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Abstract For q, n, d ∈ N, let Aq(n, d) be the maximum size of a code C ⊆ [q]n with
minimum distance at least d . We give a divisibility argument resulting in the new upper
bounds A5(8, 6) ≤ 65, A4(11, 8) ≤ 60 and A3(16, 11) ≤ 29. These in turn imply the new
upper bounds A5(9, 6) ≤ 325, A5(10, 6) ≤ 1625, A5(11, 6) ≤ 8125 and A4(12, 8) ≤ 240.
Furthermore, we prove that for μ, q ∈ N, there is a 1–1-correspondence between sym-
metric (μ, q)-nets (which are certain designs) and codes C ⊆ [q]μq of size μq2 with
minimum distance at least μq − μ. We derive the new upper bounds A4(9, 6) ≤ 120
and A4(10, 6) ≤ 480 from these ‘symmetric net’ codes.

Keywords Code · Nonbinary code · Upper bounds · Kirkman system · Divisibility ·
Symmetric net

Mathematics Subject Classification 94B65 · 05B30

1 Introduction

For any m ∈ N, we write [m] := {1, . . . ,m}. Fix n, q ∈ N. A word is an element v ∈ [q]n .
So [q] serves as the alphabet. (If you prefer {0, 1, . . . , q − 1} as alphabet, take the letters
mod q .) For two words u, v ∈ [q]n , their (Hamming) distance dH (u, v) is the number of
indices i with ui �= vi . A code is a subset of [q]n . For any code C ⊆ [q]n , the minimum
distance dmin(C) of C is the minimum distance between any two distinct code words in C .
For d ∈ N, an (n, d)q -code is a set C ⊆ [q]n that satisfies dmin(C) ≥ d . Define
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862 S. C. Polak

Aq(n, d) := max{|C | | C is an (n, d)q − code}. (1)

Computing Aq(n, d) and finding upper and lower bounds for it is a long-standing research
interest in combinatorial coding theory (cf. MacWilliams and Sloane [12]). In this paper we
find new upper bounds on Aq(n, d) (for some q, n, d), based on a divisibility-argument. In
some cases, it will sharpen a combination of the following two well-known upper bounds
on Aq(n, d). Fix q, n, d ∈ N. Then

qd > (q − 1)n �⇒ Aq(n, d) ≤ qd

qd − n(q − 1)
. (2)

This is the q-ary Plotkin bound. Moreover,

Aq(n, d) ≤ q · Aq(n − 1, d). (3)

A proof of these statements can be found in [12]. Plotkin’s bound can be proved by comparing
the leftmost and rightmost terms in (4) below. The second bound follows from the observation
that in a (n, d)q -code any symbol can occur at most Aq(n − 1, d) times at the first position.

We view an (n, d)q -code C of size M as an M × n matrix with the words as rows. Two
codes C, D ⊆ [q]n are equivalent (or isomorphic) if D can be obtained from C by first
permuting the n columns of C and subsequently applying to each column a permutation of
theq symbols in [q] (wewillwrite ‘renumbering a column’ instead of ‘applying a permutation
to the symbols in a column’).

If an (n, d)q -code C is given, then for j = 1, . . . , n, let cα, j denote the number of
times symbol α ∈ [q] appears in column j of C . For any two words u, v ∈ [q]n , we
define g(u, v) := n − dH (u, v). In our divisibility arguments, we will use the following
observations (which are well known and often used in coding theory and combinatorics).

Proposition 1.1 If C is an (n, d)q -code of size M, then
(
M

2

)
(n − d) ≥

∑
{u,v}⊆C
u �=v

g(u, v) =
n∑
j=1

∑
α∈[q]

(
cα, j

2

)
≥ n ·

(
(q − r)

(
m

2

)
+ r

(
m − 1

2

))
,

(4)

where m := 	M/q
 and r := qm − M, so that M = qm − r and 0 ≤ r < q. Moreover,
writing L and R for the leftmost term and the rightmost term in (4), respectively, we have

|{{u, v} ⊆ C | u �= v, dH (u, v) �= d}| ≤ L − R, (5)

i.e., the number of pairs of distinct words {u, v} ⊆ C with distance unequal to d is at most
the leftmost term minus the rightmost term in (4).

Proof The first inequality in (4) holds because n − d ≥ g(u, v) for all u, v ∈ C . The
equality is obtained by counting the number of equal pairs of entries in the same columns
of C in two ways. The second inequality follows from the (strict) convexity of the binomial
coefficient F(x) := x(x − 1)/2. Fixing a column j , the quantity

∑
α∈[q] F(cα, j ), under the

condition that
∑

α∈[q] cα, j = M , is minimal if the cα, j are as equally divided as possible,
i.e., if cα, j ∈ {	M/q
, �M/q�} for all α ∈ [q]. The desired inequality follows.

To prove the second assertion, note that it follows from (4) that
∑

{u,v}⊆C, u �=v g(u, v) ≥ R,
so

|{{u, v} ⊆ C | u �= v, dH (u, v) �= d}| ≤
∑

{u,v}⊆C
u �=v

(n − d − g(u, v))
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New nonbinary code bounds based on divisibility arguments 863

≤
(
M

2

)
(n − d) − R = L − R. (6)

�
Corollary 1.2 If, for some q, n, d and M, the left hand side equals the right hand side in (4),
then for any (n, d)q -code C of size M,

(i) g(u, v) = n − d for all u, v ∈ C with u �= v, i.e., C is equidistant, and
(ii) for each column C j of C, there are q − r symbols in [q] that occur m times in C j and r

symbols in [q] that occur m − 1 times in C j .

In the next sections we will use (i), (ii) and the bound in (5) to give (for some q, n, d)
new upper bounds on Aq(n, d), based on divisibility arguments. Furthermore, in Sect. 5,
we will prove that, for μ, q ∈ N, there is a 1–1-correspondence between symmetric (μ, q)-
nets (which are certain designs) and (n, d)q = (μq, μq − μ)q -codes C with |C | = μq2.
We derive some new upper bounds from these ‘symmetric net’ codes. See Table 1 for an
overview of the obtained new upper bounds on Aq(n, d).

2 The divisibility argument

In this section, we describe the divisibility argument and illustrate it by an example. Next, we
show how the divisibility argument can be applied to obtain upper bounds on Aq(n, d) for
certain q, n, d . In subsequent sections, we will see how we can improve upon these bounds
for certain fixed q, n, d . We will use the following notation.

Definition 2.1 (k−block) Let C be an (n, d)q -code in which a symbol α ∈ [q] is contained
exactly k times in column j . The k×nmatrix B formed by the k rows ofC that have symbol α
in column j is called a (k-)block (for column j). In that case, columns [n] \ { j} of B form
an (n − 1, d)q -code of size k.

At the heart of the divisibility arguments that will be used throughout this paper lies the
following observation.

Table 1 An overview of the results obtained and discussed in this paper

Aq (n, d) Lower bound Upper bound New upper bound
[4,6,11] [4,6]

A5(8, 6) 50 75 65

A5(9, 6) 135 375 325

A5(10, 6) 625 1855 1625

A5(11, 6) 3125 8840 8125

A4(9, 6) 64 128 120

A4(10, 6) 256 496 480

A4(11, 8) 48 64 60

A4(12, 8) 128 242 240

A3(16, 11) 18 30 29

All previous lower andupper bounds are taken from references [4,6], except for the lower bounds A5(8, 6) ≥ 50
and A4(11, 8) ≥ 48. These follow from the exact values A5(10, 8) = 50 and A4(12, 9) = 48 ([11]). For
updated tables with all most recent code bounds, we refer to [7]
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Proposition 2.2 (Divisibility argument) Suppose that C is an (n, d)q -code and that B is a
block in C (for some column j) containing every symbol exactly m times in every column
except for column j. If n − d does not divide m(n − 1), then for each u ∈ C \ B there is a
word v ∈ B with dH (u, v) /∈ {d, n}.
Proof Let u ∈ C \B.We renumber the symbols in each column such that u is 1 := 1 . . . 1, the
all-ones word. The total number of 1’s in B is m(n − 1) (as the block B does not contain 1’s
in column j since u /∈ B and B consists of all words in C that have the same symbol in
column j). Since n−d does not dividem(n−1), there must be a word v ∈ B that contains a
number of 1’s not divisible by n − d . In particular, the number of 1’s in v is different from 0
and n − d . So dH (u, v) /∈ {d, n}. �
Example 2.3 We apply Proposition 2.2 to the case (n, d)q = (8, 6)5. The best known upper
bound1 is A5(8, 6) ≤ 75, which can be derived from (2) and (3), as the Plotkin bound
yields A5(7, 6) ≤ 15 and hence A5(8, 6) ≤ 5 · 15 = 75. Since, for (n, d)q = (7, 6)5
and M = 15, the left hand side equals the right hand side in (4), any (7, 6)5-code D of
size 15 is equidistant and each symbol appears exactly m = 3 times in every column of D.
Note 2 = n − d � m(n − 1) = 21.

Suppose there exists a (8, 6)5-code C of size 75. As A5(7, 6) ≤ 15, for each column, C is
divided into five 15-blocks. Let B be a 15-block for the j th column and let u ∈ C\B. Note that
the other columns of B contain each symbol 3 times, and 3(n−1) = 3·7 = 21 is not divisible
by n − d = 2. So by Proposition 2.2, there must be a word v ∈ B with dH (u, v) /∈ {6, 8}.

However, since all (7, 6)5-codes of size 15 are equidistant, all distances in C belong
to {6, 8}: either two words are contained together in some 15-block (hence their distance is 6)
or there is no column forwhich the twowords are contained in a 15-block (hence their distance
is 8). This implies that an (8, 6)5-code C of size 75 cannot exist. Hence A5(8, 6) ≤ 74.
Theorem 2.5 and Corollary 2.6 below will imply that A5(8, 6) ≤ 70 and in Sect. 3 we will
show that, with some computer assistance, the bound can be pushed down to A5(8, 6) ≤ 65.

To exploit the idea of Proposition 2.2, we will count the number of so-called irregular pairs
of words occuring in a code.

Definition 2.4 (Irregular pair) Let C be an (n, d)q -code and u, v ∈ C with u �= v.
If dH (u, v) /∈ {d, n}, we call {u, v} an irregular pair.
For any code C ⊆ [q]n , we write

X := the set of irregular pairs {u, v} for u, v ∈ C. (7)

Using Proposition 2.2, we can for some cases derive a lower bound on |X |. If we can also
compute an upper bound on |X | that is smaller than the lower bound, we derive that the
code C cannot exist. The proof of the next theorem uses this idea. For fixed q, n, d,m ∈ N

with q ≥ 2, define the following quadratic polynomial in r :

φ(r) := n(n − 1 − d)(r − 1)r − (q − r + 1)(mq(q + r − 2) − 2r). (8)

Theorem 2.5 Suppose that q ≥ 2, that m := d/(qd − (n − 1)(q − 1)) is a positive integer,
and that n−d does not divide m(n−1). If r ∈ {1, . . . , q−1}with φ(r) < 0, then Aq(n, d) <

mq2 − r .

1 The Delsarte bound [9] on A5(8, 6), the bound based on Theorem 2, and the semidefinite programming
bound based on quadruples of code words [10] all are equal to 75.
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New nonbinary code bounds based on divisibility arguments 865

Proof By Plotkin’s bound (2) we have

Aq(n − 1, d) ≤ mq. (9)

Let D be an (n − 1, d)q -code of size mq − t with t < q . Note that d = m(n − 1)(q −
1)/(mq−1). Then the right-hand side in (5) (takingC := D) is equal to (n−1)(m−1)t (t −
1)/(2mq − 2) = (n − 1 − d)

(t
2

)
. Hence

D contains at most (n − 1 − d)

(
t

2

)
pairs of words with distance �= d. (10)

Therefore, all (n − 1, d)q -codes D of size mq are equidistant (then t = 0) and each symbol
occurs m times in every column of D.

Now let C be an (n, d)q -code of size M := mq2 − r with r ∈ {1, . . . , q − 1}. Consider
anmq-block B for some column ofC . As n−d does not dividem(n−1), by Proposition 2.2
we know

if u ∈ C \ B, then there exists v ∈ B with dH (u, v) /∈ {d, n}. (11)

Let B1, . . . , Bs bemq-blocks in C for some fixed column. Since |C | = mq2 −r , the number
ofmq-blocks for any fixed column is at least q−r (sowe can take s = q−r ). Then, with (11),
one obtains a lower bound on the number |X | of irregular pairs in C . Every pair {Bi , Bk} of
mq-blocks gives rise to mq irregular pairs: for each word u ∈ Bi , there is a word v ∈ Bk

such that {u, v} ∈ X . This implies that in ∪s
i=1Bi ⊆ C there are at least

(s
2

)
mq irregular

pairs. Moreover, for each word u in C \ ∪s
i=1Bi (there are M − mq · s of such words) there

is, for each i = 1, . . . , s, a word vi ∈ Bi with {u, vi } ∈ X . This gives an additional number
of at least (M − mqs)s irregular pairs in C . Hence:

|X | ≥
(
s

2

)
mq + (M − mqs)s

= 1
2 s(mq(2q − s − 1) − 2r) =: l(s). (12)

On the other hand, note that the i th block for the j th column has size mq − ri, j for some
integer ri, j ≥ 0 by (9), where

∑q
i=1 ri, j = r ≤ q − 1 (hence each ri, j < q). So by (10), the

number of irregular pairs in C that have the same entry in column j is at most

(n − 1 − d)

q∑
i=1

(
ri, j
2

)
. (13)

As each irregular pair {u, v} has u j = v j for at least one column j , we conclude

|X | ≤ (n − 1 − d)

n∑
j=1

q∑
i=1

(
ri, j
2

)
≤ n(n − 1 − d)

(
r

2

)
. (14)

Here the last inequality follows by convexity of the binomial function, since (for fixed j) the
sum

∑q
i=1

(ri, j
2

)
under the condition that

∑q
i=1 ri, j = r is maximal if one of the ri, j is equal

to r and the others are equal to 0.
If each ri, j ∈ {0, 1}, then |X | = 0 by (14). As q − r ≥ 1, there is at least one mq-block

for any fixed column, so |X | ≥ 1 by (11), which is not possible. Hence we can assume
that ri, j ≥ 2 for some i, j (this also implies Aq(n, d) ≤ mq2 − 2). Then the number s
of mq-blocks for column j satisfies s ≥ q − r + 1. This gives by (12) and (14) that

l(q − r + 1) ≤ |X | ≤ (n − 1 − d)

(
r

2

)
. (15)
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866 S. C. Polak

Subtracting the left hand side from the right hand side in (15) yields φ(r)/2 ≥ 0, i.e., φ(r) ≥
0. So if φ(r) < 0, then Aq(n, d) < mq2 − r , as was needed to prove. �
We give two interesting applications of Theorem 2.5.

Corollary 2.6 If q ≡ 1 (mod 4) and q �= 1, then

Aq(q + 3, q + 1) ≤ 1
2q

2(q + 1) − q = 1
2 (q − 1)q(q + 2). (16)

Proof Apply Theorem 2.5 to n = q+3, d = q+1 and r = q−1. Thenm = (q +1)/2 ∈ N

and n−d = 2 does not dividem(n−1) = (q+1)(q+2)/2, as q ≡ 1 (mod 4). Furthermore,
φ(q − 1) = −(q3 − q2 − 2) < 0. Hence Aq(q + 3, q + 1) < q2(q + 1)/2 − (q − 1). �
Applying Corollary 2.6 to q = 5 gives A5(8, 6) ≤ 70. In Sect. 3 we will improve this
to A5(8, 6) ≤ 65.

Remark 2.7 Note that for bound (16) to hold it is necessary that q ≡ 1 (mod 4). If q ≡ 3
(mod 4) the statement does not hold in general. For example, A3(6, 4) = 18 (see [7]), which
is larger than bound (16).

Theorem 2.5 also gives an upper bound on Aq(n, d) = Aq(kq + k + q, kq), where q ≥ 2
and k does not divide q(q + 1) (which is useful for k < q − 1; for k ≥ q + 1 the Plotkin
bound gives a better bound). One new upper bound for such q, n, d is obtained:

Proposition 2.8 A4(11, 8) ≤ 60.

Proof This follows from Theorem 2.5 with q = 4, n = 11, d = 8 and r = 3. Then m =
4 ∈ N, and n − d = 3 does not divide m(n − 1) = 40. Moreover, φ(3) = −16 < 0.
Therefore A4(11, 8) < 61. �
This implies the following bound, which is also new:

Corollary 2.9 A4(12, 8) ≤ 240.

Proof By Proposition 2.8 and (3). �

3 Kirkman triple systems and A5(8, 6).

In this sectionwe consider the case (n, d)q = (8, 6)5 fromExample 2.3. Corollary 2.6 implies
that A5(8, 6) ≤ 70. Using small computer experiments, we will obtain A5(8, 6) ≤ 65.

As in the proof of Theorem 2.5, wewill compare upper and lower bounds on |X |. But since
an (8, 6)5-code C of size at most 70 does not necessarily contain a 15-block (as 70 = 5 ·14),
we need information about 14-blocks. To this end we show, using an analogous approach as
in [5] (based on occurrences of symbols in columns of an equidistant code):

Proposition 3.1 Any (7, 6)5-code C of size 14 can be extended to a (7, 6)5-code of size 15.

Proof For M = 14, the leftmost term in (4) equals the rightmost term. So C is equidistant
and for each j ∈ {1, . . . , 7} there exists a unique β j ∈ [q] with cβ j , j = 2 and cα, j = 3 for
all α ∈ [q]\{β j }. We can define a 15-th codeword u by putting u j := β j for all j = 1, . . . , 7.
We claim that C ∪ {u} is a (7, 6)5-code of size 15.
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New nonbinary code bounds based on divisibility arguments 867

To establish the claim we must prove that dH (u, w) ≥ 6 for allw ∈ C . Suppose that there
is a word w ∈ C with dH (u, w) < 6. We can renumber the symbols in each column of C
such thatw = 1. SinceC is equidistant, each word inC \{w} contains precisely one 1. On the
other hand, there are two column indices j1 and j2 with u j1 = 1 and u j2 = 1. Then C \ {w}
contains at most 1+ 1+ 5 · 2 = 12 occurrences of the symbol 1 (since in columns j1 and j2
there is precisely one 1 in C \ {w}). But in that case, since |C \ {w}| = 13 > 12, there is
a row in C that contains zero occurrences of the symbol 1, contradicting the fact that C is
equidistant. �
Note that a code of size more than 65 must have at least one 15- or 14-block, and therefore it
must have a subcode of size 65 containing at least one 15- or 14-block. We shall now prove
that this is impossible because

each (8, 6)5-code of size 65 only admits 13-blocks. (17)

It follows that A5(8, 6) ≤ 65. In order to prove (17), let C be a (8, 6)5-code of size 65. We
first compute a lower bound on the number of irregular pairs in C . Define, for x, y ∈ Z≥0,

f (x, y) := (3x + y)(65 − 15x − 14y) + 3 · 15
(
x

2

)
+ 14

(
y

2

)
+ 3 · 14xy

− 2 · 21x − 8y + 1{y>0 and x=0}(65 − 14 − 39). (18)

Proposition 3.2 (Lower bound on |X |) Let C be an (n, d)q = (8, 6)5-code of size 65 and
let j ∈ [n]. Let x and y be the number of symbols that appear 15 and 14 times (respectively)
in column j. Then the number |X | of irregular pairs in C is at least f (x, y).

Proof First consider a (7, 6)5-code D of size 15 or size 14 and define

S := {u ∈ [5]7 | dH (w, u) ≥ 5 ∀ w ∈ D}. (19)

For any u ∈ S, define

α(u) := |{w ∈ D : dH (u, w) = 6}|. (20)

Then

if |D| = 15, then if |D| = 14, then

|{u ∈ S | α(u) = 0}| = 0, |{u ∈ S | α(u) = 0}| ≤ 8,

|{u ∈ S | α(u) = 1}| ≤ 21, |{u ∈ S | α(u) ≤ 1}| ≤ 39.

|{u ∈ S | α(u) = 2}| = 0. (21)

This can be checked efficiently with a computer2 by checking all possible (7, 6)5-codes
of size 15 and 14 up to equivalence. Here we note that a (7, 6)5-code D (which must be
equidistant, see Example 2.3) of size 15 corresponds to a solution to Kirkman’s school girl
problem [16].3 So to establish (21), it suffices to check4 all (7, 6)5-codes of size 15, that is,

2 All computer tests in this paper are small and can be executedwithin aminute onmodern personal computers.
3 Kirkman’s school girl problem asks to arrange 15 girls 7 days in a row in groups of 3 such that
no two girls appear in the same group twice. The 1–1-correspondence between (n, d)q = (7, 6)5-
codes D of size 15 and solutions to Kirkman’s school girl problem is given by the rule: girls i1 and i2
walk in the same triple on day j ⇐⇒ Di1, j = Di2, j .
4 By ‘check’ we mean that given a (7, 6)5-code D of size 14 or 15, we first compute S, then α(u) for all u ∈ S,
and subsequently verify (21).
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868 S. C. Polak

Table 2 Upper bound h(k) on
the number of pairs {u, v} ⊆ D
with dH (u, v) = 7 for
a (7, 6)5-code D with |D| = k

k 15 14 13 12 11 10 9 8 7 6 5

h(k) 0 0 1 3 6 10 8 7 7 8 10

Kirkman systems (there are 7 nonisomorphic Kirkman systems [8]), and all (7, 6)5-codes of
size 14, of which there are at most 7 · 15 by Proposition 3.1.

Let G = (C, X) be the graph with vertex set V (G) := C and edge set E(G) := X .
Consider a 15-block B determined by column j . By (21), each u ∈ C \ B has ≥ 1 neighbour
in B. We observed this also in Example 2.3: for any u ∈ C \ B there exists at least one v ∈ B
such that dH (u, v) /∈ {6, 8}, so dH (u, v) = 7 and {u, v} ∈ X . In (21) this is represented
as: if |D| = 15 then |{u ∈ S | α(u) = 0}| = 0, i.e., for any word u′ of length 7 that has
distance ≥ 5 to all words in a (7, 6)5-code D of size 15, there is at least one v′ ∈ D such
that dH (u′, v′) = 6.

Furthermore, (21) gives that all but ≤ 21 elements u ∈ C \ B have ≥ 3 neighbours in B.
So by adding ≤ 2 · 21 new edges, we obtain that each u ∈ C \ B has ≥ 3 neighbours in B.

Similarly, for any 14-block B determined by column j , by adding ≤ 8 new edges we
achieve that each u ∈ C \ B has ≥ 1 neighbour in B. Hence, by adding ≤ (2 · 21 · x + 8 · y)
edges to G, we obtain a graph G ′ with

|E(G ′)| ≥ (3x + y)(65 − 15x − 14y) + 3 · 15
(
x

2

)
+ 14

(
y

2

)
+ 3 · 14xy. (22)

This results in the required bound, except for the term with the indicator function. That term
can be added because |{u ∈ S | α(u) ≤ 1}| ≤ 39 if |D| = 14, by (21). �

It is also possible to give an upper bound on |X |. If D is a (7, 6)5-code of size k, an upper
bound h(k) = L − R on the number of pairs {u, v} ⊆ D with u �= v and dH (u, v) �= 6
(hence dH (u, v) = 7) is given by (5). The resulting values h(k) are given in Table 2.

Theorem 3.3 (A5(8, 6) ≤ 65) Suppose that C is an (n, d)q = (8, 6)5-code with |C | = 65.
Then each symbol appears exactly 13 times in each column of C. Hence, A5(8, 6) ≤ 65.

Proof Let a( j)
k be the number of symbols that appear exactly k times in column j of C . Then

the number of irregular pairs that have the same entry in column j is at most
∑15

k=5 a
( j)
k h(k).

It follows that

|X | ≤ U :=
8∑
j=1

15∑
k=5

a( j)
k h(k). (23)

One may check that if a,b ∈ Z
15≥0 are 15-tuples of nonnegative integers, with

∑
k akk = 65,∑

k bkk = 65,
∑

k ak = 5,
∑

k bk = 5, and f (a15, a14) ≤ f (b15, b14) �= 0, then

15∑
k=5

(7ak + bk)h(k) < f (b15, b14). (24)

[There are 30 a ∈ Z
15≥0 with

∑
k akk = 65 and

∑
k ak = 5. So there are 900 possible

pairs a,b. A computer now quickly verifies (24)].
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New nonbinary code bounds based on divisibility arguments 869

By permuting the columns of C we may assume that max j f (a( j)
15 , a( j)

14 ) = f (a(1)
15 , a(1)

14 ).

Hence if f (a(1)
15 , a(1)

14 ) > 0, then

U =
8∑
j=1

15∑
k=5

a( j)
k h(k) = 1

7

8∑
j=2

(
15∑
k=5

(
7a( j)

k + a(1)
k

)
h(k)

)

< f
(
a(1)
15 , a(1)

14

)
≤ |X | (25)

(whereweusedProposition 3.2 in the last inequality), contradicting (23). So f (a( j)
15 , a( j)

14 ) = 0

for all j , which implies (for a( j) ∈ Z
15≥0 with

∑
k a

( j)
k k = 65,

∑
k a

( j)
k = 5) that a( j)

15 = a( j)
14 =

0 for all j , hence each symbol appears exactly 13 times in each column of C . �
Corollary 3.4 A5(9, 6) ≤ 325, A5(10, 6) ≤ 1625 and A5(11, 6) ≤ 8125.

Proof By Theorem 3.3 and (3). �

4 Improved bound on A3(16, 11).

We show that A3(16, 11) ≤ 29 using a surprisingly simple argument.

Proposition 4.1 A3(16, 11) ≤ 29.

Proof Suppose that C is an (n, d)q = (16, 11)3-code of size 30. We can assume that 1 ∈ C .
It is known that A3(15, 11) = 10, so the symbol 1 is contained at most 10 times in every
column of C . Since |C | = 30, the symbol 1 appears exactly 10 times in every column
of C , so the number of 1’s in C is divisible by 5. On the other hand it is easy to check that
a (15, 11)3-code of size 10 is equidistant (using (5), as L = R). This implies that all distances
in a (16, 11)3-code of size 30 belong to {11, 16}. So the number of 1’s in any code word �= 1
is 0 or 5. As 1 contains 16 1’s, it follows that the total number of 1’s is not divisible by 5, a
contradiction. �

5 Codes from symmetric nets

In this section we will show that there is a 1-1-correspondence between symmetric (μ, q)-
nets and (n, d)q = (μq, μq − μ)q -codes of size μq2. From this, we derive in Sect. 6 the
new upper bound A4(9, 6) ≤ 120, implying A4(10, 6) ≤ 480.

Definition 5.1 (Symmetric net)Letμ, q ∈ N. A symmetric (μ, q)-net (also called symmetric
transversal design [3]) is a set X of μq2 elements, called points, together with a collection B
of subsets of X of size μq , called blocks, such that:

(s1) B can be partitioned into μq partitions (block parallel classes) of X .
(s2) Any two blocks that belong to different parallel classes intersect in exactly μ points.
(s3) X can be partitioned into μq sets of q points (point parallel classes), such that any two

points from different classes occur together in exactly μ blocks, while any two points
from the same class do not occur together in any block.5

5 That is, a symmetric (μ, q)-net is a 1 − (μq2, μq, μq) design D, which is resolvable (s1), affine (s2), and
the dual design D∗ of D is affine resolvable (s3).
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Fig. 1 An incidence matrix of
the unique (up to isomorphism)
symmetric (2, 4)-net is obtained
by writing the elements e, a, b, c
as 4 × 4-permutation matrices in
the generalized Hadamard matrix
GH(8, V4) (with V4 the Klein
4-group). See Al-Kenani [1]

Remark 5.2 From the 1–1-correspondence between symmetric (μ, q)-nets and (n, d)q =
(μq, μq − μ)q -codes C of size μq2 in Theorem 5.6 below it follows that (s2) and (s3) can
be replaced by the single condition:

(s’) Each pair of points is contained in at most μ blocks,

since the only condition posed on such a code is that g(u, v) ≤ μ for all distinct u, v ∈ C .

Example 5.3 Let X = {1, 2, 3, 4} and B = {{1, 3}, {2, 4}, {1, 4}, {2, 3}}. Then (X,B) is a
symmetric (1, 2)-net. The block parallel classes are {{1, 3}, {2, 4}} and {{1, 4}, {2, 3}}. The
point parallel classes are {1, 2} and {3, 4}.
By labeling the points as x1, . . . , xμq2 and the blocks as B1, . . . , Bμq2 , the μq2 × μq2-
incidence matrix N of a symmetric (μ, q)-net is defined by

Ni, j :=
{
1 if xi ∈ Bj ,

0 else.
(26)

An isomorphism of symmetric nets is a bijection fromone symmetric net to another symmetric
net thatmaps the blocks of the first net into the blocks of the second net. That is, two symmetric
nets are isomorphic if and only if their incidence matrices are the same up to row and column
permutations. Symmetric nets are, in some sense, a generalization of generalized Hadamard
matrices.

Definition 5.4 (GeneralizedHadamardmatrix)LetM be an n×n-matrix with entries from a
finite group G. Then M is called a generalized Hadamard matrix GH(n,G) (or GH(n, |G|))
if for any two different rows i and k, the n-tuple (Mi j M

−1
jk )nj=1 contains each element of G

exactly n/|G| times.

Each generalized Hadamard matrix GH(n,G) gives rise to a symmetric (n/|G|, |G|)-net:
by replacing G by a set of |G| × |G|-permutation matrices isomorphic to G (as a group),
one obtains the incidence matrix of a symmetric net. See Fig. 1 for an example. Not every
symmetric (n/q, q)-net gives rise to a generalized Hadamard matrix GH(n, q), see [13]. But
if the group of automorphisms (bitranslations) of a symmetric (n/q, q)-net has order q , then
one can construct a generalized Hadamard matrix GH(n, q) from it. See [3] for details.

Assumption 5.5 In this section we consider triples (n, d)q of natural numbers for which

qd = (q − 1)n, (27)

hence n − d = n/q =: μ and μ ∈ N. So (n, d)q = (μq, μq − μ)q .
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The fact that a generalizedHadamardmatrixGH(n, q) gives rise to an (n, d)q -code of sizeqn,
was proved in [11] and for some parameters it can also be deduced from an earlier paper [15].
Using a result by Bassalygo et al. [2] about the structure of (n, d)q -codes of size qn,6 we
prove that such codes are in 1–1-relation with symmetric (n/q, q)-nets.

Theorem 5.6 Let μ, q ∈ N. There is a 1–1-relation between symmetric (μ, q)-nets (up to
isomorphism) and (n, d)q = (μq, μq − μ)q -codes C of size μq2 (up to equivalence).

Proof Given an (n, d)q = (μq, μq−μ)q -codeC of sizeμq2, we construct a (0, 1)-matrixM
of order μq2 × μq2 with the following properties:

(I) M is a μq2 × μq2 matrix that consists of q × q blocks σi, j (so M is a μq × μq matrix
of blocks σi, j ), where each σi, j is a permutation matrix.

(II) MMT = MT M = A, where A is aμq2 ×μq2 matrix that consists of q×q blocks Ai, j

(so A is an μq × μq matrix of blocks Ai, j ), with

Ai, j =
{

μq · Iq if i = j,

μ · Jq if i �= j.
(28)

Here Jq denotes the q × q all-ones matrix.

By Proposition 4 of [2], since d = n(q − 1)/q and |C | = qn, C can be partitioned as

C = V1 ∪ V2 ∪ . . . ∪ Vn, (29)

where the union is disjoint, |Vi | = q for all i = 1, . . . , n, and where dH (u, v) = n if u, v ∈ C
are together in one of the Vi , and dH (u, v) = d if u ∈ Vi and v ∈ Vj with i �= j .

Now we write each word w ∈ [q]n as a (0, 1)-row vector of size qn = μq2 by putting a 1
on positions (i, wi ) ∈ [n] × [q] (for i = 1, . . . , n) and 0’s elsewhere. The q words in any of
the Vi then form a q × qn matrix consisting of n permutation matrices σi, j of size q × q .

By placing the matrices obtained in this way from all n tuples V1, . . . , Vn underneath each
other, we obtain a qn × qn matrix M consisting of n2 permutation matrices of order q × q ,
so (I) is satisfied. Property (II) also holds, since for any u, v ∈ C written as row vectors of
size qn, with the Vi as in (29), it holds that

∑
k∈[n]×[q]

ukvk = g(u, v) =

⎧⎪⎨
⎪⎩
n = μq if u = v,

0 if u �= v and u, v ∈ Vi ,

n − d = μ if u �= v and u ∈ Vi , v ∈ Vj with i �= j.

(30)

So MMT = A. Moreover, if j1 := ( j ′1, a1) ∈ [n] × [q] and j2 := ( j ′2, a2) ∈ [n] × [q], then

∑
k∈[qn]

Mk, j1Mk, j2 =

⎧⎪⎨
⎪⎩
n = μq if j ′1 = j ′2 and a1 = a2,

0 if j ′1 = j ′2 and a1 �= a2,

n/q = μ if j ′1 �= j ′2,
(31)

where the last statement follows by considering the words in C that have a1 at the j ′1-th
position. (The remaining columns form an n-block for the j ′1-th column. In this n-block,
each symbol occurs exactly n/q times at each position, since the leftmost term equals the
rightmost term in (4) for (n−1, d)q -codes of size n.) We see that also MT M = A. Hence, M

6 Note that Aq (n, d) ≤ qn, since by Plotkin’s bound (2), Aq (n − 1, d) ≤ n, hence Aq (n, d) ≤ qn = μq2

by (3).
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Fig. 2 An (n, d)q = (3, 2)3-code C = {w1, . . . , w9} of size 9 (left table) gives rise to an incidence matrix
of a symmetric (1, 3)-net (right table) and vice versa

is the incidence matrix of a symmetric (μ, q)-net (see [3, Proposition I.7.6] for the net and
its dual). See Fig. 2 for an example.

Note that one can do the reverse construction as well: given a symmetric (μ, q)-net, the
incidence matrix of M can be written (after possible row and column permutations) as a
matrix of permutation matrices such that MMT = MT M = A, with A as in (28). From M
we obtain a code C of size μq2 of the required minimum distance by mapping the rows
(i, wi ) ∈ [μq]×[q] tow ∈ [q]μq . Observe that equivalent codes yield isomorphic incidence
matrices M and vice versa. �

6 New upper bound on A4(9, 6).

In this section we use the 1–1-correspondence between symmetric (μ, q)-nets and (n, d)q =
(μq, μq−μ)q -codes of sizeμq2 in combinationwith a known result about symmetric (2, 4)-
nets [1] to derive that A4(9, 6) ≤ 120.

As A4(8, 6) = 32, any (9, 6)4-code of size more than 120 must contain at least one 31-
or 32-block, and therefore it contains a subcode of size 120 containing at least one 31-
or 32-block. We will show (using a small computer check) that this is impossible because
a (9, 6)4-code of size 120 does not contain any 31- or 32-blocks. Therefore A4(9, 6) ≤ 120.
In order to do prove this, we need information about (8, 6)4-codes of size 31.

Proposition 6.1 Let q, n, d ∈ N satisfy qd = (q − 1)n. Any (n, d)q -code C of size qn − 1
can be extended to an (n, d)q -code of size qn.

Proof Let C be an (n, d)q -code of size qn − 1. By Plotkin’s bound, Aq(n − 1, d) ≤ n, so
each symbol occurs at most n times in each column of C , hence there exists for each j ∈ [n]
a unique β j ∈ [q] with cβ j , j = n − 1 and cα, j = n for all α ∈ [q] \ {β j }. We can define
a qn-th codeword u by putting u j := β j for all j = 1, . . . , n. We claim that C ∪ {u} is
an (n, d)q -code of size qn.

To establish the claim we must prove that dH (u, w) ≥ d for all w ∈ C . Let w ∈ C
with dH (u, w) < n. We can renumber the symbols in each column of C such that w = 1.
Then w is contained in an (n−1)-block B for some column in C (otherwise dH (u, w) = n).
The number of 1’s in B is n + (n − 2)n/q (since any (q, n − 1, d)-code of size n − 1 is
equidistant, as L − R = 0 in (5) for (n − 1, d)q -codes of size n − 1) and the number of 1’s
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in C \ B is (q − 1)(n − 1)n/q (since in any (n − 1, d)q -code of size n, each symbol appears
exactly n/q times in each column, as the leftmost term equals the rightmost term in (4)
for (n − 1, d)q -codes of size n). Adding these two numbers we see that the number of 1’s
in C is n2 − n/q . Since C ∪ {u} contains each symbol n2 times by construction, u contains
symbol 1 exactly n/q times, hence dH (u, w) = n−n/q = d , which gives the desired result.

�
Proposition 6.2 A4(9, 6) ≤ 120.

Proof The (n, d)q = (8, 6)4-code of size 32 is unique up to equivalence, since the symmet-
ric (2, 4)-net is unique up to equivalence (seeAl-Kenani [1]). By checking all (8, 6)4-codes D
of size 31 (of which there are at most 32 up to equivalence since each (8, 6)4-code of size 31
arises by removing one word from a (8, 6)4-code of size 32 by Proposition 6.1) we find that

|{u ∈ [4]8 | dH (w, u) ≥ 5 ∀ w ∈ D}| ≤ 25. (32)

This implies that an (n, d)q = (9, 6)4-code C of size 120 cannot contain a 31- or 32-block.
Therefore A4(9, 6) ≤ 120. �
Corollary 6.3 A4(10, 6) ≤ 480.

Proof By Proposition 6.2 and (3). �
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