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Abstract
Background Cholecystolithiasis is defined as a disease caused by complex and changeable factors. Advanced age, female 
sex, and a hypercaloric diet rich in carbohydrates and poor in fiber, together with obesity and genetic factors, are the main 
factors that may predispose people to choledocholithiasis. However, serum biomarkers for the rapid diagnosis of choledo-
cholithiasis remain unclear.
Aims This study was designed to explore the pathogenesis of cholecystolithiasis and identify the possible metabolic and 
lipidomic biomarkers for the diagnosis of the disease.
Methods Using UHPLC-MS/MS and GC–MS, we detected the serum of 28 cholecystolithiasis patients and 19 controls. Sta-
tistical analysis of multiple variables included Principal Component Analysis (PCA). Visualization of differential metabolites 
was performed using volcano plots. The screened differential metabolites were further analyzed using clustering heatmaps. 
The quality of the model was assessed using random forests.
Results In this study, dramatically altered lipid homeostasis was detected in cholecystolithiasis group. In addition, the levels 
of short-chain fatty acids and amino acids were noticeably changed in patients with cholecystolithiasis. They detected higher 
levels of FFA.18.1, FFA.20.1, LPC16.0, and LPC20.1, but lower levels of 1-Methyl-l-histidine and 4-Hydroxyproline. In 
addition, glycine and l-Tyrosine were higher in choledocholithiasis group. Analyses of metabolic serum in affected patients 
have the potential to develop an integrated metabolite-based biomarker model that can facilitate the early diagnosis and 
treatment of the disease.
Conclusion Our results highlight the value of integrating lipid, amino acid, and short-chain fatty acid to explore the patho-
physiology of cholecystolithiasis disease, and consequently, improve clinical decision-making.

Graphical Abstract
Using UHPLC-MS/MS and GC–MS, the serum of 28 cholecystolithiasis patients and 19 controls were analyzed. Through 
differential metabolite analysis, we found that the cholecystolithiasis group was detected with dramatically altered lipid 
homeostasis compared with healthy controls. In addition, the levels of short-chain fatty acids and amino acids were notice-
ably changed in patients with cholecystolithiasis. They detected higher levels of FFA.18.1, FFA.20.1, LPC16.0, and 
LPC20.1, but lower levels of 1-Methyl-l-histidine and 4-Hydroxyproline. Moreover, glycine and l-Tyrosine were higher in 
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choledocholithiasis group. The results not only identify new targets for the clinical diagnosis and treatment of cholecysto-
lithiasis but may also provide valuable insights for the research of the disease.

Keywords Cholecystolithiasis · Lipid · Amino acid · Short-chain fatty acid · Free fatty acid (FFA) · 
Lysophosphatidylcholine (LPC)

Introduction

Cholecystolithiasis in the gallbladder is a common disease. 
Cholecystolithiasis has a mean prevalence rate of 10% 
according to epidemiological studies [1]. The incidence 
rate increases with changes in dietary patterns. In addition, 
the population is seriously aging [2–6]. In an increasingly 
obese population, cholecystolithiasis becomes a significant 
and growing health problem [7] and the cholecystolithiasis 
prevalence is rising [8]. However, cholecystolithiasis is an 
acute or chronic infection of the gallbladder [9]. Transcuta-
neous ultrasonography is the gold standard for diagnosing 
cholecystolithiasis [10]. Common bile duct (CBD) stones are 
primarily classified into two types: cholesterol and pigment, 
according to the stone major composition [11].

The main reason of cholesterol stones is that metabolic 
abnormalities in the hepatobiliary system is the primary rea-
son. The formation of cholesterol stones is a complex pro-
cess that involves interactions between genetic and environ-
mental factors [12]. The liver is principally responsible for 
the regulation of biliary lipid and cholesterol concentration, 
which is a key determinant of the formation of cholesterol 
stones [13–15]. The primary pathophysiological defect in 
cholesterol cholecystolithiasis is the conflict between hyper-
secretion of hepatic cholesterol into bile and hyposecretion 
of bile salts and/or phospholipids [14]. Recently, homocyst-
ein has been reported to be another factor affecting such 

a hepatic metabolism and is to be a clinical parameter for 
lithogenic risk, which is still to be established [16].

Bilirubin is one of the major constituents of bile that 
play an important role in formation process. However, in 
the center of cholesterol gallstones, bilirubin is also found, 
where it exists as calcium salts of unconjugated bilirubin 
(UCB) [17, 18]. The earliest mechanism suggestion for for-
mation of pigment gallstone came from Maki [19]. Based 
on the reported results, it showed the key factor of bilirubin 
free radical that initiates and promotes pigment gallstone to 
formate [20]. Cholecystolithiasis is also strongly associated 
with gallbladder, pancreatic, and colorectal cancer occur-
rence. So, if treatment is not done promptly, cancer can be 
developed. In addition, higher plasma levels of branched 
chain amino acids (BCAAs) observed in patients with chol-
ecystolithiasis may be partly responsible for metabolic com-
plications observed in these patients [21].

To date, little is known about metabolomic and lipidomic 
perturbations in patients with cholecystolithiasis. Therefore, 
further research and screening the pathogenesis of cholecys-
tolithiasis are urgent to identify biomarkers to diagnose chol-
ecystolithiasis. In this study, we examined serum samples 
from 28 patients with cholecystolithiasis and 19 healthy con-
trols. We adopted a global and systematic integrated analysis 
of changes in the lipidome profile in cholecystolithiasis. Col-
lectively, the data show that the lipidome profile in the serum 
of cholecystolithiasis patients is markedly perturbed. Such 
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perturbations are noticeable at the preclinical phase before 
the disease progresses to definitive free fatty acid (FFA) 
and lysophosphatidylcholine (LPC), and these changes also 
reflect FFA and LPC activity and treatment outcome. The 
present study compared the lipidomic signature of cholecys-
tolithiasis patients with that of healthy subjects.

Materials and Methods

Clinical Samples

A cross-sectional study was performed to compare metabo-
lome profiling between patients with cholecystolithiasis 
(stone group) and healthy controls (control group). For the 
stone group, 28 consecutive patients scheduled for laparo-
scopic cholecystectomy with symptomatic cholecystolithi-
asis in the Hepatopancreatobiliary Surgery Department, 
Second Hospital of Shandong University were included. 
Ultrasonography of the gallbladder revealed cholecysto-
lithiasis. Recurrence of biliary colic was observed in the 
patients, but those with cholecystolithiasis or acute chol-
ecystitis were excluded. Meanwhile, 19 healthy volunteers 
receiving physical examination at the Health Center of the 
same hospital were recruited as the control group. Informed 
written consent was obtained from all participants. The 
study was approved by the hospital’s Institutional Review 
Board and performed in accordance with the Declaration 
of Helsinki. Blood samples were collected and basic physi-
ological indicators were taken from all participants. Serum 
samples were also prepared from the blood samples and 
stored immediately at – 80 °C for further analysis.

Metabolite Extraction for GC–MS

A total of 0.1 mL of each sample were transferred into a 
1.5-mL Eppendorf (EP) tube. The sample was added with 
0.05-mL 50%  H2SO4 and 0.2 mL of extraction solution, 
which was methyl tert-butyl ether based (HPLC-grade, 
Shanghai Anpel Scientific Instrument Co., China) using 
25-mg/L 2-Methylvaleric acid (≥ 99.5, Augsburg, Germany) 
as an internal standard. The sample was vortexed for 10 s, 
oscillated for 10 min, and then sonicated for 10 min in ice 
water. Afterward, the sample was centrifuged for 15 min at 
10,000 rpm at 4 °C and placed at − 20 °C for 30 min. The 
obtained supernatant was transferred into an auto-sampler 
vial for GC–MS analysis.

GC–MS Analysis

The GC–MS analysis was performed using a SHIMADZU 
GC2030-QP2020 NX GC–MS system (Shimadzu, Tokyo, 
Japan) equipped with an HP-FFAP capillary column 

(30 m × 250 μm × 0.25 μm, J&W Scientific, Folsom, CA, 
USA). Helium was used as the carrier gas, with the front 
inlet purge flow set at 3 mL/min, and gas flow rate at 1 mL/
min. The temperature conditions were programmed as fol-
lows: 80 °C for 1 min, increased to 200 °C at a rate of 10 °C/
min and held for 5 min, and increased to 240 °C at a rate of 
40 °C/min and held for 1 min. The temperatures for injec-
tion, transfer line, quad, and ion source were 240 °C, 240 °C, 
150 °C, and 200 °C, respectively. The electron energy was 
70 eV.

Metabolite Extraction for UHPLC‑MS/MS

A 15-μL aliquot of each individual sample was precisely 
transferred to an EP tube. A 15-μL aliquot of each individual 
sample was precisely transferred to an Eppendorf tube. After 
the addition of 185-μL pre-cooled (− 40 °C) extraction solu-
tion (acetonitrile/methanol/water, 80:80:25, with isotopically 
labeled internal standard), the sample was vortexed for 30 s 
and sonicated for 15 min in ice water bath. The solvent was 
then incubated at – 40 °C for 1 h and then centrifuged at 
12,000 rpm at 4 °C for 15 min. A 100-μL aliquot of the 
obtained supernatant was transferred to an auto-sampler vial 
for UHPLC-MS/MS analysis. Both acetonitrile and metha-
nol were UPLC grade purchased from CNW Technologies 
(Shanghai Anpel Scientific Instrument Co., China).

UHPLC‑MS/MS Analysis

The UHPLC separation was achieved using an Agilent 
1290 Infinity II series UHPLC System (Agilent Technol-
ogies; Santa Clara, CA, USA), which was equipped with 
an ACQUITY UPLC BEH Amide column (100 × 2.1 mm, 
1.7 μm; Waters; Milford, MA, USA). The mobile phase A 
was 1% formic acid in water, while the mobile phase B was 
1% formic acid in acetonitrile. The column temperature was 
set at 35 °C. The auto-sampler temperature was at 4 °C with 
an injection volume of 1 μL.

Further, an Agilent 6460 triple quadrupole mass spec-
trometer (Agilent Technologies; Santa Clara, CA, USA) was 
used, equipped with an electrospray ionization (AJS-ESI) 
interface (Agilent Technologies; Santa Clara, CA, USA). 
The ion source parameters were as follows: capillary voltage 
at + 4000/− 3500 V, nozzle voltage at + 500/− 500 V, gas 
(N2) temperature at 300 °C, gas (N2) flow at 5 L/min, sheath 
gas (N2) temperature at 250 °C, sheath gas flow 11 L/min, 
and nebulizer pressure 45 psi.

Biomarker Analysis

All biomarker analyses were based on the R package Meta-
boAnalystR 5.0. Use the random forest algorithm to sort by 
the contribution of features to the classification accuracy. 
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Both univariate and multivariate receiver operating charac-
teristic (ROC) analyses were conducted. In the univariate 
analysis, the ROC curve was generated, with the area under 
the curve (AUC) and 95% confidence interval (CI) calcu-
lated. ROC curves and box plots of the five variables with 
the highest AUC were used. For multivariate ROC analysis, 
the model with the highest AUC was selected, and ROC 
curves based on the variables in this model were generated.

Statistical Analysis

All statistical analyses were performed using MetaboAna-
lyst 5.0 [22]. Every lipid feature was normalized according 
to the median intensity of each sample. Lipids with > 50% 
missing values were excluded, and the remaining missing 
values were replaced by the median intensity value for the 
lipid feature. Finally, log transformation and Pareto scaling 
were performed. A t test was performed using the Benja-
mini–Hochberg procedure to acquire the FDR and a paired 
t test was used to compare differences between groups. P 
values < 0.05 and FDR values < 0.25 were considered sig-
nificant. Suspected outliers were excluded by a cautious 
investigation based on comprehensive interpretation using a 
heatmap, PCA, and outlier results by the random forest algo-
rithm. PLS-DA models were cross-validated using leave-
one-out cross-validation (LOOCV), and the Q2 value was 
used to estimate overfitting of the model. Lipids with a VIP 
score value > 1 were defined as crucial for discriminating 
the groups. The Pearson correlation analysis was performed 
using the rcorr function in the Hmics package 3.5.3 in R.

Results

Patient Demographic and Clinical Characteristics

After inclusion of all participants, we obtained their detailed 
clinical physiological and biochemical indicators. Compari-
sons between the two groups in sex (Fig. 1A), age (Fig. 1B), 
BMI (Fig. 1C), gallbladder function (Fig. 1D), hemoglobin 
(Fig.  1E), triglyceride concentration (Fig. 1F), glucose 
(Fig. 1G), cholesterol (Fig. 1H), and white blood cell count 
(Fig. 1I) are shown in Fig. 1. Except for gallbladder shrink-
age rate, no significant differences were observed in other 
indicators between the stone group and control group.

Lipidome Profiling of Patients 
with Choledocholithiasis

The PCA show that the sample composition 28 of patients 
with choledocholithiasis group and 19 control groups is 
significantly separable. PC1 and PC2 have principal com-
ponent scores of 51.1% and 10.2%, respectively (Fig. 2A). 

The results show that the composition of samples in the 
group is consistent  and the difference is small. It is obvious 
that regularity supports accuracy of the results. The results 
show that 123 lipids were significantly up-regulated and 
43 lipids were significantly down-regulated (Fig. 2B). The 
results suggest that the change of LPC, FFA, and TAG are 
most pronounced (Fig. 2C). Therefore, the results show that 
FFA14:0, FFA16:1, LPC22:6 + Aco, and LPC14:0 + Aco 
increases significantly in the stone group (Fig. 2D).

ROC of Lipidome Profiles in Patients 
with Choledocholithiasis

We build a multivariate classification model with random 
forests. Six models were built using random forests. The six 
models separately were as follows: the number of metabo-
lites is 5, AUC = 0.778, the number of metabolites is 10, 
AUC = 0.784, the number of metabolites is 15, AUC = 0.789, 
the number of metabolites is 25, AUC = 0.792, the number 
of metabolites is 50, AUC = 0.802, and the number of metab-
olites is 100, AUC = 0.806. Therefore, considering the num-
ber of variables and the power of the model, AUC is optimal 
when the number of metabolites is 15 (Fig. 3A). Next, for 
selection frequency, the higher its value, the more impor-
tant the metabolite. Then, the analysis of selected frequency 
showed that LPC16:1 + Aco, PE-P 16:0–20:5, FFA 20:4, 
Hex2cer 18:1–16:0 and Hex2cer 18:1–24:1 were identified 
as the lipid species that could most effectively discriminate 
between the two groups (Fig. 3B). Therefore, the significant 
changes in FFA and LPC coincide with the previous results, 
once again verifying the reliability of the data. AUC-ROC 
curve show the area under the curve (AUC = 0.686). So, the 
results show that it distinguishes well between the stone 
group and the control group, and the sample data can be 
well distinguished (Fig. 3C). The figure shows accurate pre-
dictions: 24 accurate indicators are predicted in the disease 
model (Fig. 3D).

Prediction and Evaluation of Lipidome Profile Using 
Machine Learning Algorithms

To better verify the consistency of metabolite content trends 
and sample accuracy. We divide the samples into train set 
and test set. FFA.18.1 (Fig. 4A) and FFA.20.1 (Fig. 4B) 
of stone group were higher than control group in both 
train and test data sets. Similarly, LPC.16.0 (Fig. 4C) and 
LPC.20.1.AcO (Fig. 4D) of stone group were significantly 
higher than that of control group both in train set and test 
set. The above results indicate that the disorder of FFA.18.1, 
FFA.20.1, LPC16.0 and LPC20.1 were the main cause of 
choledocholithiasis.
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Analysis of Short‑Chain Fatty Acid (SCFA) Profile 
of Patients with Choledocholithiasis

For SCFAs in the serum metabolome, Pearson correlation 
coefficient was applied to understand mutual regulatory rela-
tionships between SCFA metabolites [23]. The closer the 
absolute value of r was to 0, the weaker the degree between 
variables (Fig.  5A). The heatmap clustering algorithm 
grouped SCFAs into eleven blocks: the first block was con-
stituted by isovaleric acid and the second by butyric acid 
(Fig. 5B). Here, the stone group vs control group is used as 
an example, and the results are shown in the figure below 
(Fig. 5C–F). The stone group had higher concentrations of 
butyric acid and isovaleric acid (Fig. 5C, D), but lower con-
centrations of octanoic acid and propionic acid than control 
group (Fig. 5E, F). Therefore, among the metabolites of the 
SCFA species, abnormalities in butyric acid, isovaleric acid, 

octanoic acid, and propionic acid may be the main factor in 
the formation of choledocholithiasis.

ROC Analysis of SCFA in Serum From Stone 
and Control Group

Random forest was applied to identify SCFA species that 
could be used as biomarkers of choledocholithiasis. Six 
models were built using random forests. The six models 
separately were as follows: the number of metabolites is 2, 
AUC = 0.901, the number of metabolites is 3, AUC = 0.95, 
the number of metabolites is 5, AUC = 0.962, the number 
of metabolites is 7, AUC = 0.959, the number of metabo-
lites is 10, AUC = 0.958, and the number of metabolites 
is 11, AUC = 0.958. Therefore, considering the number of 
variables and the power of the model, AUC is optimal when 
the number of metabolites is 10. The numbers of variables 

Fig. 1  Cholelithiasis popula-
tion information. BMI (A), 
P = 0.3895, age (B), P = 0.6419, 
sex (C), gallbladder function 
(D), P = 0.0003, hemoglobin 
(E), P = 0.6087, triglyceride 
concentrations (F), P = 0.8762, 
glucose (G), P = 0.5378, choles-
terol (H), P = 0.7919, and white 
blood cell count (I), P = 0.7844, 
ns, not significant
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Fig. 2  The analysis of lipidome profile from cholecystolithiasis 
patients. PCA: Variable Importance in Projection (VIP) score identi-
fied FFA and LPC as the most effective lipids in distinguishing the 
groups of patients from the healthy volunteers. Score scatter plot of 
PCA model for group stone vs control (A). Differential metabolite 
screening volcano plot of the stone group versus the Control group. 

Volcano plots identified he lipids species with the greatest changes 
were FFA and LPC (B). The lipid group bubble plot used the degree 
of change and difference in the content of metabolites (C). The heat-
map clustering algorithm grouped the lipids into four blocks: The first 
three blocks were constituted mainly by oxylipins and the fourth by 
bile acids (D)
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was progressively increased to 100 in 6 different models. 
In all instances, the analyses of the AUC-ROC curves 
were > 0.901 (Fig. 6A). The most relevant parameters in the 
discrimination between both groups were the butyric acid, 
propionic acid, isovaleric acid, and octanoic acid (Fig. 6B). 
The anastomosis of highly variable substances once again 
proves the reliability of the data. The results showed that 
the differential expression of which was shown to be sig-
nificant by the t test alone exhibited the best ROC curve for 
biomarker analysis (average under the curve AUC = 0.978) 
(Fig. 6C). The figure shows accurate predictions: 26 accurate 
indicators are predicted in the disease model (Fig. 6D).

The Analysis of Amino Acid Profile 
from Cholecystolithiasis Patients

The results show that the abscissa in the figure represents 
different experimental groups, the ordinate represents 
metabolites, and the color blocks at different locations 
represent the content of metabolites at the correspond-
ing locations (Fig.  7A). 0.1-Methyl-l-histidine and 
4-Hydroxyproline are lower in stone group than control 
group (Fig. 7B, C). On the contrary, glycine and l-Tyros-
ine are higher in stone group than control group (Fig. 7D, 
E).

Fig. 3  ROC of Lipidome profiles in cholecystolithiasis patients. 
Receiver Operating Characteristics plot of random forest models cor-
responding to the combination of 5 to 100 variables (A). The most 
relevant parameters in the discrimination between both groups of 
patients were the FFA, LPC, and PE-P (B). The results showed that 

differential expression of which was shown to be significant by the t 
test alone exhibited the best ROC curve for biomarker analysis (aver-
age under the curve AUC = 0.686) (C). The figure shows accurate 
predictions: 24 accurate indicators are predicted in the disease model 
(D)
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ROC Analysis of Amino Acid in Serum from Stone 
and Control Group

Six models were built using random forest. The six models 
separately were as follows: the number of metabolites is 2, 
AUC = 0.994, the number of metabolites is 3, AUC = 0.998, 
the number of metabolites is 5, AUC = 1, the number of 
metabolites is 10, AUC = 1, the number of metabolites is 
20, AUC = 1, and the number of metabolites is 25, AUC = 1. 
Therefore, considering the number of variables and the 
power of the model, AUC is optimal when the number of 
metabolites is 15 (Fig. 8A). Receiver Operating Character-
istics plot of Random Forest models corresponding to the 
combination of 2 to 25 variables (Fig. 8A). The most rel-
evant parameters in the discrimination between both groups 
of patients were 1-Methyl-l-histidine and glycine (Fig. 8B). 
This result is consistent with the above results. The results 

showed that the differential expression of which was shown 
to be significant by the t test alone exhibited the best AUC 
for biomarker analysis (average under the curve AUC = 1) 
(Fig. 8C). The figure shows accurate predictions: 27 accurate 
indicators are predicted in the disease model (Fig. 8D).

Discussion

Cholecystolithiasis is a significant health problem, and 5% 
to 25% of the adult population are affected [3, 24]. The opti-
mal treatment of cholecystolithiasis remains controversial 
[25]. Leukocytosis, liver function tests/bilirubin, and lactate 
should be paid with specific attention [26]. Accurate and 
rapid diagnosis of cholecystolithiasis remains a major clini-
cal challenge. In this study, 28 consecutive patients sched-
uled for laparoscopic cholecystectomy for symptomatic 

Fig. 4  The train and test analyses of lipidome profile from cholecys-
tolithiasis patients. The data are generally divided into a test set and 
a training set for model learning prediction evaluation. FFA.18.1 (A) 
and FFA.20.1 (B) of cholecystolithiasis group were higher than con-

trol group both in train and test. Similarly, LPC.16.0.AcO (C) and 
LPC.20.1.AcO (D) of stone group were higher than control group 
both in train and test. The train and test analyses of lipid detected by 
the analysis are consistent with the above analysis. ***P < 0.001
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cholecystolithiasis were included. The serum of these 
patients and volunteers was collected for multi-omics test. 
In this cross-sectional study, serum of multi-omics test ana-
lyzed to explore the metabolic characteristics of the micro-
flora associated with cholecystolithiasis. Multi-omics test 
show that lipid, amino acids, and short-chain acid have a 
large difference between the gallstone group and the control 
group.

Lipids are essential metabolites that act as energy sources, 
membrane constituents, and signaling molecule [27]. Intra-
hepatic gallstones and pancreaticobiliary maljunction have 
a high risk for biliary malignancy. LPC is increased in the 

bile of gallstone patients. It has reported that LPC-induced 
cytotoxicity causes senescence-associated secretory phe-
notype (SASP) in cholangiocytes [28]. In Pancreaticobil-
iary maljunction (PBM) and cholangiocarcinoma (CCA), 
LPC levels have been reported to be significantly elevated, 
together with increases in phospholipase A [29]. In addi-
tion, LPC also induce the production of cytotoxicity through 
the induction of apoptosis [30]. Furthermore, LPC causes 
the induction of senescence-associated secretory phenotype 
(SASP) to cellular senescence [31]. However, senescent 
cells can also play harmful effects on the tissue microen-
vironment. It is represented by the secretion of SASP and 

Fig. 5  The analysis of short acid 
profile from cholecystolithiasis 
patients. The closer the absolute 
value of r is to 1, the stronger 
the degree of association of the 
two variables, the closer r is to 
0, and the degree of both vari-
ables weak (A). The heatmap 
clustering algorithm grouped 
the short acid into eleven 
blocks: The first blocks were 
constituted mainly by isovaleric 
acid and the second by butyric 
acids (B). Here, the stone group 
vs control group is used as an 
example, and the results are 
shown in the figure below (C–
F). Butyric acid and isovaleric 
acid were higher in stone group 
than control group (C, D). Octa-
noic acid and propionic acid 
were lower in stone group than 
control group (E, F). *P < 0.05, 
**P < 0.01, and ***P < 0.001. P 
values were calculated using the 
two sample t test
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contributes to chronic inflammation and cancer progression 
[32]. As the results in this study show that LPC.16.0 and 
LPC.20.1 are significantly higher in stone group than in con-
trol group, it may suggest that the level of LPC in serum may 
be a reference indicator for clinical diagnosis.

In bile, the presence of FFA has been demonstrated [33, 
34]. The elevated levels of bile FFAs were found to be an 
important and main risk factor for gallbladder wall thick-
ening process [35]. FFAs are well-known risk factors of 
cardiovascular diseases (CVDs) [36] and have closely rela-
tionship with the events of metabolic syndromes (MetS), 
such as obesity and type 2 diabetes mellitus (T2DM). High 
levels of plasma FFAs are seen in obesity, because of more 

FFAs by enlarged adipose tissue mass [37]. The increased 
level of FFAs in the bloodstream can impair endothelium-
dependent vasodilation [38]. As the results in this study 
show that FFA.18.1 and FFA.20.1 are significantly higher 
in stone group than in control group, we speculate that FFAs 
in bile may play a role in promoting cholecystolithiasis. It 
may suggest that the level of FFAs in serum may be a refer-
ence indicator for clinical diagnosis.

However, patients with cholecystolithiasis have higher 
levels of branched chain amino acids (BCAAs) in serum that 
may be responsible for metabolic complications observed in 
these patients [39]. These studies suggest that amino acids 
may also play an important role in cholecystitis. In our study, 

Fig. 6  ROC of short acid in serum from cholecystolithiasis and con-
trol group. Receiver Operating Characteristics plot of Monte Carlo 
models corresponding to the combination of 2–11 variables (A). The 
most relevant parameters in the discrimination between both groups 
of patients were the butyric acid, propionic acid, isovaleric acid, and 

octanoic acid (B). The results showed that the differential expression 
of which was shown to be significant by the t test alone exhibited 
the best ROC curve for biomarker analysis (average under the curve 
AUC = 0.978) (C). The figure shows accurate predictions: 26 accurate 
indicators are predicted in the disease model (D)
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Fig. 7  The analysis of amino acid profile from cholecystolithiasis 
patients. Heatmap: The abscissa in the figure represents different 
experimental groups, the ordinate represents metabolites, and the 
color blocks at different locations represent the content of metabo-
lites at the corresponding locations (A). For each group comparison, 
we calculated a significance P value for the quantitative value of 

each metabolite, with different colors indicating different groupings 
of samples and using bins. Here, the stone group vs control group 
is used as an example, and the results are shown in the figure below 
(B–E). *P < 0.05, **P < 0.01, and ***P < 0.001. P-values were calcu-
lated using the two sample t test
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results show that 1-Methyl-l-histidine and glycine play a 
vital role on cholecystolithiasis. Subsequently, BCAAs acti-
vate myocardial mammalian target of rapamycin signaling 
leading to cardiac dysfunction [40]. BCAAs likely promote 
insulin resistance by activating mammalian target of rapa-
mycin complex [41]. The metabolism and accumulation of 
BCAAs changed in the blood may precede the development 
of insulin resistance and clinical manifestation of cardio-
metabolic diseases [42]. As the results in this study show 
that 1-Methyl-l-histidine and 4-Hydroxyproline are lower in 
stone group than control group. By the contrary, glycine and 
l-Tyrosine are higher in stone group than control group. It 
suggest that the level of BCAAs in serum may be a reference 
indicator for clinical diagnosis.

Free fatty acids (FFAs) are classified according to their 
aliphatic tail length; short-chain fatty acids (SCFAs) have 
fewer than 6 carbon atoms, medium-chain fatty acids 
(MCFAs) have 6–12 carbons, and long-chain fatty acids 
(LCFAs) have 12 or more carbons [43]. The anti-inflamma-
tory function SCFAs are well known by modulating immune 
cell chemotaxis and reactive oxygen species (ROS) release 
[44]. SCFAs have been associated with anticancer activity 
on a variety of human cancer cell lines [44]. Studies have 
also reported that SCFAs were beneficial in colitis. When 
mice treated with butyrate had reduced inflammation in their 
colonic mucosa and reduced neutrophil infiltration [45]. 
SCFAs has been reported that it has relationship with the 
pathophysiology of several neurological disorders, such as 

Fig. 8  The analysis ROC of amino acid in serum from cholecys-
tolithiasis and control group. Receiver Operating Characteristics 
plot of Monte Carlo models corresponding to the combination of 2 
to 25 variables (A). The most relevant parameters in the discrimina-
tion between both groups of patients were 1-Methyl-l-histidine and 

glycine (B). The results showed that differential expression of which 
was shown to be significant by the t test alone exhibited the best ROC 
curve for biomarker analysis (average under the curve AUC = 1) (C). 
The figure shows accurate predictions: 27 accurate indicators are pre-
dicted in the disease model (D)
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Alzheimer’s disease, multiple sclerosis, Parkinson’s disease, 
and amyotrophic lateral sclerosis [46]. The manipulation of 
SCFA levels in the intestinal tract of the microbiota structure 
can be potentially taken into consideration for cancer treat-
ment/prevention [47]. Recently, studies have replayed that 
SCFAs can play a role on the progress of various diseases, 
such as inflammatory bowel disease (IBD), diabetes, ath-
erosclerosis, and colorectal cancer (CRC) [48–50]. As the 
results in this study show that octanoic acid and propionic 
acid are lower in stone group than control group. By the 
contrary, butyric acid and isovaleric acid are higher in stone 
group than control group. It suggest that the level of SCFAs 
in serum may be a reference indicator for clinical diagnosis.

Therefore, there is great interest in identifying alterna-
tive and reliable biomarkers that can improve the assessment 
of treatment responses. This study aimed to investigate the 
serum biochemistry changes in gallstone patients and pro-
vide new clues for research on the involvement of gallstone 
formation. We found that patients with cholecystolithiasis 
had higher FFA and LPC than the healthy controls. This 
discovery will help develop new treatments for cholecysto-
lithiasis and reduce the need for cholecystolithiasis surgery. 
Even restrictive resection strategies are not entirely ideal 
for patients with cholecystolithiasis and abdominal pain. 
Screening out cholecystolithiasis biomarkers is important to 
enable early detection and early treatment for cholecystolith-
iasis patients, thereby eliminating the need for surgery and 
reducing risk. The serum lipidomic profile associated with 
cholecystolithiasis is not well understood. Lipid metabolome 
analysis results showed that 542 lipids changed. Collectively, 
these results suggest that analysis of lipidome profiles is 
useful for identifying biomarker candidates that predict the 
evolution of preclinical to definitive cholecystolithiasis and 
could facilitate the assessment of disease activity and treat-
ment outcomes. The analysis of SCFAs and amino acids 
profiles may be useful for identifying candidate biomark-
ers that predict progression of preclinical to clinically overt 
cholecystolithiasis, as well improving assessment of disease 
activity and treatment outcomes. This study not only discov-
ered new targets for the clinical diagnosis and treatment of 
cholecystolithiasis but also opened a new door for cholecys-
tolithiasis research.
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