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Abstract Andries Brouwer maintains a public database of existence results for strongly
regular graphs on n < 1300 vertices. We have implemented most of the infinite families
of graphs listed there in the open-source software Sagemath (The Sage Developers, http://
www.sagemath.org), as well as provided constructions of the “sporadic” cases, to obtain a
graph for each set of parameters with known examples. Besides providing a convenient way
to verify these existence results from the actual graphs, it also extends the database to higher
values of n.

Keywords Strongly regular graphs - Databases of combinatorial objects - Explicit computer
implementations

Mathematics Subject Classification 05E30 - 68-04

1 Introduction

Many researchers in algebraic combinatorics or an adjacent field at some point want to get
their hands on a list of feasible parameters of strongly regular graphs, and on actual examples
of graphs. These graphs are studied and/or used in hundreds of articles; recent highlights in
using strongly regular graphs include Bondarenko’s [2] and an improvement of the latter by
Jenrich and Brouwer [38]. While parameters are available from Brouwer’s online database
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[4], actually constructing an example can easily take a lot of time and effort. The project
described here aims at making these tasks almost trivial by providing the necessary graph
constructions, and a way to obtain a strongly regular graph from a tuple of parameters, in the
computer algebra system Sagemath [54] (also known as Sage). It is worth mentioning that
a large part of the project makes use of GAP [53] and its packages, in particular Soicher’s
package GRAPE [50].

Exhaustive enumeration of the non-isomorphic strongly regular graphs has been performed
for some tuples 7 of parameters (see Spence [51]). However, the sheer number of non-
isomorphic examples (see e.g. Fon-Der-Flaass [20] or Muzychuk [44]) makes it hard to
expect to be able to generate all of them, for a given 7, in reasonable time. Thus we opted
for a minimalist approach: for each 7 we generate an example, provided that one is known.
We note, however, that some of constructions implemented can generate many examples
with the same 7'; e.g. we have implemented the construction to generate the point graph of
the generalized quadrangle T,°(O) (see [47]) from any hyperoval O C PG(2, 25). As well,
many 7 ’s can be realized by more than one implemented construction, sometimes leading
to isomorphic graphs, and sometimes not.

Our desire to take on this project was motivated by the following considerations.

e One wants to double-check that the constructions are correct and their descriptions are
complete; indeed, a program is more trustworthy than a proof in some situations, and
coding a construction is a good test for completeness of the description provided.

e We wanted to see that the Sage combinatorial, graph-theoretic, and group-theoretic
primitives to deal with such constructions are mature and versatile, so that coding of
constructions is relatively easy and quick.

e One learns a lot while working on such a project, both the underlying mathematics, and
how the toolset can be improved. In particular, one might come along simplifications of
constructions, and this actually happened on couple of occasions, see Sect. 5.3.

e As time goes by, possible gaps in constructions are harder and harder to fill in. Recon-
structing omitted proof details becomes a tricky and time-consuming task.

In particular, as far as the latter item is concerned, we seem to have uncovered at least one
substantial gap in constructions (see Sect. 7). Furthermore, a number of constructions needed
feedback from their authors or discussions with experts—sometimes quite substantial—to
code them.

A large part of the constructions use in a nontrivial way another combinatorial or algebraic
object: block design, Hadamard matrix, two-graph, two-distance code, finite group, etc. In
particular, at the start of the project some of these were lacking in Sagemath, we needed to
implement constructions of certain block designs, regular symmetric Hadamard matrices with
constant diagonal (where the gap just mentioned was uncovered), skew-Hadamard matrices,
and two-graphs. As well, we created a small database of two-distance codes (see Sect. 4.2).

The remainder of the paper consists of a short introduction to strongly regular graphs,
pointing out particular relevant Sagemath features, and a description of our implementations,
few of them seemingly novel. We list the constructions that we implemented, and discuss
few gaps we discovered in the literature.

2 Strongly regular graphs and related objects

An undirected regular degree k graph I' on n vertices (with 0 < k < n — 1) is called strongly
regular if the vertices u and v of any edge have A common neighbours, and the vertices u and
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v of any non-edge have u common neighbours. One says that I has parameters (n, k, A, (1).
Note that the complement of T, i.e. the graph with the same set of vertices and edges being
precisely the non-edges of I, is also a strongly regular whose parameters are related by a
simple formula to these of I" (see e.g. Brouwer and Haemers [7] for details).

Example 2.1 Let T be the graph with vertices being k-subsets of an m-set, with k < [m/2];
two vertices are adjacent if the corresponding k-subsets intersect in a (k — 1)-subset. Such
graphs are called Johnson graphs and denoted by J(m, k) (in Sagemath, J(m, k) can be
constructed by calling the function graphs . JohnsonGraph (m, k) ). Then J(m, 2) is a
strongly regular graph, with parameters ((5), 2(m —2),m — 2, 4).

Example 2.2 RSHCD - a (n, €)-Regular Symmetric Hadamard matrix M with Constant
Diagonal is an n x n symmetric 4=1-matrix such that: (1) M M T — nI; (2) its rows sums are
all equal to 8e4/n, where € € {—1, +1} and § is the (constant) diagonal value of M, usually
denoted RSHCD~ and RSHCD™. These matrices yield regular two-graphs. As well, they
yield strongly regular graphs: replacing all the entries equal to the diagonal values by 0, and
the remaining entries by 1 gives the adjacency matrix of a strongly regular graph.

Some sources further require that both I" and its complement are connected; in terms of
parameters this means 0 < p < k. This excludes the trivial case of I" (or its complement)
being disjoint union of complete graphs of the same size. Sagemath implementation does not
impose this restriction.

A considerable number of techniques ruling out the existence of a strongly regular graph
I" with given parameters (n, k, A, ) are known, e.g. based on computing eigenvalues of the
adjacency matrix A of I'. As A generates a dimension 3 commutative subalgebra of C"*", one
sees that there are just 3 distinct eigenvalues of A, and they are determined by the parameters
(e.g. the largest eigenvalue is k). Sagemath implements parameter-based techniques to rule
out sets of parameters from Brouwer and van Lint [9], and from Brouwer et al. [10].

We use standard terminology for finite permutation groups, finite simple groups, and
geometries over finite fields from [7,10].

3 Structure and use of the implementation

The strongly regular graphs are split into two categories: the fixed-size graphs (see Sect.4)
and the families of strongly regular graphs (see Sect. 5). The parameters (n, k, A, w) of fixed-
size graphs are hardcoded, while each family of strongly regular graphs has a helper function
which takes (n, k, A, ) as an INPUT and answers whether the graph family is able to produce
a graph with the required parameters. Some families forward their queries to the databases of
Balanced Incomplete Block Designs, of Orthogonal Arrays, of Hadamard matrices of various
types, and of 2-weight codes.

With this design, it takes <3 s on a modern laptop to know which graphs on <1300 vertices
can be produced by the implemented constructions (i.e. as far as the online database goes).

In Sage, everything is made available to the user through a single function graphs.
strongly_regular_graph that produces a graph matching the provided parameters.
Note that p, the fourth parameter, can be omitted.

sage: G=graphs.strongly_regular_graph(175,30,5)

sage: G
AS(5)*; GQ(6, 4): Graph on 175 vertices
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One can use the same function to learn whether a set of parameters is realizable, if it is
not, or if the existence problem is unsettled:

sage: graphs.strongly_regular_graph(175,30,5,5,existence=True)

True

sage: graphs.strongly_regular_graph(57,14,1,existence=True)
False

sage: graphs.strongly_regular_graph(3250,57,0,1,existence=True)
Unknown

Technical details and descriptions of many specific functions is available as a part [13] of
the Sagemath manual, which can be found online [54].
4 Fixed-size constructions
4.1 “Sporadic” examples
Here we did not attempt to give an exhaustive list of references for each graph, for some of
them have several papers devoted to them in one or another way.

We identify the corresponding graphs by their parameters, and provide references and
some construction details for each of them.

(36, 14, 4, 6) Hubaut[31,S.9]. Subgraph of common neighbours of a triangle in

Suzuki graph.

(50, 7, 0, 1 [7, Sect. 9.1.7 (iv)]. The Hoffman—Singleton graph.
(56, 10, 0, 2 [7, Sect. 9.1.7 (v)]. The Sims—Gewirtz graph.

77, 16, 0, 4 [7, Sect. 9.1.7 (vi)]. The Mo;-graph.

(100, 22, 0, ©6) [7, Sect. 9.1.7 (vii)]. The Higman—Sims graph.
(100, 44, 18, 20) Jgrgensen and Klin [39]. Built as a Cayley graph.

(100, 45, 20, 20) [39]. Built as a Cayley graph.

(105, 32, 4, 12) Goethals and Seidel [23], Coolsaet [15].

(120, 63, 30, 36) Mathon, cf. [9, Sect. 6.A]. The distance-2 graph of J (10, 3).
(120, 77, 52, 44) Uniqueby Degraer and Coolsaet [17]. We firstbuilda2— (21, 7, 12)
design, by removing two points from the Witt design on 23 points. We then build the inter-
section graph of blocks with intersection size 3.

(126, 25, 8, 4) Mathon, cf. [9, Sect. 6.A]. The distance-(1 or 4) graph of J (9, 4).
(126, 50, 13, 24) Goethals, cf. [9].

(144, 39, 6, 12) Ivanov etal. [35, Table 9]. An orbital of degree 39 (among 2 such
orbitals) of the group P SL3(3) acting on the (right) cosets of a subgroup of order 39.

(162, 56, 10, 24) [31,S.12]. The complement of the subgraph induced on the neigh-
bours of a vertex in the complement of McLaughlin graph.

175, 72, 20, 36) [9, Sect. 10.B (iv)]. Obtained from the line graph A of Hoffman-
Singleton Graph, by setting two vertices to be adjacent if their distance in A is exactly 2. For
more information, see http://www.win.tue.nl/~aeb/graphs/McL.html.

(176, 49, 12, 14) Brouwer [5]. Built from the symmetric Higman—Sims design. There
exists an involution o exchanging the points and blocks of the Higman—Sims design, such
that each point is mapped onto a block that contains it (i.e. o is a polarity with all absolute
points). The graph is then built by making two vertices u, v adjacent whenever v € o (u).
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(176, 85, 48, 34) W.Haemers,cf.[9, Sect. 10.B.(vi)]. Obtained from the (175, 72, 20,
36)-graph by attaching a isolated vertex and doing Seidel switching (cf. [7, Sect. 10.6.1]) with
respect to the disjoint union of 18 maximum cliques.

(176, 105, 68, 54) [31, S. 7]; (a rank 3 representation of Mpy). We first build a 2 —
(22,7, 16) design, by removing one point from the Witt design on 23 points. We then build
the intersection graph of blocks with intersection size 3.

(196, 91, 42, 42) Ionin and Shrikhande [34].

(210, 99, 48, 45) Klin et al. [40]. S7 acts on the 210 digraphs isomorphic to the
disjoint union of K and the circulant 6-vertex digraph which one can obtain using Sagemath
as digraphs.Circulant (6, [1,4]1). This action has 16 orbitals; the package [19]
found a merging of them, explicitly described in [40], resulting in this graph.

(231, 30, 9, 3) Brouwer [6]. The Cameron graph.

(243, 110, 37, 60) Goethals and Seidel [24]. Consider the orthogonal complement of
the ternary Golay code, which has 243 words. On them we define a graph, with two words
adjacent if their Hamming distance is 9.

(253, 140, 87, 65) [31,S. 6]; a rank 3 representation of M»3. We first build the Witt
design on 23 points which is a 2 — (23, 7, 21) design. We then build the intersection graph
of blocks with intersection size 3.

(275, 112, 30, 56) [31,S. 13]. The McLaughlin graph.

(276, 140, 58, 84) Haemers and Tonchev [26]. The graph is built from from McLaugh-
lin graph, with an added isolated vertex. We then perform Seidel switching on a set of 28
disjoint 5-cliques.

(280, 117, 44, 52) MathonandRosa[43]. The vertices of the graph are all 280 partitions
of a set of cardinality 9 into 3-sets, e.g. {{a, b, ¢}, {d, e, [}, {g, h, i}}. The cross-intersection
of two partitions P = {Py, P, P;} and P’ = {P], P}, P}} being defined as { P; N P]f 1<
i, j < 3}, two vertices of ‘G* are set to be adjacent if the cross-intersection of their respective
partitions does not contain exactly 7 nonempty sets.

(280, 135, 70, 60) [35,Table 9, p.51]. This graph is built from the rank 4 action of J,
on the cosets of a subgroup 3.PGL(2,9).

(324, 152, 70, 72) See Sect.5.3.2. RSHCD™, see Example 2.2. We build an apparently
new example using the (324, 153, 72, 72)-graph; other example may be found in [27].
(324, 153, 72, 72) See Sect.5.3.2. RSHCD™, see Example 2.2. We build the example
from [37]; more examples may be found in [27,45].

(416, 100, 36, 20) [31, S. 14]; (rank 3 representation of G7(4)). This graph is iso-
morphic to the subgraph of the Suzuki graph [31, S. 15] induced on the neighbours of a
vertex.

(560, 208, 72, 80) [35, Table 9, p. 45]. Obtained as the union of 4 orbitals (among the
13 that exist) of the group Sz(8) in its primitive action on 560 points.

(630, 85, 20, 10) Haemers [25], see also [9, Sect. 10.B.(v)]. This graph is the line
graph of a pg(5, 18, 2); its point graph is the (175,72, 20, 36)-srg from this table. One
then selects a subset of 630 maximum cliques in the latter to form the set of lines of the
pg(5,18,2).

(765, 192, 48, 48) Ionin and Kharaghani, see Sect. 5.3.3.

(784, 243, 82, 72) Mathon, cf. [9, Sect. 6.D]. This and the following two are Mathon’s
graphs from merging classes in the product of pseudo-cyclic association scheme for action
of 03(8) on elliptic lines in PG(2, 8), studied by Hollmann [29].

(784, 270, 98, 90) Mathon, cf. [9, Sect. 6.D]. (784, 297, 116, 110) Mathon, cf. [9,
Sect. 6.D].

(936, 375, 150, 150) Janko and Kharaghani [36].
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(1288,792, 476, 504) Brouwer and van Eijl [8]. This graph is built on the words of weight
12 in the binary Golay code. Two of them are then made adjacent if their symmetric difference
has weight 12.

(1782,416, 100, 96) [31, S. 15]. Suzuki graph, rank 3 representation of Suz.

(1800, 1029, 588, 588) Janko and Kharaghani [36].

4.2 Two-weight codes database

The rest of the fixed-size constructions of strongly regular graphs in the database originate
from linear d-dimensional two-weight codes of length ¢ with weights w; and w; over F.
We use data shared by Chen [11], data by Kohnert [41] shared by Alfred Wassermann, data
from Bouyukliev and Simonis [3, Theorem 4.1], and from Disset [18].

Graph parameters Code parameters Ref.
n k A n q l d wq wy

81 50 31 30 3 15 4 9 12 [11]
243 220 199 200 3 55 5 36 45 [11]
256 153 92 90 4 34 4 24 28 [11]
256 170 114 110 2 85 8 40 48 [11]
256 187 138 132 2 68 8 32 40 [11]
512 73 12 10 2 219 9 96 112 [11]
512 219 102 84 2 73 9 32 40 [11]
512 315 202 180 2 70 9 32 40 [41]
625 364 213 210 5 65 4 50 55 [11]
625 416 279 272 5 52 4 40 45 [11]
625 468 353 342 5 39 4 30 35 [3]
729 336 153 156 3 168 6 108 117 [18]
729 420 243 240 3 154 6 99 108 [11]
729 448 277 272 3 140 6 90 99 [41]
729 476 313 306 3 126 6 81 90 [11]
729 532 391 380 3 98 6 63 72 [11]
729 560 433 420 3 84 6 54 63 [11]
729 616 523 506 3 56 6 36 45 [11]
1024 363 122 132 4 121 5 88 96 [18]
1024 396 148 156 4 132 5 96 104 [18]
1024 429 176 182 4 143 5 104 112 [18]
1024 825 668 650 2 198 10 96 112 [11]

Note that some of these codes are members of infinite families; this will be explored and
extended in forthcoming work.
5 Infinite families
These are roughly divided into two parts: graphs related to finite geometries over finite

fields (in particular various classical geometries), and graphs obtained by combinatorial
constructions.

5.1 Graphs from finite geometries

Here g denotes a prime power, and € € {—, +}.
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e Graphs arising from projective geometry designs are discussed in Sect. 5.2, along with
other Steiner graphs.

e Paley graphs. The vertices are the elements of F;, with g = 1 mod 4; two vertices are
adjacent if their difference is a nonzero square in Fg; see [7, 9.1.2].

e Polar space graphs. These include polar spaces for orthogonal and unitary groups, see
entries 05,(¢q), O24+1(q), and Uy(g) in [7, Table 9.9]. Sagemath also has an imple-
mentation of polar spaces for symplectic groups (entry Sp4(g) in [loc.cit.]), but we do
not use them in the database, as they have the same parameters as these for orthogonal
groups.

e Generalised quadrangle graphs, GQ(s, t) in [7, Table 9.9]. Apart from these appearing
as polar space graphs, with s =t = ¢, s> =1 = ¢, and s = ¢2, 1t = ¢>, we provide
other examples, as follows.

— Unitary dual polar graphs. This gives s = ¢°, t = ¢°.

- GQ(q — 1, g + 1)-graphs for g odd are constructed following Ahrens and Szekeres,
see [47, 3.1.5], and for g even we provide the T (O) construction, see [47, 3.1.3],
from a hyperoval O in PG(2, q).

- GQO(q + 1,q — 1) are constructed as line graphs of GO(g — 1, g + 1).

o Affine polar graphs. These are the entry VOS5, (g) in [7, Table 9.9].

e Graphs of non-degenerate hyperplanes of orthogonal polar spaces, with adjacency speci-
fied by degenerate intersection; see NOS5, ; (¢) in [7, Table 9.9]. These are constructions
by Wilbrink, cf. [9, Sect. 7.C]. The implementation in Sagemath simply takes the appro-
priate orbit and orbital of the orthogonal group acting on the hyperplanes using parameters
of the graph, namely v = ¢g?(q? + €)/2, k = (¢¢ — €)(q? ! + ).

e Graphs of non-isotropic points of polar spaces, with adjacency specified by orthogonality.
These include a number of cases.

— Non-isotropic points of orthogonal polar spaces over F; see NO5,(2) in [7, Table
9.9].

— One class of non-isotropic points of orthogonal polar spaces over F3; see NOS ,(3)
in [7, Table 9.9].

— One class of non-isotropic points of orthogonal polar spaces (specified by a non-
degenerate quadratic form F) over Fs; see NOEj 1(5) in [7, Table 9.9]. This is a
construction by Wilbrink, cf. [9, Sect.7.D], where the class of points p is described
in terms of the type of the quadric specified by p N Q, where Q is the set of isotropic
points of the space, i.e. Q := {x € PG(2d,5) | F(x) = 0}, and pti={xe Q|
F(p + x) = F(p)}. The implementation in Sagemath takes {x € PG(2d,5) |
F(x) = +£1} for € = +, and the rest of non-isotropic points for € = —.

— Non-isotropic points of unitary polar spaces; see NUd(q) in [7, Table 9.9].

e Graphs of Taylor two-graphs, see [7, Table 9.9] and [9, Sect. 7E]. Note that we implement
an efficient construction that does not need all the triples of the corresponding two-graphs,
by first directly constructing the descendant strongly regular graphs on ¢ vertices, and a
partition of its vertices into cliques. The latter provides a set to perform Seidel switching
on the disjoint union with K1, and obtain the strongly regular graph on ¢> + 1 vertices.
See Sagemath documentation for graphs . TaylorTwographSRG for details.

e Cossidente—Penttila hemisystems in PG(5, g), for ¢ odd prime power [16], are certain
partitions of points of the minus type quadric in PG(5, g) into two parts V, V' of equal
size. The subgraph I' of the collinearity graph of the corresponding GQ(q, ¢*) induced
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on V has parameters ((¢> + 1)(g + 1)/2, (¢> + 1)(g — 1)/2, (¢ — 3)/2. (q — 1)*/2).
The way we construct these graphs in Sage is described in Sect. 5.3.1.

5.2 Graphs from combinatorics

e Johnson Graphs J (m, 2), see Example 2.1.

e Orthogonal Array block graphs OA(k, n). Sage is able to build a very substantial state-
of-the-art collection of orthogonal arrays (often abbreviated as OA), thanks to a large
implementation project undertaken in 2013/2014 by the first author in a very productive
collaboration with Julian R. Abel and Vincent Delecroix. For the present work no new
constructions of OAs were needed, and the link between Sage’s OAs and Strongly Regular
Graphs databases filled in three new entries in Andries Brouwer’s database.

e Steiner Graphs (intersection graphs of BIBD)—Sage can already build several families of
Balanced Incomplete Block Designs (when k < 5, or projective planes, or other recursive
constructions and fixed-size instances). More constructions from [14] were added to Sage
while working on this project.

e Goethals—Seidel graphs, see [23].

e Haemers graphs, see [9, Sect. 8.A].

e RSHCD—graphs from (n, €)-regular symmetric Hadamard matrices M with constant
diagonal, see Example 2.2 for the definition. Several constructions from the literature
(and one apparently new one, cf. Sect. 5.3.2) for this class of Hadamard matrices were
implemented in Sage and are available in its Hadamard matrices module.

e Two-graph descendants. Each regular two-graph (a certain class of 3-uniform v-vertex
hypergraphs having 2 three-edges on each pair of points, cf. e.g. [7, Chap. 10]) gives
rise to a strongly regular graph with parameters (v — 1,2, 3 — v/2, 1) obtained by
descendant construction, see e.g. [7, Sect. 10.3].

e Switch OA Graphs—these strongly regular graphs are obtained from OA block graphs
(see above). From such a graph G obtained from an OA(k, n), the procedure is to (1) add
a new isolated vertex v; (2) perform Seidel switching on the union of {v} and several
disjoint n-cocliques of G. Note that a n-coclique in G corresponds to a parallel class of
the OA(k, n), and that those are easily obtained from an OA(k + 1, n) (i.e. a resolvable
OA(k, n)).

e Polhill Graphs—In [48], Polhill produced 5 new strongly regular graphs on 1024 vertices
as Cayley graphs. His construction is able to produce larger strongly regular graphs of
order > 4096, though the current implementation only covers the n = 1024 range.

e Mathon’s pseudo-cyclic strongly regular graphs related to symmetric conference matri-
ces, optionally parameterised by a strongly regular graph with parameters of a Paley
graph, and a skew-symmetric Latin square [42,49].

e Pseudo-Paley and Pasechnik graphs from skew-Hadamard matrices. These are construc-
tions due to Goethals—Seidel [9] and Pasechnik [46], constructing graphs on (4m — 1)2
vertices from skew-Hadamard matrices of order 4m. Sage builds the corresponding
skew-Hadamard matrices from a small database featuring classical constructions of skew-
Hadamard matrices from [28] and small examples from (anti)-circulant matrices [22,56].

5.3 Novel constructions
Here we collect descriptions of constructions of graphs that are in our view sufficiently novel

and interesting to mention. Namely, Sect. 5.3.1 describes another construction for a known
graph, Sect. 5.3.2 describes a working construction for a graph which was claimed to exist
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Implementing Brouwer’s database of strongly regular graphs 231

in the literature, although we were unable to verify a number of published constructions (see
Sect. 7 for details). Finally, Sect. 5.3.3 discusses an unpublished construction by Ionin and
Kharaghani.

5.3.1 Cossidente—Penttila hemisystems

The construction of the hemisystem in [16] requires building GQ(g2, ¢), which is slow. Thus
we designed, following a suggestion of T. Penttila, a more efficient approach, working directly
in PG(5, g). The partition in question is invariant under the subgroup H = Q3(¢?) < O¢ ().
Without loss in generality H leaves the form B(X, Y, Z) = XY + Z? invariant. We pick
two orbits of H on the F,-points, one of them B-isotropic, with a representative (1 : 0 : 0),
viewed as a point of IT := PG(2, g%), and the other corresponding to points of IT that have
all the lines on them intersecting the conic of IT specified by B in zero or two points. We
take (1 : 1 : €) as a representative, with € € IE‘;Z so that € 4 1 is not a square in Fgo.

Indeed, the conic can be viewed {(0: 1: 0} U{(1: —t2:1) |t € ]qu}. The coefficients
of a generic lineon (1 : 1 : €) are [l : —1 —eb : b], for —1 # €b. Thus, to make
sure that its intersection with the conic is always even, we need that the discriminant of
1 + (1 4 €b)t? + tb = 0 never vanishes, and this is if and only if €2 + 1 is not a square.

Finally, we need to adjust B, by multiplying it by appropriately chosen v € IFZZ, so that
(1 : 1 : €) becomes isotropic under the relative trace norm (X : Y : Z) — vB(X, Y, Z) +
(vB(X,Y, Z))4, used to define adjacency in I.

5.3.2 Regular symmetric Hadamard matrices of order 324.

We recall the definition of RSHCD™ and RSHCD™ from Example 2.2. An example M ™
of RSHCD™ order 324 was constructed by Janko et al. in [37], and we implemented their
construction in Sagemath. See [27,45] for other examples of RSHCD™ of order 324.

We use M to build an example M~ of RSHCD™ of order 324, as follows. One is tempted
to apply [27, Lemma 11] to M ™, which says that for an RSHCD¢ matrix M built from four
n x n-blocks M;;, so that

= (%; ZZ) , the matrix T (M) := (_Ai/zl ]\Z;z) (D

is an RSHCD™¢, provided that row sums of M and M», are 0. However, the latter condition
does not hold for M = M™. We are able to “twist” M so that the resulting matrix is
amenable to this Lemma. Namely, it turns our that the matrix

Mo M]])
M = ,  where M =M™,
(MlT1 M>,

is RSHCD™, its diagonal blocks having row sums 0, as needed by (1). Interestingly, the
(324, 152,70, 72)-strongly regular graph corresponding to 7(M’) has a vertex-transitive
automorphism group of order 2592, twice the order of the (intransitive) automorphism group
of the (324, 153, 72, 72)-strongly regular graphcorresponding to M. As far as we know,
this is the only known example of such a vertex-transitive graph. Other graphs with such
parameters were constructed in [27].
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5.3.3 A (765,192,48,48)-graph

We were unable to implement the construction of a graph with these parameters described,
as a part of an infinite family, in Ionin and Kharaghani [32]. The authors of the latter were
very kind to send us an updated construction of the graph in question, which we successfully
implemented in Sagemath, see [12]. This construction can be found in the documentation of
the Sagemath function graphs . IToninKharaghani765Graph.

They have also posted an update [33] to [32]; we have not yet tried to implement the
updated version in full generality.

6 Missing values

Among the 1150 realizable, according to Andries Brouwer’s database, parameter sets, our
implementation can realize 1142. Up to taking graph complements, the list of currently
missing entries is as follows.

(196 90 40 42) RSHCD™ (may not exist, cf. Sect. 7)
(196 135 94 90) Huang et al. [30]

(378 116 34 36) Muzychuk S6(n = 3,d = 3) [44]
(512 133 24 38) Godsil (q=28,r=23)[21]

The fisrt entry is discussed in Sect. 7. Implementation of the remaining three entries is
currently in progress.

7 Incorrect RSHCD constructions ?

We were unable to reproduce the following two constructions of Regular Symmetric Hada-
mard matrices with Constant Diagonal (RSHCDs) and thus the corresponding strongly regular
graphs (in the sense of [7, Sect. 10.5]).

e In [7, Sect. 10.5.1, (i)], the construction of RSHCD(196, —) is attributed to [34], in
which the existence of a (4k2, 2k + k, k* + k)-strongly regular graph, equivalent to
a RSHCD(196, —) for k = 7, is claimed in Theorem 8.2.26.(iii). The latter says that
the RSHCD(196, —) can be easily obtained from the RSHCD(196, +) from [34, The-
orem 8.2.26.(ii)]. While the construction of (ii) was successfully implemented in Sage,
following the authors’ instructions for (iii) did not lead us to the RSHCD(196, —). Com-
munication with the authors did not solve the issue, and we are not aware of any other
proof of the existence of a (196, 90, 40, 42)-strongly regular graph.

e In[7, Sect. 10.5.1, (iii)] one finds the following claim, attributed to [58, Corollary 5.12].

If n— 1andn + 1 are odd prime powers, there exists a RSHCD(n?, +).

We implemented the construction provided in [58, Corollary 5.12], but that did not lead
us to the expected strongly regular graph. We also note that while Corollary 5.12 does
not claim that the provided matrices are regular, that claim appears in the theorem on
which it relies. The author of [58, Corollary 5.12] did not answer our message, and we
discarded this construction as broken in our work.

This construction should have been able to produce a RSHCD(676,+) and a
RSHCD(900, +). Fortunately in the end it was not required.
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The following construction of RSHCDs needed a lot of effort and a number of discussions
with Andries Brouwer to correct crucial misprints in several sources and combine them into
a working construction.

e In[7, Sect. 10.5.1, (iv)] one finds the following claim, attributed to [58, Corollary 5.16].

If a + 1isaprime power and there exists a symmetric conference matrix
of order a, then there exists a RSHCD(az, +).

Following [loc.cit.] did not lead us to the expected result; as it turns out, [loc.cit.] has a
typo, and the correct formulae should be taken from the original source [57, Corollary 17]
by Wallis and Whiteman. An essential ingredient in this construction, referred to in [57],
is a special pair of difference sets due to Szekeres [52, Theorem 16], defined in (4.1)
and (4.2) there. However, (4.2) has a typo (it has — instead of + sign), invalidating the
construction. Fortunately, a correct definition for may be found [58, Theorem 2.6, p.
303]. This construction allowed us to produce RSHCD (676, +) and a RSHCD(900, +).

8 Entries added to database during this work

By linking Sage’s database of Orthogonal Arrays with its database of Strongly Regular
Graphs, we were able to fill in the following three values:

e (196, 78, 32, 30)—can be obtained from an OA(6, 14) [55]
e (324,102, 36, 30)—-can be obtained from an OA(6, 18) [1]
e (324,119, 46, 42)—can be obtained from an OA(7, 18) [1]

This can be seen as a by-product of making two mathematical databases, which formerly
only existed in printed form, inter-operable. In our implementation, any update of the com-
binatorial designs databases can be beneficial for the database of strongly regular graphs.

We obtained a (1024, 462, 206, 210)-graph while going through the constructions
from [48], although this value did not appear in the online database at that time.

Note added in proof

More details on constructions of RSHCDs discussed in Sect. 7 are available in preprint
http://www.win.tue.nl/~aeb/preprints/rshcd.pdf by Andries E. Brouwer. A construction of
the (378, 116, 34, 36)-graph from [44] (along with other constructions from [44]), mentioned
as missing in Sect. 6, has been implemented by Rowan Schrecker (see https://trac.sagemath.
org/21155) and will be available in [13,54] soon.
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