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Abstract
Background Computed tomography is the most commonly used imaging modality for preoperative assessment of lymph 
node status, but the reported accuracy is unsatisfactory.
Aims To evaluate and verify the predictive performance of computed tomography deep learning on the presurgical evalua-
tion of lymph node metastasis in patients with gastric cancer.
Methods 347 patients were retrospectively selected (training cohort: 242, test cohort: 105). The enhanced computed tomog-
raphy arterial phase images of gastric cancer were used for lesion segmentation, radiomics and deep learning feature extrac-
tion. Three methods were used for feature selection. Support vector machine (SVM) or random forest (RF) was used to build 
models. The classification performance of the models was evaluated using the area under the receiver operating characteristic 
curve (AUC). We also established a nomogram that included clinical predictors.
Results The model based on ResNet50-RF showed favorable classification performance and was verified in the test cohort 
(AUC = 0.9803). The nomogram based on deep learning feature scores and the lymph node status reported by computed 
tomography showed excellent discrimination. AUC of 0.9978 was achieved in the training cohort and verified in the test 
cohort (AUC = 0.9914). Decision analysis curve showed the value of nomogram in clinical application.
Conclusion The computed tomography-based deep learning nomogram can accurately and effectively evaluate lymph node 
metastasis in patients with gastric cancer before surgery.
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Introduction

Gastric cancer is an aggressive malignant tumor with a poor 
prognosis and the fifth most common malignant tumor in 
the world [1]. Because the early symptoms of gastric can-
cer are not typical, many patients have developed advanced 
gastric cancer at the time of diagnosis [2]. The main way 
of gastric cancer metastasis is lymphatic metastasis, which 
affects the prognosis of gastric cancer [3, 4]. The presence or 

absence of lymph node (LN) metastasis is one of the criteria 
for neoadjuvant chemotherapy, which is of great importance 
for patient's prognosis with gastric cancer and the choice 
of chemotherapy regimens [4–6]. Therefore, it is of great 
importance for patient treatment and improving prognosis to 
diagnose LN metastasis. The most common method for pre-
operative assessment of LN metastasis is computed tomog-
raphy (CT) [7]. The accepted criteria for clinical diagnosis 
of LN metastasis are changes in size and shape [8]. How-
ever, its accuracy is not satisfactory, and some patients are at 
risk of inaccurate LN staging [9–11]. Thus, a non-invasive 
method is needed to assist imaging diagnosis.

Recently, artificial intelligence (AI) is an emerging 
technology that provides new methods for assisted diag-
nosis of medical imaging. Studies have confirmed that the 
accuracy of diagnosis using AI models is similar to or even 
better than that of clinical experts under certain conditions 
[12–14]. Transfer learning can overcome the limitations 
of small data sets [15]. It uses pre-trained convolutional 
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neural network (CNN) for deep learning (DL) feature 
extraction and builds models with the help of machine 
learning (ML) methods [16]. There have been many stud-
ies on radiomics in the diagnosis and prognosis of tumors 
[17, 18]. However, there are few studies using deep learn-
ing to predict LN metastasis in gastric cancer [19, 20].

Therefore, this study aims to develop a non-invasive 
method based on deep learning to predict gastric cancer 
LN metastasis before surgery and combine it with clinical 
predictors to construct a nomogram.

Materials and Methods

We obtained informed consent from patients or their rela-
tives and were approved by the Ethics Committee of the 
Second Affiliated Hospital of Nanjing Medical University 
(NO. [2022]-KY-009-01). All patient private information 
was deleted.

Quality System

The study followed the RQS quality system. The RQS 
scoring criteria, the scores for this study and the rationale 
for the scores were detailed in the supplementary material.

Patients

We reviewed patients from January 2017 to September 
2021. Inclusion criteria included abdominal enhanced CT 
examination within one week before surgery and no neo-
adjuvant chemotherapy, postoperative pathological con-
firmation of gastric cancer and clear staging. Exclusion 
criteria include poor CT image quality and small gastric 
cancer lesions that are difficult to identify. We collected 
the information of patients who met the inclusion crite-
ria, and then excluded patients who met the exclusion 
criteria. In the end, we selected 347 patients (mean age, 
64.34 ± 11.075 years; the range of the ages, 29–90 years) 
for review. Clinical, pathological and laboratory data all 
came from medical records. The CT image acquisition 
was detailed in supplementary materials. Three radiolo-
gists (with more than 7 years of experience in abdomi-
nal imaging) reviewed the patient's enhanced CT arterial 
phase images and reassessed the patient's LN status. The 
evaluation processes of the three doctors were independent 
of each other, and they had no knowledge of the patient's 
pathological information. If the opinions of the three doc-
tors are not uniform, we will take the majority opinion as 
the patient’s final LN status.

Regions of Interests (ROIs)

Studies have shown that the predictive performance of radi-
omic features extracted from CT images of the arterial phase 
is better than that of the portal phase [21, 22]. Thus, we 
resampled all CT arterial phase images. Two imaging phy-
sicians (with more than 7 years of work experience) used 
ITK-SNAP software to semi-automatically segment the gas-
tric cancer ROI in the arterial phase of CT images. When 
performing gastric cancer ROI segmentation, the doctors 
only knew the location of the tumor confirmed by pathology 
and did not know the rest of the information. Using the CT 
attenuation threshold, a semi-automatic method was used to 
delineate free regions of interest along the tumor margins. 
Top and bottom slices were excluded to reduce bias due to 
local volume effects. The radiologist will carefully outline 
the contours to avoid contact with adjacent fluid or air, and 
areas of necrosis will be included.

Radiomics Features

We extracted radiomics features from the ROI with the help 
of the PyRadiomics package (version 3.0.1) [23]. Most fea-
tures were in line with the image biomarker standardization 
initiative [24, 25]. We use the intraclass correlation coef-
ficient (ICC) with the help of the pingouin package (ver-
sion 0.3.11) to verify feature stability and select features 
with a value greater than 0.8 [26, 27]. Feature extraction 
for radiomics and calculation of ICC were detailed in sup-
plementary materials.

Deep Learning Features

VGG16, VGG19, Xception, InceptionV3, and Inception-
ResNetV2 were used to extract deep learning features. We 
also used a total of five different layers of ResNet50 for deep 
learning feature extraction. All neural networks were pre-
trained on the ImageNet database. The extracted deep learn-
ing features were modeled by ML methods. Deep learning 
was less dependent on the understanding of data features 
[28]. The training process of the CNN and the extraction of 
deep learning features were detailed in the supplementary 
materials.

Feature Selection and Model Construction

To deal with the imbalance of the LN status, we use the Bor-
derline-SMOTE method to oversample the training cohort. 
Due to the large number of features, we normalized the fea-
ture value and followed the steps below to perform feature 
selecting. First, we used T-test for preliminary screening and 
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selected features with p < 0.05. Then, we used the method of 
univariate analysis to select the top 20% of the best features. 
Finally, we used the least absolute shrinkage and selection 
operator (Lasso) method to select features and recorded the 
feature scores of all patients. We also integrated the selected 
deep learning features and radiomics features, and standard-
ized and selected these features again. The specific methods 
were detailed in the supplementary materials. Mann–Whitney 
U test was used to verify the association between features and 
LN status. We built models for the selected six sets of deep 
learning features, radiomics features and integrated features. 
Since the classification performance of models built with dif-
ferent classifiers may have obvious differences, we used SVM 
or RF to build classification models, and used the AUC to 
evaluate model performance.

Nomogram Construction

All the clinical, pathological and laboratory data, including 
age, gender, tumor location, tumor morphology, album, neu-
trophil, lymphocyte, CEA level, CA742 level, CT-reported LN 
status, and deep learning feature scores were evaluated with 
univariate analysis and logistic regression analysis. We used 
likelihood ratio test to select factors related to LN metastasis. 
On the basis of the results of the above analysis, a nomogram 
was constructed.

Statistical Analysis

The Kolmogorov–Smirnov test was used to test the normality 
of continuous variables. Differences between normally distrib-
uted variables were compared with T test. When the variables 
were non-normally distributed, the Mann–Whitney U test was 
used to analyze the differences between these variables. Cate-
gorical variables were expressed by frequency. Chi-square test 
was used to test their differences. The violin graph was used to 
represent the distribution of the deep learning feature scores of 
each cohort. The performance of the classification models was 
evaluated by the AUC. Calibration curve and Hosmer–Leme-
show test were used to evaluate the nomogram. Receiver oper-
ator characteristics (ROC) curves were used to evaluate the 
predictive performance of the nomogram and the diffidence of 
them were compared by Delong test. Decision analysis curve 
(DCA) was drawn to showed the value of the classification 
model and nomogram in clinical application [29].

Results

Clinical Characteristics

Among the 347 patients who met the inclusion criteria of 
this study, 242 patients were randomly divided into the 

training cohort, and the remaining 105 patients were divided 
into the test cohort randomly. Table 1 summarized the clini-
cal characteristics of each cohort. The clinical characteristics 
of the two cohorts did not differ significantly.

Model Construction and Evaluation

After a series of feature selecting, we selected 33 features 
from VGG16, 39 features from VGG19, 69 features from 
Xception, 85 features from InceptionV3, 77 features from 
InceptionResNetV2 and 72 features from ResNet50. We also 
selected 26 radiomics features (Fig. 1).

Among the models built using deep learning features, the 
ResNet50-RF model has the optimal classification perfor-
mance. Its AUC, accuracy, sensitivity and specificity were 
0.9803, 0.9810, 0.9839, 0.9767, respectively (Table S1). We 
also analyzed and compared the features extracted from dif-
ferent layers of ResNet50, and the results confirmed that the 
last layer before the neural network was fully connected to 
extract features was the most effective (Table S2).

We used the selected radiomics features to build model. 
The classification models on the basis of RF or SVM showed 
similar performance (DeLong test, p = 0.30728). Its AUC, 
accuracy, sensitivity and specificity were 0.9606, 0.9619, 
0.9677, 0.9535, respectively (Table S1).

We had also integrated the selected deep learning features 
extracted by ResNet50 and radiomics features to explore 
whether this method was feasible to improve classification 
performance. Analysis showed that integrating features can 
not improve classification performance (Table S1). The AUC 
of the Int-RF model was 0.9687.

The analysis results showed that the ResNet50-RF model 
had the best classification performance. The distribution 
of deep learning feature scores is shown in Fig. 2. In both 
cohorts, the deep learning feature scores of patients with 
positive LN were significantly higher than those with nega-
tive LN. Mann–Whitney U test (p < 0.001) confirmed that 
there was a correlation between deep learning features and 
LN status.

Nomogram Construction and Evaluation

The results of univariate analysis and logistic regression 
analysis showed that the deep learning feature scores and 
the LN status reported by CT were independent factors 
(Table 2). The nomogram (Fig. 3) on the basis of the two 
factors showed excellent predictive performance (Hos-
mer–Lemeshow test, p = 0.291). The AUC (Fig. 4) was 
0.9978 in the train cohort, which was verified in the test 
cohort (AUC = 0.9914). The calibration curves indicated 
that the deep learning nomogram had excellent predictive 
performance (Fig. 5).
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Table 1  Patient characteristics in each cohort

LN (+): lymph node metastasis positive; LN (−): lymph node metastasis negative; IQR interquartile ranges, SD standard deviation; *p 
value < 0.05

Clinical characteristics Train cohort Test cohort p

LN (+) LN (−) p LN (+) LN (−) p

Age (years), 
(mean ± SD)

65.86 ± 10.85 62.70 ± 11.58 0.661 65.11 ± 11.53 61.20 ± 9.24 0.274 0.299

Gender, NO (%) 0.401 0.181 0.674
 Male 105 (70) 69 (75) 49 (79) 29 (67.4)
 Female 45 (30) 23 (25) 13 (21) 14 (32.6)

Tumor location, NO (%) 0.816 0.642 0.906
 Fundus 47 (31.3) 29 (31.5) 20 (32.3) 13 (30.2)
 Body 67 (44.7) 44 (47.8) 17 (27.4) 9 (20.9)
 Antrum 36 (24) 19 (20.7) 25 (40.3) 21 (48.8)

Tumor morphology, 
NO (%)

*0.015 0.629 0.881

 Ulceration 127 (84.7) 66 (71.7) 50 (80.6) 33 (76.7)
 Flat 23 (15.3) 26 (28.3) 12 (19.4) 10 (23.3)

Laboratory tests, median 
(IQR)

 Album 39.00 (35.30, 42.30) 42.75 (36.80, 45.08) *0.007 39.50 (36.00, 42.42) 41.90 (38.90, 44.50) *0.010 0.512
 Neutrophil 3.84 (3.00, 5.01) 3.77 (2.83, 4.61) 0.409 3.90 (2.98, 5.21) 3.71 (2.92, 4.33) 0.294 0.874
 Lymphocyte 1.36 (1.03, 1.73) 1.42 (1.11, 1.74) 0.336 1.23 (1.02, 1.66) 1.61 (1.38, 1.98) *0.004 0.772

CEA level, NO (%) *0.005 *0.009 0.574
 Normal 116 (77.3) 89 (96.7) 50 (80.6) 42 (97.7)
 Abnormal 34 (22.7) 3 (3.3) 12 (19.4) 1 (2.3)

CA742 level, NO (%) *0.011 0.074 0.622
 Normal 128 (85.3) 83 (90.2) 46 (74.2) 38 (88.4)
 Abnormal 22 (14.7) 9 (9.8) 16 (25.8) 5 (11.6)

CT-reported LN status, 
No (%)

*0.000 *0.000 0.496

 LN (+) 120 (80) 30 (32.6) 47 (75.8) 14 (32.6)
 LN (−) 30 (20) 62 (67.4) 15 (24.2) 29 (67.4)

Deep learning feature 
scores, median (IQR)

0.329 (0.225, 0.398) -0.548 (-0.612, -0.454) *0.000 0.353 (0.270, 0.433) -0.524 (-0.614, -0.436) *0.000 0.615

Fig. 1  Feature selection using LASSO. A MSE: Mean square error. Using tenfold cross-validation and iterating 100,000 times for parameter tun-
ing to filter out the best lambda value. B Using the best lambda value for feature selecting
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The DCA of the classification model and nomogram are 
shown in Fig. 6. The analysis of the results showed that 
within a certain threshold range, the use of nomogram and 
classification model to predict whether a patient’s LN metas-
tasis was more beneficial than treat-all patients or treat-none 
scheme.

Discussion

This study constructed a non-invasive method, CT-based 
deep learning nomogram for the preoperative evaluation of 
gastric cancer LN status, verified by the test cohort. The 
nomogram included two factors: deep learning feature scores 

and LN status reported by CT. The nomogram provided 
more information for the preoperative evaluation of LN.

In clinical work, medical imaging is a vital method to 
assess the status of LN [30]. CT is the most commonly 
used method [7]. However, the accuracy of CT in assessing 
LN metastasis is very limited [9–11, 31]. Radiomics is a 
new technology, which shows great potential in oncology 
[32–34]. Deep learning can automatically learn relevant 
features and reduce the amount of human input [35]. But 
classification using deep learning is difficult to combine with 
radiomics. In the field of gastric cancer imaging, research 
in recent years has only focused on radiomics or deep learn-
ing, and there is no article combining the two for research 
[17, 19, 36].

Therefore, there were two aspects of this problem have 
to be addressed. Firstly, we used CNN for deep learning 
feature extraction. However, there was no clear report in the 
recent study for which layer of CNN output depth features 
were used. Thus, we used the five different layers to output 
deep learning features of ResNet50 to build classification 
models for analysis and comparison. The results showed that 
the last layer before the neural network was fully connected 
to extract features was the most effective, which will serve 
as a reference for other researchers. Secondly, due to the 
large number of features, we used three methods for feature 
selecting. The analysis confirmed that the performance of 
the classification model we constructed using T-test, uni-
variate analysis and Lasso method for feature selecting 
outperformed the models constructed by Chen et al. [17] 
(AUC, 0.9803 vs 0.878) and Wang et al. [36] (AUC, 0.9803 
vs 0.837) using single feature selecting method.

Then, we combined the deep learning features and the 
radiomics features to build a classification model. But sur-
prisingly, after combining the two, the performance of the 
classification model did not improve, which is similar to 

Fig. 2  Violin chart of deep learning feature scores of training cohort (A) and test cohort (B). 1: Male; 2: Female; The wider parts of the figure 
indicates that the patients in this group are more likely to adopt the given value and the narrower parts represents the lower probability

Table 2  The results of univariate analysis and logistic regression 
analysis

*p value < 0.05

Univariate analysis Logistic 
regression 
analysis

Characteristics p p
Age 0.266 –
Gender 0.403 –
Tumor location 0.818 –
Tumor morphology 0.015* 0.9729
Album 0.301 –
Neutrophil 0.649 –
Lymphocyte 0.598 –
CEA level 0.005* 0.7478
CA742 level 0.011* 0.5601
CT-reported LN status 0.000* 0.011*
Deep learning feature score 0.000* 0.000*
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the study by Yun et al. [37] Chalkidou et al. [38] believed 
that radiomic features were characterized by human bias. At 
the same time, there had always been a problem of repro-
ducibility in radiomics [39]. We were inclined to this view. 
Human-defined radiomics had certain limitations, and the 
differences between tissue types may not be fully included 
in the radiomic features.

Besides, we combined feature scores and clinical factors 
to build nomogram. Both clinicians and patients can use 
this easy-to-use nomogram, which is in line with the trend 
of personalized medicine [40]. Wang et al. [36] constructed 
a nomogram based on radiomics scores for preoperative 
assessment of the status of gastric cancer LN. In compari-
son, the nomogram of this study achieved a higher AUC 
(0.9914 VS 0.881). The better performance of this research 
may be due to the inclusion of deep learning feature scores. 
The advances of deep learning can effectively deal with the 
dilemmas of radiomics mentioned above. Deep learning can 
automatically learn features without human pre-definition, 
thereby reducing human bias and improving versatility 
and accuracy [35]. The nomogram had important guiding 

significance in helping clinicians to screen patients receiving 
neoadjuvant chemotherapy. Evidence-based evidence for the 
survival benefit of neoadjuvant chemotherapy still did not 
exist. Some patients with gastric cancer that could be cured 
by surgery may have serious adverse reactions after neoad-
juvant chemotherapy, which was unnecessary. Accurate pre-
diction of LN metastasis was the key to screening patients 
receiving neoadjuvant chemotherapy [4–6]. Therefore, to 
evaluate the clinical applicability of classification model and 
nomogram, this study adopted a DCA. Analysis showed that 
within a certain threshold, compared with treat-all-patients 
or treat-none scheme, using classification models or nomo-
grams to predict LN metastasis can provide net benefits.

This study had some notable limitations. First of all, the 
deep learning features were obtained using CNN for transfer 
learning. Although the test cohort verification proved that 
the classification model had good predictive performance, 
there were differences between the source database and the 
target database. One solution is to build a large database that 
includes a large number of well-annotated medical imag-
ing data. With the help of this database for CNN training, 

Fig. 3  Deep learning nomogram. The deep learning nomogram 
was constructed in the training cohort, including deep learning fea-
ture scores and the LN status reported by CT. Image: The LN status 

reported by CT. Score: The deep learning feature scores. 0: Lymph 
node metastasis negative; 1: Lymph node metastasis positive
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better performance will be obtained. Secondly, this study 
did not consider genomic characteristics. In recent years, 
radiogenomics has gained more and more attention in the 
field of oncology. Perhaps this is a worthwhile attempt, 
but it remains to be determined whether it is better to build 
a model that uses imaging features to directly predict the 
results than deep learning or radiomic analysis [41]. In addi-
tion, this study only focused on the presence or absence of 
LN metastasis. The role of deep learning and radiomics on 

the detailed N staging of patients and the specific grouping 
of LN deserved further study. Finally, this study had a small 
amount of data and was a retrospective study. Further studies 
need more data and external verification.

In conclusion, a nomogram was constructed and veri-
fied based on deep learning feature scores and clinical risk 
factor in the study and could use to assist individualized 
prediction of preoperative LN metastasis in patients with 
gastric cancer.

Fig. 4  ROC curves of the deep 
learning nomogram in each 
cohort. p P value of Delong test

Fig. 5  Calibration curves of the deep learning nomogram in each 
cohort. A Training cohort. B Test cohort. Dashed lines indicate 
perfect predictions. The prediction performances of the deep learn-

ing nomogram are represented by solid lines. The solid line and the 
dashed line are very close, which indicates that the deep learning 
nomogram has excellent predictive performance



1480 Digestive Diseases and Sciences (2023) 68:1473–1481

1 3

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10620- 022- 07640-3.
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