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Abstract
Esophageal carcinoma (ESCA) is an aggressive solid tumor. The 5-year survival rate for patients with ESCA is estimated 
to be less than 20%, mainly due to tumor invasion and metastasis. Therefore, it is urgent to improve early diagnostic 
tools and effective treatments for ESCA patients. Tumor microenvironment (TME) enhances the ability of tumor cells to 
proliferate, migrate, and escape from the immune system, thus promoting the occurrence and development of tumor. TME 
contains chemokines. Chemokines consist of four major families, which are mainly composed of CC and CXC families. 
The main purpose of this review is to understand the CC and CXC chemokines and their receptors in ESCA, to improve 
the understanding of tumorigenesis of ESCA and determine new biomarkers for the diagnosis and prognosis of ESCA. We 
reviewed the literature on CC and CXC chemokines and their receptors in ESCA identified by PubMed database. This article 
introduces the general structures and functions of CC, CXC chemokines and their receptors in TME, as well as their roles 
in the progress of ESCA. Chemokines are involved in the development of ESCA, such as cancer cell invasion, metastasis, 
angiogenesis, and radioresistance, and are key determinants of disease progression, which have a great impact on patient 
prognosis and treatment response. In addition, a full understanding of their mechanism of action is essential to further verify 
that these chemokines and their receptors may serve as biomarkers or therapeutic targets of ESCA.

Graphical Abstract
The poor prognosis of esophageal cancer is related to the early invasion and metastasis of the tumor. Tumor-associated mac-
rophages are highly correlated with the occurrence, development, severity, and prognosis of esophageal cancer in the tumor 
microenvironment. Studies have shown that tumor-associated macrophages and esophageal cancer cells in the esophageal 
cancer microenvironment can secrete a variety of chemokines. A comprehensive analysis of the literature on the relationship 
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between esophageal cancer cells and chemokines found that the binding of these chemokines with corresponding receptors 
can regulate the growth, migration and invasion, angiogenesis, radiotherapy resistance and leukocyte invasion of the tumor.

Keywords Chemokine · Chemokine receptor · Esophageal cancer · Therapeutic potential · Tumor microenvironment

Introduction

Esophageal cancer (ESCA) is the seventh most common 
cancer in the world and the sixth most common cause 
of cancer-related death, according to new research [1]. 
Globally, one of the countries with the highest burden of 
ESCA is China [2]. ESCA can be classified into esophagus 
adenocarcinoma (EAC) and esophageal squamous 
cell carcinoma (ESCC) by histopathology. The main 
treatment methods of ESCA include surgery, radiotherapy, 
chemotherapy, and comprehensive treatment [3]. The overall 
5-year survival rate of patients with ESCA is about 20% [4]. 
The main cause of death is the invasion and metastasis of 
ESCA cells [5]. However, the 5-year survival rate of patients 
with early ESCA can exceed 95% if treated promptly [6]. 
Therefore, it is of great clinical significance to evaluate the 
biological changes related to ESCA at the molecular level 
and find the regulatory targets related to the malignant 
phenotype of cancer invasion and metastasis, to improve 
the survival rate of ESCA patients.

Chemokines were first described as factors inducing 
neutrophil migration in 1984 [7]. Chemokines are small 
cytokines or signal proteins secreted by cells and play an 
important role in their biology [8, 9]. Chemokines are a 
family of soluble proteins with a low molecular weight of 
8–15 kDa. Studies have shown that human chemokines 
contain about 50 different types and 20 chemokine 
receptors [10]. According to the position of the first two 
N-terminal cysteine residues, chemokines are divided 
into four major subfamilies, including CC, CXC, C, and 
CX3C. Chemokine receptors are G-protein-coupled recep-
tors. G-protein-coupled receptors have seven transmem-
brane domains on the surface of leukocytes. So far, about 
20 different chemokine receptors have been identified. 
According to the type of chemokine they bind, they are 
also divided into four families, including CCR and CC 
chemokine binding and CXCR and CXC chemokine bind-
ing (Fig. 1). The CC and CXC chemokine are two major 
chemokine subfamilies, which are mainly expressed in 
tumor microenvironment (TME) and play an important 
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role in tumor progression, tumor-related inflammation, 
immunity, and tumor invasion [11, 12]. Therefore, this 
review focuses on the role of CC and CXC in ESCA.

Tumor-associated macrophages (TAMs) are macrophages 
that infiltrate tumor tissue, and their proportion in the TME 
is highly correlated with tumor occurrence, development, 
severity, and prognosis. Research has found that TAMs can 
secrete chemokines. Tumor cells secrete chemokines in the 
form of autocrine or paracrine. Chemokines mediate host 
response to cancer by guiding leukocytes into TME. In fact, 
TME is composed of a wide and diverse mixture of CC and 
CXC chemokines, which regulate tumor growth, angiogen-
esis, invasion, and leukocyte infiltration into tumors [13]. 

Chemokines can directly regulate tumor growth by inducing 
tumor cells proliferation and preventing tumor cells apop-
tosis (Fig. 2). The role of chemokines in tumors has been 
reported in various types of cancers, including breast [14], 
colon [15], ovarian [16], lung [17], as well as ESCA [18].

More and more evidences show that uncontrolled 
inflammation is related to the formation of ESCA [19–21]. 
Chemokines and their receptors play an important role 
in inflammation and malignant diseases [22–24]. The 
expression of chemokine in tumor tissue is decreased or 
up-regulated, which has protective and promoting effects 
on tumor occurrence. The purpose of this study is to 
explore the mechanism of chemokine-induced invasion 

Fig. 1  CC and CXC chemokines and their receptors
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and metastasis of ESCA and to provide a strong theoretical 
and experimental basis for revealing the pathogenesis of 
ESCA, finding molecular markers for diagnosis of ESCA, 
identifying, and developing drug targets for clinical 
treatment, and formulating effective treatment plans.

CC and CXC Chemokine Subfamily in ESCA

We reviewed articles on CC and CXC chemokines and 
their receptors in ESCA identified by PubMed database 
(Fig. 3). In the CC chemokines subfamily, there are 28 
chemokines, from CCL1 to CCL28. We have not found any 
research reports on CCL6, CCL7, CCL9, CCL10, CCL12, 
CCL13, CCL14, CCL16, and CCL27 of ESCA. The role of 
CC chemokines in ESCA is summarized in Table 1. Most 
CC chemokines were highly expressed in ESCC and were 
related to the prognosis of patients. The pathways of CCL1/
CCR8 and CCL3/CCR5 in the ESCA are illustrated in 
Fig. 4. CXC chemokine subfamily includes 17 chemokines 
from CXCL1 to CXCL17. We did not find the relationship 
between CXCL4, CXCL7, CXCL15, CXCL17, and ESCA. 
The role of CXC chemokines in ESCA is summarized in 
Table 1. Most CXC chemokines were highly expressed in 
ESCC. The pathways of CXCL6/CXCR2 and CXCR12/
CXCR4 in the ESCA are illustrated in Fig. 4.

Chemokines and the Invasion and Migration 
in ESCA

CCL1, CCL3, CCL8, CCL21, CCL25, CXCL5, CXCL8, 
CXCL12, and CXCL14 are associated with the invasion 
and migration of ESCA. CCL1 is overexpressed in TAMs, 
CCR8 (CCL1 receptor) is expressed on the surface of 
ESCC cells, and the interaction between stromal CCL1 
and CCR8 promotes ESCC progression of migration and 
invasion through Akt/PRAS40/mTOR pathway, thus pro-
viding a new therapeutic target [25]. CCL3, derived from 
TAMs and esophageal cancer cells, promotes cell migra-
tion and invasion by binding to CCR5 and phosphorylated 
Akt and ERK, thus promoting the progression of ESCC 
and poor prognosis [26]. It is CCL8 that can activate the 
NF-κB signaling pathway, induce the epithelial-mesenchy-
mal transition, and promote the migration and invasion of 
ESCC cells in vitro [27]. CCL21 can significantly improve 
the migration ability of ESCC cell line, can induce the for-
mation of pseudopodia, and can significantly enhance the 
motility of esophageal carcinoma cells [28]. Among the 
differentially expressed genes, CCL25 is highly associated 
with PCSK9, and thus, it is speculated that PCSK9 may 
promote the migration and invasion of ESCC by affecting 
the secretion of CCL25 [29]. The results showed that the 
enhanced expression of miR-145-3p inhibited the prolif-
eration, migration, invasion, and stimulated apoptosis of 
ESCA by inhibiting CXCL5 [30]. CXCL8 up-regulated in 
the microenvironment may contribute to ESCC migration 
and invasion by the phosphorylation of Akt and ERK1/2 
[31]. Developmentally down-regulated 9 maintained the 
stemness of ESCC cells and regulated CXCL8 through the 
ERK pathway to recruit myeloid-derived suppressor cells 
into the tumor [32]. Maelstrom could up-regulate CXCL8 
through Akt1/RelA to direct myeloid-derived suppressor 
cells homing into ESCC [33]. Anti-CXCL8 autoantibody 
had good diagnostic value and may become a candidate 

Fig. 2  Tumor-associated macrophages in the tumor microenvironment 
secrete chemokines that act on the migration and invasion of esopha-
geal cancer cells

Fig. 3  Diagram of CC and CXC chemokines in the esophageal cancer 
search
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biomarker for ESCC [34]. It suggested the potential use-
fulness of CXCL8 in the diagnosis and progression of 
ESCA [35, 36]. The decrease of CXCL12 contributes to 
the inhibition of proliferation and invasion of esophageal 
cancer cells in  vitro [37]. Growth inhibitor 5 inhibits 
ESCC cells migration and invasion by down-regulating 

IL-6/CXCL12 signaling pathway [38]. Targeting CXCL12/
CXCR4 is also summarized to provide a reference for the 
clinical diagnosis and treatment of ESCC [39]. Ectopic 
expression of CXCL14 inhibited the proliferation, inva-
sion, tumor growth, and lung metastasis of ESCC cells 

Table 1  The CC and CXC chemokines play a role in the ESCA

Function in ESCA Chemokines

Chemokines and invasion and migration CCL1, CCL3, CCL8, CCL21, CCL25, CXCL5, CXCL8, CXCL12, CXCL14
Chemokines and survival CCL4, CCL5, CCL11, CCL15, CCL18, CCL20, CCL22, CCL23, CCL25, CCL26, CCL28, CXCL1, 

CXCL5, CXCL6, CXCL10, CXCL11,CXCL12
Chemokines and angiogenesis CXCL10
Chemokines and metastasis CCL21, CXCL6, CXCL12
Chemokines and immune CCL2, CCL17, CCL19, CCL20, CCL24, CXCL2, CXCL3, CXCL9, CXCL10, CXCL11, CXCL13, 

CXCL16
Chemokines and radioresistance CXCL1

Fig. 4  Schematic model of the CCL1/CCR8, CCL3/CCR5, CXCL6/
CXCR2, and CXCL12/ CXCR4 axes in esophageal squamous cell 
carcinoma. CCL1 binds to the receptor CCR8 on cancer cells, and 
CCL1/CCR8 interaction promotes cancer cell migration and inhibits 
cancer cell apoptosis by activating Akt signaling pathway. CCL3 pro-
motes tumor progression and poor prognosis in esophageal squamous 
cell carcinoma patients by binding to CCR5 on esophageal squamous 

cell carcinoma cells, activating the PI3K/AKT and MEK/ERK path-
ways, and promoting cell proliferation, migration, and angiogenesis. 
CXCL6 enhances transcription by activating the STAT3 pathway and 
enhances the growth and metastasis of esophageal squamous cell car-
cinoma cells. CXCL12/CXCR4 is one of the main mechanisms that 
esophageal squamous cell carcinoma cells transfer through ERK1/2 
signaling pathway
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[40]. FAM129A aggravates the progression of ESCA by 
negatively regulating the CXCL14 level [41].

Chemokines and the Survival in ESCA

The chemokines associated with the survival of ESCA are 
CCL4, CCL5, CCL11, CCL15, CCL18, CCL20, CCL22, 
CCL23, CCL25, CCL26, CCL28, CXCL1, CXCL5, CXCL6, 
CXCL10, CXCL11, and CXCL12. The study showed 
that CCL4 and CCL20 recruit functionally different T 
lymphocyte subsets and high levels of CCL4 in the lesions 
of ESCC patients predicting prolonged survival [42]. High 
CCL5 expression is associated with poor prognosis in low-
grade esophageal cancer, and the therapeutic potential of 
targeting the CCL5-CCR5 axis in ESCC [43]. CCL5 served 
as the key chemokine to recruit CD8(+) T lymphocytes into 
ESCC tissue and may play a role in patient survival [44]. 
Autocrine CCL5 signaling may promote the progress of 
ESCC, and targeting CCL5/CCR5 axis may be a potential 
treatment strategy for ESCC [45]. CCL11 and CXCL10 in 
tumor tissues of ESCA patients after treatment are related 
to prognosis, and low levels indicate a good prognosis 
[46]. CCL15/MIP1D were associated with ESCA [47]. 
Overexpression of CCL18 was associated with a worse 
survival in patients with ESCC, and CCL18-induced 
hox transcript antisense intergenic RNA upregulation 
promotes malignant progression through the miR-130a-
5p-ZEB1 axis [48]. Fusobacterium nucleatum might also 
contribute to aggressive tumor behavior through activation 
of CCL20 and be associated with shorter survival in ESCA 
[49]. CCL20 had been found to be overactivated in EAC 
tissue infected with the fusobacterium nucleatum [50]. 
High CCL22 expression was associated with poor patient 
survival, L1 cell adhesion molecule (L1CAM) promoted 
CCL22 expression by activating the PI3K/AKT/NF-κB 
signaling pathway, and CCL22 promoted the recruitment 
of Treg to ESCA sites, and Tregs secreted TGF-β and then 
Smad2/3 can promote the expression of L1CAM with a 
positive feedback mode [51]. Seven biomarkers (CXCL6, 
CCL23, CXCL5, TGFA, CXCL1, OSM, and CCL4) were 
inversely associated with HRs 0.57–0.72 in ESCC [52]. 
ESCA associated with CCL25 as a biomarker for predicting 
outcome in upper gastrointestinal tumors [53]. Elevated 
CCL26 was associated with improved overall survival in 
EAC [54]. The expression levels of CCL28 in the serum of 
early ESCC were significantly up-regulated [55], and CCL28 
is a potential predictor of treatment response in EAC [56]. 
Histone deacetylase 2 promotes the development of ESCC 
by down-regulating microRNA-503-5p and promoting 
CXCL10 [57]. CXCL11/I-TAC was associated with ESCA 
for prevention and treatment [47]. ESCA patients with high 

CXCL12 tended to have worse overall and disease-free 
survival [58].

Chemokines and the Angiogenesis in ESCA

CXCL10 is associated with the survival of ESCA. Poly 
(A)-binding protein cytoplasmic 1 regulates the stability 
of interferon alpha (IFN-α) inducible protein 27 mRNA by 
interacting with eIF4G and promotes angiogenesis through 
the exosome miR-21-5p/CXCL10, playing a key role in the 
malignant progression of ESCC [59].

Chemokines and Metastasis in ESCA

CCL21, CXCL6, and CXCL12 are associated with the 
metastasis of ESCA. The CCL21/CCR7 receptor ligand 
system may play a role in the lymph node metastasis of 
ESCC by up-regulating MUC1 [28]. CXCL6 can enhance 
the growth and metastases of ESCC cells both in vivo and 
in vitro and promote epithelial–mesenchymal transition 
by up-regulating PD-L1 expression through activation of 
the STAT3 pathway [60]. Autocrine CXCL12/CXCR4 was 
one of the main mechanisms of metastasis of ESCA stem 
cells through ERK1/2 signaling pathway and may become a 
therapeutic target for ESCA patients [61].

Chemokines and Immune in ESCA

The chemokines found to be immune related to ESCA are 
CCL2, CCL17, CCL19, CCL20, CCL24, CXCL2, CXCL3, 
CXCL9, CXCL10, CXCL11, CXCL13, and CXCL16. 
CCL2/CCR2 axis recruits tumor-associated macrophages 
to induce immune evasion through PD-1 signaling in 
esophageal carcinogenesis [62]. Since CCL2 expressed by 
tumor cells recruits myeloid cells (monocytes, TAMs, and 
myeloid-derived suppressor cells) to TME, inhibition of the 
CCL2-CCR2 axis has been shown to enhance the immune 
response to tumors [63]. Levels of the chemokines CCL17 
in tumors were significantly higher than in tumor-free 
tissues, and the CCL17/CCR4 axis might play an important 
role in Th17 cell infiltration of ESCC [64]. CCL17 and 
CCL22 within the tumor were associated with an increased 
population of Foxp3(+) Tregs in ESCC [65]. Responders 
were associated with lower baseline levels of CCL19 of 
toripalimab plus paclitaxel and carboplatin as neoadjuvant 
therapy in locally advanced resectable ESCC [66]. Study had 
shown that CCL20 can chemically regulate T cells (Tregs) 
through CCR6 (CCL20 receptor), thereby promoting the 
proliferation of ESCA [67]. The results showed that CCL20 
induced by hypomethylation promoted the progression 
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of ESCA and immune disorders [68]. CCL24 might be 
promising therapeutic targets for EAC [69]. Interleukin (IL)-
17 stimulated ESCC cells to release more of the CXCL2 
and CXCL3, which are involved in neutrophil migration 
[70]. The CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, 
and I-TAC/CXCL11 are angiostatic and attract anti-tumoral 
T lymphocytes and may therefore mediate ESCA growth 
retardation and regression [71]. CXCL10 has been indicated 
to have anti-tumor effects in ESCC [18]. The high expression 
of CXCL10 is a clinically useful marker for patients with 
advanced thoracic ESCC who need adjuvant chemotherapy 
after surgery [72]. CXCL10, as a key chemokine to recruit 
CD8 ( +) T lymphocytes into ESCC tissues, may play a role 
in the survival of patients [44]. IL-17A can promote ESCC 
tumor cells to produce more chemokine CXCL13, which was 
related to the migration of B cells [73]. CXCL16 induced 
the expression of CD38 in myeloid-derived suppressor cells 
in vitro in ESCA [74].

Chemokines and Radioresistance in ESCA

Chemokine CXCL1 is associated with radioresistance in 
ESCA. Recent studies have shown that cancer-associated 
fibroblast (CAF)-derived type 1 collagen (Col1) and tumor 
cell-derived CXCL1 are enriched in unresponsive patient-
derived xenografts. Col1 not only promotes radiation 
tolerance of tumor cells by enhancing DNA repair ability 
but also induces CXCL1 secretion of tumor cells. In 
addition, CXCL1 further activated CAFs through the 
CXCR2-STAT3 pathway, establishing a positive feedback 
loop. Direct interference with tumor cell-derived CXCL1 
or inhibition of CXCL1-CXCR2 pathway can effectively 
restore radiosensitivity in vivo [75]. Previous studies have 
shown that CAF-secreted CXCL1 inhibited reactive oxygen 
species (ROS)-clearing enzyme superoxide dismutase 1, 
leading to increasing ROS accumulation after radiation 
and enhancing DNA damage repair mediated by radiation 
resistance. CXCL1 secreted by CAFs also mediates radiation 
resistance by activating the crosstalk of CAFs and ESCC 
cells through the MEK/ERK pathway to induce CXCL1 
expression signal cycle in autocrine/paracrine, which further 
enhances tumor radiationresistance [76].

Summary

ESCA is a highly aggressive tumor with a low survival rate. 
Chemokines have autocrine, paracrine, and hormone effects 
and are associated with tumor growth and distant organ 
metastasis, among others. Understanding their mechanisms 
of action may provide new therapeutic approaches for a 
wide range of human malignancies. The role of different 

chemokines and their receptors in the development of ESCA 
has been studied and they play a key role in the angiogenesis, 
growth, aggressiveness, and eventual metastasis of ESCA. 
It has been found that chemokines regulated the behavior of 
ESCA mainly by chemically attracting pre-tumor or anti-
tumor leukocytes and forming new blood vessels. Wider 
studies are needed to unravel the complex chemokine 
network in the development of ESCA to provide more 
insights, which may enhance therapeutic applications for 
cancer patients. Further studies are needed to clarify the role 
of chemokines in ESCA, especially unstudied chemokines.
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