Skip to main content

Advertisement

Log in

Enteric Virome and Carcinogenesis in the Gut

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related deaths in both the USA and the world. Recent research has demonstrated the involvement of the gut microbiota in CRC development and progression. Microbial biomarkers of disease have focused primarily on the bacterial component of the microbiome; however, the viral portion of the microbiome, consisting of both bacteriophages and eukaryotic viruses, together known as the virome, has been lesser studied. Here we review the recent advancements in high-throughput sequencing (HTS) technologies and bioinformatics, which have enabled scientists to better understand how viruses might influence the development of colorectal cancer. We discuss the contemporary findings revealing modulations in the virome and their correlation with CRC development and progression. While a variety of challenges still face viral HTS detection in clinical specimens, we consider herein numerous next steps for future basic and clinical research. Clinicians need to move away from a single infectious agent model for disease etiology by grasping new, more encompassing etiological paradigms, in which communities of various microbial components interact with each other and the host. The reporting and indexing of patient health information, socioeconomic data, and other relevant metadata will enable identification of predictive variables and covariates of viral presence and CRC development. Altogether, the virome has a more profound role in carcinogenesis and cancer progression than once thought, and viruses, specific for either human cells or bacteria, are clinically relevant in understanding CRC pathology, patient prognosis, and treatment development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pan D, Nolan J, Williams KH, et al. Abundance and distribution of microbial cells and viruses in an alluvial aquifer. Front Microbiol. 2017;8:1199.

    PubMed  PubMed Central  Google Scholar 

  2. Rohwer F, Prangishvili D, Lindell D. Roles of viruses in the environment. Environ Microbiol. 2009;11:2771–2774.

    PubMed  Google Scholar 

  3. Navarro F, Muniesa M. Phages in the Human Body. Front Microbiol. 2017;8:566.

    PubMed  PubMed Central  Google Scholar 

  4. Bekliz M, Colson P, La Scola B. The expanding family of virophages. Viruses. 2016;8:317.

    PubMed Central  Google Scholar 

  5. Caputo M, Zoch-Lesniak B, Karch A, et al. Bacterial community structure and effects of picornavirus infection on the anterior nares microbiome in early childhood. BMC Microbiol. 2019;19:1. https://doi.org/10.1186/s12866-018-1372-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yinda CK, Vanhulle E, Conceição-Neto N, et al. Gut virome analysis of cameroonians reveals high diversity of enteric viruses, including potential interspecies transmitted viruses. mSphere. 2019;4:e00585-18. https://doi.org/10.1128/mSphere.00585-18.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ly M, Abeles SR, Boehm TK, et al. Altered oral viral ecology in association with periodontal disease. mBio. 2014;5:1133. https://doi.org/10.1128/mbio.01133-14.

    Article  Google Scholar 

  8. Ungaro F, Massimino L, Furfaro F, et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes. 2019;10:149–158. https://doi.org/10.1080/19490976.2018.1511664.

    Article  CAS  PubMed  Google Scholar 

  9. Fernandes MA, Verstraete SG, Phan TG, et al. Enteric virome and bacterial microbiota in children with ulcerative colitis and crohn disease. J Pediatr Gastroenterol Nutr. 2019;68:30–36. https://doi.org/10.1097/MPG.0000000000002140.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Willner D, Furlan M, Haynes M, et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE. 2009;4:e7370. https://doi.org/10.1371/journal.pone.0007370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moran Losada P, Chouvarine P, Dorda M, et al. The cystic fibrosis lower airways microbial metagenome. ERJ Open Res. 2016;2:00096–02015. https://doi.org/10.1183/23120541.00096-2015.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Santiago-Rodriguez TM, Hollister EB. Human virome and disease: high-throughput sequencing for virus discovery, identification of phage-bacteria dysbiosis and development of therapeutic approaches with emphasis on the human gut. Viruses. 2019;11:E656.

    PubMed  Google Scholar 

  13. Plummer M, de Martel C, Vignat J, et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4:e609–e616.

    PubMed  Google Scholar 

  14. Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe. 2014;15:266–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.

    CAS  PubMed  Google Scholar 

  16. Monaco CL, Gootenberg DB, Zhao G, et al. Altered virome and bacterial microbiome in human immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host Microbe. 2016;19:311–322. https://doi.org/10.1016/j.chom.2016.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abeles SR, Ly M, Santiago-Rodriguez TM, et al. Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS ONE. 2015;10:e0134941.

    PubMed  PubMed Central  Google Scholar 

  18. Santiago-Rodriguez TM, Ly M, Bonilla N, et al. The human urine virome in association with urinary tract infections. Front Microbiol. 2015;6:14.

    PubMed  PubMed Central  Google Scholar 

  19. Norman JM, Handley SA, Baldridge MT, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160:447–460. https://doi.org/10.1016/j.cell.2015.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bzhalava D, Guan P, Franceschi S, et al. A systematic review of the prevalence of mucosal and cutaneous human papillomavirus types. Virology. 2013;445:224–231.

    CAS  PubMed  Google Scholar 

  21. Braaten KP, Laufer MR. Human papillomavirus (HPV), HPV-related disease, and the HPV vaccine. Rev Obstet Gynecol. 2008;1:2.

    PubMed  PubMed Central  Google Scholar 

  22. Kreimer AR, Clifford GM, Boyle P, et al. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomark Prev. 2005;14:467–475.

    CAS  Google Scholar 

  23. D’Souza G, Kreimer AR, Viscidi R, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356:1944–1956.

    PubMed  Google Scholar 

  24. Muñoz N, Bosch X, de Sanjosé S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–527.

    PubMed  Google Scholar 

  25. Yin B, Liu W, Yu P, et al. Association between human papillomavirus and prostate cancer: a meta-analysis. Oncol Lett. 2017;14:1855–1865. https://doi.org/10.3892/ol.2017.6367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Damin DC, Ziegelmann PK, Damin AP. Human papillomavirus infection and colorectal cancer risk: a meta-analysis. Colorectal Dis. 2013;15:e420–e428.

    CAS  PubMed  Google Scholar 

  27. Araldi RP, Sant’Ana TA, Módolo DG, et al. The human papillomavirus (HPV)-related cancer biology: an overview. Biomed Pharmacother. 2018;106:1537–1556.

    CAS  PubMed  Google Scholar 

  28. Lui RN, Tsoi KKF, Ho JMW, et al. Global increasing incidence of young-onset colorectal cancer across 5 continents: a joinpoint regression analysis of 1,922,167 cases. Cancer Epidemiol Biomark Prev. 2019;28:1275–1282.

    Google Scholar 

  29. Doorbar J, Egawa N, Griffin H, et al. Human papillomavirus molecular biology and disease association. Rev Med Virol.. 2015;25:2–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bodaghi S. Colorectal papillomavirus infection in patients with colorectal cancer. Clin Cancer Res. 2005;11:2862–2867.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. De Gascun CF, Carr MJ. Human polyomavirus reactivation: disease pathogenesis and treatment approaches. Clin Dev Immunol. 2013;2013:373579.

    PubMed  PubMed Central  Google Scholar 

  32. Prado JCM, Monezi TA, Amorim AT, et al. Human polyomaviruses and cancer: an overview. Clinics (Sao Paulo). 2018;73:e558s. https://doi.org/10.6061/clinics/2018/e558s.

    Article  PubMed Central  Google Scholar 

  33. Dalianis T, Hirsch HH. Human polyomaviruses in disease and cancer. Virology. 2013;437:63–72.

    CAS  PubMed  Google Scholar 

  34. Vilchez RA, Butel JS. Emergent human pathogen simian virus 40 and its role in cancer. Clin Microbiol Rev. 2004;17:495–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Khabaz MN, Nedjadi T, Gari MA, et al. Simian virus 40 is not likely involved in the development of colorectal adenocarcinoma. Future Virol. 2016;11:175–180.

    CAS  Google Scholar 

  36. Rollison DE. JC virus infection. J Clin Gastroenterol. 2010;. https://doi.org/10.1097/mcg.0b013e3181e0084b.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khabaz MN, Nedjadi T, Garri MA, et al. BK polyomavirus association with colorectal cancer development. Genet Mol Res. 2016. https://doi.org/10.4238/gmr.15027841.

    Article  PubMed  Google Scholar 

  38. Cohen LJ. Phages trump bacteria in immune interactions. Sci Transl Med. 2019;11:eaaw5331.

    Google Scholar 

  39. Hannigan GD, Duhaime MB, Ruffin MT 4th, et al. Diagnostic potential and interactive dynamics of the colorectal cancer virome. mBio. 2018;9:e02248-18.

    PubMed  PubMed Central  Google Scholar 

  40. Nakatsu G, Zhou H, Wu WKK, et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology. 2018;155:e5.

    Google Scholar 

  41. Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE. 2011;6:e16393. https://doi.org/10.1371/journal.pone.0016393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tilg H, Adolph TE, Gerner RR, et al. The intestinal microbiota in colorectal cancer. Cancer Cell. 2018;33:954–964.

    CAS  PubMed  Google Scholar 

  43. Schieffer KM, Wright JR, Harris LR, et al. NOD2 genetic variants predispose one of two familial adenomatous polyposis siblings to pouchitis through microbiome dysbiosis. J Crohns Colitis. 2017;11:1393–1397. https://doi.org/10.1093/ecco-jcc/jjx083.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gogokhia L, Buhrke K, Bell R, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe. 2019;25:e8.

    Google Scholar 

  45. Sze MA, Baxter NT, Ruffin MT 4th, et al. Normalization of the microbiota in patients after treatment for colonic lesions. Microbiome. 2017;5:150.

    PubMed  PubMed Central  Google Scholar 

  46. Baxter NT, Ruffin MT 4th, Rogers MAM, et al. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. 2016;8:37.

    PubMed  PubMed Central  Google Scholar 

  47. Baxter NT, Koumpouras CC, Rogers MAM, et al. DNA from fecal immunochemical test can replace stool for detection of colonic lesions using a microbiota-based model. Microbiome. 2016;4:59.

    PubMed  PubMed Central  Google Scholar 

  48. Zackular JP, Rogers MAM, Ruffin MT 4th, et al. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res. 2014;7:1112–1121.

    CAS  Google Scholar 

  49. Geuking MB, Weber J, Dewannieux M, et al. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science. 2009;323:393–396.

    CAS  PubMed  Google Scholar 

  50. Horie M, Honda T, Suzuki Y, et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature. 2010;463:84–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Klenerman P, Hengartner H, Zinkernagel RM. A non-retroviral RNA virus persists in DNA form. Nature. 1997;390:298–301.

    CAS  PubMed  Google Scholar 

  52. Zhdanov VM. Integration of viral genomes. Nature. 1975;256:471–473.

    CAS  PubMed  Google Scholar 

  53. Enam S, del Valle L, Lara C, et al. Association of human polyomavirus JCV with colon cancer: evidence for interaction of viral T-antigen and beta-catenin. Cancer Res. 2002;62:7093–7101.

    CAS  PubMed  Google Scholar 

  54. Goel A, Li MS, Nagasaka T, et al. Association of JC virus T-antigen expression with the methylator phenotype in sporadic colorectal cancers. Gastroenterology. 2006;130:1950–1961.

    CAS  PubMed  Google Scholar 

  55. Hori R, Murai Y, Tsuneyama K, et al. Detection of JC virus DNA sequences in colorectal cancers in Japan. Virchows Arch. 2005;447:723–730.

    CAS  PubMed  Google Scholar 

  56. Karpinski P, Myszka A, Ramsey D, et al. Detection of viral DNA sequences in sporadic colorectal cancers in relation to CpG island methylation and methylator phenotype. Tumour Biol.. 2011;32:653–659.

    CAS  PubMed  Google Scholar 

  57. Mou X, Chen L, Liu F, et al. Prevalence of JC virus in Chinese patients with colorectal cancer. PLoS ONE. 2012;7:e35900. https://doi.org/10.1371/journal.pone.0035900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ouaïssi M, Studer AS, Mege D, et al. Characteristics and natural history of patients with colorectal cancer complicated by infectious endocarditis. Case control study of 25 patients. Anticancer Res. 2014;34:349–353.

    PubMed  Google Scholar 

  59. Theodoropoulos G, Panoussopoulos D, Papaconstantinou I, et al. Assessment of JC polyoma virus in colon neoplasms. Dis Colon Rectum. 2005;48:86–91.

    PubMed  Google Scholar 

  60. Vilkin A, Ronen Z, Levi Z, et al. Presence of JC virus DNA in the tumor tissue and normal mucosa of patients with sporadic colorectal cancer (CRC) or with positive family history and Bethesda criteria. Dig Dis Sci. 2012;57:79–84. https://doi.org/10.1007/s10620-011-1855-z.

    Article  CAS  PubMed  Google Scholar 

  61. zur Hausen H. Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer. Int J Cancer. 2012;130:2475–2483.

    CAS  PubMed  Google Scholar 

  62. Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60:208–215. https://doi.org/10.1093/cid/ciu787.

    Article  CAS  PubMed  Google Scholar 

  63. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306. https://doi.org/10.1101/gr.126516.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cuevas-Ramos G, Petit CR, Marcq I, et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA. 2010;107:11537–11542. https://doi.org/10.1073/pnas.1001261107.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Niu YD, McAllister TA, Nash JHE, et al. Four Escherichia coli O157:H7 phages: a new bacteriophage genus and taxonomic classification of T1-like phages. PLoS ONE. 2014;9:e100426.

    PubMed  PubMed Central  Google Scholar 

  66. Dejea CM, Wick EC, Hechenbleikner EM, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA. 2014;111:18321–18326. https://doi.org/10.1073/pnas.1406199111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johnson CH, Dejea CM, Edler D, et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 2015;21:891–897. https://doi.org/10.1016/j.cmet.2015.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Secor PR, Sweere JM, Michaels LA, et al. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe. 2015;18:549–559. https://doi.org/10.1016/j.chom.2015.10.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996;272:1910–1914.

    CAS  PubMed  Google Scholar 

  70. Nguyen S, Baker K, Padman BS, et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio. 2017;8:e01874-17.

    PubMed  PubMed Central  Google Scholar 

  71. Lehti TA, Pajunen MI, Skog MS, et al. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat Commun. 2017;8:1915.

    PubMed  PubMed Central  Google Scholar 

  72. Ogilvie LA, Jones BV. The human gut virome: a multifaceted majority. Front Microbiol. 2015;6:918.

    PubMed  PubMed Central  Google Scholar 

  73. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003;57:369–394.

    PubMed  Google Scholar 

  75. Edwards RA, Rohwer F. Viral metagenomics. Nat Rev Microbiol. 2005;3:504–510.

    CAS  PubMed  Google Scholar 

  76. García-Arroyo L, Prim N, Martí N, et al. Benefits and drawbacks of molecular techniques for diagnosis of viral respiratory infections. Experience with two multiplex PCR assays. J Med Virol. 2016;88:45–50.

    PubMed  Google Scholar 

  77. Reijans M, Dingemans G, Klaassen CH, et al. RespiFinder: a new multiparameter test to differentially identify fifteen respiratory viruses. J Clin Microbiol. 2008;46:1232–1240. https://doi.org/10.1128/JCM.02294-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Afshar RM, Mollaie HR. Detection of HBV resistance to lamivudine in patients with chronic hepatitis B using Zip nucleic acid probes in Kerman, southeast of Iran. Asian Pac J Cancer Prev. 2012;13:3657–3661.

    PubMed  Google Scholar 

  79. Mercier-Delarue S, Vray M, Plantier JC, et al. Higher specificity of nucleic acid sequence-based amplification isothermal technology than of real-time PCR for quantification of HIV-1 RNA on dried blood spots. J Clin Microbiol. 2014;52:52–56. https://doi.org/10.1128/JCM.01848-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu D, Liu F, Liu H, et al. Detection of serum HCV RNA in patients with chronic hepatitis C by transcription mediated amplification and real-time reverse transcription polymerase chain reaction. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2014;39:664–672.

    CAS  PubMed  Google Scholar 

  81. Wylie TN, Wylie KM, Herter BN, et al. Enhanced virome sequencing using targeted sequence capture. Genome Res. 2015;25:1910–1920.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Moustafa A, Xie C, Kirkness E, et al. The blood DNA virome in 8,000 humans. PLoS Pathog. 2017;13:e1006292. https://doi.org/10.1371/journal.ppat.1006292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kleiner M, Hooper LV, Duerkop BA. Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genom. 2015;16:7.

    Google Scholar 

  84. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Thurber RV, Haynes M, Breitbart M, et al. Laboratory procedures to generate viral metagenomes. Nat Protoc. 2009;4:470–483.

    CAS  PubMed  Google Scholar 

  86. Reyes A, Semenkovich NP, Whiteson K, et al. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol. 2012;10:607–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim K-H, Chang H-W, Nam Y-D, et al. Amplification of uncultured single-stranded DNA viruses from rice paddy soil. Appl Environ Microbiol. 2008;74:5975–5985.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang D, Urisman A, Liu YT, et al. Viral discovery and sequence recovery using DNA microarrays. PLoS Biol. 2003;1:E2. https://doi.org/10.1371/journal.pbio.0000002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abbas AA, Diamond JM, Chehoud C, et al. The perioperative lung transplant virome: torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction. Am J Transplant. 2017;17:1313–1324. https://doi.org/10.1111/ajt.14076.

    Article  CAS  PubMed  Google Scholar 

  90. Breitbart M, Hewson I, Felts B, et al. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol. 2003;185:6220–6223. https://doi.org/10.1128/jb.185.20.6220-6223.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reyes A, Haynes M, Hanson N, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466:334–338. https://doi.org/10.1038/nature09199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim M-S, Park E-J, Roh SW, et al. Diversity and abundance of single-stranded DNA viruses in human feces. Appl Environ Microbiol. 2011;77:8062–8070.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Minot S, Sinha R, Chen J, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21:1616–1625. https://doi.org/10.1101/gr.122705.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Handley SA, Devkota S. Going viral: a novel role for bacteriophage in colorectal cancer. mBio. 2019;10:e02626-18.

    PubMed  PubMed Central  Google Scholar 

  95. Zheng T, Li J, Ni Y, et al. Mining, analyzing, and integrating viral signals from metagenomic data. Microbiome. 2019;7:42. https://doi.org/10.1186/s40168-019-0657-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mollerup S, Asplund M, Friis-Nielsen J, et al. High-throughput sequencing-based investigation of viruses in human cancers by multienrichment approach. J Infect Dis. 2019;220:1312–1324. https://doi.org/10.1093/infdis/jiz318.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vinner L, Mourier T, Friis-Nielsen J, et al. Investigation of human cancers for retrovirus by low-stringency target enrichment and high-throughput sequencing. Sci Rep. 2015;5:13201. https://doi.org/10.1038/srep13201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mühlemann B, Jones TC, de Barros Damgaard P, et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature. 2018;557:418–423.

    PubMed  Google Scholar 

  99. Hansen TA, Fridholm H, Frøslev TG, et al. New type of papillomavirus and novel circular single stranded DNA virus discovered in urban Rattus norvegicus using circular DNA enrichment and metagenomics. PLoS ONE. 2015;10:e0141952. https://doi.org/10.1371/journal.pone.0141952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nooij S, Schmitz D, Vennema H, et al. Overview of virus metagenomic classification methods and their biological applications. Front. Microbiol. 2018;9:749.

    PubMed  PubMed Central  Google Scholar 

  101. Posada-Cespedes S, Seifert D, Beerenwinkel N. Recent advances in inferring viral diversity from high-throughput sequencing data. Virus Res. 2017;239:17–32.

    CAS  PubMed  Google Scholar 

  102. Rose R, Constantinides B, Tapinos A, et al. Challenges in the analysis of viral metagenomes. Virus Evol. 2016;2:vew022.

    PubMed  PubMed Central  Google Scholar 

  103. Wommack KE, Bhavsar J, Polson SW, et al. VIROME: a standard operating procedure for analysis of viral metagenome sequences. Stand Genom Sci. 2012;6:427–439. https://doi.org/10.4056/sigs.2945050.

    Article  CAS  Google Scholar 

  104. Roux S, Tournayre J, Mahul A, et al. Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinform. 2014;15:76.

    Google Scholar 

  105. Scheuch M, Höper D, Beer M. RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. BMC Bioinform. 2015;16:69.

    Google Scholar 

  106. Norling M, Karlsson-Lindsjö OE, Gourlé H, et al. MetLab: an in silico experimental design, simulation and analysis tool for viral metagenomics studies. PLoS ONE. 2016;11:e0160334.

    PubMed  PubMed Central  Google Scholar 

  107. Bhaduri A, Qu K, Lee CS, et al. Rapid identification of non-human sequences in high-throughput sequencing datasets. Bioinformatics. 2012;28:1174–1175.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.

    PubMed  PubMed Central  Google Scholar 

  109. Lefkowitz EJ, Dempsey DM, Hendrickson RC, et al. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucl Acids Res. 2018;46:D708–D717. https://doi.org/10.1093/nar/gkx932.

    Article  CAS  PubMed  Google Scholar 

  110. Aiewsakun P, Adriaenssens EM, Lavigne R, et al. Evaluation of the genomic diversity of viruses infecting bacteria, archaea and eukaryotes using a common bioinformatic platform: steps towards a unified taxonomy. J Gen Virol. 2018;99:1331–1343.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Aiewsakun P, Simmonds P. The genomic underpinnings of eukaryotic virus taxonomy: creating a sequence-based framework for family-level virus classification. Microbiome. 2018;6:38.

    PubMed  PubMed Central  Google Scholar 

  112. Wommack KE, Bhavsar J, Ravel J. Metagenomics: read length matters. Appl Environ Microbiol. 2008;74:1453–1463.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wooley JC, Ye Y. Metagenomics: facts and artifacts, and computational challenges*. J Comput Sci Technol. 2009;25:71–81.

    PubMed  PubMed Central  Google Scholar 

  114. Tang P, Chiu C. Metagenomics for the discovery of novel human viruses. Future Microbiol. 2010;5:177–189.

    CAS  PubMed  Google Scholar 

  115. Wooley JC, Godzik A, Friedberg I. A primer on metagenomics. PLoS Comput Biol. 2010;6:e1000667.

    PubMed  PubMed Central  Google Scholar 

  116. Fancello L, Raoult D, Desnues C. Computational tools for viral metagenomics and their application in clinical research. Virology. 2012;434:162–174.

    CAS  PubMed  Google Scholar 

  117. Thomas T, Gilbert J, Meyer F. Metagenomics—A guide from sampling to data analysis. Microb Inform Exp. 2012;2:3.

    PubMed  PubMed Central  Google Scholar 

  118. Pallen MJ. Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections. Parasitology. 2014;141:1856–1862.

    CAS  PubMed  Google Scholar 

  119. Hall RJ, Draper JL, Nielsen FGG, et al. Beyond research: a primer for considerations on using viral metagenomics in the field and clinic. Front Microbiol. 2015;6:224.

    PubMed  PubMed Central  Google Scholar 

  120. McIntyre ABR, Ounit R, Afshinnekoo E, et al. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol. 2017;18:182.

    PubMed  PubMed Central  Google Scholar 

  121. Nieuwenhuijse DF, Koopmans MPG. Metagenomic sequencing for surveillance of food- and waterborne viral diseases. Front Microbiol. 2017;8:230.

    PubMed  PubMed Central  Google Scholar 

  122. Randle-Boggis RJ, Helgason T, Sapp M, et al. Evaluating techniques for metagenome annotation using simulated sequence data. FEMS Microbiol Ecol. 2016;92:fiw095.

    PubMed  PubMed Central  Google Scholar 

  123. Lindgreen S, Adair KL, Gardner PP. An evaluation of the accuracy and speed of metagenome analysis tools. Sci Rep. 2016;6:19233.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Treangen TJ, Koren S, Sommer DD, et al. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol. 2013;14:R2.

    PubMed  PubMed Central  Google Scholar 

  125. Scholz M, Lo C-C, Chain PSG. Improved assemblies using a source-agnostic pipeline for MetaGenomic Assembly by Merging (MeGAMerge) of contigs. Sci Rep. 2015;4:6480.

    Google Scholar 

  126. Smits SL, Bodewes R, Ruiz-Gonzalez A, et al. Assembly of viral genomes from metagenomes. Front Microbiol. 2014;5:714. https://doi.org/10.3389/fmicb.2014.00714.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Vázquez-Castellanos JF, García-López R, Pérez-Brocal V, et al. Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut. BMC Genom. 2014;15:37.

    Google Scholar 

  128. Deng X, Naccache SN, Ng T, et al. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res. 2015;43:e46. https://doi.org/10.1093/nar/gkv002.

    PubMed  PubMed Central  Google Scholar 

  129. Henry VJ, Bandrowski AE, Pepin A-S, Gonzalez BJ, Desfeux A. OMICtools: an informative directory for multi-omic data analysis. Database. 2014.

  130. Fredericks DN, Relman DA. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin Microbiol Rev. 1996;9:18–33.

    PubMed Central  Google Scholar 

  131. Arias M, Fan H. The saga of XMRV: a virus that infects human cells but is not a human virus. Emerg Microbes Infect. 2014;3:1–6.

    Google Scholar 

  132. Alter HJ, Mikovits JA, Switzer WM, et al. A multicenter blinded analysis indicates no association between chronic fatigue syndrome/myalgic encephalomyelitis and either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus. mBio. 2012;3:e00266-12. https://doi.org/10.1128/mbio.00266-12.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Erlwein O, et al. DNA extraction columns contaminated with murine sequences. PLoS ONE. 2011;6:e23484.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Naccache SN, Greninger AL, Lee D, et al. The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns. J Virol. 2013;87:11966–11977. https://doi.org/10.1128/JVI.02323-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lewandowska DW, Zagordi O, Abinden A, et al. Unbiased metagenomic sequencing complements specific routine diagnostic methods and increases chances to detect rare viral strains. Diagn Microbiol Infect Dis. 2015;83:133–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Schlaberg R, Chiu CY, Miller S, et al. Validation of metagenomic next-generation sequencing tests for universal pathogen detection. Arch Pathol Lab Med. 2017;141:776–786.

    CAS  PubMed  Google Scholar 

  137. Kim M-S, Bae J-W. Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ Microbiol. 2016;18:1498–1510.

    CAS  PubMed  Google Scholar 

  138. Minot S, Bryson A, Chehoud C, et al. Rapid evolution of the human gut virome. Proc Natl Acad Sci USA. 2013;110:12450–12455. https://doi.org/10.1073/pnas.1300833110.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Nagata N, Tohya M, Fukuda S, et al. Effects of bowel preparation on the human gut microbiome and metabolome. Sci Rep. 2019;9:4042. https://doi.org/10.1038/s41598-019-40182-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Lamendella.

Ethics declarations

Conflict of interest

Regina Lamendella receives funding from the National Science Foundation (NSF1805549) and the National Institute of Health - NIA (1R15AG052933-01). She is also the CEO of Wright Labs, LLC and the VP of research and development for Contamination Source Identification.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emlet, C., Ruffin, M. & Lamendella, R. Enteric Virome and Carcinogenesis in the Gut. Dig Dis Sci 65, 852–864 (2020). https://doi.org/10.1007/s10620-020-06126-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06126-4

Keywords

Navigation