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Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental 
models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular 
mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages 
investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles 
were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that 
mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination 
for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced 
peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived 
antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular 
mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, 
the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and 
assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the 
intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality 
of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought 
in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for 
immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications 
as causative mechanisms of autoimmune hepatitis.
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Introduction

Autoimmune hepatitis is a consequence of dysregulated 
immune responses that overcome tolerance for self-antigens 
[1–3]. Cytokine-producing inflammatory cells, antigen-
activated promiscuous CD4+ T cells, and liver-infiltrating 
cytotoxic T cells (CTLs) create a microenvironment that pro-
motes liver damage [4–7]. The common clinical outcomes 
of this complex immune response are progressive hepatic 
injury and fibrosis [8, 9]. Environmental factors could 
trigger autoimmune hepatitis by overcoming homeostatic 

mechanisms that modulate immune tolerance and immune 
ignorance [10–12].

The linear or conformational mimicry of foreign antigens 
with self-antigens could promote the loss of self-tolerance 
and immune ignorance by increasing the array of immune 
targets and the avidity of promiscuous T cell effectors [4, 
13–22]. Diverse pathogens have been evaluated as the prin-
cipal sources of environmentally-derived molecular mim-
ics of self-antigens in autoimmune hepatitis [23–26], and 
vaccination [27–41] and the intestinal microbiome [25, 26, 
42–47] have emerged as sources of antigens that could also 
promote autoimmunity by molecular mimicry. Molecular 
mimicry could be a mechanism that complements epige-
netic transformations in shaping the autoreactive response 
to environmental stimuli [48–55].

The molecular mimicry of environmental antigens has been 
implicated in the development of primary biliary cholangitis 
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(PBC). Structural mimicries and immune cross-reactions 
have been established between the immune dominant pyru-
vate dehydrogenase complex-E2 (PDC-E2) of PBC and cer-
tain bacteria (Escherichia coli [56–58] and Novoshingobium 
aromaticivorans) [59–61]). Furthermore, limited population 
studies have supported the bacterial associations with the 
occurrence of clinical disease [58, 61–63]. Xenobiotics, espe-
cially 2-octynoic acid [64], have also been shown to mimic and 
modify the lipoyl domain of PDC-E2 by chemical conjuga-
tion [65]. Transformation of the altered native PDC-E2 into a 
homologue of native PDC-E2 could promote the production 
of antimitochondrial antibodies [66] and the development of 
a PBC-like disease in an experimental model [67–69]. The 
challenge has been to establish these environmentally-induced 
molecular mimicries as pathological bases for PBC in humans 
[70].

Improvement in the management of autoimmune hepatitis 
is recognized as an unmet clinical need [71, 72], and satis-
faction of this need requires clarification of the factors that 
induce and sustain the autoreactive process. Identification 
of critical environmental elements and the mechanisms by 
which they can promote autoimmune hepatitis could also 
suggest strategies that prevent or limit the disease [73].

The goals of this review are to describe the experimental 
and clinical evidence that supports molecular mimicry as 
a causative mechanism of autoimmune hepatitis, indicate 
limitations and uncertainties of this premise, and encourage 
investigations that assess diverse environmental antigens as 
immunogenic and pathogenic molecular mimics of disease-
relevant self-antigens. The validation of molecular mimicry 
as a pathogenic mechanism may direct future management 
strategies.

Methods

English abstracts were identified in PubMed using the search 
phrases, “environmental factors in autoimmune hepatitis”, 
“molecular mimicry”, “vaccination and autoimmune hepati-
tis”, and “intestinal microbiome and autoimmune hepatitis”. 
Key aspects of pertinent abstracts were recorded, and full-
length articles that expanded pivotal concepts constituted the 
primary bibliography. Secondary and tertiary bibliographies 
were developed from the references cited in the selected full-
length articles of the preceding bibliography. Several hun-
dred abstracts and 184 full length articles were examined.

Molecular Mimicry and Environmental 
Pathogens

Molecular mimicry is a largely theoretical mechanism by 
which environmental pathogens could trigger autoimmune 
hepatitis [18, 21, 74]. The process requires the selection, 

processing, and presentation of an immunogenic peptide 
intrinsic to the pathogen [3, 75]. The peptide selected for 
presentation by antigen presenting cells (APCs) has to 
resemble, not duplicate, the structure of a self-antigen [75], 
and it has to activate an immune response by overcoming 
self-tolerance and immune ignorance [6, 21] (Fig. 1). Up-
regulation of MHC molecules by the invading pathogen 
and an inflammatory milieu (cytokines, chemokines, and 
inflammatory cells) associated with the infection (bystander 
response) could promote the presentation of pathogen-
derived immunogenic peptides [21, 76]. Activation and dif-
ferentiation of CD4+ and CD8+ T cells sensitized to these 
peptides could then induce an immune-mediated, inflamma-
tory liver disease depending on the number and avidity of 
the T cell effectors for the homologous tissue antigen [18, 
21, 75].

Genetic Predisposition and Plasticity of the APCs

Antigenic peptides presented by the class II MHC mole-
cules (HLA DR, DP, and DQ) are derived from extracellular 
proteins (foreign antigens) [77] that are processed mainly 
by proteases within endosomal compartments [78, 79] 
(Table 1). The antigen binding groove of class II MHC mol-
ecules consists of two chains of amino acids that are encoded 
by separate genes in the class II MHC region of chromo-
some 6 [80]. The antigen binding groove of the HLA-DR 
molecules associated with autoimmune hepatitis consists of 
a monomorphic α-chain and polymorphic β-chain [81–84]. 
The DRα-chain is encoded by the non-polymorphic DRA 
gene, and the DRβ-chain is encoded by the polymorphic 
DRB1 genes [85].

The selection, positioning, and presentation of the anti-
genic peptide to naïve CD4+ helper T cells in autoimmune 
hepatitis is influenced by the hypervariable regions encoded 
within the DRβ-chain [86] (Table 1). Sequence polymor-
phisms of the DRβ-chain determine the type of peptides 
that can bind in the pockets of the antigen binding groove 
[86], and this molecular alignment can affect susceptibility 
to autoimmune hepatitis [87, 88].

Structural alterations in the antigenic peptide and vari-
ations in the MHC alleles that encode the DRβ chain can 
change susceptibility by altering the conformation of the 
antigen-presenting complex [89–91] (Table 1). The confor-
mational plasticity of the antigen binding groove of class 
II MHC molecules allows it to sample, select, and accom-
modate diverse antigenic peptides derived from the envi-
ronment [91]. Furthermore, the antigen binding groove is 
open at both ends, and it can accommodate relatively large, 
environmentally derived peptides of 13–25 residues [91, 92].

The molecular mimicry of self-antigens by peptides of 
environmental origin requires presentation of the homolo-
gous peptides to CD4+ helper T cells, and the class II MHC 
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molecules on dendritic cells, monocytes, macrophages, and 
B cells can met this requirement [80] (Table 1). Further-
more, the pro-inflammatory cytokine, interferon-gamma 
(IFN-γ), can induce the expression of class II MHC mol-
ecules on other cells by activating the class II transactivator 
(CIITA) gene [93–95] (Fig. 1). CIITA is the major regulator 
of MHC class II transcription [93], and it may expand the 
number and variety of APCs and the population of activated 
promiscuous CD4+ T cells.

Antigen cross-presentation by dendritic cells is 
another mechanism by which environmental peptides that 
mimic self-antigens can initiate an autoreactive response 
(Table  1). Antigen cross-presentation is a process by 
which antigens from the extracellular environment can be 

presented by MHC class I molecules and directly stimulate 
the development of antigen-specific CD8+ T cells [96–99] 
(Fig. 1). This process is distinguished from the canoni-
cal pathway in which extracellular (foreign) antigens are 
presented by MHC class II molecules and activate CD4+ 
helper T cells [100]. Dendritic cells can present processed 
antigens by MHC class I and MHC class II molecules 
[101–103], and they are the principal population engaged 
in antigen cross-presentation. Molecular chaperones that 
carry substrates generated by the proteasomal degradation 
of the foreign antigen can engage in the priming process 
[97]. Enhanced immune reactivity to the extrinsic antigen 
may be a consequence of this interaction depending on the 
antigen and the microenvironment [98, 104].

Fig. 1   Molecular mimicry and environmental antigens. Environ-
mental antigens from exogenous and endogenous sources may have 
structural or conformational homology with a disease-related antigen. 
Peptides of at least 5 amino acids (aa) that are derived from these 
sources could constitute an immunogenic unit that is homologous to 
an immune dominant epitope of a self-antigen. Intestinal dysbiosis 
and gut-derived metabolic processes may affect levels of lipopolysac-
charide (LSP) and short chain fatty acids (SCFA) which in turn may 
increase permeability of the intestinal mucosal barrier. Gut-derived 
immunogenic peptides could then translocate to systemic sites and 
encounter antigen presenting cells. In dendritic cells, the immuno-
genic homologues can undergo proteasomal processing and presenta-
tion by class I or class II molecules of the major histocompatibility 
complex (MHC). A molecular chaperone may facilitate the proteaso-
mal processing and substrate presentation. Heat shock proteins (HSP) 
are theoretical candidates for this role (dotted dual-headed arrow). 

Antigen cross-presentation can allow a processed environmental anti-
gen to be presented by MHC class I molecules to CD8+ T cells, and 
the activated CD8+ T cells may then differentiate to liver-infiltrating 
cytotoxic T cells (CTL). The processed homologue may also be pre-
sented by MHC class II molecules to CD4+ T cells. The activated 
CD4+ T cells may then induce a type 1 helper T cell (Th1) response 
with increased production of interleukin 2 (IL-2) and interferon-
gamma (IFN-γ). Macrophages and natural killer (NK) cells may also 
be activated. The IFN-γ may in turn activate the class II transacti-
vator (CIITA) gene which increases the expression of class II MHC 
molecules and presentation of the processed homologue. The acti-
vated CD4+ T cells may also produce a Th2 response characterized 
by certain interleukins (IL-4, IL-5, IL-13, and IL-10) and the activa-
tion of B cells and plasma cells which in turn may generate autoanti-
bodies



2827Digestive Diseases and Sciences (2023) 68:2824–2842	

1 3

Causative Effect of Molecular Mimicry 
in Experimental Models

Molecular mimicry by a viral pathogen has been pro-
posed as a basis for the immune-mediated liver damage 
in murine models of autoimmune hepatitis. Infection with 
an adenovirus expressing the human cytochrome P450 
IID6 (hCYP2D6) [75, 105, 106] and immunization with 
hCYP2D6 and human formiminotransferase cyclodeami-
nase [107, 108] have induced laboratory, histological, and 
immunological changes of autoimmune hepatitis (Table 2). 
CYP2D6 [109–111] and formiminotransferase cyclodeami-
nase [112, 113] have been closely associated with type 2 
autoimmune hepatitis, and molecular mimicry between the 
human antigens and mouse homologues in the experimental 
models has been proposed as the basis for the pathological 
[75, 105, 107, 108], serological [105, 107, 108], and fibrotic 
[114] changes resembling autoimmune hepatitis.

Molecular mimicry has also been demonstrated in a 
study exposing wild-type and transgenic mice to the same 
human antigen associated with autoimmune hepatitis [75]. 
The infection of wild-type mice with adenovirus expressing 
hCYP2D6 has generated T cell activity against epitopes that 
have had intermediate homology between hCYP2D6 and 

mouse cytochrome (mCYP) homologues [75]. In contrast, 
the same adenovirus infection of transgenic mice expressing 
hCYP2D6 has failed to generate an hCYP2D6-specific T 
cell response [75]. Molecular mimicry rather than identity 
between the adenoviral hCYP2D6 and the mCYP homo-
logues was the likely basis for the hCYP2D6-specific T cell 
response [75].

Molecular mimicry has not been established as a cause 
of autoimmune hepatitis in humans [21, 115], but the struc-
tural and conformational similarities between environmental 
pathogens and disease-associated antigens have compelled 
its consideration [109, 111, 116–123]. Undiscovered path-
ogens [124], isolated subclinical or antecedent infections 
[21, 74], and multiple previous infections by diverse viruses 
mimicking the same self-antigen may contribute to the risk 
of autoimmune disease [21, 74, 111].

Contributory Effects of Molecular Mimicry

Molecular mimicry may also be a mechanism that acceler-
ates or sustains autoimmune hepatitis [44, 73, 125] (Table 2). 
The release of neo-antigens from damaged liver tissue [126, 
127] or the translocation of bacterial products from a perme-
able intestine [44, 47, 128–135] could promote molecular 

Table 1   Requisites for molecular mimicry of environmental antigens in autoimmune hepatitis

Numbers in brackets are references
ABG antigen binding groove, APCs antigen presenting cells, CIITA class II transactivator gene, IFN-γ interferon-gamma, MHC major histocom-
patibility complex

Requisites Mechanisms Clinical Impact

Antigen selection and presentation Genetic predisposition [87, 294]
Foreign antigens presented by class II MHC mol-

ecules [77]
ABG consists of monomorphic α-chain and poly-

morphic β-chain [80–83]
DRβ-chain encoded by polymorphic DRB1 genes 

[85]
ABG open-ended structure [91, 92]

Selected antigen depends on sequence polymor-
phisms of DRβ chain [86]

ABG plasticity allows selection of diverse environ-
mental peptides [91]

ABG accommodates large peptides [92]
Promiscuous activated CD4+ T cells directed at 

self-antigens [4]

Antigen cross-presentation Foreign antigens presented by class I MHC mol-
ecules [97–99]

Direct activation of antigen-specific CD8+ T cells 
[96, 97]

Mediated by molecular chaperones bearing proteaso-
mal substrates [97]

Presented by dendritic cells [102, 103]

Rapid enhanced immune reactivity of foreign anti-
gens [98, 104]

May require proteasomal degradation of antigens 
rather than intact peptides [97]

Both CD4+ and CD8+ T cell activation [102]

Antigen similarity to self-antigen Structural or conformational homologies accommo-
dated by ABG plasticity [91]

Similar but non-identical epitopes [75]
Initiates type 1 immune response [6, 21]

Promotes avidity and promiscuity of T cell effectors 
[4, 21]

Increases array of immune targets [91]

Conducive microenvironment Pro-inflammatory IFN-γ induces class II MHC mol-
ecules by CIITA gene [93–95]

Bystander response [21, 140, 141]
Release of neo-antigens [127]

Expands number and variety of APCs [93]
Increases activated CD4+ T cells [93]
Promotes epitope spread [137–139]

Molecular chaperones Stabilize processing and trafficking of intracellular 
proteins [250–252]

Promotes antigen cross-presentation [97, 257]
Increases peptide immunogenicity [256, 257]
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mimicry and affect the severity and course of autoimmune 
hepatitis. Furthermore, molecular mimicry could contribute 
to the ongoing inflammatory process by expanding the num-
ber of targeted epitopes (epitope spread) [136–139] and the 
population of memory CD4+ and CD8+ T cells (bystander 
activation) [140, 141].

Mimicry Between CYP2D6 and Environmental 
Pathogens

CYP2D6, the principal autoantigen associated with one 
form of autoimmune hepatitis [109–111], has amino acid 
sequences within its structure that resemble sequences in 
the hepatitis C virus (HCV) [109, 119, 120], herpes simplex 
type 1 virus [109, 117], and human T lymphotrophic virus 
types 1 and 2 [117] (Table 2). A conformational epitope on 
CYP2D6 in patients with chronic hepatitis C and antibod-
ies to liver kidney microsome type 1 (anti-LKM1) spans 
the major linear epitope associated with type 2 autoimmune 
hepatitis [122], and cross-reacting anti-LKM1 have been 

demonstrated in patients with chronic hepatitis C [122, 142, 
143]. Furthermore, a homologous region between human 
CYP2D6 and protein from Salmonella typhimurium sug-
gests that bacteria could be another environmental source 
of molecular mimicry [117].

None of the pathogens with amino acid sequences that 
resemble those of CYP2D6 has been recognized as a cause 
of type 2 autoimmune hepatitis in humans [21, 115, 144]. 
The immunogenicity of the shared sequences within the 
pathogen [145, 146] and the composition of the host-specific 
microenvironment [21, 76] may be the critical factors that 
influence the risk of disease.

Mimicry Between Other Immunogenic Antigens 
and Environmental Pathogens

Molecular mimicry has also been demonstrated between 
key antigenic targets in type 1 autoimmune hepatitis and 
environmental pathogens [116, 121, 123]. The deoxyribonu-
cleic acid (DNA) polymerase of the hepatitis B virus (HBV) 

Table 2   Evidence for molecular mimicry of environmental antigens in autoimmune hepatitis

Numbers in brackets are references
AIH autoimmune hepatitis, anti-LKM1 antibodies to liver kidney microsome type 1, AST serum aspartate aminotransferase level, CYP2D6 
cytochrome P450 II D6, FtsZ filamenting temperature-sensitive mutant Z protein, HBV hepatitis B virus, HCV hepatitis C virus, HSV1 herpes 
simplex type 1 virus, LTV lymphotrophic virus types 1 and 2, pANCA perinuclear anti-neutrophil cytoplasmic antibodies, SARS-CoV-2 severe 
acute respiratory syndrome (SARS)-associated coronavirus 2, SepSecS O-phosphoserine [Sep] transfer RNA:selenocysteine (Sec) transfer RNA 
synthase

Observations Evidence Impact

Induction of experimental AIH Human CYP2D6 induces murine AIH 
[105–108]

Human resembles mouse CYP2D6 and acts as 
molecular mimic [105–107]

Induced pathological, serological, and fibrotic 
changes resemble human AIH [105, 107, 
108, 114]

Supports molecular mimicry as cause of AIH in 
experimental model [75, 105, 107]

Molecular mimicries with pathogens CYP2D6 epitopes resemble sequences in 
human HCV, HSV1, and LTV [109, 117, 
119, 120]

CYP2D6 homology with Salmonella [117]
HBV and HCV homologies with smooth mus-

cle and nuclear antigens [116, 121]
SepSecS homology with Rickettsia [123]

Human CYD2D6 has diverse homologies with 
environmental pathogens [109, 117]

Target antigen of anti-LKM1 homologous with 
bacterial surface antigen [123]

Molecular mimicries with vaccine Acute immune-mediated hepatitis after vac-
cination for SARS-CoV-2 [32, 34, 35]

Numerous homologies between human pro-
teins and SARS-CoV-1 [168, 179, 180]

Vaccine-generated molecular mimicries may be 
immunogenic and pathogenic for AIH [32, 35, 
38, 168]

Molecular mimicries with gut-derived anti-
gens

Particular dysbiosis in AIH [128, 132–135]
Veillonella correlates with serum AST [132]
Bifidobacterium affects treatment outcome 

[134]
Increased intestinal permeability [129, 193, 

194]
Atypical pANCA in type 1 AIH recognizes 

gut-derived FtsZ and β-tubulin isotype 5 
[229]

Translocation of enteric products and cells may 
cause AIH [128, 129, 195]

Diverse environmental factors may promote 
molecular mimicry by altering intestinal 
microbiota [25, 26, 42–47]

Microbiome manipulation improves experimen-
tal AIH [193, 195]



2829Digestive Diseases and Sciences (2023) 68:2824–2842	

1 3

has structural similarities to smooth muscle and nuclear 
antigens [116], and homologies have also been described 
between other regions in these same antigens and amino acid 
sequences in the polyprotein of HCV [121] (Table 2). Nei-
ther virus has been recognized as a cause of type 1 autoim-
mune hepatitis [21, 144], and the major clinical consequence 
of the structural homologies may be to lower the diagnostic 
specificity of smooth muscle antibodies (SMA) and antinu-
clear antibodies (ANA) [147].

Structural mimicry has also been demonstrated between 
the immune dominant regions of the SepSecS protein 
(O-phosphoserine [Sep] transfer RNA:selenocysteine (Sec) 
transfer RNA synthase) and the PS 120 surface antigen of 
Rickettsia species [123] (Table 2). The SepSecS protein 
[148–151] generates antibodies to soluble liver antigen (anti-
SLA) which are highly specific for autoimmune hepatitis 
[152–154]. The clinical impact of the structural homology 
between the SepSecS protein and the PS 120 surface antigen 
of Rickettsia species is uncertain [123, 151, 155].

Molecular Mimicry and Vaccination

Human vaccines have been developed against deleterious 
environmental pathogens by stimulating the recipient’s 
immune system to react against critical structural compo-
nents of the invading organism [156–161]. The generation 
of neutralizing antibodies and the activation of an antigen-
specific, adaptive immune response can eliminate the tar-
geted organism [162–165]. Similarities between peptides 
generated by the vaccine and normal proteins within the vac-
cine recipient may generate immune cross-reactivity that is 
manifested as an autoimmune disease [166–170] (Table 2). 
Recent experiences in humans after vaccination against 
the severe acute respiratory syndrome (SARS)-associated 
coronavirus 2 (SARS-CoV-2) have suggested an etiological 
connection between the vaccines and autoimmune hepatitis 
which may relate to molecular mimicry [27–41].

Autoimmune Hepatitis‑Like Disease After 
SARS‑CoV‑2 Vaccination

An acute onset hepatitis has been described in 87 patients 
within 3–65 days (median 15 days) after vaccination for 
SARS-CoV-2 [35]. The vaccines mainly contained messen-
ger ribonucleic acid (mRNA) for the spike (S) protein of 
SARS-CoV-2, and 57% of patients with acute hepatitis had 
features of autoimmune hepatitis (Table 2). Glucocorticoids 
had been administered to most patients, and the liver disease 
had resolved in all treated and untreated patients with one 
exception (frequency of liver failure and transplantation, 
1.1%). Relapse did not occur during an observation period 

that spanned 44–140 days after treatment withdrawal and 
35–172 days after spontaneous resolution.

Similar findings have been reported in two system-
atic reviews of vaccine-associated liver disease [32, 34] 
(Table 2). In the largest review, an acute hepatitis with auto-
immune features had developed within 7–21 days (median, 
14 days) after vaccination in 138 patients; 98% had received 
mRNA-based vaccines against SARS-CoV-2; most patients 
had been treated with immunosuppressive drugs; 89% 
had achieved full recovery; and 2.2% had died [32]. In the 
smaller review involving 32 patients who had developed 
an autoimmune hepatitis-like disease after vaccination, 7 
improved spontaneously (22%); 24 of the 25 treated patients 
improved or resolved (96%); and one patient died (3%) [34].

The acute onset of liver injury; its spontaneous resolu-
tion in some patients; the near-universal resolution after 
immunosuppressive therapy; and the absence of relapse after 
drug withdrawal are atypical features of autoimmune hepa-
titis [171] (Table 2). The atypical features, however, do not 
discount the actual or potential occurrence of autoimmune 
hepatitis after vaccination [34, 172] or the possible role of 
vaccine-induced molecular mimicry [27–33, 35, 37–41]. 
The overall safety and efficacy of vaccination against SARS-
CoV-2 have far outweighed the rarity of vaccine-related 
liver dysfunction, and the recommendation for vaccination 
in the general population has remained strong [32, 34, 35, 
173–175].

The apparent rarity of de novo autoimmune hepatitis after 
coronovirus disease 2019 (COVID-19) [176–178] suggests 
that the vaccine and its delivery system of lipid nanoparti-
cles [158, 161] generate a more intense immunogenic signal 
than community-acquired infection.

Vaccine‑Based Molecular Mimicry 
and Autoimmunity

Sequence analyses of 20,365 human proteins have identified 
3781 proteins that share peptides of at least 6 amino acids 
with structural proteins of SARS-CoV-2 [179] (Table 2). 
Pentapeptides are recognized as the minimal immunogenic 
epitopes [145, 146], and the extensive sharing of hexapep-
tides between SARS-CoV-2 and human proteins suggests 
that molecular mimicry after vaccination is common and 
rarely pathogenic [21, 168, 170]. The immunogenicity and 
pathogenicity of the molecular mimic may depend on its 
relevance to a pivotal disease-pertinent self-antigen and the 
circumstances that affect its processing and presentation by 
the MHC molecules (Fig. 1).

Antibodies to the spike protein of SARS-CoV-2 have 
had reactivity to human tissue transglutaminase, extracta-
ble nuclear antigen, myosin basic protein, mitochondria, and 
nuclear antigens. These homologies have been expressed in 
serum as nuclear, actin, and mitochondrial antibodies [180] 
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(Table 2). The serological findings indicate that molecular 
mimicry after vaccination can be a basis for immune reac-
tivity associated with autoimmune hepatitis. The investiga-
tional challenges are to identify the key molecular mimic of 
an immune dominant epitope that can trigger autoimmune 
hepatitis and the circumstances that promote its immuno-
genicity. [21, 22, 170]

Molecular Mimicry and Gut‑Derived 
Microbial Products

The intestinal microbiome is a reservoir of bacterial products 
and immune cells that have the potential to translocate to 
extra-intestinal sites and generate an immune response [131, 
181]. CD4+ and CD8+ T cells activated by gut-derived pep-
tides may target homologous tissue antigens and contribute 
to a loss of self-tolerance [44, 182, 183] (Fig. 1). Molecular 
mimicry based on changes within the intestinal microbiome 
constitutes a potentially powerful mechanism by which envi-
ronmental factors could shape the intestinal microbiome.

Diet [25, 134], supplements [24], antibiotics [23], alcohol 
[23], pollutants [23], and toxins [26] have been associated 
with the risk of autoimmune hepatitis, and this risk may 
reflect changes in the intestinal microbiome induced by these 
diverse environmental factors [25, 26, 42–47] (Table 2). 
Findings in experimental models of autoimmune hepatitis 
[129, 184] and other autoimmune diseases [185–188] have 
supported this premise, albeit there are many other factors 
outside of molecular mimicry that may be contributory 
[45–47, 135, 189].

Dysbiosis and Disease Severity

Immune tolerances to commensal bacteria within the intes-
tine may be lost by environmentally-induced dysbiosis 
[190], and toll-like receptors in the intestine may generate 
pathogenic T and B lymphocytes that are capable of sys-
temic translocation and reactivity against homologous tissue 
antigens [188, 191] (Table 2). Intestinal dysbiosis has been 
demonstrated in an experimental model [128] and in patients 
with autoimmune hepatitis [132–135]. The key distinguish-
ing features from healthy individuals have been reduced bio-
diversity of the intestinal microbiome [128, 132–134, 192], 
increased aerobic and facultative anaerobic bacteria [134], 
increased Veillonella species [132, 134], and decreased Bifi-
dobacterium species [129, 134] (Fig. 1). The composition of 
the intestinal microbiome has been specific for autoimmune 
hepatitis when compared to that of healthy individuals and 
patients with primary biliary cholangitis (PBC) or ulcerative 
colitis [134].

Changes in the size of certain bacterial populations within 
the intestine have also been associated with the severity of 

autoimmune hepatitis [135]. An increased Veillonella popu-
lation in patients with autoimmune hepatitis has correlated 
with the serum level of aspartate aminotransferase [132], 
and a decreased population of Bifidobacterium has been 
associated with failure to achieve remission during treatment 
[134] (Table 2). Furthermore, the abundance of Bifidobac-
terium in the intestinal microbiome has correlated directly 
with the average protein intake of patients with autoimmune 
hepatitis [134]. This finding underscores the possibility that 
dietary effects on the intestinal microbiota might impact on 
disease severity.

Increased Intestinal Permeability

Alterations in the structural proteins (zona occludens 1 
and occludin) that bind intestinal epithelial cells have been 
described in patients with autoimmune hepatitis [129], and 
increased intestinal permeability has been demonstrated in 
experimental models of the disease [193–195] (Table 2). 
Multiple microbial products that are manufactured within 
the intestinal microbiome may be enhanced by the dysbiosis 
and account for the barrier disruption [135, 196].

Lipopolysaccharides (LSP) from commensal gram-nega-
tive bacteria may increase, and they may enhance intestinal 
permeability by disrupting signaling pathways that main-
tain barrier integrity [135, 197] (Fig. 1). The breakdown of 
indigestible carbohydrates to short chain fatty acids (ace-
tic, proprionic, and butyric acids) may also be impaired by 
changes in the populations of commensal anaerobic bacteria 
[198–201]. Clostridia [201] and Bifidobacterium [202] are 
key carbohydrate-fermenting, bacterial populations, and 
reductions in their abundance could reduce concentrations 
of short chain fatty acids, especially butyrate, within the 
gut [200].

Butyrate has strengthened tight junction assembly 
and improved barrier function in experimental models 
[203–206], and its deficiency in autoimmune hepatitis could 
facilitate translocation of bacterial products and enhance the 
opportunity for molecular mimicry. A butyrate deficiency 
could also affect other signaling pathways that modulate 
immune and inflammatory responses pivotal for the occur-
rence and maintenance of autoimmune hepatitis [207–210]. 
Dietary fiber and butyrate supplementations have increased 
mucosal junction proteins, elevated the ratio of regulatory 
T cells (Tregs) to T helper 17 (Th17) cells, and decreased 
translocation of microbial protein in experimental autoim-
mune hepatitis [211].

The critical impact of dysbiosis on the integrity of the 
intestinal mucosal barrier has been demonstrated further 
by manipulating the gut microbiota. Probiotics are prepa-
rations of living enteric commensal micro-organisms that 
are intended to induce a salutary microbiome [212–214]. 
The administration of probiotics containing species of 
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Bifidobacterium with [195] or without Lactobaccillus [193] 
has had a broad spectrum of beneficial effects in experi-
mental models of autoimmune hepatitis (Table 2). It has 
suppressed hepatic inflammation [195], decreased serum 
aminotransferase levels [195], diminished proliferation of 
Th17 cells [193, 195], reduced serum endotoxin levels [193], 
enhanced the abundance of short chain fatty acids [193], 
inhibited transcription of cytokines [195], and maintained 
or strengthened the intestinal mucosal barrier [193, 195].

Interactive Modulatory Metabolic Effects

Metabolic products from different bacterial populations 
within the intestine can become shared energy sources that 
sustain the composition of the microbiome and the integ-
rity of the intestinal mucosal barrier [42, 199]. The degree 
of communal interdependence is unclear, but cross-feeding 
among commensal populations may enhance their resiliency. 
The acetate produced by Bifidobacterium can be utilized by 
Fecalibacterium prausnitzii, a dominant intestinal inhabit-
ant, to produce butyrate [215]. The cross-feeding of energy 
sources may be a mechanism by which Bifidobacterium can 
up-regulate tight junctions, improve barrier function, reduce 
endotoxemia, impair proliferation of Th17 cells, and miti-
gate experimental autoimmune hepatitis [193, 215].

The intestinal microbiota may also produce metabolites 
that modulate the inflammatory and immune responses. Gly-
colipids derived from the intestinal bacteria can be presented 
by the MHC class I-like molecule, CD1d, and activate natu-
ral killer T (NKT) cells [216]. NKT cells activated by this 
mechanism have promoted liver injury in an experimental 
model of hepatitis [217]. Secondary bile acids (lithocholic 
acid and deoxycholic acid) derived from the actions of 
enteric bacteria on the primary bile acids (cholic acid and 
chenodeoxycholic acid) may counter a pro-inflammatory 
response by activating the G-protein-coupled bile acid recep-
tor 1 (GPBAR1). GPBAR1 can direct the differentiation of 
NKT cells to an anti-inflammatory, interleukin 10-produc-
ing, subset that ameliorates experimental immune-mediated 
hepatitis [189].

Molecular Mimicry of Gut‑Derived Antigens 
in Autoimmune Hepatitis

Atypical perinuclear anti-neutrophil cytoplasmic antibodies 
(pANCA) occur in 49–96% of patients with type 1 autoim-
mune hepatitis [218–223]. They are also found in patients 
with primary sclerosing cholangitis (PSC) [219, 224, 225] 
and inflammatory bowel disease [226–228]. Atypical 
pANCA recognize β-tubulin isotype 5 in conjunction with 
its evolutionary bacterial precursor protein, filamenting tem-
perature-sensitive mutant Z protein (FtsZ) [229] (Table 2). 
The dual reactivity is dependent on an intact intestinal 

microbiome in a mouse model of inflammatory bowel dis-
ease [229]. The absence of this dual reactivity in germ-free 
animals supports the premise that gut-derived antigens can 
escape the intestine and trigger an antibody response that 
is disease-related [229–231]. The high prevalence and high 
titers of atypical pANCA in some studies of type 1 autoim-
mune hepatitis [218, 223] compel this consideration, albeit 
the antibody production may not translate into a pathogenic 
immune response.

Prospect of Molecular Mimicry as a Cause 
of Autoimmune Hepatitis

The prospect that molecular mimicry of environmental anti-
gens will emerge as a valid cause of autoimmune hepatitis 
depends on the demonstration of its immunogenicity and 
pathogenicity. Examinations of 30 viral proteomes [232] and 
40 bacterial proteomes [233] for similarities to the human 
proteome have disclosed massive sharing of amino acid 
motifs at the pentapeptide level and higher. The ubiquity of 
molecular mimicry between pathogenic viral and bacterial 
species and normal tissue proteins indicates that molecular 
mimicry by itself is insufficient to cause autoimmune disease 
[179, 232–234].

Future investigations must evaluate diverse environmental 
antigens in addition to pathogens as candidates for molecular 
mimicry [131, 188, 235–238]. They must demonstrate the 
immunogenicity [21] and pathogenicity [188] of the impli-
cated homologues, and they must determine the factors that 
influence their potency as triggering peptides. The intestinal 
microbiome must also be rigorously assessed as a source of 
molecular mimicries that can initiate, enhance, and sustain 
a deleterious autoreactive immune response [44, 73, 131, 
188, 238, 239]. Demonstration of the pathogenic nature of 
the molecular mimicries will require a humanized animal 
model of autoimmune hepatitis that expresses human leu-
kocyte antigen (HLA) risk alleles.

Discovering Diverse Environmental Homologues 
and Demonstrating Immunogenicity

Pentapeptides are the shortest functional units recognized by 
the immune system [145, 146]. The search for immunogenic 
and pathogenic molecular mimics in autoimmune hepatitis 
must focus on identifying peptides in environmental anti-
gens that not only mimic the immune dominant epitopes of 
CYP2D6 but also have sufficient size to be immunogenic 
[109, 111, 120] (Table 3). CYP2D6 is the pivotal antigen 
for the discovery of disease-relevant molecular mimics in 
the environment because of its high specificity for type 2 
autoimmune hepatitis [109, 111, 120]. Type 2 autoimmune 
hepatitis, however, is less common in North American adult 
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patients than type 1 autoimmune hepatitis [110, 147, 153, 
240]. The key antigen associated with type 1 autoimmune 
hepatitis remains unclear, and this deficiency limits dis-
covery of its disease-relevant molecular mimics within the 
environment.

The epitope of CYP2D6 which spans the amino acid (aa) 
region, aa193-212, is a prime immune dominant epitope 
associated with antibodies to liver kidney microsome type 
1 (anti-LKM1) and type 2 autoimmune hepatitis [111]. The 
CYP2D6 epitope spanning the amino acid sequence, aa316 
and 327, is expressed on the molecular surface, and its sur-
face location may enhance its candidacy as another immune 
dominant epitope of CYP2D6 [120]. A 33 amino acid seg-
ment of the CYP2D6 molecule contains a shorter segment 
of 8 amino acids which resembles the herpes simplex type 1 
virus [109], and it is another epitope of CYP2D6 that could 
be used to probe for homologies in diverse environmental 
antigens. Homologues of each immune dominant epitope of 
CYP2D6 can be sought using established databases (Gen-
bank, Protein Information Resource [PIR], SWISS-PROT, or 
the International Nucleotide Sequence Database Collabora-
tion [INSCD]) [109, 111, 241].

The immunogenicity of the implicated homologue can 
be demonstrated by detecting its antibodies in sera from 
patients with type 2 autoimmune hepatitis. Pre-absorption 
of the sera with LKM1 enhances its specificity for the can-
didate homologue [109, 242]. Immunogenic peptide mimics 
of the pivotal CYP2D6 epitopes could also be assessed by 
using peptide libraries of environmental antigens expressed 
on a microarray and probed with the pre-absorbed serum 
[242–245]. The identification of disease-pertinent peptide 
mimics in diverse environmental antigens (foodstuffs, vac-
cines, toxins, and micro-organisms [235–237, 246]) would 
support the causal role of molecular mimicry in type 2 auto-
immune hepatitis and encourage discovery of the immune 
dominant epitopes in type 1 disease.

Defining Conditions That Enhance Immunogenicity

The ubiquity of molecular mimicry between foreign and 
self-proteins and the relative rarity of autoimmune diseases 
[233] have driven the search for factors that enhance the 
causative impact of molecular mimicry [21]. The factors 
that have been associated with the loss of self-tolerance 
(bystander activation of pre-primed T cells, memory cells 
and APCs [73, 140, 141]; epitope spread to tissue antigens 
of progressively lower homology [136–139, 247]; the release 
of neo-antigens from damaged tissue [126, 127]; and the 
production of superantigens that directly activate T lympho-
cytes [248, 249]) intensify the immune response [6], but 
they are not the primary causes of it. Adjuvant mechanisms 
that can particularly enhance the immunogenicity of molec-
ular mimics would strengthen their candidacy as primary 

interfaces between the environment and autoimmune hepa-
titis (Table 3).

Molecular Chaperones and Peptide Immunogenicity

Molecular chaperones are highly conserved proteins that are 
present in all cellular compartments [250]. They stabilize 
the processing, maturation, and activity of intracellular pro-
teins by aiding in their folding, assembly, and trafficking 
[250–252]. Heat shock proteins (HSPs) are molecular chap-
erones that reside constitutively within the cytoplasm, and 
they can be induced by oxidative stress, nitrosative stress, 
inflammation, or infection [253, 254]. HSPs can also affect 
the immunogenicity of intra- and extracellular peptides 
[255–257].

HSPs can bind to intracellular antigens containing both 
MHC class I and MHC class II epitopes, and as molecular 
chaperones, they can facilitate cross-presentation of acquired 
antigens by dendritic cells [257] (Fig. 1). HSPs may be adju-
vants that could strengthen the immunogenicity of an envi-
ronmental peptide that mimics a self-antigen (Table 3). The 
investigation of HSPs as modulators of the immune response 
to foreign antigens may strengthen the candidacy of molecu-
lar mimicry as a causative factor in autoimmune hepatitis. 
It may also suggest HSP-directed therapeutic strategies for 
future study [254, 258–260].

Other molecular chaperones that could affect the immu-
nogenicity of environmental antigens are tapasin [261, 
262] and the transporter associated with antigen processing 
(TAP)-binding protein (TAPBPR) [263–266]. Both chaper-
one molecules facilitate the selection, processing, and edit-
ing of high affinity peptides for MHC class I molecules. The 
lysosome-associated membrane protein-2 isoform (LAMP-
2a) promotes the presentation of peptides by MHC class 
II molecules [267, 268], and the human leukocyte antigen 
(HLA)-B-associated transcript 3 (Bat3) protects autoreac-
tive T cell responses by preventing T cell exhaustion [269, 
270]. Chaperone molecules that contribute to the selection, 
editing, and presentation of peptides and the preservation 
of the autoreactive T cell response are factors that can affect 
the immunogenicity of environmental antigens. Their roles 
are unassessed in autoimmune hepatitis.

Demonstrating Pathogenicity of the Implicated 
Homologue

The implicated homologue must generate T and B cell reac-
tivity to the principal antigen associated with autoimmune 
hepatitis (CYP2D6) [271], and the cross-reactivity must pro-
duce the disease in a genetically predisposed experimental 
model [188, 272]. The homologue must be non-identical to 
CYP2D6, and the experimental model must be susceptible 
to the disease in order to mitigate immune tolerance [75, 
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188]. The pathogenicity of a homologue derived from the 
intestinal microbiome has been elegantly demonstrated in 
patients with antiphospholipid syndrome, [188] and a similar 
methodology can be applied in patients with autoimmune 
hepatitis.

Immunogenic epitopes of CYP2D6 can be used to search 
for mimics within the intestinal microbiome by examin-
ing available databases, including resources developed by 
the Human Microbiome Project Consortium [273, 274] 
(Table 3). The enteric commensal bacterial species express-
ing the critical homologue can be identified, sought in the 
fecal specimens of patients with type 2 autoimmune hepa-
titis, and assessed for pathogenicity by evaluating T and B 
cell cross-reactivity between the epitopes of CYP2D6 and 
the molecular mimics expressed in the bacterial species. The 
methodology can be expanded to identify and assess homo-
logues derived from other environmental sources.

Focusing on the Intestinal Microbiome

Gut-derived homologous peptides must translocate from 
the intestine to extra-intestinal sites to generate pathogenic, 
cross-reactive, T and B cell responses [188]. The genetic and 
biological factors that contribute to these responses must 
be clarified in autoimmune hepatitis [231] (Table 3). The 
enteric milieu of short chain fatty acids [198–201], LSP 
[197], glycolipids [217], and bile acids [189, 209] must be 
characterized to define the conditions for increased intestinal 
permeability. Furthermore, the principal factors that alter or 
restore the function of the intestinal epithelial cells must be 
determined [129, 275]. The investigational emphasis must 
shift from measuring the size of the enteric populations in 
autoimmune hepatitis to assessing their function and inter-
activity [47]. The pathogenic sequence from environmental 
factors to intestinal dysbiosis to a disease-producing immune 
response by molecular mimicry awaits experimental valida-
tion [214, 275, 276].

Prospective Management Strategies

The feasible management strategies for pathogenic molecu-
lar mimicry include life-style changes [277], dietary adjust-
ments or supplements [204, 211, 231, 277–280], improved 
vaccine production [161], and targeted manipulation of the 
intestinal microbiome [44, 47, 135, 214, 231, 281] (Table 3). 
Diets emphasizing fiber [211] and favoring the intestinal 
production of short chain fatty acids [280] and butyrate 
[203–205, 211] may preserve or strengthen the intestinal 
mucosal barrier. Probiotics [195, 213, 278], pharmacologi-
cal mucosal protectors [275, 282, 283], and fecal microbiota 
transplantation (FMT) [284, 285] are other interventions that 
could mitigate the impact of gut-derived molecular mimicry 
[193, 195]. Studies that clarify the principal environmental 

sources for pathogenic molecular mimicry will direct the 
evaluation of appropriate management strategies.

Molecular Mimicry and Epigenetic Changes

Environmental factors may influence the causality of auto-
immune hepatitis outside of molecular mimicry [52, 53, 55, 
286]. Epigenetic changes induced by the environment can 
alter the transcriptional activity of immune regulatory genes 
without changing the nucleotide sequence of DNA [54, 287, 
288]. Induced alterations in the methylation, acetylation, and 
phosphorylation of histones within the nucleosomes can 
reversibly up- or downregulate gene expression and influ-
ence the immune response [48, 53, 55].

Unlike molecular mimicry which is antigen-dependent, 
epigenetic changes can be induced by non-antigenic environ-
mental factors that affect the activity of enzymes that modify 
histone structure [48]. Nutritional deficiencies [51], alcohol 
[289], tobacco [290], pollutants [291, 292], and psychologi-
cal stress [50, 293] are environmental factors that may affect 
disease susceptibility by altering pivotal gene transcription 
rather than mimicking a self-antigen. Non-antigenic environ-
mental stimuli may also change the intestinal microbiome 
and indirectly promote intestinal dysbiosis and gut-derived, 
antigen-induced, molecular mimicry [23, 26, 42, 47].

Molecular mimicry and epigenetic changes may contrib-
ute independently to the causality of autoimmune hepati-
tis depending on the nature of the environmental stimulus. 
Future investigations must establish the pathogenicity and 
relevance of molecular mimicry compared to epigenetic 
mechanisms. Therapeutic interventions could emerge that 
are mechanism-dependent.

Conclusions

Molecular mimicry may translate diverse environmental 
antigens into autoimmune hepatitis by increasing the avid-
ity of immune cells for multiple homologous tissue antigens. 
Vaccinations and the intestinal microbiome may be prime 
environmental sources for peptides that mimic immune 
dominant epitopes of key self-antigens associated with auto-
immune hepatitis. Disease-pertinent peptide mimics can be 
sought among diverse environmental antigens by searching 
for homologues of the known immune dominant epitopes 
of CYP2D6. Immune dominant epitopes of key antigens 
associated with type 1 autoimmune hepatitis await clarifi-
cation. The conditions required for immunogenicity of the 
mimicking epitope must be clarified and include chaperone 
molecules, such as HSPs. Translocated gut-derived bacte-
rial antigens should be evaluated as molecular mimics, and 
the conditions for increased intestinal permeability clarified. 
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The implicated environmental homologue must be shown 
to be pathogenic by generating T and B cell reactivity to 
CYP2D6 and producing experimental autoimmune hepatitis. 
The relative contributions of molecular mimicry and epige-
netic alterations to the causality of autoimmune hepatitis 
should be determined, and management strategies evaluated 
that are appropriate for the principal pathogenic mechanism.
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