Skip to main content
Log in

Bariatric Surgery in NAFLD

  • Invited Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Currently, there are no approved medications to treat patients with nonalcoholic steatohepatitis (NASH) with fibrosis or cirrhosis. Although the management goal in these patients is weight reduction by 7–10% with lifestyle modifications, only less than 10% of patients achieve this target at 1-year, and fewer maintain the weight loss at 5 years. Bariatric surgery is an option that may be considered in those who fail to lose weight by lifestyle changes. Bariatric surgery has been shown to improve liver histology including fibrosis secondary to NASH, in addition to other benefits including an improvement or resolution of type 2 diabetes mellitus, dyslipidemia, and hypertension, and a reduction of cardiovascular morbidity or mortality. There are no guidelines of bariatric surgery indications for the management of NASH. The purpose of this review is to critically appraise the current knowledge of the role of bariatric surgery and the potential mechanisms for its perceived benefits in the management of patients with NASH-related liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACLF:

Acute-on-chronic liver failure

BS:

Bariatric surgery

BA:

Bile acids

BPD:

Biliopancreatic diversion with duodenal switch

BMI:

Body mass index

FXR:

Farnesoid-x receptor

FMT:

Fecal microbiota transfer

FGF:

Fibroblast growth factor

Fmri:

Functional MRI

GET:

Gastric emptying time

GLP-1:

Glucagon-like polypeptide-1

HCC:

Hepatocellular carcinoma

HE:

Hepatic encephalopathy

HGP:

Hepatic glucose production

LABG:

Laparoscopic adjustable gastric banding

LSG:

Laparoscopic sleeve gastrectomy

LT:

Liver transplant

NAS:

NAFLD activity scores;

NHANES II:

National Health and Nutrition Examination Survey

NIS:

Nationwide Inpatient Sample

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

PYY:

Peptide YY

RYGB:

Roux-en-Y gastric bypass (RYGB)

SBTT:

Small bowel transit time

TGR5:

G protein-coupled receptor

T2DM:

Type 2 diabetes mellitus

VSG:

Vertical sleeve gastrectomy

References

  1. World Health Organization key facts for Obesity and Overweight 1 April 2020. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight#:~:text=Key%20facts,over%20650%20million%20were%20obese. Accessed 9 June 2021.

  2. National Center for Health Statistics. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. https://www.cdc.gov/nchs/data/databriefs/db360-h.pdf. Accessed Feb 2020.

  3. Younossi ZM, Koenig AB, Abdelatif D et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.

    PubMed  Google Scholar 

  4. Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol. 2013;10:656–665.

    CAS  PubMed  Google Scholar 

  5. Berzigotti A, Garcia-Tsao G, Bosch J et al. Obesity is an independent risk factor for clinical decompensation in patients with cirrhosis. Hepatology. 2011;54:555–561.

    PubMed  Google Scholar 

  6. Kwong A, Kim WR, Lake JR et al. OPTN/SRTR 2018 annual data report: liver. Am J Transpl. 2020;20:193–299.

    Google Scholar 

  7. Chalasani N, Younossi Z, Lavine JE et al. The diagnosis and management of nonalcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–2023.

    PubMed  Google Scholar 

  8. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149:367–e15.

    PubMed  Google Scholar 

  9. Lassailly G, Caiazzo R, Buob D et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology. 2015;149:379−e16.

    PubMed  Google Scholar 

  10. Kral JG, Näslund E. Surgical treatment of obesity. Nat Clin Pract Endocrinol Metab. 2007;3:574–583.

    PubMed  Google Scholar 

  11. American Society for Metabolic and Bariatric Surgery. https://asmbs.org/patients/who-is-a-candidate-for-bariatric-surgery. Accessed 1 Dec 2021.

  12. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of nonalcoholic fatty liver disease. J Hepatol. 2016;64:1388–1402.

  13. le Roux CW, Aylwin SJ, Batterham RL et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–114.

    PubMed  PubMed Central  Google Scholar 

  14. Scholtz S, Miras AD, Chhina N et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63:891–902.

    PubMed  Google Scholar 

  15. Ochner CN, Stice E, Hutchins E et al. Relation between changes in neural responsivity and reductions in desire to eat high-calorie foods following gastric bypass surgery. Neuroscience. 2012;209:128–135.

    CAS  PubMed  Google Scholar 

  16. Dirksen C, Damgaard M, Bojsen-Møller KN et al. Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass. Neurogastroenterol Motil. 2013;25:346-e255.

    CAS  PubMed  Google Scholar 

  17. Shah S, Shah P, Todkar J et al. Prospective controlled study of effect of laparoscopic sleeve gastrectomy on small bowel transit time and gastric emptying half-time in morbidly obese patients with type 2 diabetes mellitus. Surg Obes Relat Dis 2010;6:152–157.

    PubMed  Google Scholar 

  18. Burton PR, Brown WA. The mechanism of weight loss with laparoscopic adjustable gastric banding: induction of satiety not restriction. Int J Obes (Lond). 2011;35:S26–S30.

    Google Scholar 

  19. Nguyen NQ, Debreceni TL, Bambrick JE et al. Upregulation of intestinal glucose transporters after Roux-en-Y gastric bypass to prevent carbohydrate malabsorption. Obesity (Silver Spring). 2014;22:2164–2171.

    CAS  Google Scholar 

  20. Odstrcil EA, Martinez JG, Santa Ana CA et al. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am J Clin Nutr. 2010;92:704–713.

    CAS  PubMed  Google Scholar 

  21. Benedetti G, Mingrone G, Marcoccia S et al. Body composition and energy expenditure after weight loss following bariatric surgery. J Am Coll Nutr. 2000;19:270–274.

    CAS  PubMed  Google Scholar 

  22. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17:819–837.

    CAS  PubMed  Google Scholar 

  23. Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes (Lond). 2013;37:625–633.

    CAS  Google Scholar 

  24. Trapp S, Richards JE. The gut hormone glucagon-like peptide-1 produced in brain: is this physiologically relevant? Curr Opin Pharmacol. 2013;13:964–969.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Buteau J. GLP-1 receptor signaling: effects on pancreatic beta-cell proliferation and survival. Diabetes Metab. 2008;34:S73–S77.

    CAS  PubMed  Google Scholar 

  26. Bojsen-Møller KN, Dirksen C, Jørgensen NB et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass. Diabetes. 2014;63:1725–1737.

    PubMed  Google Scholar 

  27. Gastaldelli A, Iaconelli A, Gaggini M et al. Short-term effects of laparoscopic adjustable gastric banding versus Roux-en-Y Gastric bypass. Diabetes Care. 2016;39:1925–1931.

    CAS  PubMed  Google Scholar 

  28. Isbell JM, Tamboli RA, Hansen EN et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;3:1438–1442.

    Google Scholar 

  29. Pop LM, Mari A, Zhao TJ et al. Roux-en-Y gastric bypass compared with equivalent diet restriction: Mechanistic insights into diabetes remission. Diabetes Obes Metab. 2018;20:1710–1721.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Albers PH, Bojsen-Møller KN, Dirksen C et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2015;309:R510–R524.

    CAS  PubMed  Google Scholar 

  31. Bradley D, Conte C, Mittendorfer B et al. Gastric bypass and banding equally improve insulin sensitivity and β cell function. J Clin Invest. 2012;122:4667–4674.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Himpens J, Dapri G, Cadière GB. A prospective randomized study between laparoscopic gastric banding and laparoscopic isolated sleeve gastrectomy: results after 1 and 3 years. Obes Surg. 2006;16:1450–1456.

    PubMed  Google Scholar 

  33. Carlin AM, Zeni TM, English WJ et al. The comparative effectiveness of sleeve gastrectomy, gastric bypass, and adjustable gastric banding procedures for the treatment of morbid obesity. Ann Surg. 2013;257:791–797.

    PubMed  Google Scholar 

  34. Zhang C, Zhang J, Zhou Z. Changes in fasting bile acid profiles after Roux-en-Y gastric bypass and sleeve gastrectomy. Medicine (Baltimore). 2021;100:e23939.

    CAS  Google Scholar 

  35. Risstad H, Kristinsson JA, Fagerland MW et al. Bile acid profiles over 5 years after gastric bypass and duodenal switch: Results from a randomized clinical trial. Surg Obes Relat Dis 2017;13:1544–1554.

    PubMed  Google Scholar 

  36. Nemati R, Lu J, Dokpuang D, Booth M, Plank LD, Murphy R. Increased bile acids and FGF19 After sleeve gastrectomy and Roux-en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial. Obes Surg. 2018;28:2672–2686. https://doi.org/10.1007/s11695-018-3216-x.

    Article  PubMed  Google Scholar 

  37. Mika A, Kaska L, Proczko-Stepaniak M et al. Evidence that the length of bile loop determines serum bile acid concentration and glycemic control after bariatric surgery. Obes Surg 2018;28:3405–3414.

    PubMed  Google Scholar 

  38. Sanchez-Alcoholado L, Gutierrez-Repiso C, Gomez-Perez AM et al. Gut microbiota adaptation after weight loss by Roux-en-Y gastric bypass or sleeve gastrectomy bariatric surgeries. Surg Obes Relat Dis 2019;15:1888–1895.

    PubMed  Google Scholar 

  39. Arble DM, Evers SS, Bozadjieva N et al. Metabolic comparison of one anastomosis gastric bypass, single-anastomosis duodenal-switch, Roux-en-Y gastric bypass, and vertical sleeve gastrectomy in rat. Surg Obes Relat Dis 2018;14:1857–1867.

    PubMed  PubMed Central  Google Scholar 

  40. Ryan KK, Tremaroli V, Clemmensen C et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509:183–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. McGavigan AK, Garibay D, Henseler ZM et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut. 2017;66:226–234.

    CAS  PubMed  Google Scholar 

  42. Bozadjieva N, Heppner KM, Seeley RJ. Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery. Diabetes. 2018;67:1720–1728.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Le Chatelier E, Nielsen T, Qin J et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546.

    PubMed  Google Scholar 

  44. Cotillard A, Kennedy SP, Kong LC et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588.

    CAS  PubMed  Google Scholar 

  45. Aron-Wisnewsky J, Prifti E, Belda E et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut. 2019;68:70–82.

    CAS  PubMed  Google Scholar 

  46. Morales-Marroquin E, Hanson B, Greathouse L et al. Comparison of methodological approaches to human gut microbiota changes in response to metabolic and bariatric surgery: A systematic review. Obes Rev. 2020;21:e13025.

    PubMed  Google Scholar 

  47. Graessler J, Qin Y, Zhong H et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: Correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13:514–522.

    CAS  PubMed  Google Scholar 

  48. Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.

    PubMed  PubMed Central  Google Scholar 

  49. De Groot P, Scheithauer T, Bakker GJ et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut. 2020;69:502–512.

    PubMed  Google Scholar 

  50. Mathurin P, Hollebecque A, Arnalsteen L et al. Prospective study of the long-term effects of bariatric surgery on liver injury in patients without advanced disease. Gastroenterology. 2009;137:532–540.

    CAS  PubMed  Google Scholar 

  51. Caiazzo R, Lassailly G, Leteurtre E et al. Roux-en-Y gastric bypass versus adjustable gastric banding to reduce nonalcoholic fatty liver disease: A 5-year controlled longitudinal study. Ann Surg. 2014;260:893–899.

    PubMed  Google Scholar 

  52. Taitano AA, Markow M, Finan JE et al. Bariatric surgery improves histological features of nonalcoholic fatty liver disease and liver fibrosis. J Gastrointest Surg. 2015;19:429–437.

    PubMed  Google Scholar 

  53. Neovius M, Narbro K, Keating C et al. Health care use during 20 years following bariatric surgery. JAMA. 2012;308:1132–1141.

    CAS  PubMed  Google Scholar 

  54. Lucchese M, Borisenko O, Mantovani LG et al. Cost-utility analysis of bariatric surgery in Italy: Results of decision-analytic modelling. Obes Facts. 2017;10:261–272.

    PubMed  PubMed Central  Google Scholar 

  55. Klebanoff MJ, Corey KE, Samur S et al. Cost-effectiveness analysis of bariatric surgery for patients with nonalcoholic steatohepatitis cirrhosis. JAMA Netw Open. 2019;2:e190047.

    PubMed  PubMed Central  Google Scholar 

  56. Silverman EM, Sapala JA, Appelman HD. Regression of hepatic steatosis in morbidly obese persons after gastric bypass. Am J Clin Pathol. 1995;104:23–31.

    CAS  PubMed  Google Scholar 

  57. Luyckx FH, Desaive C, Thiry A et al. Liver abnormalities in severely obese subjects: effect of drastic weight loss after gastroplasty. Int J Obes Relat Metab Disord. 1998;22:222–226.

    CAS  PubMed  Google Scholar 

  58. Kral JG, Thung SN, Biron S et al. Effects of surgical treatment of the metabolic syndrome on liver fibrosis and cirrhosis. Surgery. 2004;135:48–58.

    PubMed  Google Scholar 

  59. Keshishian A, Zahriya K, Willes EB. Duodenal switch has no detrimental effects on hepatic function and improves hepatic steatohepatitis after 6 months. Obes Surg. 2005;15:1418–1423.

    PubMed  Google Scholar 

  60. Mattar SG, Velcu LM, Rabinovitz M et al. Surgically-induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Ann Surg. 2005;242:610–620.

    PubMed  PubMed Central  Google Scholar 

  61. Mottin CC, Moretto M, Padoin AV et al. Histological behavior of hepatic steatosis in morbidly obese patients after weight loss induced by bariatric surgery. Obes Surg. 2005;15:788–793.

    PubMed  Google Scholar 

  62. Stratopoulos C, Papakonstantinou A, Terzis I et al. Changes in liver histology accompanying massive weight loss after gastroplasty for morbid obesity. Obes Surg. 2005;15:1154–1160.

    PubMed  Google Scholar 

  63. Dixon JB, Bhathal PS, O’Brien PE. Weight loss and nonalcoholic fatty liver disease: falls in gamma-glutamyl transferase concentrations are associated with histologic improvement. Obes Surg. 2006;16:1278–1286.

    PubMed  Google Scholar 

  64. Mathurin P, Gonzalez F, Kerdraon O et al. The evolution of severe steatosis after bariatric surgery is related to insulin resistance. Gastroenterology. 2006;130:1617–1624.

    PubMed  Google Scholar 

  65. Weiner RA. Surgical treatment of nonalcoholic steatohepatitis and nonalcoholic fatty liver disease. Dig Dis. 2010;28:274–279.

    CAS  PubMed  Google Scholar 

  66. Moretto M, Kupski C, da Silva VD, Padoin AV, Mottin CC. Effect of bariatric surgery on liver fibrosis. Obes Surg. 2012;22:1044–1049.

    PubMed  Google Scholar 

  67. Cazzo E, Jimenez LS, Pareja JC, Chaim EA. Effect of Roux-en-Y gastric bypass on nonalcoholic fatty liver disease evaluated through NAFLD fibrosis score: a prospective study. Obes Surg. 2015;25:982–985.

    PubMed  Google Scholar 

  68. Lassailly G, Caiazzo R, Ntandja-Wandji LC et al. Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. Gastroenterology. 2020;159:1290–1301.

    PubMed  Google Scholar 

  69. Mummadi RR, Kasturi KS, Chennareddygari S et al. Effect of bariatric surgery on nonalcoholic fatty liver disease: Systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2008;6:1396–1402.

    PubMed  Google Scholar 

  70. Chavez-Tapia NC, Tellez-Avila FI, Barrientos-Gutierrez T, Mendez-Sanchez N, Lizardi-Cervera J, Uribe M. Bariatric surgery for non-alcoholic steatohepatitis in obese patients. Cochrane Database Syst Rev. 2010;2010:CD007340. https://doi.org/10.1002/14651858.CD007340.pub2

    Article  PubMed Central  Google Scholar 

  71. Bower G, Toma T, Harling L et al. Bariatric surgery and nonalcoholic fatty liver disease: A systematic review of liver biochemistry and histology. Obes Surg. 2015;25:2280–2289.

    PubMed  Google Scholar 

  72. Lee Y, Doumouras AG, Yu J et al. Complete resolution of nonalcoholic fatty liver disease after bariatric surgery: A systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2019;17:1040–1060.

    PubMed  Google Scholar 

  73. Sjöström L, Narbro K, Sjöström CD et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–752.

    PubMed  Google Scholar 

  74. Goossens N, Hoshida Y, Song WM et al. Nonalcoholic steatohepatitis is associated with increased mortality in obese patients undergoing bariatric surgery. Clin Gastroenterol Hepatol. 2016;14:1619–1628.

    PubMed  Google Scholar 

  75. Child CG, Turcotte JG. Surgery and portal hypertension. Major Probl Clin Surg. 1964;1:1–85.

    CAS  PubMed  Google Scholar 

  76. Kamath PS, Kim WR; Advanced Liver Disease Study Group. The model for end-stage liver disease (MELD). Hepatology 2007;45:797–805.

  77. Jan A, Narwaria M, Mahawar KK. A systematic review of bariatric surgery in patients with liver cirrhosis. Obes Surg. 2015;25:1518–1526.

    PubMed  Google Scholar 

  78. Dallal RM, Mattar SG, Lord JL et al. Results of laparoscopic gastric bypass in patients with cirrhosis. Obes Surg. 2004;14:47–53.

    PubMed  Google Scholar 

  79. Shimizu H, Phuong V, Maia M et al. Bariatric surgery in patients with liver cirrhosis. Surg Obes Relat Dis. 2013;9:1–6.

    PubMed  Google Scholar 

  80. Takata MC, Campos GM, Ciovica R et al. Laparoscopic bariatric surgery improves candidacy in morbidly obese patients awaiting transplantation. Surg Obes Relat Dis. 2008;4:159–164.

    PubMed  Google Scholar 

  81. Younus H, Sharma A, Miquel R et al. Bariatric surgery in cirrhotic patients: Is it safe? Obes Surg. 2020;30:1241–1248.

    PubMed  Google Scholar 

  82. Pestana L, Swain J, Dierkhising R et al. Bariatric surgery in patients with cirrhosis with and without portal hypertension: A single-center experience. Mayo Clin Proc. 2015;90:209–215.

    PubMed  Google Scholar 

  83. Hanipah ZN, Punchai S, McCullough A et al. Bariatric surgery in patients with cirrhosis and portal hypertension. Obes Surg. 2018;28:3431–3438.

    PubMed  Google Scholar 

  84. Vuppalanchi R, McCabe 4th ME, Tandra SR et al. Safety and efficacy of bariatric surgery in cirrhosis patients with extreme obesity. Ann Surg. 2020. https://doi.org/10.1097/SLA.0000000000003891

    Article  Google Scholar 

  85. Rebibo L, Gerin O, Verhaeghe P et al. Laparoscopic sleeve gastrectomy in patients with NASH-related cirrhosis: A case-matched study. Surg Obes Relat Dis. 2014;10:405–410.

    PubMed  Google Scholar 

  86. Woodford RM, Burton PR, O’Brien PE et al. Laparoscopic adjustable gastric banding in patients with unexpected cirrhosis: Safety and outcomes. Obes Surg. 2015;25:1858–1862.

    PubMed  Google Scholar 

  87. Salman MA, Salman AA, Omar HSE, et al. Long-term effects of one-anastomosis gastric bypass on liver histopathology in NAFLD cases: A prospective study [published online ahead of print, 2020 Jun 16]. Surg Endosc. 2020;https://doi.org/10.1007/s00464-020-07725-y.

  88. Mosko JD, Nguyen GC. Increased perioperative mortality following bariatric surgery among patients with cirrhosis. Clin Gastroenterol Hepatol. 2011;9:897–901.

    PubMed  Google Scholar 

  89. Are VS, Knapp SM, Banerjee A et al. Improving outcomes of bariatric surgery in patients with cirrhosis in the United States: A nationwide assessment. Am J Gastroenterol. 2020;115:1849–1856.

    PubMed  PubMed Central  Google Scholar 

  90. Patton H, Heimbach J, McCullough A. AGA clinical practice update on bariatric surgery in cirrhosis: Expert review. Clin Gastroenterol Hepatol. 2021;19:436–445.

    PubMed  Google Scholar 

  91. Teh SH, Nagorney DM, Stevens SR, Offord KP, Therneau TM, Plevak DJ et al. Risk factors for mortality after surgery in patients with cirrhosis. Gastroenterology. 2007;132:1261–1269.

    PubMed  Google Scholar 

  92. Mahmud N, Fricker Z, Hubbard RA, Ioannou GN, Lewis JD, Taddei TH et al. Risk prediction models for post-operative mortality in patients with cirrhosis. Hepatology. 2021;73:204–218.

    PubMed  Google Scholar 

  93. Martin P, DiMartini A, Feng S et al. Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Hepatology. 2014;59:1144–1165.

    PubMed  Google Scholar 

  94. Dick AA, Spitzer AL, Seifert CF et al. Liver transplantation at the extremes of the body mass index. Liver Transpl. 2009;15:968–977.

    PubMed  Google Scholar 

  95. Nair S, Verma S, Thuluvath PJ. Obesity and its effect on survival in patients undergoing orthotopic liver transplantation in the United States. Hepatology. 2002;35:105–109.

    PubMed  Google Scholar 

  96. LaMattina JC, Foley DP, Fernandez LA et al. Complications associated with liver transplantation in the obese recipient. Clin Transpl. 2012;26:910–918.

    Google Scholar 

  97. Schlansky B, Naugler WE, Orloff SL et al. Higher mortality and survival benefit in obese patients awaiting liver transplantation. Transplantation. 2016;100:2648–2655.

    CAS  PubMed  Google Scholar 

  98. Segev DL, Thompson RE, Locke JE et al. Prolonged waiting times for liver transplantation in obese patients. Ann Surg. 2008;248:863–870.

    PubMed  Google Scholar 

  99. Tsochatzis E, Coilly A, Nadalin S et al. International liver transplantation consensus statement on end-stage liver disease due to nonalcoholic steatohepatitis and liver transplantation. Transplantation 2019;103:45–56.

    PubMed  Google Scholar 

  100. Lazzati A, Iannelli A, Schneck AS et al. Bariatric surgery and liver transplantation: a systematic review a new frontier for bariatric surgery. Obes Surg. 2015;25:134–142.

    PubMed  Google Scholar 

  101. Hutter MM, Schirmer BD, Jones DB et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg. 2011;254:410–422.

    PubMed  Google Scholar 

  102. Yemini R, Nesher E, Winkler J et al. Bariatric surgery in solid organ transplant patients: Long-term follow-up results of outcome, safety, and effect on immunosuppression. Am J Transpl. 2018;18:2772–2780.

    Google Scholar 

  103. Salman MA, Mikhail HMS, Nafea MA et al. Impact of laparoscopic sleeve gastrectomy on fibrosis stage in patients with child-A NASH-related cirrhosis. Surg Endosc. 2021;35:1269–1277.

    PubMed  Google Scholar 

  104. Lin MY, Tavakol MM, Sarin A et al. Laparoscopic sleeve gastrectomy is safe and efficacious for pretransplant candidates. Surg Obes Relat Dis. 2013;9:653–658.

    PubMed  Google Scholar 

  105. Salman AA, Sultan AAEA, Abdallah A et al. Effect of weight loss induced by laparoscopic sleeve gastrectomy on liver histology and serum adipokine levels. J Gastroenterol Hepatol. 2020;35:1769–1773.

    CAS  PubMed  Google Scholar 

  106. Sharpton SR, Terrault NA, Posselt AM. Outcomes of sleeve gastrectomy in obese liver transplant candidates. Liver Transpl. 2019;25:538–544.

    PubMed  PubMed Central  Google Scholar 

  107. Ayloo S, Armstrong J, Hurton S et al. Obesity and liver transplantation. World J Transpl. 2015;5:95–101.

    Google Scholar 

  108. Zamora-Valdes D, Watt KD, Kellogg TA et al. Long-term outcomes of patients undergoing simultaneous liver transplantation and sleeve gastrectomy. Hepatology. 2018;68:485–495.

    CAS  PubMed  Google Scholar 

  109. Tsamalaidze L, Stauffer JA, Arasi LC et al. Laparoscopic sleeve gastrectomy for morbid obesity in patients after orthotopic liver transplant: A matched case-control study. Obes Surg. 2018;28:444–450.

    PubMed  Google Scholar 

  110. Lin MY, Tavakol MM, Sarin A et al. Safety and feasibility of sleeve gastrectomy in morbidly obese patients following liver transplantation. Surg Endosc. 2013;27:81–85.

    PubMed  Google Scholar 

  111. Heimbach JK, Watt KD, Poterucha JJ et al. Combined liver transplantation and gastric sleeve resection for patients with medically complicated obesity and end-stage liver disease. Am J Transpl. 2013;13:363–368.

    CAS  Google Scholar 

  112. Spengler EK, O’Leary JG, Te HS et al. Liver transplantation in the obese cirrhotic patient. Transplantation. 2017;101:2288–2296.

    PubMed  PubMed Central  Google Scholar 

  113. Al-Nowaylati AR, Al-Haddad BJ, Dorman RB et al. Gastric bypass after liver transplantation. Liver Transpl. 2013;19:1324–1329.

    PubMed  Google Scholar 

  114. Osseis M, Lazzati A, Salloum C et al. Sleeve Gastrectomy After Liver Transplantation: Feasibility and Outcomes. Obes Surg. 2018;28:242–248.

    PubMed  Google Scholar 

  115. Khoraki J, Katz MG, Funk LM et al. Feasibility and outcomes of laparoscopic sleeve gastrectomy after solid organ transplantation. Surg Obes Relat Dis. 2016;12:75–83.

    PubMed  Google Scholar 

  116. Tichasky DS, Madan AK. Laparoscopic Roux-en-Y gastric bypass is safe and feasible after orthotopic liver transplantation. Obes Surg. 2005;15:1481–1486.

    Google Scholar 

  117. Weiner JP, Goodwin SM, Chang HY et al. Impact of bariatric surgery on health care costs of obese persons: a 6-year follow-up of surgical and comparison cohorts using health plan data. JAMA Surg. 2013;148:555–562.

    PubMed  Google Scholar 

  118. Padwal R, Klarenbach S, Wiebe N et al. Bariatric surgery: a systematic review of the clinical and economic evidence. J Gen Intern Med. 2011;26:1183–1194.

    PubMed  PubMed Central  Google Scholar 

  119. Campbell J, McGarry LA, Shikora SA et al. Cost-effectiveness of laparoscopic gastric banding and bypass for morbid obesity. Am J Manag Care. 2010;16:e174-e187.

    PubMed  Google Scholar 

  120. Wolter S, Duprée A, Coelius C et al. Influence of liver disease on perioperative outcome after bariatric surgery in a northern german cohort. Obes Surg. 2017;27:90–95.

    PubMed  Google Scholar 

  121. Nesher E, Mor E, Shlomai A et al. Simultaneous liver transplantation and sleeve gastrectomy: Prohibitive combination or a necessity? Obes Surg. 2017;27:1387–1390.

    PubMed  Google Scholar 

  122. Safwan M, Collins KM, Abouljoud MS et al. Outcome of liver transplantation in patients with prior bariatric surgery. Liver Transpl. 2017;23:1415–1421.

    PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MC and PJT drafted the article, and PJT revised it for important intellectual content; KS reviewed the article for intellectual content; MC created the figures. All authors approved the final version and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Paul J. Thuluvath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, M., Singh, K. & Thuluvath, P.J. Bariatric Surgery in NAFLD. Dig Dis Sci 67, 408–422 (2022). https://doi.org/10.1007/s10620-021-07317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-07317-3

Keywords

Navigation