Skip to main content

Advertisement

Log in

Peptides, Exopolysaccharides, and Short-Chain Fatty Acids from Fermented Milk and Perspectives on Inflammatory Bowel Diseases

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Crohn’s disease and ulcerative colitis are characterized by chronic inflammatory processes and an imbalanced immune response along the gastrointestinal (GI) tract. Pharmacological treatments have been widely used, although their long-term application has adverse side effects. On the other hand, milks fermented with specific lactic acid bacteria (LAB) have been shown to be useful as alternative or complementary aids. Many metabolites such as peptides, exopolysaccharides, and short-chain fatty acids are produced during milk fermentation. These components have been shown to change the pH of the gastrointestinal lumen, aid intestine mucosal recovery, modulate the microbiota, and reduce the inflammatory response (innate and adaptive immune system), both in vitro and in vivo. Therefore, the objective of the present review is to describe how these bioactive compounds from fermented milk by specific LAB can decrease the deleterious symptoms of inflammatory bowel disease.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Mak WY, Zhao M, Ng SC, Burisch J. The epidemiology of inflammatory bowel disease: East meets West. J Gastroenterol Hepatol. 2020;35:380–389. https://doi.org/10.1111/jgh.14872.

    Article  PubMed  Google Scholar 

  2. Khan I, Ullah N, Zha L et al. Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome. Pathogens. 2019;8:126. https://doi.org/10.3390/pathogens8030126.

    Article  CAS  PubMed Central  Google Scholar 

  3. Siracus F, Schattenberg N, Villablanca E et al. Dietary habits and intestinal immunity: from food intake to CD4+ Th Cells. Front Immunol. 2019;9:3177. https://doi.org/10.3389/fimmu.2018.03177.

    Article  CAS  Google Scholar 

  4. Kim DH, Cheon JH. Pathogenesis of inflammatory bowel disease and recent advances in biological therapies. Immune Netw. 2017;17:25–40. https://doi.org/10.4110/in.2017.17.1.25.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Na SY, Moon W. Perspectives on current and novel treatments for inflammatory bowel disease. Gut Liver. 2019;13:604–616. https://doi.org/10.5009/gnl19019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacob EM, Borah A, Pillai SC, Kumar DS. Inflammatory bowel disease: the emergence of new trends in lifestyle and nanomedicine as the modern tool for pharmacotherapy. Nanomaterials. 2020;12:2460. https://doi.org/10.3390/nano10122460.

    Article  CAS  Google Scholar 

  7. La Manna S, Di Natale C, Florio D, Marasco D. Peptides as therapeutic agents for inflammatory-related diseases. Int J Mol Sci. 2018;19:2714. https://doi.org/10.3390/ijms19092714.

    Article  CAS  PubMed Central  Google Scholar 

  8. Veiga P, Pons N, Agrawal A et al. Changes of the human gut microbiome induced by a fermented milk product. Sci Rep. 2014;4:6328. https://doi.org/10.1038/srep06328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tonolo F, Fiorese F, Moretto L et al. Identificatin of new peptides from fermented milk showing antioxidant properties: mechanisms of action. Antioxidants. 2020;9:117. https://doi.org/10.3390/antiox9020117.

    Article  CAS  PubMed Central  Google Scholar 

  10. Luise D, Correa F, Bosi P et al. A review of the effect of formic acid and its salts on the gastrointestinal microbiota and performance of pigs. Animals. 2020;5:887. https://doi.org/10.3390/ani10050887.

    Article  Google Scholar 

  11. Mijan MA, Lim BO. Diets, functional foods, and nutraceuticals as alternative therapies for inflammatory bowel disease: present status and future trends. World J Gastroenterol. 2018;24:2673–2685. https://doi.org/10.3748/wjg.v24.i25.2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Inmmunol. 2014;5:491. https://doi.org/10.3389/fimmu.2014.00491.

    Article  CAS  Google Scholar 

  13. Nugent SG, Kumar D, Rampton DS et al. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48:571–577. https://doi.org/10.1136/gut.48.4.571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kolho KJ, Korpela K, Jaakola T et al. Fecal microbiota in pediatric inflammatory bowel diseases and it relation to inflammation. Am J Gastroenterol. 2015;110:921–930. https://doi.org/10.1038/ajg.2015.149.

    Article  PubMed  Google Scholar 

  15. Pascal V, Pozuelo M, Borruel N et al. A microbial signature for Crohn’s disease. Gut. 2017;66:813–822. https://doi.org/10.1136/gutjnl-2016-313235.

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez-Tomé S, Marin AC, Ortega-Moreno L et al. Immunomodulatory effect of gut microbiota-derived bioactive peptides on human immune system from healthy controls and patients with inflammatory bowel disease. Nutrients. 2019;11:2605. https://doi.org/10.3390/nu11112605.

    Article  CAS  PubMed Central  Google Scholar 

  17. Boyapati R, Satsangi J, Ho GT. Pathogenesis of Crohn’s disease. F1000Prime Rep 2015;2:44. https://doi.org/10.12703/P7-44.

    Article  Google Scholar 

  18. Bamias G, Cominelli F. Role of type 2 immunity in intestinal inflammation. Curr Opin Gastroenterol. 2015;31:471–476. https://doi.org/10.1097/MOG.0000000000000212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. González S, Fernández-Navarro T, Arboleya S et al. Fermented dairy foods: impact on intestinal microbiota and health-linked biomarkers. Front Microbiol. 2019;10:1046. https://doi.org/10.3389/fmicb.2019.01046.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Meyer J, Roos E, Ris F, Fearnhead N, Davies J. Does dairy product consumption impact the prevalence of inflammatory bowel disease? An ecological cross-sectional analysis. J Funct Foods. 2021;80:104446. https://doi.org/10.1016/j.jff.2021.104446.

    Article  CAS  Google Scholar 

  21. Opstelten JL, Leenders M, Dik VK et al. Dairy products, dietary calcium, and risk of inflammatory bowel disease: results from a European prospective cohort investigation. Inflamm Bowel Dis. 2016;22:1403–1411. https://doi.org/10.1097/MIB.0000000000000798.

    Article  PubMed  Google Scholar 

  22. Hjartaker A, Lagiou A, Slimani N et al. Consumption of dairy products in the European prospective investigation into cancer and nutrition (EPIC) cohort: data from 35 955 24-hour dietary recalls in 10 European countries. Public Health Nutr. 2002;5:1259–1271. https://doi.org/10.1079/PHN2002403.

    Article  CAS  PubMed  Google Scholar 

  23. Marcone S, Belton O, Fitzgerald DJ. Milk-derived bioactive peptides and their health promoting effects: a potential role in atherosclerosis. Br. J. Cli. Pharmacol. 2017;83:152–162. https://doi.org/10.1111/bcp.13002.

    Article  CAS  Google Scholar 

  24. Pessione E, Cirrincione S. Bioactive molecules released in food by lactic acid bacteria: encrypted peptides and biogenic amines. Front Microbiol. 2016;7:876. https://doi.org/10.3389/fmicb.2016.00876.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fan M, Guo T, Li W, Wang C et al. Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus. Food Sci Hum Well. 2019;8:156–176. https://doi.org/10.1016/j.fshw.2019.03.010.

    Article  Google Scholar 

  26. Hafeez Z, Cakir-Kiefer C, Roux E, Perrin C, Miclo L, Dary-Mourot A. Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products. Food Res Int. 2014;63:71–80. https://doi.org/10.1016/j.foodres.2014.06.002.

    Article  CAS  Google Scholar 

  27. Bruno J, Nicolas A, Pesenti S et al. Variants of b-casofensin, a bioactive milk peptide, differently modulate the intestinal barriers: in vivo and ex vivo studies in rats. J Dairy Sci. 2017;100:3360–3372. https://doi.org/10.3168/jds.2016-12067.

    Article  CAS  PubMed  Google Scholar 

  28. González-Olivares LG, Jiménez-Guzman J, Cruz-Guerrero A et al. Bioactive peptides released by lactic acid bacteria in commercial fermented milks. Rev Mex Ing Quím. 2011;10:179–188.

    Google Scholar 

  29. Morifuji M, Kitade M, Fukasawa T et al. Exopolysaccharides isolated from milk fermented with lactic acid bacteria prevent ultraviolet-induced skin damage in hairless mice. Int J Mol Sci. 2017;18:146. https://doi.org/10.3390/ijms18010146.

    Article  CAS  PubMed Central  Google Scholar 

  30. Behare PV, Singh R, Kumar M et al. Exopolysaccharides of lactic acid bacteria: a review. J Food Sci Technol. 2009;46:1–11. https://doi.org/10.1016/j.carbpol.2018.11.093.

    Article  CAS  Google Scholar 

  31. Lynch KM, Zannini E, Coffey A et al. Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization and health benefits. Annu Rev Food Sci Technol. 2018;9:155–176. https://doi.org/10.1146/annurev-food-030117-012537.

    Article  CAS  PubMed  Google Scholar 

  32. Mozzi F, Vaningelgem F, Hébert EM et al. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl Environ Microbiol. 2006;72:4431–4435. https://doi.org/10.1128/AEM.02780-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khanal SN, Lucey JA. Effect of fermentation temperature on the properties of exopolysaccharides and the acid gelation behavior for milk fermented by Streptococcus thermophilus strains DGCC7785 and St-143. J Dairy Sci. 2018;101:3799–3811. https://doi.org/10.3168/jds.2017-13203.

    Article  CAS  PubMed  Google Scholar 

  34. Fessard A, Remize F. Genetic and technological characterization of lactic acid bacteria isolated from tropically grown fruits and vegetables. Int J Food Microbiol. 2019;301:61–72. https://doi.org/10.1016/j.ijfoodmicro.2019.05.003.

    Article  PubMed  Google Scholar 

  35. Besrour-Aouam N, Mohedano ML, Fhoula I et al. Different modes of regulation of the expression of dextransucrase in Leuconostoc lactis AV1n and Lactobacillus sakei MN. Front Microbiol. 2019;10:959. https://doi.org/10.3389/fmicb.2019.00959.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guérin M, Silva CRD, Garcia C, Remize F. Lactic acid bacterial production of exopolysaccharides from fruit and vegetables and associated benefits. Fermentation. 2020;6:115. https://doi.org/10.3390/fermentation6040115.

    Article  CAS  Google Scholar 

  37. Liu CF, Tseng KC, Chiang SS et al. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J Sci Food Agric. 2011;91:2284–2291. https://doi.org/10.1002/jsfa.4456.

    Article  CAS  PubMed  Google Scholar 

  38. Adesulu-Dahunsi AT, Sanni AI, Jeyaram K. Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT-Food Sci Technol. 2018;87:432–442. https://doi.org/10.1016/j.lwt.2017.09.013.

    Article  CAS  Google Scholar 

  39. Nishimura-Uemura J, Kitazawa H, Kawai Y et al. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Food Microbiol. 2003;20:267–273. https://doi.org/10.1016/S0740-0020(02)00177-6.

    Article  CAS  Google Scholar 

  40. Asarat M, Apostolopoulos V, Vasiljevic T et al. Short-chain fatty acids produced by synbiotic mixtures in skim milk differentially regulate proliferation and cytokine production in peripheral blood mononuclear cells. Int J Food Sci Nutr. 2015;66:755–765. https://doi.org/10.3109/09637486.2015.1088935.

    Article  CAS  PubMed  Google Scholar 

  41. Asarat M, Vasiljevic T, Ravikumar M et al. Extraction and purification of short-chain fatty acids from fermented reconstituted skim milk supplemented with inulin. Food Anal Methods. 2016;9:3069–3079. https://doi.org/10.1007/s12161-016-0471-0.

    Article  Google Scholar 

  42. Matsumoto S, Watanabe N, Imaoka A, Okabe Y. Preventive effects of Bifidobacterium- and Lactobacillus-fermented milk on the development of inflammatory bowel disease in senescence-accelerated mouse P1/Yit strain mice. Digestion 2001;64:92–99. https://doi.org/10.1159/000048846.

    Article  CAS  PubMed  Google Scholar 

  43. Tellez A, Corredig M, Brovko LY et al. Characterization of immune-active peptides obtained from milk fermented by Lactobacillus helveticus. J Dairy Res. 2010;77:129–136. https://doi.org/10.1017/S002202990999046X.

    Article  CAS  PubMed  Google Scholar 

  44. Liu T, Zhang L, Joo D et al. NF-κB signaling in inflammation. Signal Transduc Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.

    Article  Google Scholar 

  45. Marcone S, Haughton K, Simpson PJ, Belton O, Fitzgerald DJ. Milk-derived bioactive peptides inhibit human endothelial-monocyte interactions via PPAR-γ dependent regulation of NF-κB. J Inflamm. 2015;12:1–13. https://doi.org/10.1186/s12950-014-0044-1.

    Article  CAS  Google Scholar 

  46. Ma Y, Liu J, Shi H, Yu LL. Isolation and characterization of anti-inflammatory peptides derived from whey protein. J Dairy Sci. 2016;99:6902–6912. https://doi.org/10.3168/jds.2016-11186.

    Article  CAS  PubMed  Google Scholar 

  47. Kobayashi EH, Suzuki T, Funayama R et al. Nrf2 supresses macrophage inflammatory response boy blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624. https://doi.org/10.1038/ncomms11624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oh NS, Joung JY, Lee JY et al. Enhancement of antioxidative and intestinal anti-inflammatory activities of glaciated milk casein after fermentation with Lactobacillus rhamnosus 4B15. J Agric Food Chem. 2017;23:4744–4754. https://doi.org/10.1021/acs.jafc.7b01339.

    Article  CAS  Google Scholar 

  49. Oh NS, Kim K, Oh A et al. Enhanced production of galactooligosaccharides enriched skim milk and applied to potentially symbiotic fermented milk with Lactobacillus rhamnosus 4B15. Food Sci Anim Resour. 2019;5:725–741. https://doi.org/10.5851/kosfa.2019.e55.

    Article  Google Scholar 

  50. LeBlanc J, Fliss I, Matar C. Induction of a humoral immune response following and E. coli O157:H7 infection with an immunomodulatory peptidic fraction derived from L. helveticus-fermented milk. Clin Diagn Lab Immunol 2004;11:1171–1181. https://doi.org/10.1128/CDLI.11.6.1171-1181.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reyes-Díaz A, Mata-Haro V, Hernández J et al. Milk fermented by specific Lactobacillus strains regulates the serum level of IL-6, TNF-α and IL-10 cytokines in a LPS-stimulated murine model. Nutrients. 2018;10:691. https://doi.org/10.3390/nu10060691.

    Article  CAS  PubMed Central  Google Scholar 

  52. Nielsen DGS, Theil PK, Larsen LB et al. Effect of milk hydrolysates on inflammation markers and drug-induced transcriptional alterations in cell-based models. J Anim Sci. 2012;90:403–405. https://doi.org/10.2527/jas.53953.

    Article  PubMed  Google Scholar 

  53. Kwon M, Lee J, Park S, Kwon OH, Seo J, Roh S. Exopolysaccharide isolated from lactobacillus plantarum l-14 has anti-inflammatory effects via the toll-like receptor 4 Pathway in LPS-induced RAW 264.7 Cells. Int J Mol Sci. 2020;21:9283. https://doi.org/10.3390/ijms21239283.

    Article  CAS  PubMed Central  Google Scholar 

  54. Welman AD. Exopolysaccharides from fermented dairy products and health promotion. In Sawston: Woodhead Publishing; 2015; 23–38.

    Chapter  Google Scholar 

  55. Chaisuwan W, Jantanasakulwong K, Wangtueai S et al. Microbial exopolysaccharide for immune enhancement: fermentation, modification and bioactivities. Food Biosc. 2020;35:100564. https://doi.org/10.1016/j.fbio.2020.100564.

    Article  CAS  Google Scholar 

  56. Vatanen T, Kostic AD, Hennezel E et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165:842–853. https://doi.org/10.1016/j.cell.2016.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Makino S, Sato A, Goto A et al. Enhanced natural killer activation by exopolysaccharide derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J Dairy Sci. 2016;99:915–923. https://doi.org/10.3168/jds.2015-10376.

    Article  CAS  PubMed  Google Scholar 

  58. Shao L, Wu Z, Zhang H et al. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr Polym. 2014;107:51–56. https://doi.org/10.1016/j.carbpol.2014.02.037.

    Article  CAS  PubMed  Google Scholar 

  59. Hidalgo-Cantabrana C, López P, Gueimonde M et al. Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria. Probiotics Antimicrob Protein. 2012;4:227–237. https://doi.org/10.1007/s12602-012-9110-2.

    Article  CAS  Google Scholar 

  60. Rodríguez C, Medici M, Rodríguez AV et al. Prevention of Chronic gastritis by fermented milk made with exopolysaccharide-producing Streptococcus thermophilus strains. J Dairy Sci. 2009;92:2423–2434. https://doi.org/10.3168/jds.2008-1724.

    Article  CAS  PubMed  Google Scholar 

  61. Kelly CJ, Zheng L, Campbell EL et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–671. https://doi.org/10.1016/j.chom.2015.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Newburg DS, Ko JS, Leone S et al. Human milk oligosaccharides and synthetic galactooligosaccharides contain 3’-, 4-, and 6’- galactosillactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo. J Nutr. 2016;146:358–367. https://doi.org/10.3945/jn.115.220749.

    Article  CAS  PubMed  Google Scholar 

  63. Halestrap AP. The monocarboxylate transporter family—structure and functional characterization. IUBMB Life. 2012;64:1–9. https://doi.org/10.1002/iub.573.

    Article  CAS  PubMed  Google Scholar 

  64. Parada-Venegas D, De la Fuente MK, Landskron G et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huda-Faujan N, Abdulamir AS, Fatimah AB et al. The impact of the level of the intestinal short-chain fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J. 2010;4:53–58. https://doi.org/10.2174/1874091X01004010053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Planell N, Lozano JJ, Mora-Buch R et al. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut. 2013;62:967–976. https://doi.org/10.1136/gutjnl-2012-303333.

    Article  CAS  PubMed  Google Scholar 

  67. He L, Wang H, Zhang Y, Geng L et al. Evaluation of monocarboxylate transporter 4 in inflammatory bowel disease and its potential use as a diagnostic marker. Dis. Markers. 2018. https://doi.org/10.1155/2018/2649491.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Alakomi HL, Skyttä E, Saarela M et al. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol. 2000;66:2001–2005. https://doi.org/10.1128/AEM.66.5.2001-2005.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fachi JL, Sécca C, Rodrigues PB et al. Acetate coordinates neutrophils and ILC3 responses against C difficile through FFAR2. J Exp Med. 2020;217:e20190489. https://doi.org/10.1084/jem.20190489.

    Article  CAS  PubMed  Google Scholar 

  70. Sadighi AA, McDermott AJ, Theriot CM et al. Interleukin-22 and CD160 play additive roles in the host mucosal response to Clostridium difficile infection in mice. Immunology. 2015;144:587–597. https://doi.org/10.1111/imm.12414.

    Article  CAS  Google Scholar 

  71. Jiang M, Zhang F, Wang C et al. Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk. J Dairy Sci. 2016;99:1736–1746. https://doi.org/10.3168/jds.2015-10434.

    Article  CAS  PubMed  Google Scholar 

  72. Mroz Z, Reese DE, Overland M et al. The effects of potassium diformate and its molecular constituents on the apparent ileal and fecal digestibility and retention of nutrients in growing-finishing pigs. J Anim Sci. 2002;80:681–690. https://doi.org/10.2527/2002.803681x.

    Article  CAS  PubMed  Google Scholar 

  73. Peña AS. Contribution of genetics to a new vision in the understanding of inflammatory bowel disease. World J Gastroenterol. 2006;30:4784–4787. https://doi.org/10.3748/wjg.v12.i30.4784.

    Article  Google Scholar 

  74. Rehman A, Sina C, Gavrilova O et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut. 2011;60:1354–1362. https://doi.org/10.1136/gut.2010.216259.

    Article  CAS  PubMed  Google Scholar 

  75. Ringel Y, Maharshak N. Intestinal microbiota and immune function in the pathogenesis of irritable bowel syndrome. Am J Physiol Gastroenterol Liver Physiol. 2013;305:G529–G541. https://doi.org/10.1152/ajpgi.00207.2012.

    Article  CAS  Google Scholar 

  76. Watanabe T, Nishio H, Tanigawa T et al. Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid. Am J Physiol Gastrointest Liver Physiol. 2009;297:G506–G513. https://doi.org/10.1152/ajpgi.90553.2008.

    Article  CAS  PubMed  Google Scholar 

  77. Kim CH, Park J, Kim M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune Netw. 2014;14:277–288. https://doi.org/10.4110/in.2014.14.6.277.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sevencan NO, Isler M, Kapucuoglu FN et al. Dose-dependent effects of kefir on colitis induced by trinitrobenzene sulfonic acid in rats. Food Sci Nut. 2019;7:3110–3118. https://doi.org/10.1002/fsn3.1174.

    Article  CAS  Google Scholar 

  79. Kato K, Mizuno S, Umesaki Y et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther. 2004;20:1133–1141. https://doi.org/10.1111/j.1365-2036.2004.02268.x.

    Article  CAS  PubMed  Google Scholar 

  80. Ishikawa H, Akedo I, Umesaki Y et al. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am College Nutr. 2003;22:56–63. https://doi.org/10.1080/07315724.2003.10719276.

    Article  Google Scholar 

  81. Matsuoka K, Uemura Y, Kanai T et al. Efficacy of Bifidobacterium breve fermented milk in maintaining remission of ulcerative colitis. Dig Dis Sci. 2018;63:1910–1919. https://doi.org/10.1007/s10620-018-4946-2.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yilmaz L, Dolar ME, Özpinar H. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled trial. Gastrointestinal tract. 2019;30:242–253. https://doi.org/10.5152/tjg.2018.18227.

    Article  Google Scholar 

  83. Sheikni A, Shakerian M, Baghaeifar M et al. Probiotic Yogurt Culture Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus acidophilus LA-5 modulate the cytokine secretion by peripheral blood mononuclear cells from patients with ulcerative colitis. Drug Res. 2016;16:300–305. https://doi.org/10.1055/s-0035-1569414.

    Article  CAS  Google Scholar 

  84. de Mattos BR, Garcia MP, Nogueira JB et al. Inflammatory bowel disease: an overview of immune mechanisms and biological treatments. Mediat Inflamm. 2015;2015:493012. https://doi.org/10.1155/2015/493012.

    Article  CAS  Google Scholar 

  85. Nishida A, Inoue R, Inatomi O et al. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11:1–10. https://doi.org/10.1007/s12328-017-0813-5.

    Article  PubMed  Google Scholar 

  86. Aihara K, Ishii H, Yoshida MJ. Casein-derived tripeptide, Val-Pro-Pro (VPP), modulates monocyte adhesion to vascular endothelium. Atheroscler Thromb. 2009;16:594–603. https://doi.org/10.5551/jat.729.

    Article  CAS  Google Scholar 

  87. Chen L, Hui Y, Gao T, Shu G, Chen H. Function and characterization of novel antioxidant peptides by fermentation with a wild Lactobacillus plantarum 60. LWT. 2021;135:110162. https://doi.org/10.1016/j.lwt.2020.110162.

    Article  CAS  Google Scholar 

  88. McLoughlin RF, Berthon BS, Jensen ME et al. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nut. 2017;106:930–945. https://doi.org/10.3945/ajcn.117.156265.

    Article  CAS  Google Scholar 

  89. Jones SE, Paynich ML, Kearns DB, Knight KL. Protection from intestinal inflammation by bacterial exopolysaccharides. J Immunol. 2014;192:4813–4820. https://doi.org/10.4049/jimmunol.1303369.

    Article  CAS  PubMed  Google Scholar 

  90. Saraiva DL, T, Morais KB, Pereira V, et al. Milk fermented with a 15-lipoxygenase-1-producing Lactococcus lactis alleviates symptoms of colitis in a murine model. Curr Pharma Biotechnol. 2015;16:424–429. https://doi.org/10.2174/1389201015666141113123502.

    Article  CAS  Google Scholar 

  91. Kume H, Okazaki K, Takahashi T, Yamaji T. Protective effect of an immune-modulating diet comprising whey peptides and fermented milk products on indomethacin-induced small-bowel disorders in rats. Clin Nut. 2014;33:1140–1146. https://doi.org/10.1016/j.clnu.2013.12.014.

    Article  CAS  Google Scholar 

  92. Zhang X, Tong Y, Lyu X. Prevention and alleviation of dextran sulfate sodium salt-induced inflammatory bowel disease in mice with bacillus subtilis-fermented milk via inhibition of the inflammatory responses and regulation of the intestinal flora. Front Microbiol. 2021;11:3229. https://doi.org/10.3389/fmicb.2020.622354.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Council for Science and Technology (CONACyT) of Mexico for the graduate scholarships provided to R. Sigala-Robles.

Funding

This study was supported by the Mexican Council of Science and Technology (CONACyT, Mexico City, Mexico) research project CB2017-2018, A1-S-53161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarón F. González-Córdova.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigala-Robles, R., Santiago-López, L., Hernández-Mendoza, A. et al. Peptides, Exopolysaccharides, and Short-Chain Fatty Acids from Fermented Milk and Perspectives on Inflammatory Bowel Diseases. Dig Dis Sci 67, 4654–4665 (2022). https://doi.org/10.1007/s10620-022-07382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-022-07382-2

Keywords

Navigation