remark that as a consequence of Theorem 15 (v) the number of constacyclonomials
is at most equal to the number of cyclonomials cs(x), for fixed values of cλ

s (x)n, q and λ. It
appears that for λ �� 1 the first number is the smaller one in many cases.

4.3 A bilinear form in Rn,q,�

In this subsection we present a number of properties of constacyclonomials which they share
with cyclonomials. To this end we introduce a bilinear form (,)λ in Rn,q,λ, while a polynomial
p(x) occasionally will be denoted by p in this context.

Definition 16 For every pair of elements p(x) and q(x) of Rn,q,λ a bilinear form

(p, q)λ :�
n−1∑

i�0

p(αζ i )q(αζ i ), (11)

is defined, where α is a zero of xn − λ of order kn and ζ a primitive nth root of unity.

One can easily verify that this definition really yields a bilinear form in Rn,q,λ with values
which do not depend on the choice ofα and ζ . In the next theorem the irreducible polynomials
Pλ
t (x) introduced in Eq. (1) will play a role. We know that the degree of Pλ

t (x), t ∈ T n,q,λ,

is equal to mλ
t being the size of the constacyclotomic coset Cn,q,λ

t . The coefficient of its one

but highest power xm
λ
t −1 is denoted by pn,q,λ

t or shortly by pλ
t (remember the conventions

mentioned in Sect. 1). Furthermore, we remind the reader of the fact that the size of the
constacyclonomial cλ

s (x), s ∈ Sn,q,λ, and also of the cyclotomic coset Cn,q
s is equal to ms .

In the next theorem and its proof we shall show that the set An,q,λ of polynomials (10) is an
algebra and that the constacyclonomials cλ

s (x) constitute an orthogonal basis of An,q,λ for
fixed values of n, q and λ.

Theorem 17 (Orthogonal basis of constacyclonomials) Let α be a zero of xn − λ of order
kn, where k is the order of λ in GF(q), and let ζ :� αk .

(i) The set An,q,λ is an algebra over GF(q)with basis
{
cλ
s (x)

∣∣s ∈ Sn,q,λ
}
, and it consists

of all polynomials p(x) ∈ Rn,q,λ which satisfy the relation p(x)q � p(x).
(ii) For any s ∈ Sn,q,λ\{0}, and for any j one has

∑n−1
i�0 cλ

s (α
jζ i ) � 0, while∑n−1

i�0 cλ
0 (α

jζ i ) � n.
(iii) With respect to the bilinear form (11), the constacyclonomials cλ

s (x), s ∈ Sn,q,λ, form
an orthogonal basis of An,q,λ, such that for any pair j, k ∈ Sn,q,λ one has (cλ∗

j , cλ
k )λ �

nm jλ
a j δ j,k , with a j � j(q[m j /2] + 1)/n if cλ

j (x) is self conjugated, while a j � 1 if

cλ
j (x) is not self conjugated.

Proof (i) By definition An,q,λ is spanned by the constacyclonomials cλ
s (x), s ∈ Sn,q,λ. All

polynomials p(x)∈ An,q,λ satisfy p(x)q � p(x) and An,q,λ is a vector space. To see
this in detail one should apply the property (βp1(x) + γ p2(x))q � βp1(x)q + γ p2(x)q
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1212 A. J. van Zanten

for all β, γ ∈ GF(q). An exhaustive construction of constacyclonomials by applying
Definition 13 for fixed values of n, q and λ, shows that together these polynomials
contain any power xi , 0 ≤ i ≤ n − 1, at most once. So, they are independent and
they constitute a basis of An,q,λ. On the other hand, let p(x) ∈ Rn,q,λ be a polynomial
such that p(x)q � p(x), and let βxs be one of its terms. It follows from the exhaustive
construction that there is precisely one constacyclonomial which contains the x-power
xs . Bymultiplyingwith an appropriate factor and adjusting its label, wemay denote this
polynomial by cλ

s (x). Now, p1(x) :� p(x)− βcn,q,λ
s (x) also satisfies p1(x)q � p1(x),

and sowe can continue this process, leading to p2(x) :� p(x)−βcn,q,λ
s (x)−γ cn,q,λ

u (x).
Proceeding in this way, we finally get the zeropolynomial. We conclude that p(x) �
βcn,q,λ

s (x) + γ cn,q,λ
u (x) + · · · ∈ An,q,λ. That An,q,λ is closed under multiplication is a

consequence of the relation (p1(x)p2(x))q � p1(x)p2(x).
(ii) If s �� 0, the polynomial cλ

s (x) is a sum of terms αl xl , αl ∈ GF(q)∗, where l runs
through a subset U of { 1, 2, . . . , n − 1}. So, any term αl xl occurring in cλ

s (x) con-
tributes to the sum

∑n−1
i�0 cλ

s (α
jζ i ) an amount of αlα

jl (1 + ζ l + · · · + ζ (n−1)l ), which is
equal to zero for all l ∈ U . If s � 0, one obtains

∑n−1
i�0 cλ

0 (α
jζ i ) � 1 + 1 + · · · + 1 � n.

(iii) Since An,q,λ is a GF(q)-algebra, we may write cn,q,λ∗
j (x)cn,q,λ

k (x) �
∑

s∈Sn,q,λ αsc
n,q,λ
s (x) mod xn − λ, αs ∈ GF(q). So, the bilinear form (11) yields

(cλ∗
j , cλ

k )λ � (cλ
n− j , c

λ
k )λ �∑s∈Sn,q,λ

∑n−1
i�0 αscλ

s (αζ i ). Assume that cλ
j (x) is not self

conjugated. If k �� j it is obvious that α0 � 0, and hence by (ii) we have (cλ∗
j , cλ

k )λ � 0.

If k � j , we have cλ∗
j (x)cλ

k (x) � (xn− j + x (n− j)q + · · · + x (n− j)qm j−1
)(x j + x jq + · · · +

x jqm j−1
) mod xn − λ. Here we used mn− j � m j . So, the coefficient of x0 in the rhs is

equal to λ+λq +· · ·+λq
m j−1 � m jλ. Hence, the result in this case is (cλ∗

j , cλ
j )λ � nm jλ,

since
∑n−1

i�0 cλ
0 (αζ i ) � n because of part (ii) of this theorem.

Next, we assume that cλ
j (x) is self conjugated, and so (cλ∗

j , cλ
k )λ � (cλ

j , c
λ
k )λ. Like

before we may conclude that for k �� j the rhs is equal to 0, since the inverses of the
x-powers in cλ

j (x) are in c
λ
j (x) itself and not in c

λ
k (x). Let k � j . Since cλ

j (x) is assumed

to be self conjugated, it contains pairs of terms x jqi and x (n− j)qi . Hence,m j is even and
j(qm j /2 + 1) � 0 mod n, or m j � 1 and j ∈ {0, n/2}. Consequently, if m j is even, the
polynomial cλ

j (x) contains the term λa−1xn− j � λax− j with a j :� j(qm j /2 +1)/n. So,

in the product (x j +x jq +· · ·+λax− j +λaq x− jq +· · ·)(x j +x jq +· · ·+λax− j +λaq x− jq +

· · ·), the coefficient of x0 is equal to λa + λaq + · · · + λaq
m j−1 � m jλ

a , and the result
follows in the same way as before. The case j � 0, m0 � 1 is covered by the general
result with a0 � 0, while for j � n/2, mn/2=1 we have an/2 � n

2 (q
[1/2] + 1)/n � 1

which yields also the correct answer. �

5 An orthogonal transformationmatrix

In this section we shall show that the primitive idempotents θt (x), t ∈ T n,q,λ, form an
alternative orthogonal basis for An,q,λ. It then follows that the transformationmatrix between
this basis and the orthogonal basis of constacyclonomials is an orthogonal matrix.
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5.1 An orthogonal basis of primitive idempotent polynomials

Theorem 18 (Orthogonal basis of primitive idempotents)

(i) With respect to the bilinear form (11) the primitive idempotents θt (x), t ∈ T n,q,λ, form
an orthogonal GF(q)-basis of the vector space An,q,λ, satisfying (θt , θu)λ � mλ

t δt,u
for all t ∈ T n,q,λ.

(ii) The number n0 of irreducible polynomials Pλ
t (x) and the number of primitive idem-

potents θt (x), t ∈ T n,q,λ, are both equal to the number of constacyclonomials cλ
s (x),

s ∈ Sn,q,λ.

Proof (i) From their definition we know θt (x)2 � θ (x), and hence θt (x)q � θt (x) for all
t ∈ T n,q,λ. So, all θt (x) belong to An,q,λ by Theorem 15 (ii). From Theorem 2 (ii) and
Theorem 8 (i) it follows that θt (αζ i ) is equal to 1 if i ∈ Cn,q,λ

t and equal to 0 otherwise.
Hence, (θt , θu)λ � ∑n−1

i�0 θt (αζ i )θu(αζ i ) is equal to 0 for t �� u and equal to mλ
t for

t � u. To show that An,q,λ is spanned by the idempotent polynomials θt (x), t ∈ T n,q,λ,
we assume that p(x) ∈ An,q,λ is orthogonal to all θt (x). So,

∑n−1
i�0 θt (αζ i )p(αζ i ) � 0

for all t ∈ T n,q,λ. ApplyingTheorem2 (ii) then yields
∑

i∈Cn,q,λ
t

p(αζ i ) � 0, t ∈ T n,q,λ.

From Theorem 15 (ii) we have that p(x)q � p(x), or equivalently p(xq ) � p(x). Since
for any pair i, j ∈ Cn,q,λ

t there is a positive integer a such that αζ i � (αζ j )q
a
, we can

write
∑

i∈Cn,q,λ
t

p(αζ i ) � mλ
t p(αζ j ) for some j ∈ Cn,q,λ

t and for all t ∈ T n,q,λ. It

follows that p(αζ i ) � 0 for 0 ≤ i ≤ n − 1, and since the degree of p(x) is less than n,
we conclude that p(x) � 0. Hence, the polynomials θt (x) form an orthogonal basis of
An,q,λ.

(ii) Since the basis of primitive idempotents θt (x), t ∈ T n,q,λ, and the basis of constacy-
clonomials cλ

s (x), s ∈ Sn,q,λ, must have the same number of elements, it follows that
n0 :� ∣∣T n,q,λ

∣∣ � ∣∣Sn,q,λ
∣∣ (cf. also Theorem 5 (i)). Furthermore, there is a one-one

correspondence between the primitive idempotent θt (x) and the irreducible polynomial
Pλ
t (x) with zeros αζ t for t ∈ T n,q,λ. �

Since the constacyclonomials constitute an orthogonal basis for An,q,λ, each element
p ∈ An,q,λ can be developed as (cf. Theorem 17 (iii))

p(x) �
∑

s∈Sn,q,λ

ξsc
λ
s (x), ξs � (cλ∗

s , p)λ/nmsλ
as . (12)

In particular we can write for the primitive idempotent θt (x), t ∈ T λ, the expression

θt (x) �
∑

s∈Sn,q,λ

ξ ts c
λ
s (x), ξ ts � (cλ∗

s , θt )λ/nmsλ
as . (13)

Theorem 19 (Orthogonality relations for primitive idempotents)

(i) Let μs,t stand for the sum of the s-powers of the zeros of Pλ
t (x), for s ∈ Sn,q,λ and

t ∈ T n,q,λ . Then the coefficients of the idempotent θt (x) can be written as ξ ts �
μs,t/nλas when cλ

s (x) is self conjugated, and as ξ ts � μn−s,t/nλas when cλ
s (x)is not

self conjugated.
(ii) The sum μs,t can be written in terms of irreducible polynomials as μs,t �

−mλ
t p

λs

(k,s)t/m
λs

(k,s)t .
(iii) If ws :� msλ

as , then n
∑

s∈Sn,q,λ
ws
mλ
t
ξ ts ξ

u
n−s � δt,u and n

∑
t∈T n,q,λ

ws
mλ
t
ξ ts ξ

t
n−r � δs,r

for t, u ∈ T n,q,λ and s, r ∈ Sn,q,λ.
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1214 A. J. van Zanten

Proof (i) We know that θλ
t (αζ i ) is equal to 1 if αζ i is a zero of the irreducible

polynomial Pλ
t (x), while it is equal to 0 otherwise. Let cλ

s (x) be self conjugated.

Then cλ∗
s (αζ i ) � cλ

s (αζ i )=(αζ i )s + (αζ i )sq + (αζ i )sq
2 · · ·, and hence (cλ∗

s , θλ
t )λ �∑n−1

i�0 cλ
s (αζ i )θλ

t (αζ i ) �∑i (αζ i )s +
∑

i (αζ i )sq +
∑

i (αζ i )sq
2
+ · · ·, where the sum-

mation indices i in the ms terms of the rhs run through the set Cn,q,λ
t . Since αζ i

is a zero of Pλ
t (x), we have that (αζ i )q

j
is also a zero of Pλ

t (x) and we can write

(αζ i )q
j � αζ i ′, i ′ ∈ Cn,q,λ

t .The mapping i → i ′ is one-to-one, and so the ms sum-
mations are all equal to

∑
i∈Cn,q,λ

t
(αζ i )s . The individual terms in this summation are

the s -powers of the zeros of Pλ
t (x), and they are zeros themselves of some irreducible

polynomial Pλs

ts (x). So, ξ ts � msμs,t/nmsλ
as = μs,t/nλas . If cλ

s (x) is not self con-
jugated, we have cλ∗

s (x) � cλ
n−s(x) . The result then follows in a similar way and by

using an−s � as � 1 in this case.
(ii) This follows immediately from Theorem 10 (v).
(iii) Substituting the given expressions yields (θt , θu)λ � ∑

s,s′ ξ
t
s ξ

u
s′ (c

λ
s , c

λ
s′ )λ=∑

s∈Sn,q,λ ξ ts ξ
u
n−s(c

λ
s , c

λ
n−s)λ � n

∑
s∈Sn,q,λ msλ

as ξ ts ξ
u
n−s , by applying Theorem 17 (iii).

By putting ws � msλ
as the first relation follows. Combining the expression for ξ ts in

(i) with the expression in Theorem 17 (iii) provides us with nwsξ
t
s � mλ

t c
λ
n−s(αζ t ).

Hence, n2wswr
∑

t∈T n,q,λ
1
mλ
t
ξ ts ξ

t
r � ∑n−1

i�0 cλ
n−s(αζ i )cλ

n−r (αζ i ) � nwsδs,n−r , again

by applying Theorem 17 (iii). The second relation follows by replacing r by n − r . �

We remind the reader that all integers which occur in Theorem 19 are to be taken in
GF(q). In case that a denominator mi or mλ

t is equal to zero modulo q , one must consider
this variable in connection with the numerator of the fraction to which it belongs to get an

equality which makes sense. E.g. the fraction wsξ
t
s

mλ
t

� msμs,t

nmλ
t

in (iii) appears to be a well

defined integer by applying (ii). Another remark is that for q � 2 and odd n, Theorem 19
(i) delivers the well-known result for primitive idempotents in the binary case [18, Ch. 8,
Theorem 6].

5.2 Idempotent tables Ξn,q,λ and Mn,q,λ

We shall reformulate now the orthogonality relations of Theorem 19 (iii) in terms of
matrices.

Definition 20 (Definition of primitive idempotent table for constacyclic codes) The n0 × n0-
matrix Ξn,q,λover GF(q) has elements Ξ

n,q,λ
s,t :� ξ ts , s ∈ Sn,q,λ, t ∈ T n,q,λ. The adjoint

matrix Ξn,q,λ∗ is the matrix with elements Ξ
n,q,λ∗
s,t :� ws

mλ
t
ξ tn−s .

Theorem 21

(i) Ξn,q,λΞn,q,λ∗ � Ξn,q,λ∗Ξn,q,λ � nI .

(ii) Let e(x) � ∑
t∈T n,q,λ ηtθt (x), be the idempotent generator of some constacyclic code

Cn,q,λ, and let η � (η0, η1, . . . , ηn0−1)T ∈ GF(q)n0 . Then e(x) � ∑
s∈Sn,q,λ ξscλ

s (x),
ξ � (ξ0, ξ1, . . . , ξn0−1)T� n−1Ξn,q,λ∗η.

The next simple example will enable the reader to verify all properties stated in Theorems
18 and 19.

Example 22 Let n � 12, q � 7 and λ � 2. Hence, k � 3 and l � 2.
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The binomial x12 − 2 can be factorized into three irreducible polynomials over GF(7) as
x12−2 � (x6−3)(x3 +2)(x3−2). Let α be a zero of x6−3 of order 36. The zeros of x12−2
can be written as αζ i , 0 ≤ i < 12, with ζ � α3. The three constacyclonomials in this case
are C12,7,2

0 � (0, 2, 4, 6, 8, 10), C12,7,2
1 � (1, 9, 5) and C12,7,2

3 � (3, 11, 7). Since α12 � 2,
we have (αζ 1)3 � α12 � 2 and (αζ 3)3 � α30 � 5, and so we can index the irreducible
factors as P2

0 (x) � x6 − 3, P2
1 (x) � x3 − 2 and P2

3 (x) � x3 + 2. Though there are nine

cyclotomic cosets C12,7
s in this case, only three of them, i.e. C12,7

0 � (0), C12,7
3 � (3, 9) and

C12,7
6 � (6), give rise to a constacyclonomial c2s (x) :� c12,7,2s (x), according to Theorem 18

(ii). These three constacyclonomials are c20(x) � 1, c23(x) � x3 + 2x9 and c126 (x) � x6, and
we define S12,7,2 :� {0, 3, 6}. There are also three primitive idempotents θt (x), t ∈ T 12,7,2,
with T 12,7,2 � {0, 1, 3}. By applying the general expression of Theorem 3 (ii), we find
θ0(x) � −x6 + 4, θ1(x) � 2x9 + 4x6 + x3 + 2 and θ3(x) � −2x9 + 4x6 − x3 + 2. These
expressions, together with (13), yield the transformation matrix

Ξ12,7,2 �
⎡

⎣
4 2 2
0 1 6
6 4 4

⎤

⎦.

The rows are indexed by respectively 0, 3, 6, the integers of S12,7,2, and the columns by 0,
1, 3, the integers of T 12,7,2. We collect the weights ws(� msλ

as ), s ∈ S12,7,2, in the weight
vector σ � (1, 1, 2) ∈ GF(7)3, and similarly the weights 1/mt , t ∈ T 12,7,2, in the weight
vector τ � (6, 5, 5) ∈ GF(7)3. With the help of these vectors, one can easily verify in
this case the orthogonality relations of Theorem 19 (iii). We also present the closely related
matrix M12,7,2, the elements μs,t of which are the sums of the s-powers of the zeros of
the irreducible polynomials P2

t (x). Since the three constacyclonomials are self conjugated,
M12,7,2 is obtained by multiplying the rows of Ξ12,7,2 by nλas for s equal to 0, 3 and 6. With
a0 � 0, a3 � 2 and a6 � 1, we get

M12,7,2 �
⎡

⎣
6 3 3
0 6 1
4 5 5

⎤

⎦.

One can also produce this result by applying Theorems 19 (ii) and 10 (v), or by determining
the sums μs,t straightforwardly. Apart from the polynomials P2

t (x), the relevant irreducible

polynomials to carry this out are P20
0 (x) � x − 1, P23

0 (x) � x2 + 4, P26
0 (x) � x − 3, P20

3 �
x +1, P23

3 (x) � x −2, P26
3 (x) � x +3, P20

9 (x) � x +1, P23
9 (x) � x +2 and P26

9 (x) � x +3.

Notice that e.g. P20
0 (x) and P23

0 (x), though 20 � 23 � 1 inGF(7), are different polynomials,
due to the representation of their zeros as defined in Theorem 10 (v). �

We introduced Ξn,q,λ as the transformation matrix from one orthogonal basis to another.
However, because of its orthogonality over GF(q), we could equally well consider Ξn,q,λ,
for any relevant triple (n, q, λ), as a primitive idempotent table, (shortly idempotent table)
resembling the irreducible character tables for finite groups (cf. e.g. [7, 13]). In this picture the
columns of the tableΞn,q,λ, which represent the primitive idempotentswith labels t ∈ T n,q,λ,
being the indices of the constacyclotomic cosetsCn,q,λ

t , correspond to irreducible characters.
The labels s ∈ Sn,q,λ of the rows are the indices of those cyclotomic cosetsCn,q

s which afford a
constacyclonomial. These constacyclonomials or these cosets can be seen as the counterparts
of the classes of conjugated elements in a finite group. Instead of Ξn,q,λ, we shall mostly
consider the matrix Mn,q,λ (e.g. in Example 22) with elements

μs,t � nλasΞ
n,q,λ
s∗,t , (14)
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1216 A. J. van Zanten

where s∗ � s when cλ
s (x) is self conjugated, and s

∗ � n − s otherwise (cf. Theorem 19 (i)).

6 The case of cyclic codes

The analogy between the two types of tables, mentioned in the previous section, is even
stronger for λ � 1, i.e. in the case of cyclic codes. In this section we shall take a closer look
at this case.

6.1 Primitive idempotent tablesMn,q

For the sake of simplicity, we choose the ζ -representation for the zeros of xn − 1 and omit
the parameter value λ � 1 (cf. Remark 9). So, instead of the sets Sn,q,1 and T n,q,1 we take
the index sets Sn,q and T n,q . These two sets can be chosen identical. In order to establish
more similarities with character tables, we defined in Sect. 4 Cn,q

t∗ :� Cn,q
−t as the conjugated

cyclotomic coset of Cn,q
t , t ∈ T n,q , where t∗ :� n − t is an integer in [0, n − 1]. It will be

obvious that mt∗ � mt . Correspondingly, we define Pt∗ (x) of degree mtas the conjugated
irreducible polynomial of Pt (x) and θt∗ (x) as the conjugated primitive idempotent of θt (x).
Actually, the polynomial Pt∗ (x) is the monic reciprocal of Pt (x), formally expressed by

Pt∗ (x) � Pt (0)
−1xmt Pt (1/x), (15)

which was introduced in Theorem 2 (vi) for any Pλ
t (x), t ∈ T n,q,λ. We say that Pt (x) is self

conjugated if Pt∗ (x) � Pt (x), and similarly that θt (x) is self conjugated if θt∗ (x) � θt (x).
We also introduced in Definition 14 the constacyclonomial cλ∗

s (x) as the conjugate of cλ
s (x) .

We nowwrite this polynomial as cλ
s∗(x), so s∗ � s ifCλ

s (x) is self conjugated and s∗ � n− s
otherwise. Because of these decisions and definitions, and because the s-powers of the zeros
of any irreducible polynomial contained in xn − 1 are the zeros of some other (or the same)
irreducible factor of xn − 1, we can simplify and extend the relations of Theorem 19 as
follows.

Theorem 23

(i) The coefficients of the idempotent θt (x) for a cyclic code can be written as ξ ts � μs,t/n,
where μs,t stands for the sum of the s-powers of the zeros of Pt (x), for all s ∈ Sn,q

and t ∈ T n,q .
(ii) The sum μs,t can be expressed in terms of irreducible polynomials as μs,t �

−mt pst/mst .
(iii) For all s, r ∈ Sn,q and for all t, u,∈ T n,q , one has ξ ts∗ � ξ t∗s .
(iv) n

∑
s∈Sn,q

ms
mt

ξ ts ξ
u
s∗ � δt,u and n

∑
t∈T n,q

ms
mt

ξ ts ξ
t
r∗ � δs,r .

(v) The number of self conjugated primitive idempotent generators is equal to the number
of self conjugated cyclonomials.

The expression in (ii) is immediately clear if one realizes that the s-powers of the zeros of
Pt (x) are zeros of Pst (x). This expression was already derived in [25] in a slightly different
way.The equality in (iii) follows from (i) and (ii) and by applyingmn−s � ms andmn−t � mt .
The statement in (v) is also obvious, since for all s ∈ Sn,q (� T n,q ) both polynomials cs(x)
and θs(x) are self conjugated if and only if the corresponding cyclotomic coset Cn,q

s is self
conjugated.

Theorem 24 (Primitive idempotent table for cyclic codes) The entriesμs,t of the tableMn,q ,
s ∈ Sn,q , t ∈ T n,q (� Sn,q ), satisfy the following properties.
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(i)
∑

s∈Sn,q
ms
mt

μs,tμs∗,u � nδt,u,
∑

t∈T n,q
ms
mt

μs,tμr∗,t � nδs,r ,

(ii) μs∗,t � μs,t∗,msμs,t � mtμt,s .
(iii) μs,0 � 1 for all s ∈ Sn,q and μ0,t � mt for all t ∈ T n,q .
(iv) If n is even μs,n/2 � (−1)s for all s ∈ Sn,q and μn/2,t � (−1)tmt for all t ∈ T n,q .

Proof (i) and (ii) These relations follow immediately from the orthogonality relations in
Theorem 19 (iii) and from the equality for μs,t in Theorem 19 (ii).

(iii) and (iv) follow from Theorem 19 (ii) by substituting respectively p0 � −1 and
pn/2 � 1. These values are yielded by the irreducible polynomials P0(x) � x − 1 and
Pn/2(x) � x + 1. �

The statements in Theorem 23 provide us with a link to the theory of idempotents of cyclic
codes as developed in [25]. The column ofMn,q with index 0 (its ‘first’ column) is the all-one
column, and so θ0 corresponds to the trivial character χ1 of a finite group G. Furthermore,
the row of Mn,q with index 0 (its ‘first’ row) contains all values mt , i.e. the sizes of the
cyclonomials. One could consider these values as counterparts of the dimensions (degrees)χ j

1
of the irreducible representations of a finite group . Now, the second orthogonality relation of
Theorem23 (i) gives for s � r � 0 that

∑
t∈T n,q,1 mt � n. It is tentative to see this elementary

equality as the counterpart of the well known Burnside relation
∑

j (χ
j
1 )

2 � n, which
results from a similar orthogonality relation for character tables. All these similarities with
irreducible character tables, strengthen the introduction of the name of primitive idempotent
table for the matrix Mn,q , and more in general for Mn,q,λ (cf. Sect. 5). We remark that
the similarities between the orthogonality relations and their consequences for idempotent
generators on the one hand and irreducible characters on the other, will not come as a surprise
if one realizes that both topics can be embedded in the general theory of idempotents for
semi-simple algebras (cf. [6, 23, 24]).

6.2 Blocks of conjugated cyclonomials and idempotents

Inspired by the previous remarks we introduce the following notions. Let r be an element
of the multiplicative group Un consisting of the positive integers modulo n which are prime
to n. It will be obvious that the set rCn,q

s is identical to the cyclotomic coset Cn,q
rs . We

shall call it the r -conjugate of Cn,q
s . Similarly, the cyclonomial crs(x) is the r -conjugate

of cs(x), and the irreducible polynomial Prt (x) the r -conjugate of Pt (x). Since (n, r ) � 1,
one easily proves that mrs � ms , that crs(x) and cs(x) have the same size, and that Prt (x)
and Pt (x) have the same degree. For r � n − 1 (� −1 mod n) we obtain the notions
of conjugated irreducible polynomial and conjugated cyclonomial which were introduced
already earlier in this text, and which correspond to the notion of conjugated cyclotomic
coset at the end of Sect. 4. We say that cs(x) is r -self conjugated if crs(x) � cs(x), and
that Pt (x) is r -self conjugated if Prt (x) � Pt (x). If θr t (x) is the primitive idempotent gen-
erated by Prt (x), then θr t (x) and θt (x) are also said to be r-conjugated, and if they are
equal θt (x) is said to be r-self conjugated. There exists a simple relationship between the
primitive idempotent θt (x) and its r-conjugate θr t (x). Let 1/r be the inverse of r in Un .
From Theorem 2 (ii) it follows that θt (x1/r ) � 1 for x � βr and β is a zero of Pt (x), and
that θt (x1/r ) � 0 for x � βr and β is a zero of Pu(x), u �� t . We conclude that for all
t ∈ T n,q

θr t (x) � θt (x
1/r ), r ∈ Un . (16)
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1218 A. J. van Zanten

Furthermore, the set of all cyclonomials is denoted by

Cyn,q :� {cs(x) |s ∈ Sn,q}, (17)

and the set of all primitive idempotent generators by

I dn,q :� {θt (x) |t ∈ T n,q}. (18)

Let H be the subgroup of Un generated by q . Remember that (n, q) � 1, so qi ∈ Un for all
i. It will be clear that the elements of H are the same as those of the cyclotomic coset Cn,q

1 ,
and so |H | � m1. Since |Un | � ϕ(n), the quotient group Un/H has a :� ϕ(n)/m1 elements
and we write

Un � Hr1 ∪ Hr2 ∪ · · · ∪ Hra , (19)

with Hri :� ri H , for 1 ≤ i ≤ a, and Hr1 :� H . The elements ri are determined up to powers
of q. Since the same holds for the integers in Sn,q , we can chose r1(� 1), r2, . . . , rd such
that they are the integers of the set Sn,q

1 Sn,q ∩Un . More generally, we define for each divisor
d ≤ n of n

Sn,q
d :� {

s
∣∣s ∈ Sn,q ,

∣∣(n, s) � d
}
. (20)

We remark that for any s ∈ Sn,q
d , any integer i ∈ Cn,q

s satisfies (n, i) � d , since (n, q) � 1 .
Hence, the cyclotomic cosets defined by (20) together contain all integers i ∈ [0, n−1] with
(n, i) � d , and so

Sn,q �
⋃

d

Sn,q
d . (21)

We also remind the reader that the elements of any cyclotomic coset Cn,q
i can be obtained

from the subgroup Cn,q
1 by applying

iCn,q
1 � m1

mi
× Cn,q

i . (22)

The expression in the rhs of (22) stands for the multiset where each integer of Cn,q
i occurs

m1/mi times (cf. also Theorem 8 (v)). The above lines show that Un induces a group G of
permutations on the set of cyclotomic cosets by means of the transformation Cn,q

s → Cn,q
rs ,

and hence, that Un also induces permutation groups G ′ and G ′′ acting on the sets Cyn,q

and I dn,q . These groups are isomorphic and the orbits of G ′ and G ′′ are called blocks of
cyclonomials and blocks of idempotents. The subgroup H of Un contains precisely those
elements which induce the identity permutation on these sets. Because T n,q is identical to
Sn,q , we define T n,q

d :� Sn,q
d for all d| n. For even n, there exists another permutation

group acting on the set of cyclotomic cosets, and hence on Cyn,q and I dn,q , induced by
i → i + n/2 mod n for all integers i ∈ {0, 1, . . . , n − 1}. One can easily verify that this
operation transforms Cn,q

s into Cn,q
s+n/2. The orbits of this group have size 2 or 1. In the first

case we shall speak of pairs of associated cyclotomic cosets, associated cyclonomials and
associated idempotents. In the second case all these objects are called self associated.

Theorem 25 The primitive idempotents for cyclic codes Cn,q , (n, q) � 1, have the following
properties.

(i) The blocks of cyclonomials can be identified as BCy
d � {cs(x) |s ∈ Sn,q

d } and the blocks
of idempotents as B Id

d � {θt (x) |t ∈ T n,q
d } for all d| n.
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(ii) The blocks BCy
d and BId

d both contain ϕ(n/d)/md elements, and the group Un/d acts
transitively on these blocks.

(iii) The components of the columns μ j and μl of the idempotent table Mn,q , j, l ∈ T n,q
d ,

form a permutation of each other, such that the components of μl with index in Sn,q
d ′

are a permutation of the similar components of μ j , for all d ′. The same holds for the
idempotent table Ξn,q .

(iv) The number of r-self conjugated primitive idempotents is equal to the number of r-
self conjugated cyclonomials for any r ∈ Un. The same holds for the number of self
associated idempotents and the number of self associated cyclonomials.

Proof (i) For all r ∈ Un we have that (n, s) � d implies (n, rs) � d . Hence, cs(x) implies
crs(x) ∈ BCy

d , and similarly θt (x) ∈ BId
d implies θr t (x) ∈ BId

d . Moreover, if s and s′
are both in Sn,q

d then certainly there is an integer r ∈ Un such that s′ � rs. So, cs(x)and

cs′ (x) belong to the same orbit ofG. This proves that the set BCy
d really is an orbit under

the action of G. The proof for BId
d is completely similar.

(ii) There areϕ(n/d) integers s, satisfying (n, s) � d and0 < s ≤ n. This follows immedia-
tely from the property that (n, s) � d if and only if (n/d, s/d) � 1. Hence, there are
ϕ(n/d)/md different cyclotomic cosets Cn,q

dri
, and they all have size md (cf. Eqs. (19)

and (22)). Because of the one-one correspondence between cyclotomic cosets on the
one hand and cyclonomials and idempotents on the other, the statement now follows.
Let i, j ∈ Sn,q

d . Then (n, i) � (n, j) � d , and hence (n/d, i/d) � (n/d, j/d) � 1.
SinceUn/d is a group, there exists an integer r ∈ Un/d such that ri/d � j/d mod n/d ,
and so ri � j mod n.

(iii) Take an index i ∈ Sn,q
d ′ , and so (n, i) � d ′. Since j and l are in Sn,q

d , the integer j/l is
in Un , and therefore (n, j/l) � 1 and (n, i j/l) � d ′. Hence, there is an index k ∈ Sn,q

d ′
such that i j � kl. Now m j � ml and so μi, j � −m j pi jmi j � −ml pklmkl � μk.l .
The equivalent relation for Ξn,q follows by applying Theorem 19 (i).

(iv) Both statements follow immediately from the fact that cs(x) as well as θs(x) is r-self
conjugated (self associated) if and only if Cn,q

s is r-self conjugated (self associated). �

We give an alternative proof for Theorem 25 (iii) which seems more suitable for general-
izations for values of λ > 1. If j, l ∈ T n,q

d , there exists an integer r ∈ Un such that r j � l.

From (16) it follows that θr j (x) � θ j (x1/r ) � ∑
s ξ

j
s cs(x1/r ) �∑s ξ

j
rscs(x). On the other

hand, we have θr j (x) � θl (x) � ∑
s ξ ls cs(x), and hence ξ

j
s � ξ

j
rs . Since s and rs are both

integers of Sn,q
d ′ for some d ′, the statement for Ξn,q now follows. Theorem 25 (iii) and (iv)

and Eq. (16) show that the explicit expression for just one primitive idempotent of some block
BId
d is sufficient to derive the expressions for all other idempotents which belong to the same

block. We remark that the corresponding polynomials Pt (x), t ∈ T n,q
d , are the irreducible

factors of the cyclotomic polynomial Φn/d (x) (cf. [17]). Finally, we present an example by
which one can verify this property and also all other properties mentioned in Theorems 24
and 25.

Example 26 We consider the case n � 16 and q � 5. The cyclotomic cosets are C16,5
0 � (0),

C16,5
1 � (1, 5, 9, 13), C16,5

2 � (2, 10), C16,5
3 � (3, 15, 11, 7), C16.5

4 � (4), C16,5
6 � (6, 14),

C16,5
8 � (8) and C16,5

12 � (12). Thus we have the index subsets S16,516 � {0}, S16,51 � {1, 3},
S16.52 � {2, 6}, S16,54 � {4, 12}, S16,58 � {8}. The relevant irreducible polynomials are
P0(x) � x − 1, P1(x) � x4 + 2, P3(x) � x4 + 3, P2(x) � x2 + 2, P6(x) � x2 + 3,
P4(x) � x + 2, P12(x) � x + 3 and P8(x) � x + 1.
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1220 A. J. van Zanten

By using the expressionμs,t � −mt pst/mst we are able to construct the idempotent table
M16,5. Its rows and column are labelled by the integers from the index set S16,5 � T 16,5 �
{0, 1, 3, 2, 6, 4, 12, 8}:

M16,5 �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 4 2 2 1 1 1
1 0 0 0 0 3 2 4
1 0 0 0 0 2 3 4
1 0 0 1 4 4 4 1
1 0 0 4 1 4 4 1
1 2 3 3 3 1 1 1
1 3 2 3 3 1 1 1
1 1 1 2 2 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It will be clear that there are five index subsets (20): S16,51 � {1, 3}, S16,52 � {2, 6}, S16,54 �
{4, 12}, S16,58 � {8}, S16,516 � {0}, and so there are five blocks BCy

i and five blocks BId
i ,

i ∈ {1, 2, 4, 8, 16}. Since ϕ(16)/m1 � ϕ(8)/m2 � ϕ(4)/m4 � 2, the blocks with index 1, 2
and 4 have size 2, and since ϕ(2)/m8 � ϕ(1)/m16 (� ϕ(1)/m0) � 1, the blocks with index
8 and 16 have size 1. �

7 The case of negacyclic codes

In this final section we focus on the class of negacyclic codes, so we take λ � −1 and k � 2.

7.1 Primitive idempotent tables Mn,q,−1

The zeros of the irreducible polynomial P−1
t (x) are written in the α, ζ -representation, i.e. as

αζ i , with ζ � α2 and i ∈ Cn,q,−1
t . Since for binary codes there is no distinction between

cyclic and negacyclic codes, we assume that q is odd. At the end of Sect. 4 we defined
Cn,q,−1
t∗ � Cn,q,−1

n−t−1 as the conjugated negacyclotomic coset of Cn,q,−1
t , t ∈ T n,q,−1. The

integer t∗ � n − t − 1 is an integer in [0, n − 1], and we assume that it is an element of
T n,q,−1. As a consequence of Theorem 12 (i) we have m−1

t∗ � m−1
t . Similarly as in the case

λ � 1, we define P−1
t∗ (x) as the conjugated irreducible polynomial of P−1

t (x) and θt∗ (x) as
the conjugated primitive idempotent of θt (x). Just as in the case λ � 1 in Sect. 6, P−1

t∗ (x) is
the monic reciprocal of P−1

t (x) (cf. Theorem 2 (vi)). We now present a number of properties
of the matrix elements μs,t of Mn,q,−1. According to Theorem 19 (i) these are equal to the
sums of the s-powers of the zeros of P−1

t (x). Similar properties for the matrix elements of
Ξn,q,−1 can be obtained by ξ ts � (−1)asμs,t/n.

Theorem 27 (Primitive idempotent table for negacyclic codes) The entries μs,t of the table
Mn,q,−1, s ∈ Sn,q,−1, t ∈ T n,q,−1, satisfy the following properties.

(i) 1
n

∑
s∈Sn,q,−1 (−1)as ms

m−1
t

μs,tμs∗,u � δt,u , 1
n

∑
t∈T n,q,−1 (−1)as ms

m−1
t

μs∗,tμr ,t � δs,r .

(ii) If s is odd, the sum μs,t can be written as μs,t � −m−1
t p−1

ts /m−1
ts , where ts �

st + (s − 1)/2 refers to the α, ζ -representation with ζ � α2 . If s is even, one can
write μs,t � −m−1

t p1ts /m
1
ts , where ts � 2t refers to the α′, ζ ′-representation with

α′ � αs , ζ ′ � α′.
(iii) For all t ∈ T n,q,−1 one has μ0,t � m−1

t , and if n is odd μs,(n−1)/2 � (−1)s .
(iv) For s∗ � n − s and t∗ � n − t − 1, one has μs∗,t � μs,t∗ and μs∗,t∗ � μs,t .
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Proof (i) and (ii) follow immediately from Theorem 19.
(iii) The sum of the 0th powers of the zeros of P−1

t (x) equals 1 + 1 + · · · + 1 � m−1
t . If n

is odd, the polynomial x + 1 is a divisor of xn + 1, and we write P−1
(n−1)/2(x) � x + 1, since

αζ (n−1)/2 � αn � −1.
(iv) If αζ t is a zero of P−1

t (x), then αζ n−t−1 is a zero of P−1
t∗ (x). Since ζ � α2, αn � −1

and ζ n � 1, we have that (αζ t )s∗ � (αζ t )n−s � −α−s−2st and (αζ t∗)s � (αζ n−t−1)s �
α−s−2st . Summing over all zeros of P−1

t (x) yieldsμs∗,t � μs,t∗. The second equality follows
by replacing t by t∗. �

In [25] it was shown, by a few examples, that in the case of cyclic codes the idempotent
table or parts of it can sometimes be determined without explicit knowledge of the irreducible
polynomials contained in xn − 1. Here, we shall show that the same is possible sometimes
for negacyclic codes.

Example 28 Wetaken � 9 andq � 5. For these valueswehave the following cyclic andnega-
cyclic cosets C9,5

0 � (0), C9,5
1 � (1, 5, 7, 8, 4, 2), C9,5

3 � (3, 6), C9,5,−1
0 � (0, 2, 3, 8, 6, 5),

C9,5,−1
1 � (1, 7), C9,5,−1

4 � (4). We take S9,5,−1 � {0, 1, 3}, T 9,5,−1 � {0, 1, 4}, while
m0 � 1, m1 � 6, m3 � 2, m−1

0 � 6, m−1
1 � 2, m−1

4 � 1. We label the rows of the tables
Ξ9,5,−1and M9,5,−1by 0, 1, 3 and their columns by 4, 1, 0. By applying Theorem 27 (iii) we
find for M9,5,−1as first row vector r0 � (1, 2, 1) and as third column vector t4 � (1, 0, 3)t .
Furthermore, we represent the second row by the vector r1 � (a, b, 0) and the third one by
r3 � (c, d, 3), with a, b, c, d ∈ GF(5). The weights 1/m−1

t , t ∈ T 9,5,−1, are collected in the
weight vector τ � (1, 3, 1) and the weights ws , s ∈ S9,5,−1, in σ � (1, 1, 2). The orthonor-
mality relations in Theorem 27 (i) now yield the set of equations a + b � 0, a2 + 3b2 � 4,
c + d � 0 and c2 + 3d2 � 3. This set has two solutions, i.e. c � 4, d � 3 and a � −b � ±1.
To settle the remaining question of the right sign of a and b, one needs one extra piece of
information, e.g. the coefficient of the one but highest power of x in the irreducible polyno-
mial P−1

1 (x) � x2 − x + 1. From its value one easily derives that a � −b � − 1. So, the
complete idempotent table now reads.

M9,5,−1 �
⎡

⎣
1 2 1
4 1 0
4 3 3

⎤

⎦.

Together with the negacyclonomials c−1
0 (x) � 1, c−1

1 (x) � x1 + x5 + x7 − x8 − x4 − x3,
c−1
3 (x) � x3−x6, and by using the relationΞ9,5,−1 � −M9,5,−1, one can obtain the explicit
expressions for the primitive idempotent generators.

7.2 Blocks of conjugated negacyclonomials and idempotents

In order to define r-conjugated negacyclonomials, negacyclotomic cosets and idempotent
generators, we first prove the following theorem.

Theorem 29

(i) Let r be some element of Un and let a ∈ {1, 2, . . . , n − 1} satisfy 2a � r − 1 mod n.
Then Cn,q,−1

r t+a � rCn,q,−1
t + a and m−1

r t+a � m−1
t for every t ∈ T n,q,−1.

(ii) The transformations Cn,q,−1
t → Cn,q,−1

r t+a , r ∈ Un, constitute a permutation group G
on the set of negacyclotomic cosets, while the subgroup H :� 〈q〉 of Un contains all
elements of Un which induce the identity permutation on that set.
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Proof The equation 2x � r −1 mod n has a unique solution (r −1)/2 if n is odd. If n is even,
there are two solutions which differ by n/2. We choose one of these as the integer a. Both
(i) and (ii) now follow immediately from Theorem 12, by taking k � 2, and by applying
Definition 7 with l � (q − 1)/2. �

We call Cn,q,−1
r t+a the r-conjugate of Cn,q,−1

t for any r ∈ Un . Consistently, the irreducible
polynomial P−1

r t+a(x) is called the r-conjugate of P−1
t (x) and the corresponding primitive

idempotent θr t+a(x) the r-conjugate of θt (x). For r � −1 one gets the normal conjugated
objects as defined earlier in this section. The definitions of r-self conjugateness are completely
similar to those in the case λ � 1. Analogously to Eq. (16), there exits a simple relationship
between θt (x) and its r-conjugate.

Theorem 30 Let 1/r be the inverse of r inUn and let the integer a be as defined in Theorem29.
Then for all t ∈ T n,q,−1 one has θr t+a(x) � θt (x1/r ) if and only if rv � 1 mod 2n, whereas
θr t+a(x) � θt (−x1/r )if and only if rv � 1 mod 2n, where v � 1/r mod n.

Proof If θr t+a(β) � 1, then β is a zero of P−1
r t+a(x), say β � αζ r t+a � αr (2t+1), where we

used ζ � α2. Let e be such that βe � αζ t � α2t+1, which implies that βe is a zero of P−1
t (x)

and θt (βe) � 1. The condition on the integer e is true if and only if αer (2t+1) � α2t+1 or,
equivalently, if and only if (er − 1)(2t + 1) � 0 mod 2n. If we require this to hold for all
t ∈ T n,q,−1, we must have e � 1/r mod n and er − 1 � 0 mod 2n. So, θr t+(r−1)/2(β) �
θt (β1/r ) � 1. If θr t+(r−1)/2(β) � 0, then β is a zero of P−1

u (x), u �� r t + (r − 1)/2, which
along similar lines leads to θr t+(r−1)/2(β) � θt (β1/r ) � 0. It follows from Theorem 2 (ii)
that the first equality of the Theorem has been proven now. Putting β � −αζ t � αn+2t+1

leads to (er − 1)(2t + 1) � 0 mod n for all t ∈ T n,q,−1, yielding the second equality. �

Next, we introduce the notation (cf. (17) and (18))

Cyn,q,−1 :� {c−1
s (x)|s ∈ Sn,q,−1} (23)

for the set of all negacyclonomials and

I dn,q,−1 :� {θt (x)|t ∈ T n,q,−1}. (24)

for the set of all primitive idempotent generators. Just like in Sect. 6, the group Un induces
a permutation group G ′ on the set (23), while the subgroup H :� 〈q〉 of Un contains all
elements which induce the identity permutation. Because of the one-one correspondence
between negacyclotomic cosets and irreducible polynomials, it follows from Theorem 29 (ii)
that Un also induces a permutation group G ′′ on the set I dn,q,−1 of (24).

We next define, as the negacyclic counterpart of (20), for each positive divisor of d ≤ n of n

T n,q,−1
d :� {t ∈ T n,q,−1|(n, 2t + 1) � d}. (25)

Underlying this definition, is that (n, 2t + 1) � d implies
(
n, 2t ′ + 1

) � d for t ′ :� tq +
(q−1)/2,making the particular choice of t, as index of some negacyclotomic coset, irrelevant
(cf. Eq. (6) with l � (q − 1)/2. It also makes clear that the union of negacyclotomic cosets
whose indices are in (25) contains all integers i ∈ [0, n−1] with (n, 2i +1) � d , and also that

T n,q,−1 �
⋃

d

T n,q,−1
d . (26)

Just as in Sect. 6, the orbits ofG ′′ in the set (24) are called blocks of idempotents. In Sect. 6 we
defined the transformationsCn,q

s → Cn,q
rs and correspondingly cs(x) → crs(x) for r ∈ Un . In
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the next we shall restrict the first transformation to those cyclotomic cosets which correspond
to a negacyclonomial c−1

s (x). For odd n this concerns allCn,q
s (cf. Theorem 13 (i) with k � 2),

but for even n this is not always true. Suppose c−1
s (x) is a negacyclonomial and let n be even.

Then r ∈ Un is odd, and by applying Theorem 13 (i) again, it appears that c−1
rs (x) is also a

negacyclonomial. So, for all n the transformation s → rs defines a permutation on the set
(23). The orbits are called blocks of negacyclonomials. We are ready now to formulate and
to prove the analogue of Theorem 25 for primitive idempotents of negacyclic codes.

Theorem 31 The primitive idempotents of the negacyclic code Cn,q,−1, with q odd and
(n, q) � 1, have the following properties.

(i) The blocks of negacyclonomials can be identified as BCy
d � {c−1

s (x)|s ∈ Sn,q,−1
d }, and

the blocks of primitive idempotents as B Id
d � {θt (x)|2t + 1 ∈ T n,q,−1

d } for all d|n.
(ii) The blocks BCy

d contain ϕ(n/d)/md elements, while the blocks B Id
d contain

ϕ(n/d)/m−1
(d−1)/2 elements for n odd, and 2ϕ(n/d)/m−1

(d−1)/2 for n even. The group
Un/d acts transitively on both types of blocks.

Proof (i) Take some integer s ∈ Sn,q,−1. Then we have for any r ∈ Un that rs ∈ Un ,
according to the arguments preceding this theorem. Since (n, r ) � 1, the condition
(n, s) � d implies (n, rs) � d . This proves the first statement. The second statement
follows from the lines preceding Eq. (26).

(ii) The size of the blocks BCy
d is derived in a similar way as Theorem 25 (ii). The negacy-

clotomic cosets with an index in T n,q,−1
d contain all integers i ∈ [0, n − 1] satisfying

(n, 2i + 1) � d . Now, the equation 2x + 1 � u has a unique solutions in Un for odd
n, while it has two solutions, differing by n/2, for even n. So, the total number of such
integers is equal to ϕ(n/d) if n is odd, and to 2ϕ(n/d) if n is even. Since all these integers
are contained in negacyclotomic cosets of size m−1

(d−1)/2 the results follow. �

Example 32 Let n � 20, q � 3 and λ � −1.

There are six negacyclotomic cosets, C20,3,−1
0 � (0, 1, 4, 13), C20,3,−1

2 � (2, 7),

C20,3,−1
3 � (3, 10, 11, 14), C20,3,−1

5 � (5, 16, 9, 8), C20,3,−1
6 � (6, 19, 18, 15) and

C20,3,−1
12 � (12, 17).
Now, P−1

0 (x) � x4 + x2 + x + 1 is an irreducible divisor of x20 + 1. Let α be a zero of
this polynomial of order 40. The other five irreducible factors are P−1

2 (x) � x2 − x − 1,
P−1
3 (x) � x4 + x2 − x + 1, P−1

5 (x) � x4 − x3 + x2 + 1, P−1
6 (x) � x4 + x3 + x2 + 1

and P−1
12 (x) � x2 − x − 1, which have respectively α5, α7, α11, α13 and α25 as zeros.

Furthermore, the six negacyclonomials are c−1
0 (x) � 1, c−1

1 (x) � x1 + x3 + x9 − x7,
c−1
5 (x) � x5 + x15, c−1

2 (x) � x2 + x6 + x18 + x14, c−1
4 (x) � x4 + x12 − x16 − x8 and

c−1
11 (x) � x11 − x13 + x19 + x17. It follows that we can define the index sets S20,3,−1 �

{0, 1, 2, 4, 5, 11} and T 20,3,−1 � {0, 2, 3, 5, 6, 12}. It will be obvious that c−1
1 (x) and c−1

11 (x)
are each other’s conjugate, while all other negacyclonomials are self conjugated. In order
to determine the elements of the table M20,3,−1, we also need the irreducible polynomials
contained in x20 − 1. These are P0(x) � x − 1, P1(x) � x4 − x2 + x + 1, P10(x) � x + 1,
P5(x) � x2 + 1, P4(x) � x4 + x3 + x2 + x + 1, P2(x) � x4 − x3 + x2 − x + 1 and
P11(x) � x4 + x3 − x +1. The indices refer to the ζ -representation of the zeros, based on the
zero ζ (� α2) of P1(x), which has order 20. By applying the rule that μs,t is equal to the sum
of the s-powers of the zeros of P−1

t (x) we find for the idempotent table M20,3,−1, the rows
of which are indexed respectively by 0, 1, 2, 4, 11, 5 and the columns by 0, 2, 3, 6, 12, 5.
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M20,3,−1 �

⎡

⎢⎢⎢⎢⎢⎢⎣

1 2 1 1 2 1
0 1 0 2 2 1
1 0 1 2 0 2
1 1 1 1 1 1
1 1 2 0 2 0
2 2 1 1 1 2

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Next, by using relation (14), we derive the related table

Ξ20,3,−1 �

⎡

⎢⎢⎢⎢⎢⎢⎣

2 1 2 2 1 2
1 1 2 0 2 0
1 0 1 2 0 2
2 2 2 2 2 2
0 1 0 2 2 1
2 2 1 1 1 2

⎤

⎥⎥⎥⎥⎥⎥⎦
.

We collect the weights ws , s ∈ S20,3,−1, in a weight vector σ � (1, 2, 2, 1, 2, 1) ∈
GF(3)6, and similarly the weights 1/m−1

t , t ∈ T 20,3,−1, in a weight vector τ �
(1, 2, 1, 1, 2, 1) ∈ GF(3)6. With the help of these vectors one easily can verify the orthog-
onality relations in this case. The columns of Ξ20,3,−1 provide us with the coefficients
ξ ts in the expressions θt (x) � ∑

s∈S20,3,−1 ξ ts c
−1
s (x) for the primitive idempotents. These

results are confirmed by the general method of Theorem 3, with h(x) :� P−1
t (x) and

g(x) � (x20 + 1)/h(x). There are five non-empty index subsets S20,3,−1
1 � {1, 11},

S20,3,−1
2 � {2}, S20,3,−1

4 � {4}, S20,3,−1
5 � {3} and S20,3,−1

20 � {0}, and so there are
that many blocks of negacyclonomials. On the other hand, there are two non-empty index
subsets T 20,3,−1

1 � {0, 3, 5, 6} and T 20,3,−1
5 � {2, 12}. Hence, there are only two blocks

of idempotents, i.e. BId
1 containing 2ϕ(20/1)/m−1

0 � 16/4 � 4 elements, and BId
5 with

2ϕ(20/5)/m−1
2 � 4/2 � 2 elements. Finally, we remark that there are four self conjugated

negacyclonomials, whereas there are no self conjugated negacyclotomic cosets and there-
fore no self conjugated idempotent generators. This observation shows that Theorem 25
(iv) is not always true in the negacyclic case. Finally, we illustrate Theorem 30 by two
small examples. For r � 11 the transformation t → r t + (r − 1)/2 yields the follow-
ing permutation of primitive idempotents θ0(x) → θ5(x), θ2(x) → θ2(x), θ3(x) → θ6(x),
θ6(x) → θ3(x), θ12(x) → θ12(x), θ5(x) → θ0(x). One can easily verify that the transfor-
mation θt (x) → θt (x11) gives the same permutation. One can accomplish this by applying
the relations c−1

s (x11) � c−1
s (x), s ∈ {0, 4, 5}, c−1

2 (x11) � −c−1
2 (x), c−1

1 (x11) � c−1
11 (x)and

c−1
11 (x

11) � c−1
1 (x) to the expression for θt (x) as follows from the tableΞ20,3,−1. In a similar

way one can verify that θ3t+1(x) � θt (−x7) for all t ∈ T 20,3,−1, by using c−1
s (−x3) � c−1

s (x),
s ∈ {0, 2, 4}, and c−1

s (−x3) � −c−1
s (x), s ∈ {1, 5, 11}. Since 11.11 � 1 mod 40 and 7.3 �

1 mod 20, these results are in agreement with Theorem 30. �
For more examples of primitive idempotents of constacyclic and negacyclic codes we

refer to [10, 16, 22, 26–28].
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