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Abstract
In a user-private information retrieval (UPIR) scheme, a set of users collaborate to retrieve
files from a databasewithout revealing to observerswhich participant in the scheme requested
the file. To achieve privacy, users retrieve files from the database in response to anonymous
requests posted to message spaces; assuming that each message space can be accessed by a
subset of the participants in the scheme. Privacywith respect to the database is easily achieved,
but privacy with respect to coalitions of other users within the scheme is sensitive to the
choice of incidence structure determiningwhich users can access eachmessage space. Earlier
schemes were based on pairwise balanced designs and symmetric designs, and involved at
most one step of message passing to retrieve a file. We propose a new class of UPIR schemes
based on generalised quadrangles (GQs), which need up to two steps of message passing
in each file retrieval. We introduce a new message passing protocol in which messages are
encrypted. Even using this protocol, previously proposed schemes are compromised by finite
coalitions of users. We construct a family of GQ-UPIR schemes which maintain privacy with
high probability even when O(n1/2−ε) users collude, where n is the total number of users in
the scheme.We also show that aUPIR schemebased on any family of generalised quadrangles
is secure against coalitions of O(n1/4−ε) users.

Keywords Privacy · Communication · Finite geometry

Mathematics Subject Classification 94A99 · 05B25

1 Introduction

Private Information Retrieval (PIR) allows a user to retrieve information from a database
without revealing which information was requested. A trivial solution is for the user to

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue
on Coding and Cryptography”.

B Oliver W. Gnilke
oliver.gnilke@aalto.fi

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-018-00591-9&domain=pdf


666 O. W. Gnilke et al.

Fig. 1 A visualisation of a UPIR
system

download all of the information in the database, but when the information is replicated in
multiple locations, more efficient schemes are known [1,3,5].

A slightly different approach to the problem of private information retrieval attempts to
hide the identity of the user downloading afile.One approach to this problem isOnionRouting
[11]. An onion is a recursively encrypted data packet, which encodes a path through a network
of cooperating users. Each user in the path removes the outermost layer of encryption, and
forwards the onion to the next user on the path. The onion carries no identifying features,
whichwould allowanobserver to identify itwith different outer layers.Anonymity is achieved
in this system by choosing sufficiently long paths at random for the onions.

One disadvantage of onion routing is that the number of times amessage is passed between
users can be large. This results in a low throughput of data when bandwidth in the network
is limited. user-private information retrieval (UPIR) is an approach to private information
retrieval in which the identities of users are hidden, but the number of times a message is
forwarded through the network is tightly controlled. To achieve privacy in a UPIR scheme, it
is usual to place strong restrictions on which users can communicate with one another within
the scheme.

Definition 1 (cf. Sect. 2, [9]) A UPIR system consists of a bipartite graph (U ∪ M, E),
where U is the set of users andM is the set of message spaces. A user u ∈ U has access to a
message space M ∈ M if (u, M) is in the set of edges E . Furthermore it is assumed that all
users have access to a database that evaluates queries.

Example 2 Figure 1 shows aUPIR systemwith 5users and3message spaces and the incidence
matrix of the corresponding bipartite graph.

A common requirement in earlier work is that every pair of users share access to a common
message space, e.g. [8, p. 1571]. Hence the distance between any two users in the graph is 2
and messages will have to pass through at most 1 message space. In this paper, we require
only that the bipartite graph underlying the UPIR scheme is connected; we say that such a
UPIR system is connected. If u is incident with M , then user u can both write messages to
M and read any messages written to M ; if u is not incident with M then u has no access to
M . Users communicate within the scheme only by writing messages to one another in the
message spaces, and we assume that messages carry an identifier for the intended recipient.
Any user may send queries to the database for evaluation. Users preserve their privacy by
passing requests via the message spaces to other users to query the database on their behalf.
We refer to the user that sends the query to the database as a proxy for the original user that
made the request.

In order for users to communicate using a UPIR system, a protocol is required; one
example is described explicitly below. We refer to the combination of a UPIR system and a
protocol as aUPIR scheme. This distinction is helpful in illustrating the interactions between
the combinatorics of the bipartite graph and the privacy properties of the protocol.

Protocol 1 Let (U ∪ M, E) be a connected UPIR system. Suppose that user u wishes to
retrieve the response to the query Q from the database.
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1. User u chooses a user v uniformly at random from the set of all users.
2. If u = v, u requests Q directly from the database, receiving response R.
3. Otherwise, u chooses uniformly at random a shortest path (u, M1, u1, . . . , Mn, v) from

u to v in the bipartite graph.
4. User u writes a request [(u1, M2, . . . , Mn, v), Q] onto M1.
5. For i = 1, 2, . . . , n − 1, user ui observes the request [(ui , Mi+1, . . . , Mn, v), Q]

addressed to him in Mi . He writes a new request [(ui+1, Mi+2, . . . , Mn, v), Q] to Mi+1

and remembers Mi and Q.
6. When the message [(v), Q] reaches message space Mn , user v sees it and forwards Q to

the database. User v writes the response R from the database as [Q, R] in Mn .
7. User u j , upon seeing the response [Q, R] in Mj+1, writes the response [Q, R] to Mj .
8. User u receives the response R to his query after u1 writes [Q, R] to M1.

Remark 3 Many variations of Protocol 1 are possible, including randomising the path, and
alterations to save used memory. Such changes do not alter the results in the following
sections. Any user with access to a message space Mi on the path can observe the request,
the identity of the proxy and the response, but gains limited information about the source of
the request.

Domingo-Ferrer, Stokes, Bras-Amorós, and co-authors introduced UPIR systems and
analysed a protocol where users write queries to message spaces without specifying a proxy
[4,8], while a special case of the above protocol was developed by Swanson and Stinson
[9,10]. Both groups of authors worked on UPIR systems derived from highly structured set
systems. In particular, they required that every pair of users share a common message space,
in which case Protocol 1 can be implemented so that every path has length at most 2: any
user can write requests directly to his chosen proxy.

Stokes and Bras-Amorós [8] considered the problem of constructing a UPIR system under
the restrictions that deg(M) is constant for all message spaces M . This requirement can be
interpreted as balancing the load amongstmessage spaces. They also require that every pair of
users share precisely one message space. After rejecting some degenerate solutions in which
message spaces have size 1, 2, n−1 or n; the authors are left with precisely the class of finite
projective planes. We recall that a projective plane is a combinatorial structure consisting of
points and blocks in which

1. every pair of points is contained in a unique block,
2. every pair of blocks intersect in a unique point,
3. there exist 4 points, no three of which are contained in any one block.

Finite projective planes are a special class of finite geometries which play an important role
in combinatorics, geometry and algebra. Inspired by Stokes and Bras-Amorós, Swanson and
Stinson analysed attacks on projective plane UPIR systems, and proposed UPIR systems
constructed from a broader class of block designs. In particular, they considered balanced
incomplete block designs (BIBD) and pairwise balanced designs (PBD). We recall the defi-
nition of a PBD.

Definition 4 (Pairwise BalancedDesign) Let X be a set of points of cardinality v and K ⊆ [v]
be a subset of the natural numbers less than or equal to v. A pair (X ,B), where B is a family
of subsets of X , called blocks, is a (v, K , λ)-pairwise balanced design if

(i) |B| ∈ K for all B ∈ B,
(ii) every pair of distinct elements of V appears in exactly λ different blocks of B.
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We note that the projective planes defined earlier are examples of (n2 + n + 1, {n + 1}, 1)-
PBDs. For more information we refer to the monograph by Beth, Jungnickel and Lenz, as a
standard reference for design theory [2].

In the next section, we will show that observers in a UPIR system have an advantage in
gathering information about users with whom they share a message space. Motivated by this
result, we consider the next obvious class of UPIR systems; those inwhich users are separated
by a path of length at most 2. A natural class of examples is furnished by finite generalised
quadrangles. Furthermorewe consider a different protocol, based on onion routing, and prove
that it aids privacy.

2 Privacy in a UPIR system

It is assumed throughout that the content of any message space is only available to the users
who have access to the given message space as in Protocol 1. An external eavesdropper, i.e.,
someone who is not a user in the system, can observe the requests made to the database,
since these are not encrypted, but cannot read messages sent between users. Security in this
setting has been studied by Swanson and Stinson; their analysis forms the basis of any UPIR
scheme [9].

Definition 5 A UPIR system is private with respect to external observers if, for any request
Q forwarded to the database by user v, we have that

P(u is the source of Q | v is the proxy) = P(u is the source of Q) .

Swanson and Stinson have proved that the obvious strategy in which users select proxies
uniformly at random is sufficient for privacy against external observers.

Theorem 6 (Theorems 6.1, 6.2 [9]) A connected UPIR scheme is private against external
observers if each user chooses proxies uniformly at random, and the proxies for distinct
queries are chosen independently.

Protocol 1 can be implemented on any connected UPIR scheme; and Theorem 6 shows
that the scheme is private against external observers.

More recent research on UPIR has aimed at preserving privacy with respect to other users
in the UPIR scheme, under the assumption that users are honest but curious, [9,10]. That is,
they act according to Protocol 1, but they may attempt to determine the source of any queries
that they observe.

Since the message space into which a request is written already reveals non-trivial infor-
mation about the source of the request, perfect privacy with respect to other users is, in
general, impossible. For example: in a PBD-UPIR scheme, it can be inferred that the source
of a request written to the message space M is a user with access to M .

First, we develop a criterion for judging whether a UPIR system is secure in terms of
maintaining users’ privacy. We assume that a priori all users have a non-zero probability to
be the source of any given query. Our analysis will be based on linked queries, which are
a series of queries which are identifiable as coming from a single source. These were first
introduced by Swanson and Stinson, who provided the example of a series of requests for
information about a fixed, obscure topic [9].

Definition 7 Let C be a coalition of users, collaborating to identify the source of a series of
linked queries. Users u and v are pseudonymous with respect to C if for any message space
M to which C has access, and for which P(v is source | Q ∈ M) �= 0,
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Improved user-private information retrieval via finite geometry 669

P(u is the source of Q | Q ∈ M)

P(u is the source of Q)
= P(v is the source of Q | Q ∈ M)

P(v is the source of Q)
.

In other words, for any query Q that a coalition might observe the users u and v are equally
likely as sources. We allow the possibility that a coalition has non-trivial prior information
on the probability that user u wishes to evaluate query Q. In our analysis we focus on the
case where this information is limited, and users cannot be identified by their queries alone.
The next result follows directly from the definition of pseudonymity, but we record it since
we will have use for it in later sections.

Lemma 8 Pseudonymity with respect to the coalition C is an equivalence relation on the
users of a UPIR scheme.

Users u and v maintain pseudonymity with respect to C after arbitrarily many requests
have been observed if and only if they lie in the same pseudonymity class. The coalition C
can identify user u if and only if u belongs to a pseudonymity class of size 1 with respect to
C. We say that the coalition C is an identifying set if C can identify every other user in the
scheme. We propose the following definition for security.

Definition 9 Let (Vi ) be a family of UPIR schemes indexed by i ∈ N, where the number of
users in Vi is ni . We say that Vi is secure against coalitions of size t if the pseudonymity
relation of any coalition of size t contains a giant component, i.e., for any ε > 0 there exists
an Nε such that for ni > Nε the union of all other components has size O(n1−ε

i ). The family
(Vi ) is secure if for every t there exists N ∈ N such that Vi is secure against coalitions of
size t for all i ≥ N .

Informally, we consider a UPIR scheme to be secure if any coalition of size at most t
can observe only a negligible portion of a sufficiently large system. Equivalently, for any
fixed coalition C of bounded size a randomly chosen subset of users, of limited size, will
be mutually pseudonymous with respect to C with high probability. Our first result is that
families of PBD-UPIR schemes are never secure.

Theorem 10 In a PBD-UPIR scheme using Protocol 1, a single eavesdropper can identify
any user who makes sufficiently many linked queries. i.e. any coalition of size one is an
identifying set.

Proof Suppose that u makes a series of linked queries. An eavesdropper c will observe a
subset of these queries in the unique message space M shared by c and u, and will never
observe linked queries in any other message space to which he has access. Since users do
not write queries addressed to themselves1 c will be able to identify u as soon as he has
observed a linked query addressed to every other possible user in M . Provided that u follows
the requirements of Theorem 6, c will observe the required queries with probability 1. ��

In fact, a pair of collaborating users c1 and c2 can identify u farmore quickly. If c1 observes
a query in the message space M1 and c2 observes a linked query in M2, then the collaborators
can conclude that the source of the requests is a user inM1∩M2. But in a PBD-UPIR scheme,
such a user is unique. This is called an intersection attack in [9]. Theorem 10 can be easily

1 In fact, Theorem 6 forces users to act as their own proxy equally often as any other user. Even if users write
requests addressed to themselves to message spaces, the combinatorics of PBDs prohibit such requests from
appearing with the same frequency as those addressed to other users. Sources would hence still be identifiable,
though the result would now be probabilistic.
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modified to identify all users in any UPIR scheme in which every pair of users share at least
one message space. In particular, all of the UPIR schemes proposed by Swanson and Stinson
to circumvent the intersection attack are still vulnerable to Theorem 10; although it will take
more linked queries to identify the source.

To protect against the attack outlined in Theorem 10we suggest using a different incidence
structure that we will introduce in the following section.

3 Generalised quadrangles

In this section we introduce generalised quadrangles (GQ). For the sake of completeness,
we include proofs of some well-known results, for further reading see [7]. Lemma 12 implies
that the bipartite incidence graph of a generalised quadrangle has diameter 4. So in a UPIR
scheme derived from a GQ using Protocol 1 (GQ-UPIR scheme in short), a pair of users
either shares a message space, or there exists a third user sharing message spaces with each
of the first two. As a result, when users communicate along a shortest path, a message is
written to at most 2 message spaces. In this section, we use the usual language of incidence
geometry; in a GQ-UPIR scheme, users are labelled by points and message spaces by blocks.

Definition 11 A generalised quadrangle is an incidence structure containing points and
blocks in which

1. each point is incident with 1+ t blocks (t � 1) and two distinct points are incident with
at most one block

2. each block is incident with 1+ s points (s � 1) and two distinct blocks are incident with
at most one point

3. given any point x and block L that does not contain x , there is a unique point x ′ in L that
shares a block with x .

The third condition is the GQ-axiom.

Even though we are dealing with an abstract incidence structure, there is a natural rep-
resentation of this structure as a geometry. It is traditional for the blocks in a generalised
quadrangle to be referred to as lines. Indeed, a generalised quadrangle is so-named because
there are no triangles (three lines intersecting pairwise in three distinct points) but numerous
quadrangles in such a geometry.

Lemma 12 There are no non-degenerate triangles in a generalised quadrangle, but any two
non-collinear points are contained in a quadrangle.

Proof Recall that a triangle is a triple of distinct lines L1, L2, L3 with pairwise non-empty
intersections, say xi j ∈ Li ∩ L j . Note that x12 is collinear with both x13 and x23. By the
GQ-axiom, if x12 /∈ L3, then there exists a unique point on L3 collinear with x12: in other
words, x13 and x23 cannot both be collinear with x12, and there are no triangles.

On the other hand, consider two non-collinear points x and y, and consider two lines
L1 and L2 incident with y. The point x is not incident with either L1 or L2, and, by the
GQ-axiom, there is a point w on L1 and a point z on L2 such that x is collinear with both w

and z. If the line incident with both x and z is L3 and the line incident with both x and w is
L4, then the quadruple of distinct lines L1, L2, L3, L4 is the desired quadrangle. ��

If every line of the generalized quadrangleQ has size 2, thenQ is a graph. The GQ-axiom
and Lemma 12 together forceQ to be a complete bipartite graph. Dually, if every point ofQ
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Improved user-private information retrieval via finite geometry 671

is on precisely two lines, then Q is a grid: points are labelled by two subscripts xi, j where
1 ≤ i, j ≤ s + 1; and lines consist of sets of points sharing a common subscript in the same
position. A generalised quadrangle is thick if every point lies on more than two lines and
every line contains more than two points.

For a point x in a generalised quadrangleQ we write B1(x) for the set of points collinear
with x . By convention, x /∈ B1(x). Suppose that y /∈ {x} ∪ B1(x), and let L be any line
through x . By the GQ-axiom, y is collinear to a unique point on L , so y is at distance 2 from
x , which we denote by y ∈ B2(x). In fact, since the choice of L was arbitrary, we obtain a
bijection: every line through x intersects a unique line through y. The standard definition in
the literature is to say that a thick finite generalised quadrangle has order (s, t) if there are
s + 1 points incident with a given line and t + 1 lines incident with a given point. Routine
counting arguments can be used to establish the following well-known result.

Lemma 13 The number of points in a finite generalised quadrangle of order (s, t) is (s +
1)(st + 1). For any point x in the GQ, there are s(t + 1) points in B1(x) and s2t points in
B2(x).

Proof There are t + 1 lines through x , each containing s points distinct from x . Since a GQ
contains no non-trivial triangles, these lines are disjoint (outside of x). So there are s(t + 1)
points collinear with x , and |B1(x)| = s(t + 1).

Consider now a point y in B2(x). Since y /∈ B1(x), y is not incident with any line through
x ; choose such a line L . By the GQ-axiom, y is collinear with a unique point on L . Since
there are s points on L other than x , and each of these points is collinear with s(t+1)−s = st
points not on L , there are exactly s · st = s2t points in B2(x). ��

The following result, due to D.G. Higman, shows that the parameters s and t cannot differ
by too much in a thick GQ.

Theorem 14 (Higman [6]) In a thick finite generalised quadrangle of order (s, t), we have
s � t2 and t � s2.

Our analysis of pseudonymity relations in a GQ-UPIR scheme will require the concept
of a hyperbolic line in a GQ, which we introduce now. In a finite generalised quadrangle
Q of order (s, t), given any two non-collinear points x and y, by the GQ-axiom, there is a
collection C of exactly t + 1 points collinear with both x and y. Thus there are at least two
points, x and y, that are collinear with all the points in C, but there could be more.

Definition 15 Given a set of pairwise non-collinear points X in a finite generalised quad-
rangle, we define B1(X ) to be the set of points collinear with each point in X , i.e.,
B1(X ) = ⋂

x∈X
B1(x).

We define the span of X to be the set of points collinear with every point of B1(X ), i.e.,
sp(X ) = B1(B1(X )) = ⋂

z∈ ⋂

x∈X
B1(x)

B1(z).

When X = {x1, . . . , xm}, we often write B1(x1, . . . , xm) to denote B1(X ) and
sp(x1, . . . , xm) to denote sp(X ). Note that, for non-collinear points x and y in a gen-
eralised quadrangle of order (s, t) we have {x, y} ⊆ sp(x, y) and, by the GQ-axiom,
|B1(x, y)| = t + 1. The set sp(x, y) is often referred to as the hyperbolic line defined by x
and y. The following results show that hyperbolic lines have incidence properties similar to
those of ordinary lines.
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Table 1 The classical generalised
quadrangles

Q Order Span size

W(3, q), q odd (q, q) |sp(x, y)| = q + 1

Q(4, q), q even (q, q) |sp(x, y)| = q + 1

Q(4, q), q odd (q, q) |sp(x, y)| = 2

Q−(5, q) (q, q2) |sp(x, y, z)| = q + 1

H(3, q2) (q2, q) |sp(x, y)| = q2 + 1

H(4, q2) (q2, q3) |sp(x, y)| = q + 1

H(4, q2)D (q3, q2) |sp(x, y)| = 2

Lemma 16 If a ∈ sp(x, y), then sp(a, x) = sp(x, y).

Proof Let a ∈ sp(x, y). Because a ∈ sp(x, y) = B1(B1(x, y)), a is collinear with each point
in B1(x, y). Since B1(x, y) = B1(a, x, y) ⊆ B1(a, x), we have

t + 1 = |B1(x, y)| = |B1(a, x, y)| � |B1(a, x)| = t + 1.

Hence B1(x, y) = B1(a, x), and therefore sp(x, y) = B1(B1(x, y)) = B1(B1(a, x)) =
sp(a, x). ��
Corollary 17 If |sp(x, y) ∩ sp(w, z)| > 1, then sp(x, y) = sp(w, z).

Proof Let {a, b} ⊆ sp(x, y) ∩ sp(w, z). By Lemma 16, sp(x, y) = sp(a, x) = sp(a, b) =
sp(w, a) = sp(w, z). ��

Table 1 contains some relevant information about the families of classical generalised
quadrangles, see [7]. These families are related to certain classical groups, and are thus highly
symmetric. In each case, the size of spans of sets of a given type are constant, regardless
of which points within the generalised quadrangle are chosen. In the following table, q is a
prime power, and x , y, and z are three mutually noncollinear points.

4 Secure GQ-UPIR systems

Webegin this section by describing in detail the pseudonymity relation on aGQ-UPIR scheme
for a single eavesdropper.

Proposition 18 In a GQ-UPIR scheme using Protocol 1, the pseudonymity classes with
respect to a single eavesdropper c are singleton classes for users at distance 1 from c,
and are of the form sp(c, u) \ {c} for any user u at distance 2 from c.

Proof Suppose that c observes a series of linked queries coming from a user u; if c shares a
message space with u, then the queries always appear in this message space. Otherwise by
the GQ-axiom, for every line through c, there is a unique user u1 on that line collinear with u.
This implies that c observes linked queries from u distributed uniformly across all message
spaces to which c has access. Hence c can decide whether u is at distance 1 or distance 2.

If the distance d(c, u) = 1, then an argument exactly analogous to that of Theorem 10
shows that c can identify u. So suppose that d(c, u) = 2. For a fixed line M containing
c, there is a unique user u1 sharing a message space with u. Over sufficiently many linked

123



Improved user-private information retrieval via finite geometry 673

queries, c will observe intermediate queries addressed to every user in M except for u1. As
a result, c learns X = B1(c) ∩ B1(u).

Now recalling Definition 15, suppose that v ∈ sp(u, c). Then by Lemma 16, B1(c) ∩
B1(v) = X . It follows thatu andv are pseudonymous.Likewise, anyother user in sp(u, c)\{c}
falls into the same pseudonymity class. ��

As a corollary of Proposition 18 we get that a code contained in U with covering radius 1
is an identifying set, i.e. a set of users that can deanonymize any other user in the scheme.
Furthermore, a single user in a GQ-UPIR scheme can identify every other user in the scheme
if and only if every hyperbolic line in the GQ has size 2. There are two known families of
thick generalised quadrangles with this property: Q(4, q) where q is an odd prime power,
and H(4, q2)D . The data given in Table 1 shows that the pseudonymity relation on a GQ-
UPIR scheme will never give a giant component when using Protocol 1. We introduce a new
protocol, inspired by onion routing, which will be secure against large coalitions of users.

Protocol 2 Let (U ∪ M, E) be a GQ-UPIR system. Suppose furthermore that a public key
infrastructure is in place, and a public key for every user is available. User u wishes to retrieve
the response to the query Q from the database.

1. u chooses a user v uniformly at random from the set of all users, and generates a secret
key ψ for a symmetric cipher.

2. If u = v, u requests Q directly from the database, receiving response R.
3. If d(u, v) = 1, then user u encrypts both the query Q and the key ψ using v’s public

key φv , and writes the request [v, φv(Q), φv(ψ)] to the unique message space that they
share.

4. Otherwise, d(u, v) = 2 and u chooses a shortest path to v, say [u, M1, u1, M2, v].
Message passing is as in Protocol 1: u writes the query [(u1, M2, v), φv(Q), φv(ψ)] to
M1.

5. When v receives the request, he forwards Q to the database, receives response R and
writes the response [(v), φv(Q), ψ(R)] to the message space in which the query was
observed. The response is returned to user u as in Protocol 1.

Remark 19 In Protocol 2, the only user who learns the query Q is the proxy v; this means
that users do not observe linked queries addressed to other users. The use of an ephemeral
key ψ is necessary since revealing u’s public key to v would compromise u’s privacy.

The next result shows the benefit of encrypting queries with the public-key φv in the
GQ-UPIR scheme using Protocol 2.

Proposition 20 In a GQ-UPIR scheme using Protocol 2, all users at distance two from every
member of the coalition C are mutually pseudonymous.

Proof First we consider a single user. As in Proposition 18, a single user c1 can identify
whether the source u of a series of linked queries is at distance 1 or distance 2. Suppose that
u is at distance 2. Then c1 observes linked queries in every message space to which he has
access with equal probability. Without observing queries addressed to other users he gains
no information about members of B1(u), and so no information about the hyperbolic line
sp(c1, u). So the only information that c1 learns about u is that d(c1, u) = 2. Hence any pair
of users at distance 2 from c1 are pseudonymous.

By our assumption that coalition members are honest-but-curious, the only information
that coalition members gain on other users comes from the message spaces in which they
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observe linked queries. So if u1 and u2 are pseudonymous for each member of the coalition
C individually, then they are pseudonymous with respect to C collectively. In particular, the
users at distance 2 from every member of C form a single pseudonymity class with respect
to C. ��
Theorem 21 A thick GQ-UPIR scheme using Protocol 2 is secure against coalitions of users
of size O(s1−ε) for any ε > 0, where s+1 is the number of points on a line in the GQ. Hence
any family of thick GQ-UPIR schemes is secure in the sense of Definition 9.

Proof Let C be a coalition of users of size O(s1−ε). By Proposition 20, the set of users at
distance 2 from every member of C form a single pseudonymity class. We will show that
class forms a giant component in the sense of Definition 9.

By Lemma 13, the number of users at distance 1 from a single user is s(t + 1). Taking a
union bound, we have that the number of users at distance 1 from at least one member of C
is at most

|C|s(t + 1) ≤ s2−ε(t + 1) . (1)

Again by Lemma 13, the total number of users in the scheme is (s + 1)(st + 1). If Q is a
grid, then t = 1. So by Eq. (1), the coalition C is at distance one from at most O(s2−ε) users,
while the total number of users in the scheme is (s + 1)2. Hence the users at distance 2 from
every member of C form a giant component in the pseudonymity relation of C and so the
scheme is secure according to Definition 9.

Suppose now that Q is a thick GQ. Then by Lemma 14, we have that s ≥ t1/2. Hence
the number of users not at distance 2 from every member of C is o(s2t), and the scheme is
secure. ��

Writing n for the total number of users in a GQ-UPIR scheme, a grid GQ-UPIR scheme

is secure against coalitions of users of size O(n
1
2−ε). The grid GQ-UPIR scheme is also

notable for having only
√
n message spaces, while still achieving security; all BIBD-UPIR

schemes require at least as many message spaces as users.
Among the families of thick generalised quadrangles H(3, q2) is secure against coali-

tions of users of size O(n
2
5−ε), while the family Q−(5, q) is secure against coalitions of

size O(n
1
4−ε). These are respectively the families of GQs which are most and least robust

against coalitions of eavesdroppers. While grid GQs are secure against proportionally larger
coalitions than thick GQs, it should be noted that grid GQ-UPIR schemes may have certain
other security concerns. Since there are only two distinct paths between any two users, it
is easier to target communications between subsets of users of interest. If the public key
encryption used within the system is flawed, any user at distance 1 from user u can observe
half of u’s requests.

In fact, applying the Higman bounds of Lemma 14 shows that the families H(3, q2) and
Q−(5, q) are extremal for a thick GQ, in the sense that rewriting the statement of Theorem 21
as function of the number of users gives a bound of the form O(nt−ε) for some 1

4 ≤ t ≤ 2
5 .

In the next section, we construct explicit coalitions which show that these bounds are best
possible.
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5 Small identifying sets in a GQ-UPIR system

In this section we will prove that the result of Theorem 21 is optimal in the sense that the
statement is not true when ε = 0. We will also show that both the GQ structure and the
encryption of Protocol 2 are necessary, since finite identifying sets exist without both of
these assumptions.

We have already seen in Theorem 10 that a single user in an unencrypted PBD-UPIR
scheme is an identifying set. Protocol 2 offers limited benefits for a PBD-UPIR scheme -
since a single eavesdropper learns which message space he shares with another user in a
PBD-UPIR scheme, there can be no giant component in the pseudonymity relation even with
respect to a single user. It can be shown that a coalition of three users, not all sharing a single
message space, suffices to identify any other user in a projective plane UPIR scheme under
Protocol 2.

It is easily verified that a single user in a grid GQ-UPIR scheme using Protocol 1 can
identify any other user. The next result shows that a coalition of size at most three suffices in
any thick GQ using Protocol 1.

Proposition 22 In any GQ-UPIR scheme using Protocol 1 there exists an identifying set of
at most three users.

Proof By Proposition 18, the pseudonymity classes with respect to a single user c1 are the
hyperbolic lines through c1. The intersection of distinct hyperbolic lines has size 0 or 1, since
u2 ∈ sp(c1, u1) if and only if u1 ∈ sp(c1, u2). So two coalition members c1 and c2 fail to
identify the user u1 if and only if sp(c1, u1) = sp(c2, u1). In this case, u1 can be uniquely
identified by any user c3 not on the hyperbolic line sp(c1, c2). ��

As shown in Theorem 21, the size of an identifying set in an encrypted GQ-UPIR system
necessarily grows with the parameter s. In the next result, we show that there exist identifying
sets of size O(s). Since any set of s + 1 users, no pair sharing a message space, is an
identifying set of size s + 1 in a grid GQ, it suffices to construct small identifying sets in
thick GQs.

Proposition 23 LetQ be a generalised quadrangle of order (s, t), and consider the encrypted
UPIR scheme on Q. Then Q contains an identifying set of size 3s + 1.

Proof We explicitly design a set of users of size 3s + 1 and show that any other user shares
at least two different message spaces with users in our set. Let �1 and �2 be two lines in
the GQ that do not intersect. Take any point x ∈ �1, by the GQ-axiom there is a unique
point y ∈ �2 such there is a line xy connecting x and y. Let C = �1 ∪ �2 ∪ xy, we see
that C has size 3s + 1 since every line contains s + 1 points and we have two intersec-
tions.

Any user u /∈ C shares a message space M1 with a unique user in a ∈ �1, a message
space M2 with a user b ∈ �2, and a message space M3 with a user c ∈ xy. We claim that at
least two of these spaces are different. Assume M1 = M3, it then follows that a = c = x ,
since it otherwise would imply the existence of a triangle through the points a, x, c. The
only line through x that intersects �2 is xy, but since u ∈ M1 it follows that M1 �= xy
and hence M1 does not intersect �2. Therefore M1 and M2 have to be distinct message
spaces. ��
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