Skip to main content
Log in

MicroRNA-503 Targets Mothers Against Decapentaplegic Homolog 7 Enhancing Hepatic Stellate Cell Activation and Hepatic Fibrosis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The hyper-accumulation of extracellular matrix (ECM) is the leading cause of hepatic fibrosis, and TGF-β-induced activation of hepatic stellate cells (HSCs) is the central event of hepatic fibrosis pathogenesis. The deregulation and dysfunction of miRNAs in hepatic fibrosis have been reported previously.

Aims

To identify miRNA(s) playing a role in HSC activation and the underlying mechanism.

Methods

We analyzed online microarray expression datasets from Gene Expression Omnibus (GEO) for differentially expressed miRNAs in hepatic fibrosis-related disease liver tissues, examined the specific effects of the candidate miRNA on TGF-β-induced HSC activation, and screened for the targets of the candidate miRNA in the TGF-β/SMAD signaling. Then, the predicted miRNA-mRNA binding, the specific effects of the target mRNA, and the dynamic effects of miRNA and mRNA on TGF-β-induced HSC activation were investigated.

Results

The miR-503 expression was upregulated in TGF-β-activated HSCs. miR-503 overexpression enhanced, while miR-503 inhibition attenuated TGF-β-induced HSC proliferation and ECM accumulation in HSCs. miR-503 targeted SMAD7 to inhibit SMAD7 expression. SMAD7 knockdown also aggravated TGF-β-induced HSC proliferation and ECM accumulation in HSCs. The effects of miR-503 overexpression on TGF-β-induced HSC activation were partially reversed by SMAD7 overexpression. In CCl4-induced hepatic fibrosis model in rats, miR-503 overexpression aggravated, whereas SMAD7 overexpression improved CCl4-induced fibrotic changes in rats’ liver tissues. The effects of miR-503 overexpression on CCl4-induced fibrotic changes were partially reversed by SMAD7 overexpression.

Conclusion

miR-503 acts on HSC activation and hepatic fibrosis through SMAD7. The miR-503/SMAD7 axis enhances HSC activation and hepatic fibrosis through the TGF-β/SMAD pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials.

References

  1. Jiao J, Friedman SL, Aloman C. Hepatic fibrosis. Curr Opin Gastroenterol. 2009;25:223–229.

    Article  Google Scholar 

  2. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–218.

    Article  CAS  Google Scholar 

  3. Ellis EL, Mann DA. Clinical evidence for the regression of liver fibrosis. J Hepatol. 2012;56:1171–1180.

    Article  Google Scholar 

  4. Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61:1066–1079.

    Article  Google Scholar 

  5. Mederacke I, Hsu CC, Troeger JS, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823.

    Article  Google Scholar 

  6. Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol. 2013;3:1473–1492.

    Article  Google Scholar 

  7. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64:830–841.

    Article  CAS  Google Scholar 

  8. Mann DA, Marra F. Fibrogenic signalling in hepatic stellate cells. J Hepatol. 2010;52:949–950.

    Article  Google Scholar 

  9. Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol. 1999;30:77–87.

    Article  CAS  Google Scholar 

  10. Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol. 2006;44:57–66.

    Article  CAS  Google Scholar 

  11. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–172.

    Article  CAS  Google Scholar 

  12. Xu F, Liu C, Zhou D, Zhang L. TGF-beta/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem. 2016;64:157–167.

    Article  CAS  Google Scholar 

  13. Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10:542–552.

    Article  CAS  Google Scholar 

  14. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132:9–14.

    Article  CAS  Google Scholar 

  15. Spizzo R, Rushworth D, Guerrero M, Calin GA. RNA inhibition, microRNAs, and new therapeutic agents for cancer treatment. Clin Lymphoma Myeloma. 2009;9:S313–S318.

    Article  CAS  Google Scholar 

  16. Dai W, Zhao J, Tang N, et al. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously preventing EMT process and ERK1 signalling pathway. Liver Int. 2015;35:1234–1243.

    Article  CAS  Google Scholar 

  17. Bala S, Csak T, Saha B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J Hepatol. 2016;64:1378–1387.

    Article  CAS  Google Scholar 

  18. Kweon SM, Chi F, Higashiyama R, Lai K, Tsukamoto H. Wnt pathway stabilizes MeCP2 protein to repress PPAR-gamma in activation of hepatic stellate cells. PLoS ONE. 2016;11:e0156111.

    Article  Google Scholar 

  19. Cai Y, Huang G, Ma L, et al. Smurf2, an E3 ubiquitin ligase, interacts with PDE4B and attenuates liver fibrosis through miR-132 mediated CTGF inhibition. Biochim Biophys Acta Mol Cell Res. 2018;1865:297–308.

    Article  CAS  Google Scholar 

  20. Wu K, Ye C, Lin L, et al. Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT. Clin Sci (Lond). 2016;130:1469–1480.

    Article  CAS  Google Scholar 

  21. Caviglia JM, Yan J, Jang MK, et al. MicroRNA-21 and Dicer are dispensable for hepatic stellate cell activation and the development of liver fibrosis. Hepatology. 2018;67:2414–2429.

    Article  CAS  Google Scholar 

  22. Ma L, Yang X, Wei R, et al. MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death Dis. 2018;9:718.

    Article  Google Scholar 

  23. Ge S, Xiong Y, Wu X, et al. Role of growth factor receptor-bound 2 in CCl4-induced hepatic fibrosis. Biomed Pharmacother. 2017;92:942–951.

    Article  CAS  Google Scholar 

  24. Ge S, Zhang L, Xie J, et al. MicroRNA-146b regulates hepatic stellate cell activation via targeting of KLF4. Ann Hepatol. 2016;15:918–928.

    CAS  PubMed  Google Scholar 

  25. Yang JJ, Liu LP, Tao H, et al. MeCP2 silencing of LncRNA H19 controls hepatic stellate cell proliferation by targeting IGF1R. Toxicology. 2016;359–360:39–46.

    Article  Google Scholar 

  26. He H, Dai J, Feng J et al. FBXO31 modulates activation of hepatic stellate cells and liver fibrogenesis by promoting ubiquitination of Smad7. J Cell Biochem. 2019. https://doi.org/10.1002/jcb.29528.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ge S, Xie J, Liu F, He J, He J. MicroRNA-19b reduces hepatic stellate cell proliferation by targeting GRB2 in hepatic fibrosis models in vivo and in vitro as part of the inhibitory effect of estradiol. J Cell Biochem. 2015;116:2455–2464.

    Article  CAS  Google Scholar 

  28. Zhu H, Li Y, Qu S, et al. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 2012;32:514–522.

    Article  CAS  Google Scholar 

  29. Zhou Y, Deng L, Zhao D, et al. MicroRNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13. J Cell Mol Med. 2016;20:495–505.

    Article  CAS  Google Scholar 

  30. Mann C, Kaistha BP, Kacik M, Stiewe T, Hoyer J. Downregulation of miR-503 in activated kidney fibroblasts disinhibits KCNN4 in an in vitro model of kidney fibrosis. Kidney Blood Press Res. 2019;44:113–122.

    Article  CAS  Google Scholar 

  31. Yan W, Wu Q, Yao W, et al. MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1. Sci Rep. 2017;7:11313.

    Article  Google Scholar 

  32. Ren H, Li Y, Chen Y, Wang L. Endostatin attenuates PDGF-BB- or TGF-beta1-induced HSCs activation via suppressing RhoA/ROCK1 signal pathways. Drug Des Devel Ther. 2019;13:285–290.

    Article  CAS  Google Scholar 

  33. Budi EH, Duan D, Derynck R. Transforming growth factor-beta receptors and smads: regulatory complexity and functional versatility. Trends Cell Biol. 2017;27:658–672.

    Article  CAS  Google Scholar 

  34. Son G, Hines IN, Lindquist J, Schrum LW, Rippe RA. Inhibition of phosphatidylinositol 3-kinase signaling in hepatic stellate cells blocks the progression of hepatic fibrosis. Hepatology. 2009;50:1512–1523.

    Article  CAS  Google Scholar 

  35. Yu F, Chen B, Fan X, Li G, Dong P, Zheng J. Epigenetically-regulated microRNA-9-5p suppresses the activation of hepatic stellate cells via TGFBR1 and TGFBR2. Cell Physiol Biochem. 2017;43:2242–2252.

    Article  CAS  Google Scholar 

  36. Feili X, Wu S, Ye W, Tu J, Lou L. MicroRNA-34a-5p inhibits liver fibrosis by regulating TGF-beta1/Smad3 pathway in hepatic stellate cells. Cell Biol Int. 2018;42:1370–1376.

    Article  CAS  Google Scholar 

  37. El-Wakeel SA, Rahmo RM, El-Abhar HS. Anti-fibrotic impact of Carvedilol in a CCl-4 model of liver fibrosis via serum microRNA-200a/SMAD7 enhancement to bridle TGF-beta1/EMT track. Sci Rep. 2018;8:14327.

    Article  Google Scholar 

  38. Dooley S, Hamzavi J, Ciuclan L, et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology. 2008;135:642–659.

    Article  CAS  Google Scholar 

  39. Hamzavi J, Ehnert S, Godoy P, et al. Disruption of the Smad7 gene enhances CCI4-dependent liver damage and fibrogenesis in mice. J Cell Mol Med. 2008;12:2130–2144.

    Article  CAS  Google Scholar 

  40. Bian EB, Huang C, Wang H, et al. Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett. 2014;224:175–185.

    Article  CAS  Google Scholar 

  41. Trivedi P, Mowat AP. Carbon tetrachloride-induced hepatic fibrosis and cirrhosis in the developing rat: an experimental model of cirrhosis in childhood. Br J Exp Pathol. 1983;64:25–33.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Guiding Projects of Hengyang City, 2018 (S2018F9031021273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Bo Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Dou, CY., Zhou, Y. et al. MicroRNA-503 Targets Mothers Against Decapentaplegic Homolog 7 Enhancing Hepatic Stellate Cell Activation and Hepatic Fibrosis. Dig Dis Sci 66, 1928–1939 (2021). https://doi.org/10.1007/s10620-020-06460-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06460-7

Keywords

Navigation